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Abstract

We develop a theory for the representation of opaque solids

as volumes. Starting from a stochastic representation of

opaque solids as random indicator functions, we prove the

conditions under which such solids can be modeled using ex-

ponential volumetric transport. We also derive expressions

for the volumetric attenuation coefficient as a functional

of the probability distributions of the underlying indicator

functions. We generalize our theory to account for isotropic

and anisotropic scattering at different parts of the solid, and

for representations of opaque solids as stochastic implicit

surfaces. We derive our volumetric representation from first

principles, which ensures that it satisfies physical constraints

such as reciprocity and reversibility. We use our theory to

explain, compare, and correct previous volumetric represen-

tations, as well as propose meaningful extensions that lead

to improved performance in 3D reconstruction tasks.

1. Introduction

Volumetric representations have a long history in applied

physics [38] and computer graphics [44], where they en-

able efficient light transport simulation in translucent ob-

jects (e.g., tissue, clouds, materials such as wax and soap)

and participating media (e.g., smoke, fog, murky water).

Since the introduction of NeRF by Mildenhall et al. [36],

there has been a proliferation of neural rendering tech-

niques [5, 17, 45, 50, 61, 63, 66, 68] that use volumetric

representations for scenes much unlike the above examples,

comprising opaque objects (rather than translucent ones) in

free space (rather than volumetric media). The tremendous

success of volumetric representations for scenes without sub-

surface or volumetric scattering motivates questions such

as: Why can we use volumetric light transport to simulate

scenes with only light-surface interactions? What is the

mathematical underpinning for modeling an opaque object

as a volume? What are the properties of such a volume?

Our goal is to answer these questions. We start from first

principles, revisiting the derivation of volumetric represen-

tations for translucent objects and participating media. As

recent work in computer graphics highlights [9, 15, 26], volu-

metric representations are a formalism for querying stochas-

tic geometry [12, 48]: From this lens, volumetric quantities

such as transmittance and free-flight distribution are the an-

swers to queries such as ªare two points mutually visibleº (a

visibility query) and ªwhat is the distance to first intersec-

tion along a rayº (a ray-casting query), when the geometry

occluding visibility and terminating rays is stochastic.

Volumetric representations for translucent and participat-

ing media are stochastic abstractions of their microscopic

structure: Such media comprise numerous microscopic par-

ticles that reflect and occlude light rays. Modeling explicit

microparticle configurations, and rendering light transport

through them, is prohibitively expensive. As a compromise

for efficiency, volumetric representations allow to simulate

light transport in such media on average [6]. These repre-

sentations replace explicit with statistical descriptions of

microparticle configurations (e.g., average particle location,

size, shape, and orientation), analogously to statistical BRDF

models for surface microgeometry [13, 14, 24, 46, 60]. Com-

puter graphics has developed volumetric representations for

microparticle media that account for details such as vary-

ing particle size and material [16, 32], shape and orienta-

tion [23, 25], and placement correlations [9, 15, 26].

We develop (Section 3) analogous volumetric representa-

tions for scenes comprising opaque macroscopic 3D objects,

or opaque solids, using stochastic geometry theory. We

prove (Section 3.1) formal conditions for exponential volu-

metric representations to apply to stochastic opaque solids;

and functional relationships between volumetric parameters

(i.e., attenuation coefficient) and stochastic geometry models.

We adapt (Section 3.2) anisotropic volumetric representa-

tions of microparticle geometry to opaque solids, to account

for effects such as directionally-dependent foreshortening

near surfaces, and directionally-independent attenuation far

from them. We extend (Section 3.3) our volumetric repre-

sentations to utilize geometry models common in current

practice (e.g., implicit surfaces). Our theory delivers volu-

metric representations equipped with properties necessary

for physical plausibility (e.g., reciprocity and reversibility).

Our work is not the first to derive volumetric representa-

tions for opaque solids [45, 52, 63, 66]. Previous derivations

generally consider how to transform a deterministic geome-

try representation (e.g., signed distance function) into a volu-

metric one that behaves approximately like the deterministic

geometry. Despite its empirical success, this methodological
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approach remains heuristic and requires arbitrary choices

(e.g., deciding what properties of deterministic geometry to

preserve in the volumetric representation). By contrast, our

derivation is rigorous, starting from only the axioms of volu-

metric transport, and helps place this prior work on a solid

mathematical footing: We show (Section 4) that our the-

ory explains previous volumetric representations as special

cases of ours, corresponding to different stochastic modeling

choices for the underlying opaque geometry. Our theory

additionally highlights and addresses critical defects of pre-

vious volumetric representations (e.g., lack of reciprocity

and reversibility), and generalizes them in principled ways.

