Optimizing NOTEARS Objectives via Topological Swaps

Chang Deng' Kevin Bello !> Bryon Aragam

Abstract

Recently, an intriguing class of non-convex opti-
mization problems has emerged in the context of
learning directed acyclic graphs (DAGs). These
problems involve minimizing a given loss or score
function, subject to a non-convex continuous con-
straint that penalizes the presence of cycles in a
graph. In this work, we delve into the optimiza-
tion challenges associated with this class of non-
convex programs. To address these challenges,
we propose a bi-level algorithm that leverages
the non-convex constraint in a novel way. The
outer level of the algorithm optimizes over topo-
logical orders by iteratively swapping pairs of
nodes within the topological order of a DAG. A
key innovation of our approach is the develop-
ment of an effective method for generating a set
of candidate swapping pairs for each iteration. At
the inner level, given a topological order, we uti-
lize off-the-shelf solvers that can handle linear
constraints. The key advantage of our proposed
algorithm is that it is guaranteed to find a local
minimum or a KKT point under weaker condi-
tions compared to previous work and finds solu-
tions with lower scores. Extensive experiments
demonstrate that our method outperforms state-of-
the-art approaches in terms of achieving a better
score. Additionally, our method can also be used
as a post-processing algorithm to significantly im-
prove the score of other algorithms. Code im-
plementing the proposed method is available at
https://github.com/duntrain/topo.

'Booth School of Business, University of Chicago,
USA. *Machine Learning Department, Carnegie Mellon Uni-
versity, USA. Correspondence to: Chang Deng <chang-
deng @chicagobooth.edu>, Kevin Bello <kbello@cs.cmu.edu>.

Proceedings of the 40" International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

' Pradeep Ravikumar >

1. Introduction

We study a class of constrained nonconvex optimization
problems defined as follows:

ngn Q(O) subject to h(W(©)) =0, ()

where © € R! corresponds to all model parameters,
and W(0) € R is a weighted adjacency matrix —
representing the structure of a directed graph of d nodes—
induced by ©. Moreover, Q : R! — R is a (possibly
non-convex) differentiable function that we will refer to
as the score or loss function; while h : R¥¢ — [0, 00)
is a nonnegative non-convex differentiable function that
penalizes cycles in the weighted adjacency matrix W (O),
and whose level set at zero corresponds to directed acyclic
graphs (DAGsS).

The class of problems (1) arose in the paper by Zheng et al.
(2018) in the context of learning the underlying structure of
a structural equation model (SEM), typically assumed to be
a DAG. In Zheng et al. (2018), the challenges of combina-
torial optimization were replaced by those of differentiable
non-convex optimization. While global optimality remains
intractable in general, the key advantage of the class of
problems (1) is that it admits the use of general purpose
non-linear optimizers. Due to the latter, several studies have
built upon the work of Zheng et al. (2018), usually by either
proposing a new characterization of h (e.g., Yu et al., 2019;
Bello et al., 2022), or using different score functions @ (e.g.,
Zheng et al., 2018; 2020; Ng et al., 2020; Yu et al., 2019;
Lachapelle et al., 2020). All, however, with a clear lack of
optimality guarantees.

Based on these formulations, Wei et al. (2020) and Ng et al.
(2022) studied some of the optimization-theoretic curiosities
associated with this class of problems. Wei et al. (2020)
provides local optimality guarantees assuming linear mod-
els and a convex score (), while Ng et al. (2022) studies
the convergence challenges of (1). The focus of our work
is studying optimality for the class of problems (1) in a
more general setting, i.e., admitting a possibly non-convex
score ( and nonlinear models. We pay close attention to the
Karush-Kuhn-Tucker (KKT) optimality conditions, build-
ing upon similar results first studied in Wei et al. (2020).
The KKT conditions are known to be a necessary first-order
characterization of optimal solutions under some regularity



Optimizing NOTEARS Objectives via Topological Swaps

conditions, and form the backbone of nonlinear program-
ming (Bertsekas, 1997; Boyd et al., 2004).

More specifically, we show that by an equivalent reformu-
lation of the KKT conditions, we can find better solutions
to (1) — that is, KKT points and/or local minima with bet-
ter (i.e. lower) score — while also relaxing the conditions
required in previous work. The key idea is to relate the
KKT conditions to an optimal topological sort and lever-
age the fact that solving the continuous program for a fixed
ordering is often tractable. Although not every topologi-
cal sort corresponds to a local minimum in the continuous
formulation, we show that our method can indeed be rig-
orously interpreted as iteratively selecting better and better
local minimizers until no improvement can be found. Our
method also avoids explicitly enforcing the acyclicity con-
straint A, and instead uses the continuous characterization
indirectly via the KKT conditions.

