
Optimizing NOTEARS Objectives via Topological Swaps

Chang Deng 1 Kevin Bello 1 2 Bryon Aragam 1 Pradeep Ravikumar 2

Abstract

Recently, an intriguing class of non-convex opti-

mization problems has emerged in the context of

learning directed acyclic graphs (DAGs). These

problems involve minimizing a given loss or score

function, subject to a non-convex continuous con-

straint that penalizes the presence of cycles in a

graph. In this work, we delve into the optimiza-

tion challenges associated with this class of non-

convex programs. To address these challenges,

we propose a bi-level algorithm that leverages

the non-convex constraint in a novel way. The

outer level of the algorithm optimizes over topo-

logical orders by iteratively swapping pairs of

nodes within the topological order of a DAG. A

key innovation of our approach is the develop-

ment of an effective method for generating a set

of candidate swapping pairs for each iteration. At

the inner level, given a topological order, we uti-

lize off-the-shelf solvers that can handle linear

constraints. The key advantage of our proposed

algorithm is that it is guaranteed to find a local

minimum or a KKT point under weaker condi-

tions compared to previous work and finds solu-

tions with lower scores. Extensive experiments

demonstrate that our method outperforms state-of-

the-art approaches in terms of achieving a better

score. Additionally, our method can also be used

as a post-processing algorithm to significantly im-

prove the score of other algorithms. Code im-

plementing the proposed method is available at

https://github.com/duntrain/topo.

1Booth School of Business, University of Chicago,
USA. 2Machine Learning Department, Carnegie Mellon Uni-
versity, USA. Correspondence to: Chang Deng <chang-
deng@chicagobooth.edu>, Kevin Bello <kbello@cs.cmu.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1. Introduction

We study a class of constrained nonconvex optimization

problems defined as follows:

min
Θ

Q(Θ) subject to h(W (Θ)) = 0, (1)

where Θ ∈ R
l corresponds to all model parameters,

and W (Θ) ∈ R
d×d is a weighted adjacency matrix —

representing the structure of a directed graph of d nodes—

induced by Θ. Moreover, Q : R
l → R is a (possibly

non-convex) differentiable function that we will refer to

as the score or loss function; while h : Rd×d → [0,∞)
is a nonnegative non-convex differentiable function that

penalizes cycles in the weighted adjacency matrix W (Θ),
and whose level set at zero corresponds to directed acyclic

graphs (DAGs).

The class of problems (1) arose in the paper by Zheng et al.

(2018) in the context of learning the underlying structure of

a structural equation model (SEM), typically assumed to be

a DAG. In Zheng et al. (2018), the challenges of combina-

torial optimization were replaced by those of differentiable

non-convex optimization. While global optimality remains

intractable in general, the key advantage of the class of

problems (1) is that it admits the use of general purpose

non-linear optimizers. Due to the latter, several studies have

built upon the work of Zheng et al. (2018), usually by either

proposing a new characterization of h (e.g., Yu et al., 2019;

Bello et al., 2022), or using different score functions Q (e.g.,

Zheng et al., 2018; 2020; Ng et al., 2020; Yu et al., 2019;

Lachapelle et al., 2020). All, however, with a clear lack of

optimality guarantees.

Based on these formulations, Wei et al. (2020) and Ng et al.

(2022) studied some of the optimization-theoretic curiosities

associated with this class of problems. Wei et al. (2020)

provides local optimality guarantees assuming linear mod-

els and a convex score Q, while Ng et al. (2022) studies

the convergence challenges of (1). The focus of our work

is studying optimality for the class of problems (1) in a

more general setting, i.e., admitting a possibly non-convex

score Q and nonlinear models. We pay close attention to the

Karush-Kuhn-Tucker (KKT) optimality conditions, build-

ing upon similar results first studied in Wei et al. (2020).

The KKT conditions are known to be a necessary first-order

characterization of optimal solutions under some regularity

1

Optimizing NOTEARS Objectives via Topological Swaps

conditions, and form the backbone of nonlinear program-

ming (Bertsekas, 1997; Boyd et al., 2004).

More specifically, we show that by an equivalent reformu-

lation of the KKT conditions, we can find better solutions

to (1) — that is, KKT points and/or local minima with bet-

ter (i.e. lower) score — while also relaxing the conditions

required in previous work. The key idea is to relate the

KKT conditions to an optimal topological sort and lever-

age the fact that solving the continuous program for a fixed

ordering is often tractable. Although not every topologi-

cal sort corresponds to a local minimum in the continuous

formulation, we show that our method can indeed be rig-

orously interpreted as iteratively selecting better and better

local minimizers until no improvement can be found. Our

method also avoids explicitly enforcing the acyclicity con-

straint h, and instead uses the continuous characterization

indirectly via the KKT conditions.

Contributions. To this end, we make the following spe-

cific contributions:

1. We propose a bi-level optimization algorithm, in which

the outer level optimizes over topological orders and

the inner level optimizes the score given a specific or-

der. To optimize over orders, we use a novel technique

for selecting candidate pairs of nodes to be swapped,

which is described in detail in Section 4. This ap-

proach involves iteratively swapping pairs of nodes

within the topological order of a DAG, and utilizes the

KKT conditions as a guide for determining which pairs

to consider swapping. To optimize the score given a

specific order, we utilize state-of-the-art solvers that

are able to solve the problems to stationary points.

2. We prove that our method searches between local min-

ima and strictly decreases the score at each iteration

(Section 4.3). We furthermore show that our method

provably finds local minimizers under strictly weaker

conditions compared to previous work (Lemma 4). In

particular, we show that the concept of ‘irreducibility’

introduced in Wei et al. (2020) is not necessary to en-

sure local optimality, and provide an explicit example

as demonstration (Appendix C.2).

3. We conduct a comprehensive set of experiments in

multiple settings to evaluate the performance of our

algorithm against state-of-the-art methods for solving

problem (1). The results of our experiments, summa-

rized in Section 5, demonstrate that our method is able

to find minimizers with lower scores (compared to ex-

isting algorithms) that are guaranteed to be either local

minima or KKT points.

An attractive feature of our method is its flexibility as it

can be used both as a standalone algorithm and as a post-

processing step when provided with a pre-computed DAG

as an initialization. Although the underlying optimization

problem is nonconvex and plagued by poor local minima,

our results demonstrate that it is still possible to discover

suitable local minima with improved scores. This is a note-

worthy achievement given that nonconvex problems of this

nature are often considered challenging and difficult to opti-

mize.

2. Related Work

Most closely related to our work are methods that build

on the non-convex continuous constrained formulation of

Zheng et al. (2018), (e.g., Yu et al., 2019; Zheng et al., 2020;

Lachapelle et al., 2020; Ng et al., 2020; Zhu et al., 2020; Ro-

main & d’Aspremont, 2020; Bello et al., 2022). In contrast

to this previous work, our focus is on optimality conditions,

i.e. ensuring that we find a DAG that satisfies the KKT

optimality conditions (in fact, it will be a local minimizer)

of an equivalent formulation to that of Zheng et al. (2018).

Similar to our work, recent work (Wei et al., 2020; Ng et al.,

2022) has begun to study the optimization-theoretic aspects

of this problem. In contrast to Wei et al. (2020), which is

only guaranteed to return some local minimizer, our method

iteratively jumps from one local minimizer to another until

a stopping criterion is met. The latter allows our method to

seek out for more favorable local minimizers, that is, DAGs

that attain lower scores. Ng et al. (2022) studies a different

question, namely the convergence of methods for solving

these problems.

Although our emphasis is on optimization, it is useful to

provide some context from the graphical modeling litera-

ture as well. Most algorithms for learning DAGs fall into

two main categories: score-based methods that optimize a

score function, and constraint-based methods that use in-

dependence tests. Since the program (1) is modeled after

traditional score-based methods, we only mention a few

classical constraint-based algorithms such as: the PC algo-

rithm (Spirtes & Glymour, 1991), a general algorithm that

learns the Markov equivalence class; max-min parents and

children (MMPC, Tsamardinos et al., 2006); and a variety

of algorithms based on local Markov boundary search such

as grow-shrink (GS, Margaritis & Thrun, 1999; Margaritis,

2003) and incremental association (IAMB, Tsamardinos

et al., 2003).

Score based methods assign a score to a candidate DAG

structure based on how well it fits the observed data, and

then attempts to find the highest scoring structure. Classical

score functions include the log-likelihood based BIC and

AIC scores as well as Bayesian scores under different pa-

rameter priors (Geiger & Heckerman, 2002). Other related

work that study the Gaussian setting are given by Aragam &

2

Optimizing NOTEARS Objectives via Topological Swaps

Zhou (2015); Ghoshal & Honorio (2017; 2018), and in the

non-Gaussian case by Loh & Bühlmann (2014). On the side

of approximate algorithms, notable methods include greedy

search (Chickering, 2003), order search (Teyssier & Koller,

2005; Scanagatta et al., 2015; Park & Klabjan, 2017), and

the LP-relaxation based method proposed by Jaakkola et al.

(2010). There are also exact algorithms such as GOBNILP

(Cussens, 2012) and bene (Silander & Myllymaki, 2006).

Another line of work (Teyssier & Koller, 2005; Xiang &

Kim, 2013; Raskutti & Uhler, 2018; Drton et al., 2018; Ye

et al., 2020; Squires et al., 2020; Solus et al., 2021; Wang

et al., 2021) studies order-based methods which bear a su-

perficial relationship to our algorithm, but it is worth empha-

sizing that none of them theoretically analyze optimization

properties such as KKT theory, local optimality guarantees

or apply to arbitrary smooth losses. More specifically, (Ye

et al., 2020) is restricted to log-likelihood based scores and

(Raskutti & Uhler, 2018; Squires et al., 2020; Solus et al.,

2021) require faithfulness (related) assumptions. (Silander

& Myllymaki, 2006; Xiang & Kim, 2013) are exact methods

that only work with a small number of nodes.

3. Notation and Background

In this section, we establish the notation and provide context

for the class of problems (1).

3.1. Nonlinear DAG models

We let G = (V,E) denote a directed graph of d nodes,

with vertex set V = [d] := {1, . . . , d} and edge set E ¢
V ×V , where (i, j) ∈ E indicates the presence of a directed

edge from node i to node j. For a graph G, we associate

each node i ∈ V to a random variable Xi, and use X =
(X1, . . . , Xd) to denote the d-dimensional random vector.

We consider structural equation models (SEMs Peters et al.,

2017), in which each node Xj is determined by a function

fj : Rd → R of its parents and independent noise z =
(z1, . . . , zd) ∈ R

d as follows:

Xj = fj(X, zj), ∂kfj = 0 if k /∈ PAG
j , (2)

where PAG
j = {i ∈ V | (i, j) ∈ E} denotes the set of

parents of node j in G. Note that we write fj as a function

of every other variable, and separately impose a restriction

on the dependence through the partial derivatives, as in

Zheng et al. (2020). This is equivalent to the usual formu-

lation Xj = fj(PAG
j , zj), and is adopted for mathematical

convenience in the sequel. Standard examples of SEMs

include linear SEMs (e.g., Peters & Bühlmann, 2014; Loh

& Bühlmann, 2014) and additive noise models (Peters et al.,

2014).

With this notation, the graphical structure implied by an

SCM f = (f1, . . . , fd) can be represented by the following

d× d weighted adjacency matrix:

W = W (f) = (wij), wij = ∥∂ifj∥2. (3)

In practice, a family of functions is defined to approximate

the nonlinear functions fj ; common examples include mul-

tilayer perceptrons (MLP) (Zheng et al., 2020; Lachapelle

et al., 2020), and basis expansions (Zheng et al., 2020;

Bühlmann et al., 2014). See Appendix A for a detailed

discussion on these families of functions.

We use Θ to denote all the model parameters used for ap-

proximating f . However, not all of these parameters are

utilized for inducing the graphical structure implied by f .

To differentiate, we use ¹ ¢ Θ to denote the subset of

parameters that are used for inducing the weighted adja-

cency matrix W , and ¹̃ = Θ \ ¹ to denote the remaining

model parameters. In other words, we have the following

relationship: W (f) = W (Θ) = W (¹).

To simplify notation and improve the clarity of presenta-

tion, we present the case where there is a single parameter

¹ij
1 per candidate edge (i, j), i.e., [W (¹)]ij = ¹ij and

W (¹) = ¹. However, note that all of our results hold for

the general case and are thoroughly treated in the technical

proofs provided in Appendix D.

3.2. Score functions

The class of programs (1) requires a loss/score function Q.

We briefly review commonly used scores in the literature.

Let X = [x1, · · · ,xd] ∈ R
n×d denote the observed data

matrix. Let Θi denote the parameters used to approximate

fi, we use fΘi
to denote fi approximated by Θi.

Since the score function depends on the observed data, in

this subsection, we use Q(Θ;X) to denote the score on Θ
given X. Then, some possible score functions include:

Least squares. Q(Θ;X) = 1
2n

∑d
i=1∥xi − fΘi

(X)∥22 for

linear SEMs with equal noise variances (Loh & Bühlmann,

2014).

Negative log-likelihood. Q(Θ;X) = 1
2

∑d
i=1 log(∥xi −

fΘi
(X)∥22) for additive SEMs with Gaussian errors

(Bühlmann et al., 2014).

Logistic loss. Let 1n denote the n-dimensional vector of

ones. Then, we have Q(Θ;X) = 1
n

∑d
i=1 1

¦
n (log(1n +

exp(fi(X)))− xi ◦ fΘi
(X)) for generalized linear models

with binary variables (Zheng et al., 2020).

In the sequel, we simplify notation by writing Q(Θ) instead

of Q(Θ;X).

Remark 1. It is important to emphasize that in practical

applications, the choice of score Q is crucial: In order

1
θij can be a vector, it is required that [W (θ)]ij = 0 if and

only if θij = 0, see Appendix A for more discussions.

3

Optimizing NOTEARS Objectives via Topological Swaps

for solutions to this problem to be useful, ideally the mini-

mizer(s) of Q should correspond to the true underlying DAG.

This problem has been extensively studied (Geiger & Heck-

erman, 2002; Chickering, 2003; Van de Geer & Bühlmann,

2013; Loh & Bühlmann, 2014; Nandy et al., 2018; Aragam

et al., 2019), so we do not pursue it further here. For exam-

ple, in recent work, Reisach et al. (2021) show how certain

scores are not scale invariant, which may be an issue in

practice, but is simply an artifact of the score function, as

originally pointed out by Loh & Bühlmann (2014). By con-

trast, our explicit goal is to study the optimization-theoretic

aspects of objectives (1), and not to propose new algorithms

for learning causal DAGs.