Our volumetric representation can be readily incorporated

within existing volumetric neural rendering pipelines [37, 54,

63, 67]. We show experimentally (Section 5) that replacing

previous volumetric representations [63, 66] with ours leads

to significantly better (qualitatively and quantitatively) 3D

reconstructions on common datasets. We provide interactive

visualizations, open-source code, and a supplement with all

appendices on the project website.1

2. Volumetric light transport background

We begin with background on volumetric light transport

(also known as radiative transfer). We follow Bitterli et al. [9]

for our review, and refer to Preisendorfer [48, Chapter XV]

and Chiu et al. [12] for a more comprehensive discussion.

Setup. Volumetric light transport models scenes with

stochastic geometry (Figure 1). Classically in computer

graphics, these are scenes comprising numerous microscopic

particles [39] (e.g., translucent materials); whereas in neural

rendering, they are scenes comprising macroscopic opaque

objects. We term the two settings stochastic microparticle

geometry and stochastic solid geometry, respectively.

In both settings, volumetric light transport algorithms

simulate expected radiometric measurements over all realiza-

tions of the stochastic geometry [6]. They leverage the fact

that deterministic light transport algorithms (e.g., path trac-

ing) interact with scene geometry only through two geomet-

ric queries: Q1. visibility queries to compute the visibility

V(x,y) ∈ {0, 1} between points x,y ∈ R
3; Q2. ray-cast-

ing queries to compute the free-flight distance t∗
x,ω ∈ [0,∞)

a ray with origin x ∈ R
3 and direction ω ∈ S2 travels un-

til it first intersects the scene. Thus, we can translate light

transport algorithms from the deterministic to the volumetric

setting by stochasticizing these geometric queries [9].

To facilitate discussion of these stochastic queries, we in-

troduce some notation. We denote by rx,ω(t) ≡ x+t ·ω the

point on a ray with origin x ∈ R
3 and direction ω ∈ S2 after

travel distance t ∈ [0,∞); and by Vx,ω(t) ≡ V(x, rx,ω(t))
the visibility along the ray. Then, the free-flight distance

becomes t∗
x,ω ≡ max{t ∈ [0,∞) : Vx,ω(t) = 1}, and we

denote by r
∗
x,ω ≡ rx,ω

(

t∗
x,ω

)

the first intersection point.

1https://imaging.cs.cmu.edu/volumetric_opaque_solids
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Figure 1. Volumetric representations replace deterministic (left)

with stochastic (right) ray casting: rather than find the first intersec-

tion with deterministic geometry, they use the free-flight distribu-

tion along a ray to represent the probability of first intersection with

stochastic geometry. Classical volumetric representations describe

stochastic microparticle geometry (top). We derive volumetric rep-

resentations for stochastic solid geometry (bottom).

Definition 1. In a scene with stochastic geometry O, the

transmittance along a ray rx,ω(t) is the probability of visibil-

ity from the ray origin xÐequivalently, the tail distribution

of the free-flight distance t∗
x,ω:

Tx,ω(t) ≡ PrO{Vx,ω(t) = 1} = PrO
{

t∗
x,ω ≥ t

}

. (1)

The free-flight distribution along a ray is the probability

density function of the free-flight distance t∗
x,ω:

pff
x,ω(t) ≡ −

dTx,ω

dt
(t). (2)

The attenuation coefficient at point x and direction ω is the

probability density of zero free-flight distance (equivalently,

probability density of ray termination through x along ω):

σ(x,ω) ≡ pff
x,ω(0). (3)

We postpone definitions of stochastic geometry O till Sec-

tion 3. The transmittance inherits the following properties

from visibility: 1. it is reciprocal, Tx,ω(t) = Ty,−ω(t)
if y ≡ rx,ω(t); 2. it is monotonically non-increasing,

Tx,ω(t) ≤ Tx,ω(s) if t < s; 3. it satisfies Tx,ω(0) = 1.

The transmittance and free-flight distribution generalize the

visibility (Q1) and ray-casting (Q2) queries, respectively:

for deterministic geometry, Equation (1) reduces to the de-

terministic visibility, and Equation (2) reduces to the Dirac

delta distribution δ
(

t− t∗
x,ω

)

centered at the deterministic

free-flight distance. The attenuation coefficient will become

important when we discuss exponential transport below.