Contributions. To this end, we make the following spe-
cific contributions:

1. We propose a bi-level optimization algorithm, in which
the outer level optimizes over topological orders and
the inner level optimizes the score given a specific or-
der. To optimize over orders, we use a novel technique
for selecting candidate pairs of nodes to be swapped,
which is described in detail in Section 4. This ap-
proach involves iteratively swapping pairs of nodes
within the topological order of a DAG, and utilizes the
KKT conditions as a guide for determining which pairs
to consider swapping. To optimize the score given a
specific order, we utilize state-of-the-art solvers that
are able to solve the problems to stationary points.

2. We prove that our method searches between local min-
ima and strictly decreases the score at each iteration
(Section 4.3). We furthermore show that our method
provably finds local minimizers under strictly weaker
conditions compared to previous work (Lemma 4). In
particular, we show that the concept of ‘irreducibility’
introduced in Wei et al. (2020) is not necessary to en-
sure local optimality, and provide an explicit example
as demonstration (Appendix C.2).

3. We conduct a comprehensive set of experiments in
multiple settings to evaluate the performance of our
algorithm against state-of-the-art methods for solving
problem (1). The results of our experiments, summa-
rized in Section 5, demonstrate that our method is able
to find minimizers with lower scores (compared to ex-
isting algorithms) that are guaranteed to be either local
minima or KKT points.

An attractive feature of our method is its flexibility as it

can be used both as a standalone algorithm and as a post-
processing step when provided with a pre-computed DAG
as an initialization. Although the underlying optimization
problem is nonconvex and plagued by poor local minima,
our results demonstrate that it is still possible to discover
suitable local minima with improved scores. This is a note-
worthy achievement given that nonconvex problems of this
nature are often considered challenging and difficult to opti-
mize.

2. Related Work

Most closely related to our work are methods that build
on the non-convex continuous constrained formulation of
Zheng et al. (2018), (e.g., Yu et al., 2019; Zheng et al., 2020;
Lachapelle et al., 2020; Ng et al., 2020; Zhu et al., 2020; Ro-
main & d’Aspremont, 2020; Bello et al., 2022). In contrast
to this previous work, our focus is on optimality conditions,
i.e. ensuring that we find a DAG that satisfies the KKT
optimality conditions (in fact, it will be a local minimizer)
of an equivalent formulation to that of Zheng et al. (2018).
Similar to our work, recent work (Wei et al., 2020; Ng et al.,
2022) has begun to study the optimization-theoretic aspects
of this problem. In contrast to Wei et al. (2020), which is
only guaranteed to return some local minimizer, our method
iteratively jumps from one local minimizer to another until
a stopping criterion is met. The latter allows our method to
seek out for more favorable local minimizers, that is, DAGs
that attain lower scores. Ng et al. (2022) studies a different
question, namely the convergence of methods for solving
these problems.

Although our emphasis is on optimization, it is useful to
provide some context from the graphical modeling litera-
ture as well. Most algorithms for learning DAGs fall into
two main categories: score-based methods that optimize a
score function, and constraint-based methods that use in-
dependence tests. Since the program (1) is modeled after
traditional score-based methods, we only mention a few
classical constraint-based algorithms such as: the PC algo-
rithm (Spirtes & Glymour, 1991), a general algorithm that
learns the Markov equivalence class; max-min parents and
children (MMPC, Tsamardinos et al., 2006); and a variety
of algorithms based on local Markov boundary search such
as grow-shrink (GS, Margaritis & Thrun, 1999; Margaritis,
2003) and incremental association (IAMB, Tsamardinos
et al., 2003).

Score based methods assign a score to a candidate DAG
structure based on how well it fits the observed data, and
then attempts to find the highest scoring structure. Classical
score functions include the log-likelihood based BIC and
AIC scores as well as Bayesian scores under different pa-
rameter priors (Geiger & Heckerman, 2002). Other related
work that study the Gaussian setting are given by Aragam &



Optimizing NOTEARS Objectives via Topological Swaps

Zhou (2015); Ghoshal & Honorio (2017; 2018), and in the
non-Gaussian case by Loh & Biihlmann (2014). On the side
of approximate algorithms, notable methods include greedy
search (Chickering, 2003), order search (Teyssier & Koller,
2005; Scanagatta et al., 2015; Park & Klabjan, 2017), and
the LP-relaxation based method proposed by Jaakkola et al.
(2010). There are also exact algorithms such as GOBNILP
(Cussens, 2012) and bene (Silander & Myllymaki, 2006).