3.3. Continuous non-convex characterizations of DAGs

To conclude this section, we next provide a brief overview

of the existing options for the function h. We remind the

reader that for presentation simplicity we have W (¹) = ¹,

as discussed at the end of Section 3.1.

Condition 1. The function h has the following form:

h(B) =

d∑

i=1

ci Tr(B
i),

where ci > 0 for any i.

Corollary 1 (Wei et al., 2020 Theorem 1). If h satisfies

Condition 1, then we have that h(B) = 0 if and only if B
corresponds to a DAG, for any nonnegative matrix B.

By now the literature contains many different proposals of

functions h that satisfy Condition 1; in this paper, we mostly

focus on the following three:

1. The NOTEARS formulation. Zheng et al. (2018) were

the first to propose a differentiable characterization of

DAGs given by h(B) = Tr(eB)− d for a nonnegative

matrix B.

2. A polynomial formulation. Yu et al. (2019) proposed

the use of h(B) = Tr((I + 1/d B)d)− d for a nonneg-

ative matrix B.

3. The DAGMA formulation. Bello et al. (2022) pro-

posed the use of h(B) = − log det(I −B) for a non-

negative matrix B with spectral radius less than one.

Note that B above is commonly defined as B = ¹◦¹, where

◦ denotes the Hadamard product. In that case, it has been

shown that ∇¹h(¹ ◦ ¹) = 0 if and only if ¹ is a DAG (see

Wei et al., 2020). The latter implies that all stationary points

of h are global minima of h, a property known as invexity,

as highlighted by Bello et al. (2022).

Remark 2. Our results are general and apply to any func-

tion h satisfying Condition 1. Thus, our results apply to any

of the three h functions mentioned above.

3.4. Necessary and sufficient conditions for optimality

Wei et al. (2020) first studied (1) from an optimality per-

spective. The authors argued that the use of the Hadamard

product ¹ ◦ ¹ leads to an undesirable property, namely, any

feasible Θ in (1) cannot satisfy regularity conditions. Moti-

vated by this negative result, Wei et al. (2020) proposed an

alternative, yet equivalent, formulation by replacing h(¹ ◦ ¹)
by h(|¹|). Reasoning similarly, we reformulate (1) as

min
Θ

Q(Θ) subject to h(|¹|) f 0. (4)

By writing ¹ = ¹+ − ¹−, where ¹+ = max{¹, 0} and

¹− = max{−¹, 0} denote the positive and negative parts of

¹, respectively. Then, an equivalent smooth formulation is

given by

min
¹+,¹−,¹̃

Q((¹+ − ¹−, ¹̃)) (5)

subject to h(¹+ + ¹−) = 0, and ¹+, ¹− g 0.

For clarity, we remind the reader that in (5) we have

Θ = (¹+, ¹−, ¹̃). Then, the KKT conditions for (5) can

be succinctly written as follows:

∂Q(Θ)

∂¹+ij
+ ¼

∂h(¹+ + ¹−)

∂¹+ij
= M+

ij g 0, (6a)

−
∂Q(Θ)

∂¹−ij
+ ¼

∂h(¹+ + ¹−)

∂¹−ij
= M−

ij g 0, (6b)

¹+ij ◦M
+
ij = ¹−ij ◦M

−
ij = 0, (6c)

∂Q(Θ)

∂¹̃
= 0, (6d)

in addition to the feasibility conditions in (5). where M±

and ¼ are the Lagrange multipliers of the constraints on ¹±

and h, respectively. Here ¼ ∈ R,M± g 0.

Briefly, (6a), (6b) and (6d) results from dual feasibility and

the stationarity condition, while (6c) stems from comple-

mentary slackness.

The following useful theorem from Wei et al. (2020) estab-

lishes the connection between KKT satisfiability in (5) and

local minimality in (4) for linear SEMs (i.e., ¹̃ = ∅).

Theorem 1 (Wei et al., 2020, Theorem 7). Assume that Q is

convex, h satisfies the Condition 1, and ¹̃ = ∅. If (¹+, ¹−)
satisfies the KKT conditions in (6), then ¹+ − ¹− is a local

minimum of (4).

A key ingredient of our developments in the sequel is the fol-

lowing alternative characterization of the KKT conditions,

which turns out to provide an algorithmically amenable first-

order sufficient condition for local optimality. We include a

proof in Appendix D.

Lemma 1. If Θ = (¹+, ¹−, ¹̃) satisfies the following condi-

tions:

4

Optimizing NOTEARS Objectives via Topological Swaps

(i) For {(i, j) | [∇h(¹+ + ¹−)]ij > 0} ⇒ ¹±ij = 0.

(ii) For {(i, j) | [∇h(¹+ + ¹−)]ij = 0} ⇒ ∂Q(Θ)

∂¹
±

ij

= 0.

(iii)
∂Q(Θ)

∂¹̃
= 0.

(iv) ¹+ g 0, ¹− g 0.

Then, we have that Θ is a KKT point of (5). Moreover, if

the score Q is convex, any such Θ = (¹+ − ¹−, ¹̃) is also a

local minimum for problem (4).

Remark 3. If the score Q is smooth but non-convex, then

we can no longer use Lemma 1 to automatically promote

KKT points to local minima. Thus, in the sequel, whenever

the score Q is non-convex, all claims about local minima

must be demoted to KKT points.

4. Optimization Algorithm: Topological Swaps

Our key idea is to solve (4) as a two-staged problem: in

the inner stage, we solve (4) to an additional constraint that

makes the problem tractable, and in the outer stage, we

search over the set of constraints. The critical innovation is

in using our reformulation of the KKT conditions in guiding

this search. Our specific set of constraints relies on imposing

an ordering over the variables. We briefly review such order

constrained optimization below before formally introducing

our overall approach.

4.1. Background: Order-constrained optimization

We leverage the following well-known observation: For a

fixed topological sort, problem (4), or equivalently (5), can

often be solved efficiently. We briefly review this material

here for completeness.

Recall that a topological sort (or order) for G is a partial

ordering z on the vertex set V = [d] such that Xi →
Xj =⇒ i z j, here Xi → Xj means there exists an

edge from i to j. A directed graph is acyclic if and only

if it has a topological sort, although this sort may not be

unique. Equivalently, we can view a topological sort as a

permutation on V .

Definition 1 (Topological sort). A topological sortz defines

a permutation Ã of the vertex set V for G by letting Ã(j) be

the j-th node in the ordering defined by z. In other words,

if XÃ(i) → XÃ(j), then i < j.

A similar definition carries over in the obvious way for

weighted adjacency matrices ¹. We furthermore call G
(resp. ¹) consistent with Ã if Ã is a topological sort of G
(resp. ¹), and write this as G ∼ Ã (resp. ¹ ∼ Ã).

Given a permutation Ã, we then have the following order-

constrained optimization problem:

min
¹∼Ã

Q(Θ). (7)

Due to the order consistency constraint ¹ ∼ Ã, the acyclicity

constraint h(|¹|) f 0 is automatically satisfied and hence

can be omitted from (7).

We next reformulate (7) with explicit linear constraints.

Moreover, in the sequel, we use Θ∗
Ã to denote any solution

to this problem:

Θ∗
Ã = (¹∗Ã, ¹̃

∗
Ã) ∈ argmin

Θ
Q(Θ) (8)

subject to ¹Ã(i),Ã(j) = 0, ∀j < i.

Remark 4. Our results only require solving (8) up to sta-

tionarity. That is, we can first set ¹Ã(i),Ã(j) = 0, for all

j < i, and then use any off-the-shelf first-order optimizer

(Boyd et al., 2004; Nesterov et al., 2018) for the resulting

(non)convex unconstrained problem.

4.2. Algorithm

Motivated by the observations above, we propose a general

bi-level algorithm based on finding the topological sort Ã of

an optimal scoring DAG. For any Θ and Ä, À > 0, define a

set

Y(Θ, Ä, À)
def
=
{
(i, j) | [∇h (|¹|))]ij f Ä,

∥∥∥∥
∂Q(Θ)

∂¹ij

∥∥∥∥
1

> À
}
.

(9)

Given this machinery, the four main steps of our approach

(Algorithm 1) are as follows:

1. Initialize at an arbitrary sort Ã, and solve (7).

2. Define a candidate set of possible swaps by

Y(Θ∗
Ã, Ä∗, À

∗) as defined in (9), where (Ä∗, À
∗)

are parameters chosen adaptively such that

|Y(Θ∗
Ã, Ä∗, À

∗)| ≈ ssmall.

3. Choose the best swap from this set to obtain a new

topological sort; i.e., the swap that decreases the score

Q the most.

4. Repeat until there is no sufficient improvement in the

score.

There are several advantages to this approach:

• Enforcing acyclicity is much simpler: Once a topologi-

cal sort is fixed, acyclicity is automatically guaranteed

and the optimization is straightforward and efficient (cf.

Section 4.1). Thus, there is no need to include h(|¹|) di-

rectly in the optimization routines compared to Zheng

et al. (2018), which greatly simplifies implementation.

5

Optimizing NOTEARS Objectives via Topological Swaps

• We will only need to check (ii), (iii), and (iv) in Lemma

1 in order to ensure the KKT conditions are satisfied,

and computing the gradients ∇Q, ∇h is easy. Note

that Condition (i) is to ensure |¹| is acyclic, which is

always satisfied by the argument in the above item.

It is worth stressing that this is not the same as greedily

selecting individual edges as in GES (Chickering, 2003):

Each swap re-solves (7) globally, and hence updates every

edge.

Crucially, in the second step, it is not necessary to exhaus-

tively check all possible swaps: By properly exploiting the

KKT conditions as in Lemma 1, we are able to limit the set

of possible candidate swaps to Y(Θ∗
Ã, Ä∗, À

∗). This greatly

improves the efficiency of the algorithm. Moreover, it is

not necessary to find the swap that decreases the score the

most in Algorithm 1 line 9. Instead, any swap that decreases

Q could be used to accelerate our algorithm. This greedy

strategy, which is explored in the appendices, can improve

time efficiency while attaining comparable performances.

The main steps of our method are summarized in Algo-

rithm 1; a more comprehensive outline (for reproducibility

purposes) can be found in the Appendix B (Algorithm 2).

The subroutine FINDPARAMS (detailed in Algorithm 3 in

Appendix B) aims to find appropriate values for Ä and À
such that |Y(Θ, Ä, À)| ≈ s. In Algorithm 1, the notation

ssmall and slarge are used to denote small and large search

spaces, respectively.

Remark 5. It is worth noting how the continuous formu-

lation plays a critical role in Algorithm 1: We use both

the KKT conditions and the function h in order to select

candidate swaps (cf. (9)).

4.3. Analysis

Intuitively, the idea behind Algorithm 1 is that it iteratively

jumps between better and better local minimizers, until the

candidate swaps given by (9) no longer offer any significant

improvement in the score. This is achieved by exploiting the

KKT conditions (6). In this section, we show that this is not

just a heuristic: Under appropriate conditions, Algorithm 1

indeed decreases the score and always terminates at a local

minimum or KKT point.

Before proving this, it is worth stressing why this is not

obvious a priori: Even if we solve (7) to global optimality

(i.e., given the order constraint ¹ ∼ Ã), a global solution to

(7) need not be a local solution to (4). This stems from the

fact that a DAG can have more than one topological sort,

and the solutions to (7) for each sort need not coincide.

We begin with two important lemmas.

Lemma 2. If (i, j) ∈ Y(Θ∗
Ã, 0, 0), then (¹∗Ã)ij = 0.

Algorithm 1 TOPO

Require: Initial topological sort Ã, integers ssmall and slarge

with slarge > ssmall, and score function Q.

1: {Here we use Ãij to denote the new topological sort by

swapping nodes i and j in Ã.}

2: (Ä∗, À
∗)← FINDPARAMS(¹∗Ã, ssmall)

3: S ← Y(Θ∗
Ã, Ä∗, À

∗)
4: while S ≠ ∅ do

5: if ∃(i, j) ∈ S s.t. Q(Θ∗
Ãij

) < Q(Θ∗
Ã) then

6: Update Ã to be Ãij that (most) decreases Q.

7: S ← Y(Θ∗
Ã, Ä∗, À

∗)
8: else

9: (Ä∗, À∗)← FINDPARAMS(¹∗Ã, slarge)
10: S ← Y(Θ∗

Ã, Ä
∗, À∗) {Try a larger search space}

11: if ∃(i, j) ∈ S s.t. Q(Θ∗
Ãij

) < Q(Θ∗
Ã) then

12: Update Ã to be Ãij that (most) decreases Q.

13: S ← Y(Θ∗
Ã, Ä∗, À

∗)
14: else

15: S ← ∅
16: end if

17: end if

18: end while

Ensure: Θ∗
Ã

Lemma 3. If the score Q is separable w.r.t ¹, i.e. Q(Θ) =∑
j Qj(¹j , ¹̃) and Y(Θ∗

Ã, 0, 0) ̸= ∅ for some topological

sort Ã, then

Q(Θ∗
Ãij

) < Q(Θ∗
Ã),

for every (i, j) ∈ Y(Θ∗
Ã, 0, 0).

Lemma 3 has an important takeaway message: As long

as we can find a pair of nodes (i, j) ∈ Y(Θ∗
Ã, 0, 0)—i.e.

Y(Θ∗
Ã, 0, 0) ̸= ∅—then we can find another topological

sort with strictly smaller score. The difficult case is when

Y(Θ∗
Ã, 0, 0) = ∅: What Algorithm 1 does is increase the

thresholds (Ä∗, À
∗) just enough to make Y(Θ∗

Ã, Ä∗, À
∗) ̸= ∅.

Indicated by the previous observation, this suggests that

placing node i before node j is likely (but not guaranteed)

to decrease the score. There are many strategies for updating

the topological sort to make this happen, but we adopt the

simplest way, i.e., swapping the node i and node j.

This previous discussion can be made more concrete via the

following observation:

Corollary 2. If Y(Θ∗
Ã, 0, 0) = ∅, then Θ∗

Ã satisfies the KKT

conditions in (6).

The following definition relates to the score Q and is a

relevant property for Theorem 2.

Definition 2 (Connected estimator). Given a topological

sort Ã, the estimator Θ∗
Ã is called connected if for any i < j

there is a directed path from node Ã(i) to node Ã(j) in ¹∗Ã .

6

Optimizing NOTEARS Objectives via Topological Swaps

Equivalently, for any i < j, a connected estimator satisfies

[∇h(|¹∗Ã|)]Ã(j),Ã(i) > 0. In general, we expect an estimator

to be connected when sparse regularization is not used. It is

worth noting that NOTEARS (Zheng et al., 2018) without

explicit ℓ1 regularization is observed to return a connected

estimator.