We can use these definitions to generalize deterministic

light transport algorithms, which recursively use the equa-

tion for the conservation of radiance along a ray, Li(x,ω) =
Lo

(

r
∗
x,ω,−ω

)

, to volumetric light transport algorithms,
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Figure 2. Overview of our theory, presented in Theorem 4, Definition 5, and Proposition 7.

which recursively use the expectation of this equation:

EO[Li(x,ω)] = EO

[

Lo

(

r
∗
x,ω,−ω

)]

(4)

=

∫ ∞

0

geometry

pff
x,ω(t) ·

global illumination

EO[Lo(rx,ω(t),−ω) | t] dt. (5)

If we drop the distinction between expected and actual ra-

diances, Equation (5) is the volume rendering equation that

neural volume rendering techniques use [36]. Such tech-

niques typically separately model the geometry and global

illumination terms, the latter as either volumetric emission

[36] or in-scattered radiance [58]. We focus on the geometry

term, but discuss in Appendix B implications for the global

illumination term from geometry modeling choices.

Exponential transport. Most commonly in computer vision

and graphics, the free-flight distance is an exponential ran-

dom variable, an assumption we call exponential transport.

Then, Equations (1)±(3) and transmittance reciprocity imply:

Tx,ω(t) = exp

(

−

∫ t

0

σ(rx,ω(s),ω) ds

)

, (6)

pff
x,ω(t) = σ(rx,ω(t),ω) Tx,ω(t), (7)

σ(x,ω) = σ(x,−ω). (8)

Thus, the attenuation coefficient becomes the rate parameter

of the free-flight distance. Given known coefficient values,

there exist efficient and accurate numerical approximations

for the free-flight distribution and transmittance [18, 27, 43].

Exponential transport has been extensively studied for

stochastic microparticle geometry [38]: It is equivalent to

the Poisson Boolean model of stochastic geometry, where

microparticle locations are independent [9, 15, 26] and dis-

tributed as a spatial Poisson process [12, 31]. This model

allows expressing the attenuation coefficient analytically as

a function of the probability distributions for the particle

location, size, material, shape, and orientation [16, 23, 25].

The recent success of exponential transport in neural render-

ing [36, 45, 63, 66] motivates our study in Section 3, where

we derive, for the first time, exponential transport models

for stochastic solid geometry. Notably, Vicini et al. [59]

suggest using non-exponential transport for stochastic solid

geometry, a suggestion we briefly discuss in Section 6.

Isotropic and anisotropic transport. In isotropic trans-

port, the attenuation coefficient is independent of direc-

tion, σ(x,ω) = σ(x); and conversely for anisotropic trans-

port [25]. In stochastic microparticle geometry, isotropic

transport models microparticles as rotationally-symmetric

scatterers (spheres). We explain isotropic versus anisotropic

transport for stochastic solid geometry in Section 3.2.

3. Stochastic opaque solids

We develop our exponential transport theory for stochastic

solid geometry in three parts: 1. In Section 3.1, we introduce

a stochastic model for solid geometry, prove conditions for

exponential transport, and derive expressions for the atten-

uation coefficient. 2. In Section 3.2, we generalize these

expressions to model variable anisotropic behavior. 3. In

Section 3.3, we adapt our expressions to implicit-surface

geometry representations. Figure 2 summarizes our theory,

and the project website includes a video explanation.

3.1. Conditions for exponential transport

To formalize our exponential transport model for stochastic

opaque solid geometry, we first define an opaque solid.2

Definition 2. We define an indicator function I : R
3 →

{0, 1} as a binary scalar field, and associate with it a solid

O ≡
{

x ∈ R
3 : I(x) = 1

}

. The solid O is opaque if and

only if, for every point x ∈ O and direction ω ∈ S2, the

visibility satisfies Vx,ω(t) = δ(t).

The definition of opacity implies that no ray of light can

reach points inside the solid O. Therefore, our volumetric

light transport formulation will exclude refractive surfaces.

We can now use Definition 2 to also define a stochastic solid.

Definition 3. When the indicator function I(x) is a random

scalar field, we call the associated solid O a stochastic solid,

for which we define the occupancy o : R
3 → [0, 1] and

vacancy v : R3 → [0, 1] as the scalar fields:

o(x) ≡ Pr{I(x) = 1}, (9)

v(x) ≡ Pr{I(x) = 0} = 1− o(x). (10)

With this definition, we can interpret probabilities in-

volving O in Equations (1)±(3) as probabilities over all

realizations of the random indicator function I. We will

consider the restriction of the indicator function, occupancy,

and vacancy on a ray with origin x ∈ R
3 and direction

ω ∈ S2: Ix,ω(t) ≡ I(rx,ω(t)), and analogously for ox,ω(t)
and vx,ω(t). We can now state our main technical result.