Another line of work (Teyssier & Koller, 2005; Xiang &
Kim, 2013; Raskutti & Uhler, 2018; Drton et al., 2018; Ye
et al., 2020; Squires et al., 2020; Solus et al., 2021; Wang
et al., 2021) studies order-based methods which bear a su-
perficial relationship to our algorithm, but it is worth empha-
sizing that none of them theoretically analyze optimization
properties such as KKT theory, local optimality guarantees
or apply to arbitrary smooth losses. More specifically, (Ye
et al., 2020) is restricted to log-likelihood based scores and
(Raskutti & Uhler, 2018; Squires et al., 2020; Solus et al.,
2021) require faithfulness (related) assumptions. (Silander
& Myllymaki, 2006; Xiang & Kim, 2013) are exact methods
that only work with a small number of nodes.

3. Notation and Background

In this section, we establish the notation and provide context
for the class of problems (1).

3.1. Nonlinear DAG models

We let G = (V, E) denote a directed graph of d nodes,
with vertex set V' = [d] := {1,...,d} and edge set E C
V x V', where (i, j) € E indicates the presence of a directed
edge from node 7 to node j. For a graph GG, we associate
each node ¢ € V to a random variable X;, and use X =
(X1,...,X4) to denote the d-dimensional random vector.

We consider structural equation models (SEMs Peters et al.,
2017), in which each node X is determined by a function
fi R? — R of its parents and independent noise z =
(21, ..,24) € R as follows:

X; =f(X,2), Onf;=0ifk ¢ PAY, )

where PAJG = {i € V| (i,j) € E} denotes the set of
parents of node j in G. Note that we write f; as a function
of every other variable, and separately impose a restriction
on the dependence through the partial derivatives, as in
Zheng et al. (2020). This is equivalent to the usual formu-
lation X; = f; (PAJG7 z;), and is adopted for mathematical
convenience in the sequel. Standard examples of SEMs
include linear SEMs (e.g., Peters & Biithlmann, 2014; Loh
& Biihlmann, 2014) and additive noise models (Peters et al.,
2014).

With this notation, the graphical structure implied by an
SCM f = (f1,..., fa) can be represented by the following

d x d weighted adjacency matrix:

W= W(f) = (wij), Wij = ||5z‘fj||2- (3)

In practice, a family of functions is defined to approximate
the nonlinear functions f;; common examples include mul-
tilayer perceptrons (MLP) (Zheng et al., 2020; Lachapelle
et al., 2020), and basis expansions (Zheng et al., 2020;
Bithlmann et al., 2014). See Appendix A for a detailed
discussion on these families of functions.

We use O to denote all the model parameters used for ap-
proximating f. However, not all of these parameters are
utilized for inducing the graphical structure implied by f.
To differentiate, we use & C O to denote the subset of
parameters that are used for inducing the weighted adja-
cency matrix W, and § = © \ 6 to denote the remaining
model parameters. In other words, we have the following
relationship: W (f) = W(©) = W (0).

To simplify notation and improve the clarity of presenta-
tion, we present the case where there is a single parameter
0;; ' per candidate edge (i, j), i.e., [W(0)];; = 0;; and
W(6) = 6. However, note that all of our results hold for
the general case and are thoroughly treated in the technical
proofs provided in Appendix D.

3.2. Score functions

The class of programs (1) requires a loss/score function Q).
We briefly review commonly used scores in the literature.
Let X =[xy, ,%4] € R"*? denote the observed data
matrix. Let ©, denote the parameters used to approximate
fi, we use fo, to denote f; approximated by ©;.

Since the score function depends on the observed data, in
this subsection, we use Q(©; X) to denote the score on ©
given X. Then, some possible score functions include:
Least squares. Q(0;X) = -1 37 ||x; — fo,(X)|[3 for
linear SEMs with equal noise variances (Loh & Biihlmann,
2014).

. R d

Negative log-likelihood. Q(©;X) = 37 log(||lx; —
fo,(X)||3) for additive SEMs with Gaussian errors
(Biihlmann et al., 2014).