Theorem 2. For any h satisfies the Condition 1. If the score

Q is convex (resp. non-convex) and Θ∗
Ã is connected for all

Ã. Then Algorithm 1 returns a local minimum (resp. KKT

point) of problem (4), where the score is decreased at each

iteration. Moreover, the solution at each iteration is also a

local minimum (resp. KKT point).

Remark 6. Although the proof of Theorem 2 is deceptively

simple, we stress that it is not a priori obvious that swapping

pairs of nodes will always decrease the score: Done naïvely,

this could increase the score. Our careful use of the KKT

conditions precludes this behavior.

The connected estimator assumption in Theorem 2 can

be dropped whenever the score Q is separable (e.g., least

squares).

Theorem 3. For any h satisfies the Condition 1. As-

sume that the score Q is separable w.r.t ¹, i.e., Q(Θ) =∑
j Qj(¹j , ¹̃). If the score Q is convex (resp. non-convex),

then Algorithm 1 returns a local minimum (resp. KKT point)

of problem (4), where the score is decreased at each itera-

tion.

4.4. Comparison to previous work

Wei et al. (2020) first unveiled the connections between

the KKT conditions in (6) and local minimality in (4) by

studying a related problem with explicit edge absence con-

straints Z . As such, it is instructive to compare these two

approaches since there are some important distinctions. A

first clear difference is that the KKTS algorithm by Wei et al.

(2020) relies on an assumption they call irreducibility, to

ensure local minimality.

We provide a complete discussion on the irreducibility as-

sumption of Wei et al. (2020) in Appendix C.2 and focus

on the main ideas here. Briefly, KKTS (Wei et al., 2020)

uses a set of node pairs Z to indicate which edges should be

absent in the graph. KKTS works by iteratively adding and

removing elements to Z , and the algorithm stops once Z is

an irreducible set. Then, Wei et al. (2020) show that when

Z is irreducible, the KKTS solution is a local minimum,

provided additional assumptions such as the score being

separable and convex.

In Appendix C.2, we show that irreducibility is not a neces-

sary condition for optimality. We prove this by showing a

simple example where an optimal solution can correspond

to a reducible set Z .

Proposition 1. Irreducibility of the set Z is sufficient but

not necessary for KKTS to find a KKT point of problem (5).

The above discussion should already mark a clear distinc-

tion of Algorithm 1 to KKTS, i.e., our method does not

rely on the irreducibility assumption. Finally, we note that

the irreducibility assumption might seem a mild condition,

however, it can have a severe effect on the runtime of KKTS

as it will not stop until an irreducible set is found.

A second difference to KKTS is that our approach not only

attempts to find an optimal solution but also attempts to find

the local optimum with the lowest score possible. This fact

is a direct consequence of how Algorithm 1 works, namely,

at each iteration we look for a solution with lower score.

The fact that KKTS does not use the score Q to guide their

search procedure can result in solutions with high scores.

We next provide more details. Full details can be found in

Appendix C.1.

Example 1. Consider the following three-node linear SEM

with standard Gaussian noise zj ∼ N (0, 1), for i ∈ [3].
Consider also that the score Q is the population least square

loss.

X1 = z1, X2 = aX1 + z2, X3 = bX2 + z3. (10)

In Appendix C.1, we show that for the linear model (10)

there exists many values a and b where the solutions from

KKTS and NOTEARS produce solutions with higher score

w.r.t. Algorithm 1; moreover, NOTEARS produces non-

optimal solutions. This is illustrated in Appendix C.1 for

a = 1, b = −0.55. In each of these examples, our method

can always return a solution that satisfies the optimality

conditions in Lemma (1) and also attain the lowest score.

5. Experiments

Method Metric d = 20 d = 40 d = 100

GOLEM-EV

KKT 0 0 0

Loss 10.7± 0.12 40.7± 4.8 68.8± 3.9
SHD 11.4± 3.4 51.4± 28.3 145.2± 52.6

NOTEARS

KKT 0 0 0

Loss 11.9± 0.1 62.1± 8.8 73.1± 7.6
SHD 28.6± 3.2 129± 25.5 140.0± 30.1

NOFEARS

KKT 1 1 1

Loss 11.5± 0.3 47.6± 1.6 61.2± 2.6
SHD 23.2± 4.5 69.8± 16.0 87.5± 19.2

NOTEARS-TOPO

KKT 1 1 1

Loss 9.8± 0.1 38.4± 0.1 47.5± 0.1
SHD 0.4± 0.2 9.2± 0.8 14.2± 1.9

RANDOM-TOPO

KKT 1 1 1

Loss 9.8± 0.1 38.4± 0.1 47.5± 0.1
SHD 0.4± 0.2 8.6± 0.9 16.3± 2.6

Table 1. Experiments on linear DAGs with equal-variance Gaus-

sian noise on ER4 graphs. The score is the least squares, and d

is the number of nodes. Our methods are RANDOM-TOPO, and

NOTEARS-TOPO.

7

Optimizing NOTEARS Objectives via Topological Swaps

Method Metric d = 20 d = 40 d = 100

GOLEM-NV

KKT 0 0 0

Loss 9.9± 0.6 15.2± 1.3 42.7± 3.5
SHD 2.3± 0.1 23.4± 3.4 82.1± 12.3

NOTEARS

KKT 0 0 0

Loss 13.8± 2.1 17.2± 1.2 50.6± 4.5
SHD 7.3± 0.1 39.2± 7.1 138.1± 23.6

NOTEARS-TOPO

KKT 1 1 1

Loss 8.3± 1.2 13.2± 2.1 35.1± 2.3
SHD 2.7± 3.2 26.3± 4.2 86.9± 6.6

RANDOM-TOPO

KKT 1 1 1

Loss 8.9± 1.3 14.4± 1.2 39.2± 4.1
SHD 3.3± 0.2 29.1± 4.2 106.4± 11.6

Table 2. Experiments on linear DAGs with unequal-variance Gaus-

sian noise on ER4 graphs. The score is the log-likelihood with the

minimax concave penalty (MCP) penalty, and d is the number of

nodes. Our methods are RANDOM-TOPO, and NOTEARS-TOPO.

Method Metric d = 10 d = 20 d = 50

GOLEM-EV

KKT 0 0 0

Loss 4.3± 0.1 4616.5± 4163.2 (7.4± 7.4) · 1018

SHD 6.5± 0.8 85.1± 6.4 1152.5± 2.6

NOTEARS

KKT 0 0 0

Loss 6.2± 0.2 18.9± 1.3 (1.7± 1.6) · 1011

SHD 14± 1.1 79.5± 2.1 1198.1± 5.3

NOTEARS-TOPO
KKT 1 1 1

Loss 4.97± 0.1 9.92± 0.1 24.9± 0.3
SHD 0.1± 0.1 0.7± 0.2 19.4± 5.5

RANDOM-TOPO
KKT 1 1 1

Loss 4.97± 0.1 10.3± 0.2 35.8± 2.1
SHD 0.1± 0.1 3.1± 1.4 155.6± 17.9

Table 3. Experiments on Fully connected linear DAGs with Gaus-

sian noise. The score is least squares, and d is the number of nodes.

Our methods are RANDOM-TOPO, and NOTEARS-TOPO.

We compare our method against state-of-the-art solvers

for (1), namely, NOTEARS (Zheng et al., 2018; 2020),

NOFEARS (KKTS) (Wei et al., 2020), and GOLEM (Ng

et al., 2020). For TOPO (Algorithm 1), we consider the case

of random initialization (denoted by starting with ‘RAN-

DOM’), and initializing at the output of NOTEARS (denoted

by starting with ‘NOTEARS’). Here, random initialization

is conducted by sampling a topological sort Ã uniformly at

random, and solving problem (7) to get Θ∗
Ã . Details for each

experimental setting can be found in Appendix E.

Our main empirical results are shown in Tables 1, 2, 3 and 4.

In all the tables, we report: Whether or not the solution of the

algorithms satisfies the KKT conditions (1 indicating that

the method always returned a KKT point, and 0 indicating

that it never returns a KKT point); the score/loss attained

by the method; and the structural Hamming distance (SHD)

w.r.t. the ground-truth DAG.

In Table 1, we observe that, as expected, NOFEARS and

our algorithm are capable of returning a KKT point (and

local minimum in this setting since Q is convex). We also

note that TOPO with random initialization (Random_Topo)

Method Metric d = 10 d = 20 d = 40

NOTEARS-MLP

KKT 0 0 0

Loss 7.2± 0.2 14.4± 0.3 28.5± 0.4
SHD 5.6± 0.7 29.1± 3.1 112.3± 20.2

NOTEARS-TOPO

KKT 1 1 1

Loss 6.4± 0.1 11.6± 0.1 22.8± 0.6
SHD 2.7± 0.5 12.1 36.3± 20.4

TRUE

KKT 1 1 1

Loss 6.3± 0.1 12.2± 0.1 23.4± 0.4
SHD 2.1± 0.5 11.6± 0.6 36.1± 2.2

Table 4. Experiments on Nonlinear Model with Neural Network

on ER4 graphs. The score is least squares, and d is the number of

nodes. Our method is NOTEARS-TOPO. Here ‘True’ means the

solution of problem (8) using the underlying true topological sort.

performs competitively in this case, even though the initial

topological sort was randomly sampled. Moreover, notice

that when initialized at the output of NOTEARS, our method

(Notears_Topo) improves the performance of NOTEARS

dramatically. The latter demonstrates the usability of our

method as a post-processing algorithm, as discussed in our

contributions.

In Table 2, for a non-convex score, we observe that

TOPO still obtains solutions satisfying KKT optimality and

achieves the lowest scores.

In Table 3, we study a very challenging setting where the

underlying graph is a fully connected DAG. We observe

that existing methods can perform reasonably well when

the number of nodes is very small (e.g., 10) but their per-

formance degrade severely for graph with larger number of

nodes. In contrast, TOPO works remarkably well in this

setting, which should come to no surprise since sparsity

assumptions are not required, consistent with our analysis

in Section 4.3.

In Table 4, we make explicit comparison to nonlinear

NOTEARS (Zheng et al., 2020). Comparison against other

methods is implicit in previous work (Zheng et al., 2020).

We observe that Notears_Topo outperforms all other meth-

ods and is close to the solution of problem (8) using the true

topological sort.

5.1. Additional experiments

In Appendix E, we provide further experiments. We con-

sider linear models with different noise distributions (e.g.,

Gaussian, Gumbel and exponential) for {ER1, ER2, ER4,

SF1, SF2, SF4} graphs. See Appendix E.4. There, we ob-

serve that our methods even with random initialization still

outperforms existing methods in terms of score and SHD,

also the solutions are guaranteed to be local minimal. Addi-

tionally, our results are not specific to certain non-linearities.

To illustrate this, we run experiments on a logistic model

(binary Xj), and neural networks. See details in the Ap-

8

Optimizing NOTEARS Objectives via Topological Swaps

pendix E.5. Finally, we also report the runtime and scores of

each method for linear and nonlinear models in Appendices

E.4 and E.5.

We analyze the sensitivity of the hyperparameters ssmall,

and slarge on Algorithm 1 (see Appendix E.3). That is, we

thoroughly study the effect of hyperparameters on the car-

dinality of the search spaces, see eq.(9), and how many

times our algorithm searches in a space of large cardinal-

ity. Moreover, we test our method when using randomly

chosen swapping set to demonstrate the effectiveness of (9)

(see Appendix E.6). Finally, we also include an analysis on

structural accuracy vs iterations to track the performance of

Algorithm 1 (see Appendix E.7).

6. Conclusion

Inspired by the KKT conditions, we developed new insights

into the optimization-theoretic properties of NOTEARS

objectives, and proposed a new bi-level algorithm with at-

tractive local optimality guarantees. As a by-product, it

can also improve the solutions of state-of-the-art solvers

for (1) (e.g., NOTEARS, KKTS, GOLEM). Although prov-

ing convergence to a global minimizer is expected to be

challenging, we have shown that our method has desirable

properties for an optimization scheme: (a) It decreases the

score in each iteration and (b) It is guaranteed to return a

local minimizer (and hence also a KKT point). The key

driver behind our approach is the interpretation of the KKT

conditions as a proxy for choosing promising node swaps

in a topological sort. An important open question for future

work is the convergence of Algorithm 1: What is its iteration

and computational complexity?

It is also interesting to note that unlike previous methods

that rely on explicitly enforcing acyclicity via h(B), our ap-

proach only uses h(B) indirectly in order to check the KKT

conditions. This idea was already implicit in the KKTS

method due to Wei et al. (2020), and could lead to new in-

sights into how to optimize NOTEARS objectives and other

acyclicity-constrained problems.

Acknowledgments and Disclosure of Funding

K. B. was supported by NSF under Grant # 2127309 to the

Computing Research Association for the CIFellows 2021

Project. B.A. was supported by NSF IIS-1956330, NIH

R01GM140467, and the Robert H. Topel Faculty Research

Fund at the University of Chicago Booth School of Busi-

ness. This work was done in part while B.A. was visiting

the Simons Institute for the Theory of Computing. P.R.

was supported by ONR via N000141812861, and NSF via

IIS-1909816, IIS-1955532, IIS-2211907. We also thank

the University of Chicago Research Computing Center for

assistance with the calculations carried out in this work.

References

Aragam, B. and Zhou, Q. Concave penalized estimation

of sparse Gaussian Bayesian networks. The Journal of

Machine Learning Research, 16(1):2273–2328, 2015.

Aragam, B., Amini, A., and Zhou, Q. Globally optimal

score-based learning of directed acyclic graphs in high-

dimensions. Advances in Neural Information Processing

Systems, 32, 2019.

Barabási, A.-L. and Albert, R. Emergence of scaling in

random networks. science, 286(5439):509–512, 1999.

Bello, K., Aragam, B., and Ravikumar, P. K. Dagma: Learn-

ing dags via m-matrices and a log-determinant acyclicity

characterization. In Advances in Neural Information Pro-

cessing Systems, 2022.

Bertsekas, D. P. Nonlinear programming. Journal of the

Operational Research Society, 48(3):334–334, 1997.

Boyd, S., Boyd, S. P., and Vandenberghe, L. Convex opti-

mization. Cambridge university press, 2004.

Bühlmann, P., Peters, J., and Ernest, J. Cam: Causal additive

models, high-dimensional order search and penalized

regression. The Annals of Statistics, 42(6):2526–2556,

2014.

Chickering, D. M. Optimal structure identification with

greedy search. JMLR, 3:507–554, 2003.