2We borrow the term solid from Koenderink [29].
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Theorem 4: Exponential transport in opaque solids

We assume a random indicator function I and associated

stochastic opaque solid O. Then, for any ray with origin

x ∈ R
3 and direction ω ∈ S2, the free-flight distribution

pff
x,ω is exponential if and only if the restriction of the

indicator function on this ray, Ix,ω, is a continuous-time

discrete-space Markov process; that is, it satisfies:

Pr{Ix,ω(t) | Ix,ω(tn), tn < t, n = 1, . . . , N}

= Pr{Ix,ω(t) | Ix,ω(max ntn)}. (11)

Additionally, the process Ix,ω is reversible and the corre-

sponding transmittance Tx,ω is reciprocal if and only if

the attenuation coefficient σ equals:

σδ(x,ω) ≡ |ω · ∇ log(v(x))|=
|ω · ∇ v(x)|

v(x)
. (12)

We explain the notation σδ in Section 3.2. Expressions

for transmittance and free-flight distribution follow from

Equations (6)±(7), and the attenuation coefficient satisfies

Equation (8), as required for reciprocity. We discuss re-

versibility and prove Theorem 4 in Appendix F.1.

3.2. Anisotropy

Returning to Equation (12), we can rewrite it as the product:

σδ(x,ω) =

≡ σ∥(x)

∥∇ v(x)∥

v(x)
·

≡ σ⊥
δ (x,ω)

|ω · n(x)| , (13)

where n(x) ≡ ∇ v(x)/∥∇ v(x)∥ is the unit normal of the level

set of v passing through x. We compare Equation (13) to the

attenuation coefficient expressions for anisotropic stochastic

microparticle geometry by Jakob et al. [25, Equation (11)]

and Heitz et al. [23, Equation (2)]. As in those works, we

can decompose the attenuation coefficient as the product of

an isotropic density σ∥(x) and an anisotropic projected area

σ⊥
δ (x,ω).3 Intuitively: 1. The density σ∥(x) increases as

vacancy v(x) decreases; thus the ray termination probabil-

ity through x increases the more likely x is to be occupied.

2. The projected area σ⊥
δ (x) models foreshortening as a

ray of direction ω encounters a surface patch of normal

n(x); at grazing angles (|ω · n(x)| = 0) the patch is in-

visible, whereas at normal incidence (|ω · n(x)| = 1) it

is maximally visible, corresponding to zero and maximal,

respectively, ray termination probability.

This anisotropic behavior mimics deterministic surfaces,

and thus is suitable for points x likely to lie on the surface of

a stochastic opaque solid (i.e., v(x) ≈ 1/2). However, points

x that are likely inside the solid (i.e., v(x) ≈ 0, respectively)

3The projected area and density should include multiplicative factors

Av(x) and 1/Av(x), respectively, where Av(x) ≡ ∥∇ v(x)∥ dx dy dz
is the differential area of the tangent plane of the level set of v at x. These

factors cancel out in Equation (13), so we omit them to simplify notation,

at the cost of our expressions appearing to have incorrect units.

should behave isotropically: rays passing through them at

different directions should terminate with the same prob-

ability. To model these different behaviors, inspired from

microflake models for microparticle geometry [23, 25], we

generalize our definitions of σ⊥
δ and σδ .4

Definition 5: Attenuation coefficient for opaque solids

We associate with each point x ∈ R
3 a distribution of nor-

mals Dx : S2 → R≥0 that satisfies
∫

S2 Dx(m) dm = 1.

Then, we define at x the projected area for any direction

ω ∈ S2 as the expected foreshortening:

σ⊥
D(x,ω) ≡

∫

S2

|ω ·m|Dx(m) dm , (14)

the density as

σ∥(x) ≡
∥∇ v(x)∥

v(x)
, (15)

and the generalized attenuation coefficient as the product:

σ(x,ω) ≡ σ∥(x) · σ⊥
D(x,ω) . (16)

For Dx,δ(m) ≡ δ(m− n(x)), the projected area re-

duces to |ω ·m|, explaining the notation σδ, σ
⊥
δ in Equa-

tions (12)±(13). By contrast, for the uniform distribu-

tion Dx,unif(m) ≡ 1/4π, the projected area becomes

σ⊥
unif(x,ω) ≡ 1/2; then both the projected area and attenua-

tion coefficient are isotropic. Definition 5 allows behaviors

between these two extremes, e.g., by using a linear mix-

ture distribution of normals Dx,mix(m) ≡ α(x)Dx,δ(m)+
(1− α(x))Dx,unif(m) and corresponding projected area:

σ⊥
mix(x,ω) ≡ α(x)σ⊥

δ (x,ω) + (1− α(x))σ⊥
unif(x,ω)

= α(x)|ω · n(x)|+
1− α(x)

2
. (17)

The anisotropy parameter α(x) ∈ [0, 1] continuously in-

terpolates between fully anisotropic (α(x) = 1) and fully

isotropic (α(x) = 0) projected area. Making this parameter

spatially varying allows adapting the anisotropy behavior at

different parts of an opaque solid, e.g., more anisotropic near

its boundary, more isotropic in its interior (Figure 3). We

discuss additional choices for the distribution of normals D
and associated projected area σ⊥

D in Appendices B and E.