Logistic loss. Let 1,, denote the n-dimensional vector of
ones. Then, we have Q(0;X) = L% 1T (log(1, +
exp(fi(X))) — x; o fo,(X)) for generalized linear models
with binary variables (Zheng et al., 2020).

In the sequel, we simplify notation by writing Q)(©) instead
of Q(©;X).

Remark 1. [t is important to emphasize that in practical
applications, the choice of score Q is crucial: In order

'9,; can be a vector, it is required that [W(6)];; = 0 if and
only if 8;; = 0, see Appendix A for more discussions.



Optimizing NOTEARS Objectives via Topological Swaps

for solutions to this problem to be useful, ideally the mini-
mizer(s) of Q should correspond to the true underlying DAG.
This problem has been extensively studied (Geiger & Heck-
erman, 2002; Chickering, 2003; Van de Geer & Biihlmann,
2013; Loh & Biihlmann, 2014; Nandy et al., 2018; Aragam
et al., 2019), so we do not pursue it further here. For exam-
ple, in recent work, Reisach et al. (2021) show how certain
scores are not scale invariant, which may be an issue in
practice, but is simply an artifact of the score function, as
originally pointed out by Loh & Biihlmann (2014). By con-
trast, our explicit goal is to study the optimization-theoretic
aspects of objectives (1), and not to propose new algorithms
for learning causal DAGs.

3.3. Continuous non-convex characterizations of DAGs

To conclude this section, we next provide a brief overview
of the existing options for the function h. We remind the
reader that for presentation simplicity we have W () = 6,
as discussed at the end of Section 3.1.

Condition 1. The function h has the following form:

d
h(B) = Zciﬁ(Bi)7

where c; > O for any i.

Corollary 1 (Wei et al., 2020 Theorem 1). If h satisfies
Condition 1, then we have that h(B) = 0 if and only if B
corresponds to a DAG, for any nonnegative matrix B.

By now the literature contains many different proposals of
functions h that satisfy Condition 1; in this paper, we mostly
focus on the following three:

1. The NOTEARS formulation. Zheng et al. (2018) were
the first to propose a differentiable characterization of
DAGs given by h(B) = Tr(e?) — d for a nonnegative
matrix B.

2. A polynomial formulation. Yu et al. (2019) proposed
the use of h(B) = Tr((I + /4 B)?) — d for a nonneg-
ative matrix B.

3. The DAGMA formulation. Bello et al. (2022) pro-
posed the use of h(B) = —log det(I — B) for a non-
negative matrix B with spectral radius less than one.

Note that B above is commonly defined as B = 6 o6, where
o denotes the Hadamard product. In that case, it has been
shown that Vgh(60 o §) = 0 if and only if 6 is a DAG (see
Wei et al., 2020). The latter implies that all stationary points
of h are global minima of h, a property known as invexity,
as highlighted by Bello et al. (2022).

Remark 2. Our results are general and apply to any func-
tion h satisfying Condition 1. Thus, our results apply to any
of the three h functions mentioned above.

3.4. Necessary and sufficient conditions for optimality

Wei et al. (2020) first studied (1) from an optimality per-
spective. The authors argued that the use of the Hadamard
product € o 6 leads to an undesirable property, namely, any
feasible © in (1) cannot satisfy regularity conditions. Moti-
vated by this negative result, Wei et al. (2020) proposed an
alternative, yet equivalent, formulation by replacing h(6 o )
by h(]0]). Reasoning similarly, we reformulate (1) as
m@in Q(©) subjectto h(|0]) <O0. 4)
By writing 6 = 6% — 6~, where 7 = max{6,0} and
6~ = max{—0, 0} denote the positive and negative parts of
0, respectively. Then, an equivalent smooth formulation is
given by
min _ Q((0T —07,0)) ®)
0+,6—,0
subject to h(T +67) =0, and 67,6~ > 0.
For clarity, we remind the reader that in (5) we have

© = (#*,07,0). Then, the KKT conditions for (5) can
be succinctly written as follows:

0Q(0) On(0T +07) .
A =M">0 6

26;, 26, DER

9Q(O) OhOT +67) _
90 * 90 i =0 (6h)
9;; o M;]r- = 0;3- o Mz; =0, (6¢)
aQ(Ne) =0, (6d)

00

in addition to the feasibility conditions in (5). where M+
and )\ are the Lagrange multipliers of the constraints on #+
and h, respectively. Here A\ € R, M+ > 0.