Cussens, J. Bayesian network learning with cutting planes.

arXiv preprint arXiv:1202.3713, 2012.

Drton, M., Chen, W., and Wang, Y. S. On causal dis-

covery with equal variance assumption. arXiv preprint

arXiv:1807.03419, 2018.

Geiger, D. and Heckerman, D. Parameter priors for directed

acyclic graphical models and the characterization of sev-

eral probability distributions. Annals of Statistics, 30:

1412–1440, 2002.

Ghoshal, A. and Honorio, J. Learning identifiable gaus-

sian bayesian networks in polynomial time and sample

complexity. In Proceedings of the 31st International Con-

ference on Neural Information Processing Systems, pp.

6460–6469, 2017.

Ghoshal, A. and Honorio, J. Learning linear structural equa-

tion models in polynomial time and sample complexity.

In Proceedings of the Twenty-First International Confer-

ence on Artificial Intelligence and Statistics, volume 84

of Proceedings of Machine Learning Research, pp. 1466–

1475. PMLR, 2018.

9

Optimizing NOTEARS Objectives via Topological Swaps

Jaakkola, T., Sontag, D., Globerson, A., and Meila, M.

Learning bayesian network structure using lp relaxations.

In Proceedings of the Thirteenth International Confer-

ence on Artificial Intelligence and Statistics, volume 9 of

Proceedings of Machine Learning Research, pp. 358–365,

2010.

Kingma, D. P. and Ba, J. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014.

Lachapelle, S., Brouillard, P., Deleu, T., and Lacoste-Julien,

S. Gradient-based neural dag learning. In International

Conference on Learning Representations, 2020.

Loh, P.-L. and Bühlmann, P. High-dimensional learning of

linear causal networks via inverse covariance estimation.

The Journal of Machine Learning Research, 15(1):3065–

3105, 2014.

Margaritis, D. Learning bayesian network model structure

from data. Technical report, Carnegie-Mellon Univ Pitts-

burgh Pa School of Computer Science, 2003.

Margaritis, D. and Thrun, S. Bayesian network induction

via local neighborhoods. In Proceedings of the 12th Inter-

national Conference on Neural Information Processing

Systems, pp. 505–511, 1999.

Nandy, P., Hauser, A., and Maathuis, M. H. High-

dimensional consistency in score-based and hybrid struc-

ture learning. The Annals of Statistics, 46(6A):3151–

3183, 2018.

Nesterov, Y. et al. Lectures on convex optimization, volume

137. Springer, 2018.

Ng, I., Ghassami, A., and Zhang, K. On the role of spar-

sity and dag constraints for learning linear DAGs. In

Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F.,

and Lin, H. (eds.), Advances in Neural Information Pro-

cessing Systems, volume 33, pp. 17943–17954. Curran

Associates, Inc., 2020.

Ng, I., Lachapelle, S., Ke, N. R., Lacoste-Julien, S., and

Zhang, K. On the convergence of continuous constrained

optimization for structure learning. In International Con-

ference on Artificial Intelligence and Statistics, pp. 8176–

8198. PMLR, 2022.

Park, Y. W. and Klabjan, D. Bayesian network learning

via topological order. The Journal of Machine Learning

Research, 18(1):3451–3482, 2017.

Peters, J. and Bühlmann, P. Identifiability of gaussian

structural equation models with equal error variances.

Biometrika, 101(1):219–228, 2014.

Peters, J., Mooij, J. M., Janzing, D., and Schölkopf, B.

Causal discovery with continuous additive noise models.

JMLR, 2014.

Peters, J., Janzing, D., and Schölkopf, B. Elements of causal

inference: foundations and learning algorithms. MIT

press, 2017.

Raskutti, G. and Uhler, C. Learning directed acyclic graph

models based on sparsest permutations. Stat, 7(1):e183,

2018.

Reisach, A., Seiler, C., and Weichwald, S. Beware of the

simulated dag! causal discovery benchmarks may be easy

to game. Advances in Neural Information Processing

Systems, 34:27772–27784, 2021.

Romain, M. and d’Aspremont, A. A bregman method for

structure learning on sparse directed acyclic graphs. arXiv

preprint arXiv:2011.02764, 2020.

Scanagatta, M., de Campos, C. P., Corani, G., and Zaffalon,

M. Learning bayesian networks with thousands of vari-

ables. In NIPS, pp. 1864–1872, 2015.

Silander, T. and Myllymaki, P. A simple approach for find-

ing the globally optimal bayesian network structure. In

Proceedings of the 22nd Conference on Uncertainty in

Artificial Intelligence, 2006.

Solus, L., Wang, Y., and Uhler, C. Consistency guarantees

for greedy permutation-based causal inference algorithms.

Biometrika, 108(4):795–814, 2021.

Spirtes, P. and Glymour, C. An algorithm for fast recovery

of sparse causal graphs. Social Science Computer Review,

9(1):62–72, 1991.

Squires, C., Wang, Y., and Uhler, C. Permutation-based

causal structure learning with unknown intervention tar-

gets. In Conference on Uncertainty in Artificial Intelli-

gence, pp. 1039–1048. PMLR, 2020.

Teyssier, M. and Koller, D. Ordering-based search: A simple

and effective algorithm for learning bayesian networks.

In Proceedings of the Twenty-First Conference on Uncer-

tainty in Artificial Intelligence, UAI’05, pp. 584–590,

Arlington, Virginia, USA, 2005. AUAI Press. ISBN

0974903914.

Tsamardinos, I., Aliferis, C. F., Statnikov, A. R., and Stat-

nikov, E. Algorithms for large scale markov blanket dis-

covery. In FLAIRS conference, volume 2, pp. 376–380,

2003.

Tsamardinos, I., Brown, L. E., and Aliferis, C. F. The max-

min hill-climbing Bayesian network structure learning

algorithm. Machine Learning, 65(1):31–78, 2006.

10

Optimizing NOTEARS Objectives via Topological Swaps

Van de Geer, S. and Bühlmann, P. ℓ0-penalized maximum

likelihood for sparse directed acyclic graphs. The Annals

of Statistics, 41(2):536–567, 2013.

Wang, X., Du, Y., Zhu, S., Ke, L., Chen, Z., Hao, J., and

Wang, J. Ordering-based causal discovery with reinforce-

ment learning. arXiv preprint arXiv:2105.06631, 2021.

Wei, D., Gao, T., and Yu, Y. DAGs with no fears: A closer

look at continuous optimization for learning bayesian

networks. In Advances in Neural Information Processing

Systems, 2020.

Xiang, J. and Kim, S. A* lasso for learning a sparse bayesian

network structure for continuous variables. Advances in

neural information processing systems, 26, 2013.

Ye, Q., Amini, A. A., and Zhou, Q. Optimizing regular-

ized cholesky score for order-based learning of bayesian

networks. IEEE transactions on pattern analysis and

machine intelligence, 43(10):3555–3572, 2020.

Yu, Y., Chen, J., Gao, T., and Yu, M. Dag-gnn: Dag struc-

ture learning with graph neural networks. In Interna-

tional Conference on Machine Learning, pp. 7154–7163.

PMLR, 2019.

Zheng, X., Aragam, B., Ravikumar, P. K., and Xing, E. P.

DAGs with NO TEARS: Continuous optimization for

structure learning. In Advances in Neural Information

Processing Systems, 2018.

Zheng, X., Dan, C., Aragam, B., Ravikumar, P., and Xing, E.

Learning sparse nonparametric DAGs. In International

Conference on Artificial Intelligence and Statistics, pp.

3414–3425. PMLR, 2020.

Zhu, S., Ng, I., and Chen, Z. Causal discovery with re-

inforcement learning. In International Conference on

Learning Representations, 2020.

11

SUPPLEMENTARY MATERIAL

Optimizing NOTEARS Objectives via Topological Swaps

A. Additional Discussion on Family of Approximators

Let F = {f : fj ∈ Fj , ∀j ∈ [d]} be a family of functions used to approximate the SCM in problem (2). In this section,

we focus on the general case and discuss under what conditions that family F can be used to approximate fj and how our

results apply in this general setting.

We consider approximations f = (f1, . . . , fd) ∈ F that are parameterized by ¹, i.e. f(x) := f(x; ¹). This defines

W (¹) := W (f(·; ¹)) as the adjacency matrix defined by (3), which is characterized by ¹. Although the following definition

is standard, we pause to make this precise since it is crucial in the development that follows:

Definition 3 (sub-vector). Given a vector ´ = (´1, . . . , ´n) ∈ R
n, and we say that ³ is a sub-vector of ´ if and only if

there is a subset J = {j1, . . . , jk} ¢ {1, 2, . . . , n} such that ³ = ´J := (´j1 , . . . , ´jk).

Under the following general assumptions, our results and proof in Section D still apply without any modification:

(i) The parametrization is separable in the following sense: ¹ = (¹1, . . . , ¹d) and each fj in (2) is only parameterized by

the sub-vector ¹j , i.e., fj(x; ¹) = fj(x; ¹j).

(ii) There are sub-vectors ¹ij of ¹j that can reveal if there is no edge from node i to node j (i.e., [W (¹)]ij = 0 if and only

if ¹ij = 0.) In this case, the general definition in (3) can be replaced with [W (¹)]ij = ∥¹ij∥1 without loss of generality.

Write ¹ij = (¹ijr)r for each sub-vector ¹ij . Since [W (¹)]ij = ∥¹ij∥1, we have

[W (¹+ + ¹−)]ij = ∥¹
+
ij + ¹−ij∥1 = 1

¦(¹+ij + ¹−ij) =
∑

r

(¹+ijr + ¹−ijr)

Therefore,

∂[W (¹+ + ¹−)]ij

∂¹±ij
=

(
∂[W (¹+ + ¹−)]ij

∂¹±ijr

)

r

= (1)r = 1.

In Section 3.4, the KKT conditions for (5) involve the term
∂h(W (¹++¹−))

∂¹
±

ij

. By the assumptions above, we see that

h(W (¹+ + ¹−)) is a function of ¹ij through [W (¹+ + ¹−)]ij , so that by the chain rule we have

∂h(W (¹+ + ¹−))

∂¹±ij
=

∂h(W (¹+ + ¹−))

∂[W (¹+ + ¹−)]ij

∂[W (¹+ + ¹−)]ij

∂¹±ij

= [∇h(W (¹+ + ¹−))]ij 1

= [∇h(W (|¹|))]ij1,

this equality is crucial to Lemma 1.

We conclude by discussing three important special cases that satisfy the assumptions above: (1) Linear SEMs, (2) Multilayer

perceptrons (MLPs), and (3) Basis expansions.

Linear SEMs. A linear SEM follows the following set of equations:

Xj = fj(X, zj) = w¦
j X + zj , wj ∈ R

d, ∀j ∈ [d],

where zj ∈ R represents the noise following any distribution. Let W = [w1 | w2 | · · · | wd] ∈ R
d×d. In this case, all the

model parameters are ¹ = W . The parameters related to node j are ¹j = wj , thus, each function fj is only characterized by

¹j . Thus, condition (i) above is clearly satisfied. Furthermore, we have ¹ij = Wij (the (i, j)-th entry of W), where clearly

there is no edge from node i to node j if and only if Wij = 0. Therefore, condition (ii) above is also satisfied.

12

Optimizing NOTEARS Objectives via Topological Swaps

Multilayer perceptrons (MLPs). Let a multilayer perceptron (MLP) with h hidden layers and a single activation

Ã : R→ R be given by:

MLP(X;A(1), . . . , A(h)) = Ã(A(h)Ã(. . . A(2)Ã(A(1)x))),

A(ℓ) ∈ R
mℓ×mℓ−1 , m0 = d, mh = 1.

Then the nonlinear SCM with additive noise can be written as:

Xj = fj(X, zj) = MLP(X;A
(1)
j , . . . , A

(h)
j) + zj ,

where zj ∼ N (0, 1). Let ¹j = (A
(1)
j , . . . , A

(h)
j) denote the parameters for the j-th MLP, and let ¹ = (¹1, . . . , ¹d) denote all

model parameters. Define ¹ij to be the i-th column of A
(1)
j . Since MLP(X;A

(1)
j , . . . , A

(h)
j) is independent of Xi if and

only if ¹ij = 0 (e.g., Zheng et al., 2020, Proposition 1), we can define [W (¹)]ij = ∥¹ij∥1. Then, in this case it is easy to

check that conditions (i) and (ii) above are satisfied.

Basis expansion. As an alternative to neural networks, we also consider the use of orthogonal basis expansions, as in

(Zheng et al., 2020). Let {φr}
∞
r be an orthonormal basis of functions such that E[φr(X)] = 0 for each r and

f(x) =

∞∑

r=1

³rφr(x), ³r =

∫

Rd

φr(x)f(x)dx.

Consider additive models and one-dimensional expansions as follows:

Xj = fj(X, zj) =
∑

i ̸=j

fij(Xi) + zj =
∑

i ̸=j

∞∑

r=1

³ijrφr(xi) + zj .

In this case, we let ¹ = (³ijr)i,j,r denote all model parameters, ¹j = (³ijr)ir denote all parameters related to node j,

and ¹ij = (³ijr)r denote the parameters that model the absence of an edge from node i to node j. Additionally, set

[W (¹)]ij = ∥¹ij∥1 =
∑

r|³ijr|. Similarly, it is easy to check that conditions (i) and (ii) above are both satisfied.

B. Algorithm Details

B.1. Full Algorithm Description

A full and reproducible outline of Algorithm 1 can be found in Algorithm 2. Note that Algorithms 4 (UPDATESORT) and 3

(FINDPARAMS) are subroutines used by Algorithm 2.

B.2. Additional Details on Hyperparameters

In this section, we describe more details of the proposed order-based search method in Algorithm 2. This involves initializing

the number of swapping pairs ssmall to define a small search space, the number of swapping pairs slarge to define a large

search space, and the maximum number of searches s0 to perform in the large swapping-pairs space. From line 31 to 32,

for each iteration, Algorithm 2 invokes Algorithm 3 to find out the best values for Ä∗, À
∗, Ä∗, À∗ to control the number of

swapping pairs in the search space. For reference, the predefined T and Ξ that we used in Algorithm 3 are given in Table 5.

By tuning ssmall and slarge, we can control Algorithm 2 to quickly converge to a local minimum, or have the chance to escape

to a better local minimum in case it finds a suboptimal one. Specifically, in Line 4, if the running solution ¹∗Ã does not

satisfy the KKT conditions, then, as prescribed by Lemma 3, a better topological sort can be found. In Line 10, although the

running solution ¹∗Ã satisfies the KKT conditions, we use strict positive values for Ä∗, and À∗ to expand the search space Y
and consider potential swapping pairs that can lead us to a better local minimum. Here, the parameter s0 specifies how many

times the algorithm can search in a large swapping-pairs space, with the goal to escape from a region of bad local minima.