3.3. Stochastic implicit surfaces

Definitions 2 and 3 define a (stochastic) solid through the

binary indicator function, because the indicator (respectively

vacancy) function at a point x is the minimal information

we need to determine visibility (respectively transmittance)

for a ray that passes through x. However, it is common

practice to define a solid through a non-binary scalar field,

which provides richer information about the solid and its

surface [47]. We explore this case next.

4We follow Jakob et al. [25] and use normalized distributions of normals.
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Figure 3. The attenuation coefficient optimized for the BEAR scene

in BlendedMVS behaves as anticipated by our theory: isotropically

in the object interior, and anisotropically near its surface.

Definition 6. We define an implicit function G : R3 → R as

a real scalar field, and associate with it an indicator function

I(x) ≡ 1{G(x)≤0} and corresponding solid O. If G is also

a random field, then we define the pointwise cumulative

distribution function cdfG(x), probability density function

pdfG(x), and mean implicit function f(x) as, respectively:

cdfG(x)(q) ≡ Pr{G(x) ≤ q}, q ∈ R, (18)

pdfG(x)(q) ≡
d cdfG(x)(q)

dq
, q ∈ R, (19)

f(x) ≡ E[G(x)] =

∫ +∞

−∞

q · pdfG(x)(q) dq. (20)

From Definition 6, the stochastic solid O is an excursion

set of the random field G [3, Chapter 1], with its surface

at the zero-level set of G, its interior where G < 0, and its

exterior elsewhere. Such excursion sets have been exten-

sively studied in applied mathematics, especially when G
is a Gaussian process, i.e., its (joint) distribution at one or

more points is Gaussian [3, Appendix]. SellÂan and Jacobson

[52, 53] recently proposed using excursion sets of Gaussian

processes as a point-based stochastic implicit surface repre-

sentation (Appendix A). Extending our theory to excursion

sets of various stochastic implicit functions G will allow us

to provide stochastic geometry interpretations for previous

volumetric representations for opaque solids [63, 66].

To this end, we specialize to stochastic implicit functions

with a symmetry property: At each x, G(x) equals, up to

a spatially varying shift f(x) and spatially constant scale

s > 0, a zero-mean, unit-variance, and symmetric random

variableÐthat is, with a PDF ψ : R → R≥0 and CDF

Ψ : R → [0, 1] that satisfy, for all q ∈ R [11],

ψ(q) = ψ(−q) and Ψ(q) = 1−Ψ(−q). (21)

Such a CDF Ψ is a sigmoid function [19, 22] whose exact

shape depends on the probability distribution. Common

symmetric distributions include the Gaussian, logistic, and

Laplace (in their zero-mean, unit-variance versions), giving

rise to the error, logistic, and Laplace (respectively) sigmoid

functions. The symmetry property implies for G:

pdfG(x)(q) = ψ(s(q − f(x))), (22)

cdfG(x)(q) = Ψ(s(q − f(x))). (23)

We prove in Appendix F.2 the following proposition.

Proposition 7: Stochastic implicit geometry

We assume a stochastic implicit function G(x) satisfying

Equations (22)±(23). Then, the occupancy and vacancy

for the associated stochastic solid O equal:

o(x) = Pr{G(x) ≤ 0} = Ψ(−s f(x)), (24)

v(x) = Pr{G(x) > 0} = Ψ(s f(x)). (25)

If the stochastic solid O also satisfies the conditions of

Theorem 4, then the attenuation coefficient equals:

σ(x,ω) =

≡ σ∥(x)

sψ(s f(x))∥∇ f(x)∥

Ψ(s f(x))
· σ⊥

D(x,ω) , (26)

with σ⊥
D as in Equation (14).

Proposition 7 completes our volumetric representation,

which we summarize in Figure 2. Notably, the modeling

choice to use an implicit function impacts the density σ∥

(through the vacancy v), but not the projected area σ⊥
D. To

help intuition, we discuss the behavior of different quantities.

Vacancy. The vacancy v (Equation (25)) is a sigmoidal

transform of the expected value f of the stochastic implicit

function G (Equation (20)). This agrees with intuition: a

large positive value of f(x) (i.e., high probability that x

is outside the solid) results in v(x) ≈ 1; a large negative

value of f(x) (i.e., high probability that x is inside the solid)

results in v(x) ≈ 0; and f(x) = 0 (i.e., equal probability

that x is inside or outside the solid) results in v(x) = 1/2.