Briefly, (6a), (6b) and (6d) results from dual feasibility and
the stationarity condition, while (6¢) stems from comple-
mentary slackness.

The following useful theorem from Wei et al. (2020) estab-
lishes the connection between KKT satisfiability in (5) and
local minimality in (4) for linear SEMs (i.e., 6 = ).

Theorem 1 (Wei et al., 2020, Theorem 7). Assume that Q is
convex, h satisfies the Condition 1, and 6 = (. If (0F,07)
satisfies the KKT conditions in (6), then T — 0~ is a local
minimum of (4).

A key ingredient of our developments in the sequel is the fol-
lowing alternative characterization of the KKT conditions,
which turns out to provide an algorithmically amenable first-
order sufficient condition for local optimality. We include a
proof in Appendix D.

Lemmal. [fO = (1,0, é) satisfies the following condi-
tions:



Optimizing NOTEARS Objectives via Topological Swaps

(i) For {(i,) | [Vh(6F +607)]i; > 0} = 65 = 0.
(ii) For {(i,j) | [Vh(6* +67)];; = 0} = 220
(iii) 222 =,

(iv) 0% >0,0 > 0.

Then, we have that © is a KKT point of (5). A/{oreover, if
the score Q is convex, any such © = (0T — 0~ ,0) is also a
local minimum for problem (4).

Remark 3. If the score Q) is smooth but non-convex, then
we can no longer use Lemma 1 to automatically promote
KKT points to local minima. Thus, in the sequel, whenever
the score @ is non-convex, all claims about local minima
must be demoted to KKT points.

4. Optimization Algorithm: Topological Swaps

Our key idea is to solve (4) as a two-staged problem: in
the inner stage, we solve (4) to an additional constraint that
makes the problem tractable, and in the outer stage, we
search over the set of constraints. The critical innovation is
in using our reformulation of the KKT conditions in guiding
this search. Our specific set of constraints relies on imposing
an ordering over the variables. We briefly review such order
constrained optimization below before formally introducing
our overall approach.

4.1. Background: Order-constrained optimization

We leverage the following well-known observation: For a
fixed topological sort, problem (4), or equivalently (5), can
often be solved efficiently. We briefly review this material
here for completeness.

Recall that a topological sort (or order) for G is a partial
ordering < on the vertex set V' = [d] such that X; —
X; = i < j, here X; — X, means there exists an
edge from ¢ to j. A directed graph is acyclic if and only
if it has a topological sort, although this sort may not be
unique. Equivalently, we can view a topological sort as a
permutation on V.

Definition 1 (Topological sort). A topological sort < defines
a permutation T of the vertex set V for G by letting 7(j) be
the j-th node in the ordering defined by <. In other words,
l'fXﬂ.(i) — Xﬂ.(j), theni < j.
A similar definition carries over in the obvious way for
weighted adjacency matrices 6. We furthermore call G
(resp. ) consistent with 7 if 7 is a topological sort of G
(resp. ), and write this as G ~ 7 (resp. 6 ~ 7).

Given a permutation 7, we then have the following order-

constrained optimization problem:
Ienin Q(O). (7)

Due to the order consistency constraint § ~ 7, the acyclicity
constraint /(]0|) < 0 is automatically satisfied and hence
can be omitted from (7).

We next reformulate (7) with explicit linear constraints.
Moreover, in the sequel, we use ©7 to denote any solution
to this problem:

O = (6%,67) cargmin Q(O) (8)
e

T

subject to 0(;) ~(jy = 0, Vj < i.

Remark 4. Our results only require solving (8) up to sta-
tionarity. That is, we can first set 0.y ;) = 0, for all
7 < i, and then use any off-the-shelf first-order optimizer
(Boyd et al., 2004; Nesterov et al., 2018) for the resulting
(non)convex unconstrained problem.

4.2. Algorithm

Motivated by the observations above, we propose a general
bi-level algorithm based on finding the topological sort 7 of
an optimal scoring DAG. For any © and 7, > 0, define a

set
> €.
>4
)

Given this machinery, the four main steps of our approach
(Algorithm 1) are as follows:

0Q(©)
80ij

Y(©,7.8) € {5 [ [Vh (), < 7.