These hyperparameters are determinant to Algorithm 2 performance and are tuned to balance the trade-off between accuracy

and efficiency.

Remark 7. One merit of Algorithm 2 over prior work is that it does not only search for a local minimum but also

tries to escape from bad local minima. Thus, our algorithm usually attains the best scores among all DAG learning

13

Optimizing NOTEARS Objectives via Topological Swaps

Algorithm 2 TOPO

Require: Given a topological sort Ã, two predefined numbers of swapping pairs ssmall, slarge, number of search in large

space s0 and initialize corresponding ZÃ . Solve (7) to get Θ∗
Ã , set k ← 0 and count← 0.

1: (Ä∗, À
∗)← FINDPARAMS(Θ∗

Ã, ssmall)
2: (Ä∗, À∗)← FINDPARAMS(Θ∗

Ã, slarge).
3: while Y(Θ∗

Ã, Ä∗, À
∗) ̸= ∅ do

4: if Y(Θ∗
Ã, 0, 0) ̸= ∅ then

5: Y ← Y(Θ∗
Ã, 0, 0)

6: for (i, j) ∈ Y do

7: Ãij ← UPDATESORT(¹∗Ã, (i, j), opt = 2).
8: Solve (7) to obtain Θ∗

Ãij
.

9: end for

10: else

11: Y ← Y(Θ∗
Ã, Ä∗, À

∗)
12: for (i, j) ∈ Y do

13: Ãij ← UPDATESORT(¹∗Ã, (i, j), opt = 1).
14: Solve (7) to obtain Θ∗

Ãij
.

15: end for

16: end if

17: if min(i,j)∈Y Q(Θ∗
Ãij

) f Q(Θ∗
Ã) then

18: update Ã := argminÃij
Q(Θ∗

Ãij
)

19: else

20: if k < s0 then

21: Y ← Y(Θ∗
Ã, Ä

∗, À∗) ̸= ∅
22: for (i, j) ∈ Y do

23: Ãij ← UPDATESORT(¹∗Ã, (i, j), opt = 1).
24: Solve (7) to obtain Θ∗

Ãij
.

25: end for

26: if min(i,j)∈Y Q(Θ∗
Ãij

) f Q(Θ∗
Ã) then

27: update Ã := argminÃij
Q(Θ∗

Ãij
) , k ← k + 1

28: else

29: Return Θ∗
Ã then break

30: end if

31: else

32: Return Θ∗
Ã then break

33: end if

34: end if

35: Solve (7) to obtain Θ∗
Ã

36: Update Y(Θ∗
Ã, Ä∗, À

∗)
37: count← count+ 1
38: (Ä∗, À

∗)← FINDPARAMS(Θ∗
Ã, ssmall)

39: (Ä∗, À∗)← FINDPARAMS(Θ∗
Ã, slarge).

40: end while

Algorithm 3 FINDPARAMS

Require: Parameter Θ, integer q that controls the size of the search space.

1: Create a predefined T = {Ä1, . . . , Äm} and Ξ = {À1, . . . , Àl}.
Ensure: (Ä, À) = argminÄ∈T,À∈Ξ |q − |Y(Θ, Ä, À)||

algorithms—when comparable. A drawback of Algorithm 2 is the dependence on how large the search space is, which

could be computationally intensive. Finally, Algorithm 2 solves (13) repeatedly, whose runtime also heavily determines the

efficiency of Algorithm 2. See Section E for runtime comparisons against existing methods.

14

Optimizing NOTEARS Objectives via Topological Swaps

Algorithm 4 UPDATESORT

Require: Parameter ¹ or topological sort Ã, (i, j), opt. Initialize predefined ϵ← 10−8 (small).

1: if opt = 1 then

2: Swap nodes i and j, and denote the new topological sort by Ãij

3: else

4: ¹′ ← ¹
5: ¹′ij ← ¹ij − ϵ∂Q(Θ)

∂¹ij

6: Find the topological sort of W (|¹′|), denoted as Ãij .

7: end if

Ensure: Ãij

Parameters Values

T 0 1× 10−8 1× 10−7 1× 10−6 1× 10−5 1× 10−4 1× 10−3

Ξ
0 1× 10−7 1× 10−6 5× 10−6 1× 10−5 5× 10−5 1× 10−4

5× 10−4 1× 10−3 5× 10−3 1× 10−2 5× 10−2 1× 10−1 5× 10−1

1 2 5 10 15 20 40

Table 5. Suggested values for parameters T and Ξ in Algorithm 3.

C. Irreducibility and Comparison with Prior Work

C.1. Three-Node Example where KKTS and NOTEARS Fail

In this section, we expand on Example 1. In particular, we show that our example was not handpicked but instead there

exists several values a and b where the solutions from KKTS and NOTEARS either are DAGs with incorrect structure, or

are non-optimal solutions, or both. Recall that our example follows the following SEM:

X1 = z1,

X2 = aX1 + z2, (11)

X3 = bX2 + z3,

where zi ∼ N (0, 1) for i ∈ [3]. For the purposes of this analysis we consider the class of SEMs such that a2 > b2. Then,

the true adjacent matrix and topological sort are:

Wtrue =



0 a 0
0 0 b
0 0 0


 , Ãtrue = [1, 2, 3].

Letting X =



X1

X2

X3


 , and Z =



z1
z2
z3


 . The SEM (11) in vector form can be written as:

X = WT
trueX + Z.

We will use the population least square (LS) as the score function, which is defined as follows:

Q(W) = E∥X −XW∥22 = ∥(I −Wtrue)
−1(I −W)∥22

The motivation to choose such score is that it was shown by Loh & Bühlmann (2014) that Wtrue is the unique global

minimizer of the population LS for linear SEMs with equal noise variances. Next, we provide a closer look as to why our

algorithm is capable of learning the correct structure, while KKTS and NOTEARS fail.

15

Optimizing NOTEARS Objectives via Topological Swaps

C.1.1. THE OUTPUT OF KKTS

In the KKTS algorithm of Wei et al. (2020), consider the set of edge absence constraints to be initialized at:

Z0 = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}.

That is, the algorithm is initialized at the empty graph. Then, we have

W ∗(Z0) = 0, ∇Q(W ∗(Z0)) = −2



1 a ab
a a2 + 1 b+ a2b
ab b+ a2b (ab)2 + b2 + 1


 ,

and {(i, j) | [∇h(|W ∗(Z0)|)]ij = 0} = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)}. Recall that the KKTS algorithm will

remove the pair (i, j) from Z0 that satisfies the following property:

(i, j) = argmax
{(i,j)|[∇h(|W∗(Z0)|)]ij=0}∩Z0

|[∇Q(W ∗(Z0))]ij |.

Now, consider the case that max{|a|, |ab|} < |(a2 + 1)b|, then the pair (3, 2) is removed from Z0 and the resulting set of

edge absence constraints is Z1 = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 3)}. Then, at the next step we have:

W ∗(Z1) =



0 0 0
0 0 0

0 a2b+b
(ab)2+b2+1 0


 , ∇Q(W ∗(Z1)) = −2



1 a

(ab)2+b2+1 ab

a a2+1
(ab)2+b2+1 a2b+ b

ab 0 (ab)2 + b2 + 1


 ,

and {(i, j) | [∇h(|W ∗(Z1)|)]ij = 0} = {(1, 2), (1, 3), (2, 1), (3, 1), (3, 2)}. Consider now the case that

max{ |a|
(ab)2+b2+1 , |ab|} < |a|, then the pair (2, 1) is removed from Z1 and the resulting set of edge absence constraints is

Z2 = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 1), (3, 3)}. Then, at the next step we have:

W ∗(Z2) =




0 0 0
a

a2+1 0 0

0 a2b+b
(ab)2+b2+1 0


 , ∇Q(W ∗(Z2)) = −2




1
a2+1

a
(ab)2+b2+1 ab

0 a2+1
(ab)2+b2+1 a2b+ b

0 0 (ab)2 + b2 + 1


 ,

and {(i, j) | [∇h(|W ∗(Z2)|)]ij = 0} = {(2, 1), (3, 1), (3, 2)}.

Now we note that {(i, j) | [∇h(|W ∗(Z2)|)]ij = 0} ∩ Z2 = {(3, 1)}. However, we have [∇Q(W ∗(Z2))]31 = 0, that is,

even if we remove the pair (3, 1) from Z2, the corresponding Z3 = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)} leads to

W ∗(Z3) = W ∗(Z2), ∇Q(W ∗(Z3)) = ∇Q(W ∗(Z2)).

Combining all the considerations on a and b, we can conclude that as long as the following is satisfied:

|ab| < |a| < |(a2 + 1)b|,

KKTS will find a DAG with incorrect structure, in fact, a DAG where all edges are reversed. Finally, one can easily see

that there are infinitely many a and b satisfying the above condition. For example, let a = 1 and b = −0.55. We want

to emphasize here that our result is also consistent with the result returned by the Python program provided by Wei et al.

(2020).

C.1.2. THE OUTPUT OF NOTEARS

Since the NOTEARS implementation by Zheng et al. (2018) uses the augmented Lagrangian method and solve each inner

unconstrained subproblem using the Quasi-Newton L-BFGS method, it is impossible to derive an analytical solution. Instead,

we directly verify the DAG solution returned by NOTEARS by setting the ground-truth SEM a = 1, b = −0.55.

Wnotears =




0 1.49× 10−4 −7.00× 10−7

0.16 0 -1.55

-0.22 −1.59× 10−5 0




16

Optimizing NOTEARS Objectives via Topological Swaps

We can note that Wnotears is not ‘exactly’ a DAG. Thus, we use a threshold to remove small entries in Wnotears. The resulting

adjacency matrix is now a DAG and is denoted by Wnotears_thres. One can clearly see that the NOTEARS solution does not

recover the true structure.

Wnotears_thres =




0 0 0

0.16 0 -1.55

-0.22 0 0




Let us now check the KKT conditions given in Lemma 1. We have {(i, j) | [∇h(|Wnotears_thres|)]ij = 0} =
{(3, 1), (2, 3), (2, 1)}, and [∇Q(Wnotears_thres)]21 ̸= 0, [∇Q(Wnotears_thres)]23 ̸= 0 and [∇Q(Wnotears_thres)]31 ̸= 0. We

can then observe that NOTEARS fails at both outputting the true DAG structure, and a DAG that is a local minimum.

C.1.3. THE OUTPUT OF TOPO (ALGORITHM 2)

To study how TOPO works for this 3-node example, we first calculate the loss of all possible topological sorts in the

following table.

Topological sort Ã Score

(1, 2, 3) 3
(1, 3, 2) 2 + b2 + 1

1+b2

(2, 1, 3) 2 + a2 + 1
a2+1

(3, 1, 2) 1 + b2 + (ab)2 + 1
1+b2

+ 1+b2

1+b2+(ab)2

(2, 3, 1) 2 + a2 + 1
a2+1

(3, 2, 1) 1
1+a2 + 1+a2

1+(ab)2+b2
+ 1 + b2 + (ab)2

Now, rewriting eq.(8) for the case of linear models, we have:

W ∗
Ã ∈ argmin

W∼Ã

Q(W).

To understand why TOPO is capable of returning the correct true structure, we next define adjacent topological sorts.

Definition 4. For two topological sorts Ã1 and Ã2, we say that Ã1 and Ã2 are adjacent if there exists a pair of nodes in Ã1

such that when swapped the resulting topological ordering is Ã2.

Recall that Ãtrue = (1, 2, 3). The following statement explains precisely the success of Algorithm 2.

Corollary 3. Assume that a ̸= 0, b ̸= 0, and a2 > b2, then for any topological sort Ã ̸= Ãtrue, we have that Q(W ∗
Ã) >

Q(W ∗
Ãtrue

) = Q(Wtrue) = 3. Moreover, there always exists an adjacent topological sort Ãadj such that Q(W ∗
Ã) > Q(W ∗

Ãadj
).

In other words, for any initial topological sort Ã ̸= (1, 2, 3), TOPO (Algorithm 2) can always return Ãtrue and Wtrue at last.

All the situations are summarized in the Table 6.

Current order Ã Adjacent order Ãadj Current loss Better loss

(1, 2, 3) (1, 2, 3) 3 g 3
(1, 3, 2) (1, 2, 3) 2 + b2 + 1

1+b2
g 3

(2, 1, 3) (1, 2, 3) 2 + a2 + 1
a2+1 g 3

(3, 1, 2) (1, 3, 2) 1 + b2 + (ab)2 + 1
1+b2

+ 1+b2

1+b2+(ab)2 g 2 + b2 + 1
1+b2

(2, 3, 1) (1, 3, 2) 2 + a2 + 1
a2+1 g 2 + b2 + 1

1+b2

(3, 2, 1) (1, 2, 3) 1
1+a2 + 1+a2

1+(ab)2+b2
+ 1 + b2 + (ab)2 g 3

Table 6. There always exists an adjacent topological sort whose score is strictly less than the current topological sort.

C.1.4. ANALYSIS

In this section we aim to provide more intuition as to why KKTS and NOTEARS fail in the above example. Regarding

the KKTS algorithm, it removes a pair (i, j) from the set of edge absence constraints at each iteration. Loosely speaking,

17

Optimizing NOTEARS Objectives via Topological Swaps

this is equivalent to adding an edge Xi → Xj at each iteration, which implies that node i must appear before node j in the

topological sort, and such relative ordering in the topological sort will never be reversed in later iterations of the algorithm.

Therefore, once a wrong pair (i, j) is removed from the set of edge absence constraints, the KKTS algorithm has no ability to

correct such erroneous step. Although KKTS ensures that a local minimum is returned, it can learn a completely erroneous

DAG structure, as shown in our example above. Regarding NOTEARS, as indicated by Wei et al. (2020), the algorithm does

not guarantee to return a local minimum even under the right formulation, and in most cases the NOTEARS solution is

neither the correct structure nor a local minimum.

In contrast to KKTS and NOTEARS, TOPO can return correct structure in the example above regardless of the initial

topological sort. Our swapping strategy allows TOPO to change the topological sort in each iteration; importantly, while

TOPO checks the optimality conditions, it uses the score function as the only criterion to find another topological ordering

with better score, thus, jumping from one local optimum to a better local optimum.

C.2. Detailed Discussion About Irreducibility

In this section, we discuss the differences between our method and the KKTS algorithm (Wei et al., 2020). One obvious

difference is the type of constraint used. Another important difference is that the KKTS algorithm proposed by Wei et al.