Attenuation coefficient and free-flight distribution. The

behaviors of the attenuation coefficient σ (Equation (26))

and free-flight distribution pff (Equation (7)) are easier to

understand if we consider points on a ray along which the

mean implicit f monotonically decreases with a constant

gradient. Then, the attenuation coefficient monotonically

increases along the ray (i.e., as we move from points likely

in the exterior to points likely in the interior of the solid).

The free-flight distribution is maximal where along the ray

f(x) = 0 (i.e., at the point equally likely to be inside or out-

side the solid), and decreases as the magnitude of f increases

(i.e., at points highly likely to be inside or outside the solid).

Scale and uncertainty. The scale s controls the width of

the sigmoid Ψ, and thus how fast the vacancy v transitions

from 0 to 1 as the mean implicit function f increasesÐthe

larger s is, the narrower Ψ becomes, and the faster v changes.

We can interpret this behavior by noticing that, from Equa-

tions (22)±(23), s is the inverse of the pointwise standard

deviation of G. As s increases, the standard deviation de-

creases, and thus: 1. the pointwise PDF pdfG becomes more

concentrated around its mean f (i.e., the stochastic implicit

function G becomes more certain); 2. the vacancy v and oc-

cupancy o become closer to the binary functions 1{f>0} and

1{f≤0} (i.e., the random indicator function I becomes more

certain). 3. the free-flight distribution pff becomes closer to
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Table 1. Classification of previous and new volumetric representa-

tions for opaque solids using our theory (Figure 2).

method
implicit function

distribution Ψ

distribution

of normals D

VolSDF Laplace uniform

NeuS logistic delta (with ReLU)

NeuS with

cosine annealing
logistic

mixture (with ReLU,

constant anisotropy)

ours Gaussian
mixture (with

x-varying anisotropy)

a Dirac delta function centered at the zero-level set of f (i.e.,

free-flight distances become more certain).

4. Relationship to prior work

Our theory provides a volumetric representation for opaque

solids that permits various probabilistic modeling choices,

e.g., selecting a distribution of normals (Equation (14)) and

an implicit function distribution (Equation (26)). We use our

theory to explain and compare volumetric representations in

prior work as versions of our representation corresponding

to specific choices for these distributions (Table 1), albeit

with critical caveats that our theory addresses.

NeuS. Most closely related to our work is the NeuS volumet-

ric representation by Wang et al. [63, Equation (10)]. Using

our notation, their extinction coefficient equals:

σNeuS(x,ω) ≡

sψlogistic(s f(x))∥∇ f(x)∥

Ψlogistic(s f(x))
· ReLU(−ω · n(x)) , (27)

where: 1. ψlogistic and Ψlogistic are the PDF and CDF, respec-

tively, for the zero-mean, unit-variance logistic distribution;

and 2. the mean implicit function f is parameterized as a neu-

ral field that, during training, is also regularized to approxi-

mate a signed distance function (i.e., satisfy ∥∇ f(x)∥ ≈ 1).

Comparing Equation (27) with our Equations (13) and (26),

we see that the NeuS model is close to our model with Dirac

delta distribution of normals Dx,δ, specialized to specific

choices for the pointwise distribution ψ and mean implicit

function f , with an important difference: it replaces the

Dirac delta projected area σ⊥
δ (x,ω) ≡ |ω · n(x)| with the

anisotropic term ReLU(−ω · n(x)) ≡ max(0,−ω · n(x)),
effectively clipping σNeuS to zero when a ray is traveling

outwards (towards larger vacancy or mean implicit values).

Unfortunately, this choice has the consequence that the atten-

uation coefficient σNeuS violates the reciprocity requirement

of Equation (8), resulting in a physically implausible volu-

metric representation. We visualize this issue in Figure 4. As

we discuss in Section 5, violation of reciprocity additionally

negatively impacts 3D reconstruction quality.

Lastly, we prove in Appendix F.3 that using the logistic

distribution for G(x) simplifies Equation (26):

high

low

tr
an

sm
it

ta
n

ce

reciprocal 

transmittance

0

1

0

1

(NeuS)       (ours)

fixed 

point

point moves

along ray

non-reciprocal 

transmittance

3D shape

σ(x,ω)=σ(x,−ω)σ(x,−ω)σ(x,ω) ̸=

|ω · n(x)|ReLU(−ω · n(x))

ω

x

y
y → x

x → y

∥x− y∥ ∥x− y∥

Figure 4. When optimizing for the CLOCK scene in BlendedMVS

using NeuS, the ReLU term leads to attenuation coefficient (top)

and transmittance (bottom) values that violate reciprocity. By

contrast, using our representation leads to reciprocal results.