1. Initialize at an arbitrary sort 7, and solve (7).

2. Define a candidate set of possible swaps by
Y(OL,7.,&*) as defined in (9), where (7.,&")
are parameters chosen adaptively such that
|y(@j{"7—*7£*)| ~ Ssmall-

3. Choose the best swap from this set to obtain a new
topological sort; i.e., the swap that decreases the score
Q the most.

4. Repeat until there is no sufficient improvement in the
score.

There are several advantages to this approach:

* Enforcing acyclicity is much simpler: Once a topologi-
cal sort is fixed, acyclicity is automatically guaranteed
and the optimization is straightforward and efficient (cf.
Section 4.1). Thus, there is no need to include h(|6)|) di-
rectly in the optimization routines compared to Zheng
et al. (2018), which greatly simplifies implementation.



Optimizing NOTEARS Objectives via Topological Swaps

* We will only need to check (ii), (iii), and (iv) in Lemma
1 in order to ensure the KKT conditions are satisfied,
and computing the gradients V@), Vh is easy. Note
that Condition (i) is to ensure |6] is acyclic, which is
always satisfied by the argument in the above item.

It is worth stressing that this is not the same as greedily
selecting individual edges as in GES (Chickering, 2003):
Each swap re-solves (7) globally, and hence updates every
edge.

Crucially, in the second step, it is not necessary to exhaus-
tively check all possible swaps: By properly exploiting the
KKT conditions as in Lemma 1, we are able to limit the set
of possible candidate swaps to Y (0%, 7., £*). This greatly
improves the efficiency of the algorithm. Moreover, it is
not necessary to find the swap that decreases the score the
most in Algorithm 1 line 9. Instead, any swap that decreases
@ could be used to accelerate our algorithm. This greedy
strategy, which is explored in the appendices, can improve
time efficiency while attaining comparable performances.

The main steps of our method are summarized in Algo-
rithm 1; a more comprehensive outline (for reproducibility
purposes) can be found in the Appendix B (Algorithm 2).
The subroutine FINDPARAMS (detailed in Algorithm 3 in
Appendix B) aims to find appropriate values for 7 and &
such that |Y(©,7,&)| ~ s. In Algorithm 1, the notation
Ssmall and Spyge are used to denote small and large search
spaces, respectively.

Remark 5. It is worth noting how the continuous formu-
lation plays a critical role in Algorithm 1: We use both
the KKT conditions and the function h in order to select
candidate swaps (cf. (9)).

4.3. Analysis

Intuitively, the idea behind Algorithm 1 is that it iteratively
jumps between better and better local minimizers, until the
candidate swaps given by (9) no longer offer any significant
improvement in the score. This is achieved by exploiting the
KKT conditions (6). In this section, we show that this is not
just a heuristic: Under appropriate conditions, Algorithm 1
indeed decreases the score and always terminates at a local
minimum or KKT point.

Before proving this, it is worth stressing why this is not
obvious a priori: Even if we solve (7) to global optimality
(i.e., given the order constraint 6 ~ 7), a global solution to
(7) need not be a local solution to (4). This stems from the
fact that a DAG can have more than one topological sort,
and the solutions to (7) for each sort need not coincide.

We begin with two important lemmas.
Lemma 2. If (i, j) € Y(©7,0,0), then (67),; = 0.

Algorithm 1 Topro
Require: Initial topological sort 7, integers Ssmai and Siqrge
With Siarge > Ssman, and score function Q).
1: {Here we use 7;; to denote the new topological sort by
swapping nodes ¢ and j in 7.}

2: (7«,&*) < FINDPARAMS (6%, Sgmall)
3 S« Y(Or, 7, &%)
4: while S # 0 do
5: if3(i,j) € Ssit. Q(@;ij) < Q(O%) then
6: Update 7 to be m;; that (most) decreases Q.
7: S+ V(05 74,8%)
8. else
9: (17, &) < FINDPARAMS (6%, Siarge)
10: S+ Y(©Or,7,¢,) {Try alarger search space}
11: if 3(i, j) € Ss.t. Q(O7,,) < Q(O7) then
12: Update 7 to be m;; that (most) decreases Q).
13: S« YV(©r, 1., &%)
14: else
15: S« 0
16: end if
17:  end if
18: end while
Ensure: O}

Lemma 3. If the score () is separable w.r.t 0, i.e. Q(©) =
>.;Q4(05,0) and Y(©7,0,0) # 0 for some topological

sort T, then

Q(e:,) < QO),
for every (i, j) € Y(©3,0,0)

Lemma 3 has an important takeaway message: As long
as we can find a pair of nodes (4,j) € Y(0%,0,0)—i.e.
Y(0%,0,0) # (—then we can find another topological
sort with strictly smaller score. The difficult case is when
Y(©%,0,0) = (: What Algorithm 1 does is increase the
thresholds (7., £*) just enough to make V(O , 7, £*) # ().
Indicated by the previous observation, this suggests that
placing node ¢ before node j is likely (but not guaranteed)
to decrease the score. There are many strategies for updating
the topological sort to make this happen, but we adopt the
simplest way, i.e., swapping the node ¢ and node j.