(2020) relies on an assumption they call irreducibility, which we will show by example is not needed in general.

In this section, we consider one of special case of (2): Linear SEMs, which is studied by previous work (Zheng et al., 2018;

Wei et al., 2020).

Xj = w¦
j X + zj , wj ∈ R

d. (12)

Let W = [w1, . . . , wd]. In this case, ¹ is equivalent to W and ¹ij is equivalent to Wij . Therefore, to be consistent with

previous works (Zheng et al., 2018; Wei et al., 2020), we use W to replace ¹.

To connect the KKT conditions and local minimiality, Wei et al. (2020) used a related problem with explicit edge absence

constraints, which correspond to zero-value constraints on the matrix W . Specifically, given a set Z ¢ V × V , their explicit

edge absence constrained problem is given by:

min
W

Q(W ;X) subject to Wij = 0, ∀ (i, j) ∈ Z. (13)

Following the notation in Wei et al. (2020), we denote its optimal solution by W ∗(Z). As with (7), this problem can be

solved efficiently—in fact, (7) is just a special case of (13) with Z = ZÃ , where

ZÃ := {(Ã(j), Ã(i)) | i < j} .

Driven by Theorem 1, the KKT-informed local search (KKTS) algorithm in Wei et al. (2020) repeatedly solves the edge

absence problem (13) for different Z . The KKTS algorithm stops once an irreducible set Z is found, and the output W ∗(Z)
is guaranteed to be a local minimum for problem (4). Wei et al. (2020) define irreducibility of a set Z as follows:

Definition 5 (Irreducibility, Wei et al., 2020). A set Z is called irreducible if (i, j) ∈ Z ⇒ (∇h(|W ∗(Z)|))ij > 0.

Although irreduciblity of Z is a sufficient condition for a feasible solution to be a KKT point (Theorem 8, Wei et al., 2020),

it is not necessary, as the following example shows.

Fix indices i0 < j0 and define a ground truth DAG W by

(W)i,j =

{
1 if i = i0, j = j0,

0 otherwise.

Let Ω = [d]× [d] denote all pairs of indices, we initialize Z0 = Ω \ {(i0, j0)}. Recall that the KKTS algorithm repeatedly

removes elements from Z until it is irreducible. Let us assume KKTS takes m steps, the elements removed in order are

(i1, j1), (i2, j2), . . . (im, jm) and define Zk = Ω \ {(i0, j0), (i1, j1) . . . , (ik, jk)}.

Lemma 4. Assume Q is separable and that W is the unique global minimum of (4). Then initializing KKTS with

Z0 = Ω\{(i0, j0)}, we have the following:

1. W ∗(Zk) = W for each k = 0, 1, . . .m,

18

Optimizing NOTEARS Objectives via Topological Swaps

2. Z0, . . . ,Zm−1 are not irreducible,

3. Zm = {(j0, i0)}∪{(i, i)|i = 1, . . . , d} is irreducible.

In other words, the global minimum W is a KKT point that is not always irreducible, although it can be written in terms of

an irreducible Z . It is easy to construct models (12) and score functions Q such that W is a global minimizer: Simply

choose the population least squares score with zj ∼ N (0, 1) for each j; see Loh & Bühlmann (2014) for details.

Corollary 4. Irreduciblity of Z is sufficient but not necessary for KKTS to find a KKT point of problem 5.

Lemma 4 has direct implications when the underlying DAG is sparse. If the initial Z0 = Ω, KKTS needs to remove most of

the elements in Z0 to reach an irreducible Z , thus, it can be computationally intense and inefficient. Moreover, the score

function in KKTS has a sparse regularization, and it can return the wrong W ∗(Z) even if the current Z characterizes the

edge absences of the ground truth exactly.

D. Proofs of Technical Results

In this section, we present the proofs of lemmas and theorems in detail. First, let us discuss more on how to solve problem

(8) in the algorithm 2 which is helpful for our proof. In problem (8), we can eliminate the constraint ¹Ã(i),Ã(j) = 0, ∀i > j
by plugging them back to the objective function, then it is equivalent to the following unconstrained optimization problem,

Note that we can write Θ = (¹Ã(i),Ã(j), ¹Ã(m),Ã(n), ¹̃), where i > j and n > m. In this case, Θ = (0, ¹Ã(m),Ã(n), ¹̃)

({¹∗Ã(m),Ã(n)}n>m, ¹̃∗) = argminQ(Θ) = argminQ((0, ¹Ã(m),Ã(n), ¹̃))

Therefore, we can use any off-shelf optimizer that can solve such unconstrained optimization to a stationary point that will

be suitable for our purpose, i.e., gradient descent or Adam (Kingma & Ba, 2014). Throughout the proof, we repeatedly use

the fact that
∂Q(Θ)

∂¹̃∗
= 0 and

∂Q(Θ)
∂¹∗

Ã(m),Ã(n)
= 0, ∀ n > m, ∀ Ã. At last, we can construct ¹+, ¹− from ¹ by ¹+ = max{¹, 0}

and ¹− = max{−¹, 0}.

D.1. The Extension of Theorem 1

The proof of Theorem 1 in (Wei et al., 2020) is for the case where the adjacency matrix W does not have any parametrization.

For completeness and ease of reference, we state the generalization to general parametrizations here:

Theorem 4 (Theorem (1) in our content). Assume that Q(¹) is convex. Then if (¹+, ¹−, ¹̃) satisfies the KKT condition in

(6), (¹∗, ¹̃) is a local minimum for problem (4), where ¹∗ = ¹+ − ¹−.

Although the proof is similar, we include a proof for completeness in Appendix D.10.

D.2. Proof of Lemma 1

Proof. Let us denote ¹ij as (¹ijr)r, here note ¹ij is a vector and its each component is denoted as ¹ijr, where r = 1,
Therefore,

∂Q(Θ)

∂¹±ij
=

(
∂Q(Θ)

∂¹±ijr

)

r

Let us simplify term
∂h(W (¹++¹−))

∂¹
±

ij

. First, note that

[W (¹+ + ¹−)]ij = ∥¹
+
ij + ¹−ij∥1 = 1

¦(¹ij + ¹−ij) =
∑

r

(¹ijr + ¹−ijr)

(here we use the fact ¹+ij g 0, ¹−ij g 0). Remember h(W (¹+ + ¹−)) is a function of ¹ij through [W (¹+ + ¹−)]ij , we can

use chain rule

∂h(W (¹+ + ¹−))

∂¹±ij
=
∂h(W (¹+ + ¹−))

∂[W (¹+ + ¹−)]ij

∂[W (¹+ + ¹−)]ij

∂¹±ij

19

Optimizing NOTEARS Objectives via Topological Swaps

=[∇h(W (¹+ + ¹−))]ij 1

=[∇h(W (|¹|))]ij 1

First, for any (i, j) such that

[∇h(W (|¹|))]ij =
[
∇h(W (¹+ + ¹−))

]
ij
> 0,

we set

¼ > max
(i,j):[∇h(W (|¹|))]ij>0

∥∂Q(Θ)/∂¹±ij∥1

[∇h(W (|¹|))]ij
.

Therefore, (6a) and (6b) are satisfied with M+
ij > 0 and M−

ij > 0. From condition (i), we have ¹ij = 0, that is, ¹±ij = 0,

thus, (6c) is satisfied since ¹+ij ◦M
+
ij = ¹−ij ◦M

−
ij = 0.

Second, for any (i, j) such that

[∇h(W (|¹|))]ij =
[
∇h(W (¹+ + ¹−))

]
ij
= 0,

we have from (6a) and (6b)

∂Q(Θ)

∂¹+ij
= M+

ij g 0. −
∂Q(Θ)

∂¹−ij
= M−

ij g 0.

It is also known that

∂Q(Θ)

∂¹+ij
=

∂Q(Θ)

∂¹−ij

From condition (ii), we set corresponding M±
ij = 0, then (6a) is satisfied. We also have ¹±ij ◦M

±
ij = 0, hence (6c) is satisfied.

From (iii), (6d) is satisfied. From (iv), we know ¹+ g, ¹− g 0. Also, it is obvious that ∀(i, j), we have ¹◦∇h(¹++¹−) = 0,

it is equivalent to h(¹+ + ¹−) = 0 (Wei et al., 2020, Lemma 4). The feasibility conditions in (5) are also satisfied. Thus,

(¹+, ¹−) satisfies the KKT conditions in (6).

Finally, from Theorem 4, (¹+ − ¹−, ¹̃) is a local minimum for problem (4) if Q(Θ) is convex.

D.3. Proof of Lemma 2

Proof. Assume p < q, node Ã(p) comes before Ã(q) in Ã by the definition of topological sort, so there is no directed walk

from Ã(q) to Ã(p), which implies (∇h(W (|¹∗Ã|)))Ã(p),Ã(q) = 0 (Wei et al., 2020, Lemma 7) and (W (|¹∗Ã|))Ã(q),Ã(p) = 0.

By the optimality conditions of (8),
∂Q(Θ∗

Ã)
∂¹Ã(p),Ã(q)

= 0. In other word, possible elements in Y(Θ∗
Ã, 0, 0) must has formula

(Ã(q), Ã(p)) where p < q. Therefore, (¹∗Ã)Ã(q),Ã(p) = 0. By the definition of [W (|¹∗Ã|)]Ã(q),Ã(p) = ∥(¹
∗
Ã)Ã(q),Ã(p)∥1 = 0

D.4. Proof of Lemma 3

Proof. Let any (i, j) ∈ Y(Θ∗
Ã, 0, 0), then (∇h(W (|¹∗Ã|)))ij = 0 and

∂Q(Θ∗
Ã)

∂¹ij
̸= 0, it indicates there is no directed walk

from j to such i. From Lemma 2, (¹∗Ã)ij = 0. Changing the value of (¹∗Ã)ij introduces new edge which can create a cycle,

however, from Lemma 6 in Wei et al. (2020), changing the value of (¹∗Ã)ij cannot create directed walks from j to i, by the

assumption of separability of Q(Θ) and following the same argument of proof of Lemma 8 in Wei et al. (2020), changing

the value of (¹∗Ã)ij will not create cycle. Therefore, (¹∗Ã)ijr can be increased or decreased (
∂Q(¹∗

Ã)
∂¹ijr

< 0 or
∂Q(¹∗

Ã)
∂¹ijr

> 0) to

reduce the loss function while maintaining feasible, which implies W (|¹̃|) in Algorithm 4 is still a DAG and Q(¹̃) < Q(¹∗Ã).

W (|¹̃|) follows the topological sort Ãij , so Q(Θ∗
Ãij

) f Q(¹̃) < Q(¹∗Ã).

D.5. Proof of Lemma 4

Proof. For Z0 = Ω\{(i0, j0)}, W
∗(Z0) is obviously a DAG, W is global minimum of problem (4), then Q(W) f

Q(W ∗(Z0)). W is also a feasible solution for problem (13) with Z0, then Q(W ∗(Z0)) f Q(W). W is unique by

20

Optimizing NOTEARS Objectives via Topological Swaps

assumption, thus W = W ∗(Z0). For Z1 = Ω\{(i0, j0), (i1, j1)}, we can use the same arguments. KKTS continues until

Zl = Ω\{(i0, j0), (i1, j1), . . . , (il, jl)} can not guarantee the solution W ∗(Zl) to be a DAG. For example, if

Zl−1 =Ω\{(i, j)|i < j, i = 1, . . . , d}

Zl =Zl−1\{(im, jm)}

The only requirement for (im, jm) is im > jm. Followed by the same argument, we know W ∗(Zl−1) = W . Using Lemma

8 from Wei et al. (2020), W ∗(Zl) is also a DAG, hence Q(W) f Q(W ∗(Zl)). Besides, W is also a feasible solution

for problem (13) with Zl, thus Q(W ∗(Zl)) f Q(W). W is unique by assumption, so W = W ∗(Zl). By the same

arguments, KKTS continues until an irreducible Zm = {(j0, i0)}∪{(i, i)|i = 1, . . . , d} is returned.

D.6. Proof of Corollary 2

Proof. Because Y((¹∗Ã), 0, 0) = ∅, we know for any (i, j) such that [∇h(W (|¹∗Ã|))]ij = 0, we have
∂Q(Θ∗

Ã)
∂¹ij

= 0, (ii) in

Lemma 1 is satisfied. Therefore, we only need prove for any (i, j) such that [∇h(W (|¹∗Ã|))]ij > 0, then (¹∗Ã)ij = 0, i.e.

[W (|¹∗Ã|)]ij = 0. Because [∇h(W (|¹∗Ã|))]ij > 0 implies there exist a directed walk from j to i, which means node j appear

before node i in topological sort, so ¹ij = 0. Thus, (i) in Lemma 1 is also satisfied. The explanation given at the start of the

Section D fulfills condition (iii). (iv) is satisfied naturally by our construction. Therefore, Θ∗
Ã is a KKT point by Lemma

1.

D.7. Proof of Corollary 4

Proof. Follows from Lemma 4.

D.8. Proof of Theorem 2

Proof. For any p < q, [∇h(W (|¹∗Ã|))]Ã(q),Ã(p) > 0 by definition of connected estimator. Because Ã(p) appears before Ã(q)

in the topological sort, [W (|¹∗Ã|)]Ã(q),Ã(p) = 0, i.e., (¹∗Ã)Ã(q),Ã(p) = 0. All pairs (Ã(q), Ã(p)) for p < q satisfies Lemma 1

condition (i). By the same argument from proof of corollary 2, all pairs (Ã(p), Ã(q)) for p < q satisfies Lemma 1 condition

(ii). Condition (iii) is satisfied by the reasoning presented at the beginning of Section D. (iv) is satisfied naturally by our

construction. Therefore, Θ∗
Ã is KKT point, by Theorem 1, it is also a local minimum if Q is convex. Under the connected

estimator assumption, the solution at each iteration is a local minimum if Q is convex.

D.9. Proof of Theorem 3

Proof. If Y(¹∗Ã, 0, 0) ̸= ∅, we can always construct a new topological sort Ãij by Lemma 3 and strictly decreases score

function. Otherwise, Algorithm searches in space Y(Θ∗
Ã, Ä∗, À

∗) or Y(Θ∗
Ã, Ä

∗, À∗) to find better topological sort until it

cannot. Note that at last iteration, it must be that Y(Θ∗
Ã, 0, 0) = ∅, such ¹∗Ã is KKT point, i.e. local minimum if Q is convex

by Theorem 4.