σlogistic(x,ω) =

sΨlogistic(−s f(x))∥∇ f(x)∥ · σ⊥
D(x,ω) , (28)

and analogously for σNeuS(x,ω) in Equation (27). We use

this observation as we discuss VolSDF next.

VolSDF. Another closely related model is the VolSDF model

by Yariv et al. [66, Equations (2)±(3)]. Using our notation:

σVolSDF(x,ω) ≡ sΨLaplace(−s f(x))∥∇ f(x)∥ , (29)

where ΨLaplace is the CDF for the zero-mean, unit-variance

Laplace distribution; and the mean implicit function f(x) is

parameterized as in NeuS. Comparing to Equation (28), we

make two observations about the VolSDF model: 1. It uses

the uniform distribution of normals Dx,unif and isotropic

(constant) projected area σ⊥
unif , thus the attenuation coeffi-

cient becomes isotropic. 2. It uses a density σ∥ equal to that

in Equation (28) after replacing the logistic with the Laplace

CDF. However, this replacement is not equivalent to mod-

eling G(x) as a Laplace random variable. This is because

the simplified expression of Equation (28) is correct for only

the logistic distribution, whereas the Laplace distribution

requires the full expression of Equation (26). Consequently,

the VolSDF model uses an incorrect density term.

Cosine annealing. The official NeuS implementation [62,

models/renderer.py#L232-L235] uses cosine an-

nealingÐtransitioning from isotropy to anisotropy as opti-

mization progressesÐto improve convergence. This means

replacing the anisotropic term in Equation (27) with:

α · ReLU(−ω · n(x)) +
1− α

2
, (30)

and changing the global anisotropy parameter α from 0

towards 1 using a predetermined annealing schedule. Com-

paring to Equation (17), our theory explains this heuristic

as using a mixture distribution of normals, with the caveat

that NeuS also replaces σ⊥
δ with the reciprocity-violating
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Table 2. Chamfer distance statistics on the DTU and NeRF Realistic

Synthetic datasets. We provide the full tables in Appendix E.

DTU VolSDF NeuS ours

mean 1.84 2.17 1.57

median 1.74 1.99 1.56

NeRF RS VolSDF NeuS ours

mean 0.252 0.201 0.113

median 0.100 0.085 0.057

Table 3. We use chamfer distance statistics on the DTU dataset for

an ablation study. We provide the full tables in Appendix E.

Ψ model logistic Laplace Gaussian

mean 1.98 1.96 1.78

median 1.86 1.92 1.74

D model delta

(ReLU)

delta mixture

(const.)

mixture

(var.)

mean 2.17 1.98 1.97 1.75

median 1.99 1.86 1.85 1.59

ReLU term, as we noted earlier. Additionally, NeuS uses a

spatially constant anisotropy parameter α that cannot capture

the qualitatively different foreshortening behavior of surface

versus interior and exterior points (Section 5).

Scale optimization and adaptive shells. NeuS and VolSDF

optimize the scale s, which typically increases as optimiza-

tion progresses. Our theory explains this behavior as decreas-

ing uncertainty of the stochastic geometry and convergence

towards deterministic geometry (binary vacancy).

The adaptive shells representation by Wang et al. [64]

modifies the NeuS representation to use a spatially varying

scale s(x). Our theory explains this choice as spatially

varying pointwise standard deviation, and thus uncertainty,

for the stochastic implicit function G(x). In Appendix F.2

we explain how to modify the density σ∥ in Equation (26) to

account for spatially varying scale s(x).
Other approaches. In the appendix we discuss other ap-

proaches for modeling stochastic solid geometry, such as

occupancy networks [35, 40] and discretization approaches

[8, 45, 55] in Appendix C, as well as stochastic implicit

surfaces using point clouds [52] in Appendix A.

5. Experimental evaluation

Our theory provides a framework for systematically correct-

ing volumetric representations for opaque solids in prior

work (using reciprocal projected area and correct density),

and designing new representations (using different distribu-

tions for the implicit function and normals). These changes

are straightforward to implement within existing neural ren-

dering pipelines. We do so within a simplified version of

NeuS [63] and perform extensive experiments on multi-view

3D reconstruction tasks. The goal of these experiments is

not state-of-the-art performance, but an exploration of the

mean impl. vacancy density anisotropy

0 1low high

3D shape

0 1low high
Figure 5. Visualization of shape and key quantities of our volumet-

ric representation learned for scenes in the BlendedMVS dataset.

design space and an evaluation of volumetric representations

within an equal framework. Our results show that, despite

their simple nature, the changes our theory suggests greatly

improve performance, qualitatively and quantitatively. Over-

all, our experiments demonstrate the utility of a rigorous

theory of volumetric representations for opaque solids.