This previous discussion can be made more concrete via the
following observation:

Corollary 2. If Y(0%,0,0) = (), then OF satisfies the KKT

conditions in (6).

The following definition relates to the score ) and is a
relevant property for Theorem 2.

Definition 2 (Connected estimator). Given a topological
sort , the estimator ©7 is called connected if for any i < j
there is a directed path from node 7 (i) to node 7(j) in 6%.



Optimizing NOTEARS Objectives via Topological Swaps

Equivalently, for any ¢+ < j, a connected estimator satisfies
[VR(1071)] ;) =iy > O- In general, we expect an estimator
to be connected when sparse regularization is not used. It is
worth noting that NOTEARS (Zheng et al., 2018) without
explicit /1 regularization is observed to return a connected
estimator.

Theorem 2. For any h satisfies the Condition 1. If the score
Q is convex (resp. non-convex) and O is connected for all
w. Then Algorithm I returns a local minimum (resp. KKT
point) of problem (4), where the score is decreased at each
iteration. Moreover, the solution at each iteration is also a
local minimum (resp. KKT point).

Remark 6. Although the proof of Theorem 2 is deceptively
simple, we stress that it is not a priori obvious that swapping
pairs of nodes will always decrease the score: Done naively,
this could increase the score. Our careful use of the KKT
conditions precludes this behavior.

The connected estimator assumption in Theorem 2 can
be dropped whenever the score () is separable (e.g., least
squares).

Theorem 3. For any h satisfies the Condition 1. As-
sume that the score Q) is separable w.rt 0, i.e., Q(©) =
Zj Q;(0;, é) If the score () is convex (resp. non-convex),
then Algorithm 1 returns a local minimum (resp. KKT point)
of problem (4), where the score is decreased at each itera-
tion.

4.4. Comparison to previous work

Wei et al. (2020) first unveiled the connections between
the KKT conditions in (6) and local minimality in (4) by
studying a related problem with explicit edge absence con-
straints Z. As such, it is instructive to compare these two
approaches since there are some important distinctions. A
first clear difference is that the KKTS algorithm by Wei et al.
(2020) relies on an assumption they call irreducibility, to
ensure local minimality.

We provide a complete discussion on the irreducibility as-
sumption of Wei et al. (2020) in Appendix C.2 and focus
on the main ideas here. Briefly, KKTS (Wei et al., 2020)
uses a set of node pairs Z to indicate which edges should be
absent in the graph. KKTS works by iteratively adding and
removing elements to Z, and the algorithm stops once Z is
an irreducible set. Then, Wei et al. (2020) show that when
Z is irreducible, the KKTS solution is a local minimum,
provided additional assumptions such as the score being
separable and convex.

In Appendix C.2, we show that irreducibility is not a neces-
sary condition for optimality. We prove this by showing a
simple example where an optimal solution can correspond
to a reducible set Z.

Proposition 1. Irreducibility of the set Z is sufficient but

not necessary for KKTS to find a KKT point of problem (5).

The above discussion should already mark a clear distinc-
tion of Algorithm 1 to KKTS, i.e., our method does not
rely on the irreducibility assumption. Finally, we note that
the irreducibility assumption might seem a mild condition,
however, it can have a severe effect on the runtime of KKTS
as it will not stop until an irreducible set is found.

A second difference to KKTS is that our approach not only
attempts to find an optimal solution but also attempts to find
the local optimum with the lowest score possible. This fact
is a direct consequence of how Algorithm 1 works, namely,
at each iteration we look for a solution with lower score.
The fact that KKTS does not use the score () to guide their
search procedure can result in solutions with high scores.
We next provide more details. Full details can be found in
Appendix C.1.

Example 1. Consider the following three-node linear SEM
with standard Gaussian noise z; ~ N (0,1), for i € [3].
Consider also that the score Q is the population least square
loss.