D.10. Proof of Theorem 4

Before we jump into the proof, let us first consider the problem

min
Θ

Q(Θ) subject to ¹ij = 0, (i, j) ∈ Z (14)

Remember the definition ¹̃ = Θ \ ¹ .The necessary conditions of optimality for (14) are

∂Q(Θ)

∂¹ij
=0, (i, j) ̸∈ Z (15a)

¹ij =0, (i, j) ∈ Z (15b)

∂Q(Θ)

∂¹̃
=0 (15c)

Given a KKT point (¹+, ¹−, ¹̃) in (6), we can define the set

P := {(i, j) : [∇h(W (¹+ + ¹−))]ij > 0} (16)

21

Optimizing NOTEARS Objectives via Topological Swaps

Although set P doesn’t appear in Theorem 4 explicitly, but it appears in Lemma 5 which is key to prove the Theorem 4.

Lemma 5. If (¹+, ¹−, ¹̃) satisfies the KKT conditions in (6), then Θ∗ = (¹∗, ¹̃) satisfies the optimality conditions in (15)

for Z = P which is defined in (16), where ¹∗ = ¹+ − ¹−. If in addition Q(Θ) is convex, then Θ∗ is a minimizer of (14) for

Z = P .

Proof of Theorem 4. Let ¹ be feasible solution (i.e. W (|¹|) is a DAG) to (4) with ∥¹ − ¹∗∥F < ϵ (the Frobenius norm is

used for concreteness). Since ∇h(W (|¹|)) is a continuous function of ¹, there exists a sufficiently small ϵ > 0 such that

[∇h(W (|¹|))]ij > 0 whenever [∇h(W (|¹∗|))]ij > 0, in other words for (i, j) in the set P . Then for feasible ¹ within such

an ϵ-ball around ¹∗, it follows from the same argument in proof of Lemma 5, ¹ij = 0 for (i, j) ∈ P . ¹ is therefore a feasible

solution to (14) for Z = P . By Lemma 5 and the convexity of Q, we then have Q(Θ∗) f Q(Θ) for all feasible ¹ such that

∥¹ − ¹∗∥F < ϵ.

D.11. Proof of Lemma 5

Proof. For (i, j) ̸∈ Z = P , we have [∇h(W (|¹|))]ij = 0, because
∂h(W (¹++¹−))

∂¹
±

ij

= [∇h(W (|¹|))]ij1, then

∂h(W (¹++¹−))

∂¹
±

ij

= 0. From (6a) and (6b),

∂Q(Θ)

∂¹+ij
= M+

ij g 0 −
∂Q(Θ)

∂¹−ij
= M−

ij g 0

It is also know that
∂Q(Θ)

∂¹
+
ij

= ∂Q(Θ)

∂¹
−

ij

, so
∂Q(Θ)

∂¹
±

ij

= 0, it is equivalent to
∂Q(Θ)
∂¹ij

= 0. It means (15a) is satisfied.

For (i, j) ∈ Z = P , we have [∇h(W (|¹|))]ij > 0. Since (¹+, ¹−) is feasible solution, which means W (|¹|) is a DAG.

Moreover, [∇h(W (|¹|))]ij > 0 indicates there is a directed path from node j to i, then it implies there is no edge from node

i to node j. Hence, [W (|¹|)]ij = ∥¹ij∥1 = ∥¹+ij∥1 + ∥¹
−
ij∥1 = 0, i.e. ¹+ij = ¹−ij = 0. we conclude ¹∗ij = ¹+ij − ¹−ij = 0. Now

(15b) is satisfied. From (6d), it is obvious (15c) is satisfied.

Therefore, (¹∗, ¹̃) satisfies the optimality conditions in (15) for Z = P , where ¹∗ = ¹+ − ¹−. If Q(¹) is convex function,

conditions in (15) is also sufficient for optimality in (14).

E. Detailed Experiments

E.1. Experimental Setting

Here we describe the details about how to generate graphs and data for Linear SEMs with different noise distributions, fully

connected graphs, logistic models and nonlinear models with neural networks. For each model, a random graph G was

generated from one of two random graph models, Erdős-Rényi (ER) or scale-free (SF) with kd edges (k ∈ {1, 2, 4}) on

average, denoted by ERk or SFk.

• Erdős-Rényi (ER), Random graphs whose edges are add independently with equal probability. We simulated models

with d, 2d and 4d edges (in expectation) each, denoted by ER1, ER2, and ER4 respectively.

• Scale-free network(SF). Network simulated according to the preferential attachment process (Barabási & Albert, 1999).

We simulated scale-free network with d, 2d and 4d edges and ´ = 1, where ´ is the exponent used in the preferential

attachment process.

Linear SEMs. Given a random DAG B ∈ {0, 1}d×d from one of these two graphs, we assigned edge weights indepen-

dently from Unif([−2,−0.5]∪[0.5, 2]) to obtain a weight matrix W ∈ R
d×d. Given W, we sampled X = W¦X + z ∈ R

d

according to the following three noise models:

• Gaussian noise with equal variance(Gauss-EV). z ∼ N (0, Id×d)

• Gaussian noise with unequal variance (Gauss-NV): zi ∼ N (0, Ã2
i), i = 1, . . . , d where Ãi ∼ Unif[1, 2]

• Exponential noise (Exp). zj ∼ Exp(1), j = 1, . . . , d

22

Optimizing NOTEARS Objectives via Topological Swaps

• Gumbel noise (Gumbel). zj ∼ Gumbel(0, 1), j = 1 . . . , d

Based on these models, we generated random datasets X ∈ R
n×d by generating the rows i.i.d. according to one of the

models above. For each simulation, we generated n = 1000 samples for graphs with d ∈ {10; 20; 50; 100} nodes. For each

dataset, we run FGS, PC, NOTEARS, KKTS with NOTEARS as initialization, TOPO with random initialization, TOPO with

NOTEARS as initialization, and GOLEM-EV(equal variance), GOLEM-NV(Unequal variance). Here random initialization

means a topological sort Ã is randomly sampled, the solve (7) to obtain ¹∗Ã as initialization. Finally, a post-processing

threshold of É = 0.3 is applied on W , following (Zheng et al., 2018). Since FGS outputs a CPDAG instead of a DAG or

weight matrix, we orient the undirected edges favorably when making comparisons. In linear model with unequal variance

Gaussian noise, the minimax concave penalty (MCP) is used to approximate ℓ0 penalty,

p(w) =

{
¼|w| − w2

2´ if |w| f ´¼
´¼2

2 otherwise

and set ¼ = 0.005 and ´ = 10.

For TOPO, we use the least-square loss Q(W,X) = 1
2n∥X −XW∥2F without any regularization for all noise type. We

also use the polynomial acyclicity penalty h(A) = Tr((I + A/d)d) − d (Yu et al., 2019) and h(A) = − log det(I − A)
(Bello et al., 2022), because it is faster and more accurate than h(A) = Tr(eA)− d (Zheng et al., 2018). For the choices

of ssmall, slarge, s0, Table 7 summarizes the suggested hyerparameters. The basic idea is to increase ssmall, slarge, s0 when d
grows or graph get denser.

node ssmall slarge s0
d = 10 30 45 1

d = 20 50 150 1

d = 50 100 1000 10

d = 100 150 2500 15

Table 7. Suggested hyperparamters for ssmall, slarge, s0

Logistic Models. Given G, we assigned edge weights independently from Unif([−2,−0.5]∪[0.5, 2]) to obtain a weight

matrix W ∈ R
d×d. Given W , we sample Xj according to following

Xj = Bernoulli(exp(w¦
j X)/(1 + exp(w¦

j X))) j = 1, . . . , d

Based on these models, we generated random datasets X ∈ R
n×d by generating the rows i.i.d. according to one of the

models above. For each simulation, we generated n = 10000 samples for graphs with d ∈ {10; 20; 30; 40; 50} nodes. For

each dataset, we run FGS, PC, NOTEARS, TOPO with random initialization, TOPO with NOTEARS as initialization. We

use penalized log-likelihood as score function, i.e.

Q(f,X) =
1

n

d∑

i=1

1
¦
n (log(1n + exp(fi(X)))− xi ◦ fi(X)) + ¼∥W∥1

where ¼ = 0.01.

Fully Connected Graphs. We randomly generate a topological sort Ã, and generated a fully connected graph that is

consistent with topological sort Ã. Other setting is the same as Linear SEM. Because this is a really hard problem, we

increase ssmall, slarge, s0 compared to Table 7.

Nonlinear Models with Neural Networks. We mainly follow the nonlinear setting in Zheng et al. (2020). Given G, we

simulate the SEM:

Xj = fj(Xpa(j)) + zj ∀j ∈ [d]

where zj ∼ N (0, 1). Here fj is a randomly initialized MLP as described in Section 3.3

23

Optimizing NOTEARS Objectives via Topological Swaps

For TOPO, the score function is

Q(f,X) =
1

2n

d∑

i=1

∥xi − f̂i(X)∥22

Here each f̂i is chosen as MLP with one hidden layer of size 30 and sigmoid activation.

Implementation The implementation details of baseline are listed below:

• FGS and PC are standard baseline for structure learning. The implementation is based on the py-causal pack-

age, available at https://github.com/bd2kccd/py-causal. For PC algorithm, use Fisher Z test. For GES, we use

cg-bic-scores and maxDegree=50.

• NOTEARS (NOTERAS_MLP) was implemented using Python code: https://github.com/xunzheng/notears. Its score

function is least square loss with ℓ1 regularization. We use default threshold É = 0.3.

• KKTS was implemented using Python code: https://github.com/skypea/DAG_No_Fear. We allow KKTS to reverse

edges in each iteration to achieve best performance.

• GOLEM was implemented using Python and Tensorflow code: https://github.com/ignavierng/golem. We use default

parameters.

In the experiments, we use default hyperparameters for those baseline unless otherwise stated.

E.2. Metrics

We evaluate the performance of each algorithm with the following three metrics:

• Structure Hamming distance (SHD): A standard benchmark in the structure learning literature that counts the total

number of edges additions, deletions, and reversals needed to convert the estimated graph into the true graph. For PC

and GES, they all return CPDAG that may contain undirected edges, in which case we evaluate them favorably by

assuming correct direction for undirected edges whenever possible.

• Score: the value of least square score function.

• KKT: Whether solution satisfies the KKT conditions, 1 stands for Yes and 0 stands for No. Define a KKT matrix for ¹,

denoted as K(¹).

[K(¹)]ij =

{
|∂Q(Θ)

∂¹ij
| if ∇h(W (¹)) = 0

|W (¹)ij | if ∇h(W (¹)) > 0

KKT =

{
1 if maxij [K(¹)]ij = 0
0 if maxij [K(¹)]ij ̸= 0

• Timing: how much time the algorithm takes to run, we use it to measure the speed of the algorithms.

E.3. Sensitivity of ssmall, slarge, s0

In Tables 2, 3, 4, and 5, we investigate the effect of sizes of search space and the number of searching times in larger spaces

on Algorithm 2. Here we focus on two cases: (1) Simple case: ER1 graphs with Gaussian noise and d = 100. (2) Hard

case: SF4 graphs with Guassian noise and d = 100. Columns represent different ssmall = 50, 150, 200. Rows represent

different slarge = 1000, 2000, 3000. Blank implies algorithm has stopped at current iteration. Here we use n0 to indicate

how many large searches has been used. Generally speaking, for sparser graphs, using small search space and small s0 are

enough to return a good solution. While for denser graphs, the performance of Algorithm 2 is more sensitive to the choice of

ssmall, slarge, s0.

24

Optimizing NOTEARS Objectives via Topological Swaps

n0 = 0 n0 = 1 n0 = 2 n0 = 3

50 150 200 50 150 200 50 150 200 50 150 200

1000 136 136 136 20 11 0 8 6 5 0

2000 136 136 136 19 11 0 8 6 4 0

3000 136 136 136 19 11 0 8 6 2 0

Table 8. Structural Hamming Distance (SHD) for different ssmall, slarge, n0 with d = 100 and n = 1000 on an Gaussian ER1 graph

n0 = 0 n0 = 1 n0 = 2 n0 = 3

50 150 200 50 150 200 50 150 200 50 150 200

1000 113.017 113.017 113.017 49.570 48.291 47.215 47.731 47.874 47.451 47.219

2000 113.017 113.017 113.017 49.281 48.291 47.215 48.141 47.874 47.438 47.219

3000 113.017 113.017 113.017 49.281 48.291 47.215 48.141 47.874 47.369 47.219

Table 9. Score for different ssmall, slarge, n0 with d = 100 and n = 1000 on an Gaussian ER1 graph

n0 = 0 n0 = 1 n0 = 2 n0 = 3

50 150 200 50 150 200 50 150 200 50 150 200

1000 776 405 322 672 244 144 568 185 143 295 58 143

2000 774 405 349 693 311 40 455 112 38 56 0 38

3000 779 405 366 574 119 144 272 118 71 44 0 50

Table 10. Structural Hamming Distance (SHD) for different ssmall, slarge, n0 with d = 100 and n = 1000 on an Gaussian SF4 graph

n0 = 0 n0 = 1 n0 = 2 n0 = 3

50 150 200 50 150 200 50 150 200 50 150 200

1000 194.871 67.834 63.498 162.679 57.024 50.124 82.946 55.102 49.199 58.244 48.113 49.198

2000 189.561 67.834 62.848 157.953 61.346 48.028 83.159 50.351 47.800 47.905 47.695 47.799

3000 187.662 67.843 62.79 106.329 54.097 51.45 56.241 49.924 49.70 47.925 47.694 47.71

Table 11. Loss for different ssmall, slarge, n0 with d = 100 and n = 1000 on an Gaussian SF4 graph

25

Optimizing NOTEARS Objectives via Topological Swaps

E.4. Linear Models

SHD comparisons: ER and SF graphs without FGES and PC

ER2

e
x
p

g
a
u

s
s

g
u
m

b
e
l

25 50 75 100

0

10

20

30

40

0

5

10

15

20

25

0

10

20

d (Number of nodes)

S
tr

u
c
tu

ra
l
H

a
m

m
in

g
 D

is
ta

n
c
e

 (
S

H
D

)

ER4

e
x
p

g
a
u

s
s

g
u
m

b
e
l

25 50 75 100

0

50

100

0

50

100

150

0

50

100

150

d (Number of nodes)

SF2

e
x
p

g
a
u
s
s

g
u
m

b
e
l

25 50 75 100

0

20

40

60

0.0

2.5

5.0

7.5

0

10

20

d (Number of nodes)

SF4

e
x
p

g
a
u
s
s

g
u
m

b
e
l

25 50 75 100

0

25

50

75

0

20

40

60

0

30

60

90

120

d (Number of nodes)

Methods GOLEM NOFEARS_NOTEARS NOTEARS NOTEARS_TOPO RANDOM_TOPO

Figure 1. Stuctural Hamming distance (SHD) (lower is better). Row: noise type of SEM. Columns: random graph types, {SF, ER}-k =

{Scale-Free,Erdős-Rényi } graphs with kd expected edges. Here, nofears_notears (KKTS algorithm (Wei et al., 2020) uses NOTEARS

solution as initial point). Our methods are Random_Topo (random initialization), and Notears_Topo (using NOTEARS solution as

initial point.) Error bars represent standard errors over 10 simulations.