In this section, we summarize our experiments and find-

ings. We discuss implementation details and list complete

numerical results in Appendix E. Lastly, we provide interac-

tive visualizations and code on the project website.

Comparison to prior work. We evaluate our best perform-

ing volumetric representation against those of NeuS [63] and

VolSDF [66]. Table 1 summarizes the three representations.

We use three datasets for evaluation: DTU [2], BlendedMVS

[65], and NeRF realistic synthetic (NeRF RS) [36].

Table 2 and Figure 6 show quantitative and qualitative

results. We observe the following: 1. Our representation

performs the best across all datasets, both quantitatively and

qualitatively. Qualitatively, the improvements are more pro-

nounced in BlendedMVS and NeRF RSÐwhose scenes have

more complex geometry, materials, and backgroundÐthan

in DTUÐwhose simpler scenes are reconstructed well by

all representations. 2. Our representation learns meaningful

scalar fields (Figure 5) for the mean implicit function f , va-

cancy v, density σ∥, and anisotropy α. The mean implicit

function and vacancy lend themselves to downstream sur-

face processing tasks (e.g., mesh extraction [33]). 3. The

use of a spatially varying anisotropy α allows our repre-

sentation to model the qualitatively different behaviors of

points x on the surface (α(x) ≈ 1, i.e., strongly anisotropic)

versus in the interior (α(x) ≈ 0, i.e., isotropic). By con-

trast, VolSDF and NeuS require all points xÐsurface or

interiorÐto have either isotropic (α(x) := 0) or perfectly

anisotropic (α(x) := 1), respectively, behavior.

Design and ablation. We use the DTU dataset to evaluate

design choices for the implicit function distribution Ψ and

distribution of normals D in Equations (14) and (26), respec-

tively. This evaluation also serves as an ablation study for

our best performing representation in Table 1. Table 3 shows

the results. We observe the following: 1. For Ψ, using the

Gaussian distribution (i.e., a Gaussian process [52]) outper-

forms using the Laplace (as in VolSDF) or logistic (as in
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Figure 6. Qualitative comparisons on the BlendedMVS (left) and NeRF Realistic Synthetic (right) datasets. The dashed circles indicate areas

of interest. We provide interactive visualizations of results on the complete datasets on the project website.

NeuS) distributions. 2. For D, using the spatially varying

mixture distribution (Equation (17), to adapt to surface ver-

sus interior points) outperforms using the spatially constant

mixture distribution (as in cosine annealing) or the delta dis-

tribution. 3. When using the delta distribution, including a

reciprocity-violating ReLU term (Equation (27), as in NeuS)

underperforms not doing so. This result highlights that en-

forcing reciprocity not only ensures physical plausibility, but

also improves reconstruction performance.

6. Conclusion

We have taken first steps towards formalizing volumetric

representations for opaque solids, using stochastic geometry

theory. Our results should be of theoretical and practical in-

terest: On the theory side, they help explain why volumetric

neural rendering can reconstruct solid geometry, and justify

previous volumetric representations for it. On the practice

side, they provide a toolbox for the design of physically-

plausible volumetric representations that greatly improve

performance. We hope that our results will motivate further

research along both theory and practice thrusts.

For the theory thrust, our theory is far from a complete

formalism of volumetric representations for solid geometry.

We highlight three important shortcomings that deserve fur-

ther investigation. First, revisiting Equation (5), we focused

on the geometry of opaque solids, but neglected their global

illumination effects. In Appendix B, we briefly examine

how geometry and global illumination must be coupled to

ensure reciprocity. However, this topic requires further in-

vestigation. Second, we excluded (semi-)transparent solids,

where interior points may be visible to each other (violat-

ing Definition 2). Developing volumetric representations for

such solids will allow modeling complex reflective-refractive

appearance. Third, we focused on exponential transport be-

cause it has served as a convenient approximation for most

prior work. However, both empirical evidence [59] and

stochastic geometry theory suggest that exponentiality may

not be a suitable assumption for opaque solids. Indeed, the

excursion sets of Gaussian processes typically have free-

flight distributions (also known as the first-passage times

of the Gaussian processes) that are non-exponential [1]. As

SellÂan and Jacobson [53, Section 5.1] point out, characteriz-

ing these distributions requires reasoning about the spatial

covariance structure of the Gaussian process [3, Appendix].

For the practice thrust, we have done only limited evalu-

ation of how different volumetric representations interplay

with different algorithms for free-flight estimation and sam-

pling (Appendix D). The theoretical investigation and empir-

ical evaluation of such algorithms will be critical for optimiz-

ing volumetric neural rendering pipelines for solid geometry.
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