SHD comparisons: ER graphs

ER1

e
x
p

g
a
u

s
s

g
u
m

b
e
l

25 50 75 100

0

5

10

15

0

5

10

15

0

5

10

15

d (Number of nodes)

S
tr

u
c
tu

ra
l
H

a
m

m
in

g
 D

is
ta

n
c
e

 (
S

H
D

)

ER2

e
x
p

g
a
u

s
s

g
u
m

b
e
l

25 50 75 100

0

30

60

90

0

30

60

90

0

30

60

90

d (Number of nodes)

ER4

e
x
p

g
a
u

s
s

g
u
m

b
e
l

25 50 75 100

0

250

500

750

0

200

400

600

800

0

250

500

750

d (Number of nodes)

Methods FGES GOLEM NOFEARS_NOTEARS NOTEARS NOTEARS_TOPO PC RANDOM_TOPO

Figure 2. Stuctural Hamming distance (SHD) (lower is better). Row: noise type of SEM. Columns: random graph types, {ER}-k =

{Erdős-Rényi } graphs with kd expected edges. Here, nofears_notears (KKTS algorithm (Wei et al., 2020) uses NOTEARS solution as

initial point). Our methods are Random_Topo (random initialization), and Notears_Topo (using NOTEARS solution as initial point.)

Error bars represent standard errors over 10 simulations.

26

Optimizing NOTEARS Objectives via Topological Swaps

SHD comparisons: SF graphs

SF1

e
x
p

g
a
u
s
s

g
u
m

b
e
l

25 50 75 100

0

10

20

30

40

50

0

10

20

30

40

0

20

40

60

d (Number of nodes)

S
tr

u
c
tu

ra
l
H

a
m

m
in

g
 D

is
ta

n
c
e

 (
S

H
D

)

SF2

e
x
p

g
a
u
s
s

g
u
m

b
e
l

25 50 75 100

0

50

100

0

40

80

120

0

50

100

d (Number of nodes)

SF4

e
x
p

g
a
u
s
s

g
u
m

b
e
l

25 50 75 100

0

100

200

300

0

100

200

300

0

100

200

300

d (Number of nodes)

Methods FGES GOLEM NOFEARS_NOTEARS NOTEARS NOTEARS_TOPO PC RANDOM_TOPO

Figure 3. Structural Hamming distance(SHD) (lower is better). Row: noise type of SEM. Columns: random graph types, {SF}-k = {scale

free} graphs with kd expected edges. Here, nofears_notears (KKTS algorithm (Wei et al., 2020) uses NOTEARS solution as initial

point). Our methods are Random_Topo (random initialization), and Notears_Topo (using NOTEARS solution as initial point.) Error

bars represent standard errors over 10 simulations.

Running time comparisons: ER graphs

ER1

e
x
p

g
a
u

s
s

g
u
m

b
e
l

25 50 75 100

0

500

1000

1500

0

500

1000

1500

0

500

1000

1500

2000

2500

d (Number of nodes)

T
im

e
 (

s
e

c
o

n
d

s
)

ER2

e
x
p

g
a
u

s
s

g
u
m

b
e
l

25 50 75 100

0

500

1000

1500

0

500

1000

1500

0

500

1000

1500

d (Number of nodes)

ER4

e
x
p

g
a
u

s
s

g
u
m

b
e
l

25 50 75 100

0

2000

4000

0

1000

2000

3000

0

1000

2000

3000

4000

d (Number of nodes)

Methods FGES GOLEM NOFEARS_NOTEARS NOTEARS NOTEARS_TOPO PC RANDOM_TOPO

Figure 4. Runtime. Row: noise type of SEM. Columns: random graph types, {ER}-k = {Erdős-Rényi } graphs with kd expected edges.

Here, nofears_notears (KKTS algorithm (Wei et al., 2020) uses NOTEARS solution as initial point). Our methods are Random_Topo
(random initialization), and Notears_Topo (using NOTEARS solution as initial point.) Error bars represent standard errors over 10

simulations.

27

Optimizing NOTEARS Objectives via Topological Swaps

Running time comparisons: SF graphs

SF1

e
x
p

g
a
u
s
s

g
u
m

b
e
l

25 50 75 100

0

500

1000

0

300

600

900

0

250

500

750

1000

d (Number of nodes)

T
im

e
 (

s
e
c
o
n
d
s
)

SF2

e
x
p

g
a
u
s
s

g
u
m

b
e
l

25 50 75 100

0

500

1000

0

500

1000

0

300

600

900

d (Number of nodes)

SF4

e
x
p

g
a
u
s
s

g
u
m

b
e
l

25 50 75 100

0

500

1000

1500

0

250

500

750

1000

0

500

1000

1500

d (Number of nodes)

Methods FGES GOLEM NOFEARS_NOTEARS NOTEARS NOTEARS_TOPO PC RANDOM_TOPO

Figure 5. Structural Hamming distance(SHD) (lower is better). Row: noise type of SEM. Columns: random graph types, {SF}-k = {scale

free} graphs with kd expected edges. Here, nofears_notears (KKTS algorithm (Wei et al., 2020) uses NOTEARS solution as initial

point). Our methods are Random_Topo (random initialization), and Notears_Topo (using NOTEARS solution as initial point.) Error

bars represent standard errors over 10 simulations.

Score comparisons: ER graphs

ER1 ER2 ER4

e
x
p

g
a

u
s
s

g
u

m
b

e
l

25 50 75 100 25 50 75 100 25 50 75 100

0

50

100

20

40

60

40

80

120

d (Number of nodes)

S
c
o

re

Methods NOFEARS_NOTEARS NOTEARS NOTEARS_TOPO RANDOM_TOPO

Figure 6. least square score (lower is better). Row: noise type of SEM. Columns: random graph types, {ER}-k = {Erdős-Rényi } graphs

with kd expected edges. Here, nofears_notears (KKTS algorithm (Wei et al., 2020) uses NOTEARS solution as initial point). Our

methods are Random_Topo (random initialization), and Notears_Topo (using NOTEARS solution as initial point.) Error bars represent

standard errors over 10 simulations.

28

Optimizing NOTEARS Objectives via Topological Swaps

Score comparisons: SF graphs

SF1 SF2 SF4

e
x
p

g
a
u

s
s

g
u

m
b
e

l

25 50 75 100 25 50 75 100 25 50 75 100

25

50

75

100

10

20

30

40

50

25

50

75

100

d (Number of nodes)

S
c
o

re

Methods GOLEM NOFEARS_NOTEARS NOTEARS NOTEARS_TOPO RANDOM_TOPO

Figure 7. least square score (lower is better). Row: noise type of SEM. Columns: random graph types, {SF}-k = {scale free} graphs with

kd expected edges. Here, nofears_notears (KKTS algorithm (Wei et al., 2020) uses NOTEARS solution as initial point). Our methods

are Random_Topo (random initialization), and Notears_Topo (using NOTEARS solution as initial point.) Error bars represent standard

errors over 10 simulations.

E.5. Nonlinear Models

E.5.1. LOGISTIC MODEL

ER1

lo
g

is
tic

10 20 30 40 50

0

5

10

15

20

d (Number of nodes)

S
tr

u
c
tu

ra
l
H

a
m

m
in

g
 D

is
ta

n
c
e

 (
S

H
D

)

ER2

lo
g

is
tic

10 20 30 40 50

0

10

20

30

40

50

d (Number of nodes)

ER4

lo
g

is
tic

10 20 30 40 50

40

80

120

160

d (Number of nodes)

SF1

lo
g

is
tic

10 20 30 40 50

0

5

10

15

20

d (Number of nodes)

S
tr

u
c
tu

ra
l
H

a
m

m
in

g
 D

is
ta

n
c
e

 (
S

H
D

)

SF2

lo
g

is
tic

10 20 30 40 50

0

20

40

60

d (Number of nodes)

SF4

lo
g

is
tic

10 20 30 40 50

50

100

150

d (Number of nodes)

method fges notear pc topo_notear topo_random

Figure 8. Structural Hamming distance(SHD) for Logistic Model, Row: random graph types, {SF, ER}-k = {Scale-Free,Erdős-Rényi }

graphs. Columns: kd expected edges. Our methods are Random_Topo (random initialization), and Notears_Topo (using NOTEARS

solution as initial point.) Error bars represent standard errors over 10 simulations.

29

Optimizing NOTEARS Objectives via Topological Swaps

E.5.2. NEURAL NETWORKS

SHD comparison

mlp

E
R

1

10 20 30 40
0

5

10

15

20

d (Number of nodes)

S
tr

u
c
tu

ra
l
H

a
m

m
in

g
 D

is
ta

n
c
e
 (

S
H

D
) mlp

E
R

2

10 20 30 40
0

20

40

60

d (Number of nodes)

mlp

E
R

4

10 20 30 40

0

50

100

150

d (Number of nodes)

mlp

S
F

1

10 20 30 40

0

5

10

15

20

d (Number of nodes)

S
tr

u
c
tu

ra
l
H

a
m

m
in

g
 D

is
ta

n
c
e
 (

S
H

D
) mlp

S
F

2

10 20 30 40

0

20

40

d (Number of nodes)

mlp

S
F

4

10 20 30 40

0

25

50

75

100

125

d (Number of nodes)

Methods FGES NOTEARS_MLP NOTEARS_TOPO PC TRUE

Figure 9. Structural Hamming distance(SHD) for Nonlinear Model with Neural Network, Row: random graph types, {SF, ER} = {Scale-

Free,Erdős-Rényi } graphs. Columns: kd expected edges. Our methods are Random_Topo (random initialization), and Notears_Topo
(using NOTEARS solution as initial point.) True(baseline): solution to (8) with true topological sort using Neural Network. Error bars

represent standard errors over 10 simulations.

Score comparison

mlp

E
R

1

10 20 30 40

5

10

15

20

d (Number of nodes)

L
o

s
s

mlp

E
R

2

10 20 30 40
5

10

15

20

d (Number of nodes)

mlp

E
R

4

10 20 30 40

10

15

20

25

d (Number of nodes)

mlp

S
F

1

10 20 30 40

5

10

15

20

d (Number of nodes)

L
o

s
s

mlp

S
F

2

10 20 30 40
5

10

15

20

d (Number of nodes)

mlp

S
F

4

10 20 30 40
5

10

15

20

25

d (Number of nodes)

Methods NOTEARS_MLP NOTEARS_TOPO TRUE

Figure 10. Score for Nonlinear Model with Neural Network, Row: random graph types, {SF, ER} = {Scale-Free,Erdős-Rényi } graphs.

Columns: kd expected edges. Our methods are Random_Topo (random initialization), and Notears_Topo (using NOTEARS solution

as initial point.) True(baseline): solution to (8) with true topological sort using Neural Network. Error bars represent standard errors over

10 simulations.

30

Optimizing NOTEARS Objectives via Topological Swaps

E.6. Comparison against randomly chosen swapping set

TOPO Random

n d # edge SHD loss SHD loss

1000 20 80 0.1 9.85 32.5 26.85

1000 50 200 3 24.33 126.7 57.33

1000 100 400 13.75 47.45 286.9 107.95

Table 12. TOPO: the candidate swapping set Y(θ, τ, ξ) by (9) .“Random”: the TOPO algorithm chooses the candidate swapping set

Y(θ, τ, ξ) randomly. Model: Linear model with Gaussian noise. Graph type: ER4 graphs. It justifies choosing swapping set Y(θ, τ, ξ) by

(9) can significantly improve the performance of TOPO Algorithm.

31

Optimizing NOTEARS Objectives via Topological Swaps

E.7. Accuracy vs iteration

(a) d = 20 (b) d = 20

(c) d = 50 (d) d = 50

(e) d = 100 (f) d = 100

Figure 11. Iteration vs SHD (left)/Score (right). Model: linear model with Gaussian noise. Graph type: ER4 graphs. Black: search in

small space. Red: search in large space. When graph is small, searching in small space is enough for finding a good local optimal, but

when graph gets larger, searching in large space helps to jump out of local point and decrease the score.

32

Optimizing NOTEARS Objectives via Topological Swaps

E.8. Greedy Strategy

ER4 SF4

g
a
u
s
s

25 50 75 100 25 50 75 100

0

5

10

15

20

d (Number of nodes)

S
tr

u
c
tu

ra
l
H

a
m

m
in

g
 D

is
ta

n
c
e

 (
S

H
D

)

Methods RANDOM_GREEDY_TOPO RANDOM_TOPO

(a) Structural Hamming Distance (SHD)

ER4 SF4

g
a
u
s
s

25 50 75 100 25 50 75 100

0

250

500

750

1000

d (Number of nodes)

T
im

e
 (

s
e

c
o

n
d

s
)

Methods RANDOM_GREEDY_TOPO RANDOM_TOPO

(b) Run-time (seconds)

Figure 12. Comparison between greedy scheme and non-greedy scheme by SHD & running time. Random_Topo (TOPO starts with

random initialization and uses the swap that decreases the score the most at each iteration), and Random_Greedy_Topo (TOPO starts

with random initialization and uses the swap once it is found to decrease score.) Model: linear model with Gaussian noise. Graph type:

ER4 graphs. Greedy scheme significantly improves time efficiency by sacrificing just a little accuracy.

F. Broader Impacts

Bayesian networks are fundamental models that represent the probabilistic relationship about how data are generated by

a set of random variables. Our work contributes to the most fundamental questions: What is the underlying structure

that generates data? Specifically speaking, how can one recover such structure accurately and efficiently? We propose an

algorithm with theoretical guarantees to address them. The significant contribution of this work is about better solving a

nonconvex continuous score-based structure learning formulation. The dramatic improvements in accuracy means better

structure recovery and more accurate discovery about the underlying probabilistic relationships.

A potential negative impact of this work is that errors in structure learning may compound into potentially more serious

downstream errors. For example, a false discovery about causality may result in a company investing tons of money and

efforts to remedy an incorrectly detected cause to a problem, resulting in immeasurable losses. How to prevent incorrect

causation under this continuous framework is a crucial and exciting future research direction.

33