X1 =z, )(220,)(14—227 X3=bX2—|—23. (10)
In Appendix C.1, we show that for the linear model (10)
there exists many values a and b where the solutions from
KKTS and NOTEARS produce solutions with higher score
w.r.t. Algorithm I; moreover, NOTEARS produces non-
optimal solutions. This is illustrated in Appendix C.1 for
a = 1,b = —0.55. In each of these examples, our method
can always return a solution that satisfies the optimality
conditions in Lemma (1) and also attain the lowest score.

S. Experiments

Method Metric d=20 d=40 d =100
KKT 0 0 0
GOLEM-EV Loss 10.74+0.12 40.7+4.8 68.8 +3.9
SHD 114+34 5144283 145.2+52.6
KKT 0 0 0
NOTEARS Loss 11.9+0.1 62.1 £8.8 73.1+7.6
SHD 28.6 + 3.2 129 +£25.5 140.0 £ 30.1
KKT 1 1 1
NOFEARS Loss 11.5+03 47.6+1.6 61.24+2.6
SHD 23.2+4.5 69.8+16.0 &87.5+19.2
KKT 1 1 1
NOTEARS-TOPO  Loss 98+0.1 384+01 475+0.1
SHD 0.4+0.2 9.24+0.8 142+19
KKT 1 1 1
RANDOM-TOPO Loss 9.8+0.1 384+01 47.5+0.1
SHD 0.4+0.2 8.6 +0.9 16.3+2.6

Table 1. Experiments on linear DAGs with equal-variance Gaus-
sian noise on ER4 graphs. The score is the least squares, and d
is the number of nodes. Our methods are RANDOM-TOPO, and
NOTEARS-TOPO.



Optimizing NOTEARS Objectives via Topological Swaps

Method Metric d=20 d =40 d =100 Method Metric d=10 d=20 d =40
KKT 0 0 0 KKT 0 0 0

GOLEM-NV Loss 9.9+0.6 15.2+1.3 42.7+ 3.5 NOTEARS-MLP Loss 7.2+0.2 14.44+0.3 28.5+04
SHD 23+01 234+34 821+123 SHD 56+0.7 29.14+3.1 112.3£20.2
KKT 0 0 0 KKT 1 1 1

NOTEARS Loss 13.84+2.1 17.2+£1.2 50.6 4.5 NOTEARS-TOPO Loss 6.44+01 11.6+0.1 22.8+0.6
SHD 7.3+0.1 39.24+7.1 138.1 £ 23.6 SHD 2.7+0.5 12.1 36.3 +£20.4
KKT 1 1 1 KKT 1 1 1

NOTEARS-TOPO  Loss 83+1.2 132+21 351+23 TRUE Loss 6.3+£01 12.2+£0.1 23.4+0.4
SHD 2.7+3.2 26.3 £4.2 86.9 + 6.6 SHD 2.1+0.5 11.6 £ 0.6 36.1+2.2
KKT 1 1 1

RANDOM-TOPO Loss 8.9+1.3 14.44+1.2 39.2+4.1
SHD 33402 291+42 1064+11.6 Table 4. Experiments on Nonlinear Model with Neural Network

Table 2. Experiments on linear DAGs with unequal-variance Gaus-
sian noise on ER4 graphs. The score is the log-likelihood with the
minimax concave penalty (MCP) penalty, and d is the number of
nodes. Our methods are RANDOM-TOPO, and NOTEARS-TOPO.

Method Metric d=10 d=20 d =50
KKT 0 0 0
GOLEM-EV Loss  43+01 4616.5+41632 (7.4+7.4)-10'
SHD  6.5+0.8 85.1+6.4 1152.5 + 2.6
KKT 0 0 0
NOTEARS Loss  6.240.2 189+13  (L7+16)- 10"
SHD  14+1.1 79.5+2.1 1198.1+ 5.3
NOTEARS-TOPO KKT ! ! !
Loss 4.97+01  9.92+0.1 24.9+0.3
SHD 0.1+0.1 0.7+0.2 194+55
N KKT 1 1 1
ANDOM-TOPO 1 497401 103402 35.8+2.1
SHD 0.1+0.1 31414 155.6 = 17.9

Table 3. Experiments on Fully connected linear DAGs with Gaus-
sian noise. The score is least squares, and d is the number of nodes.
Our methods are RANDOM-TOPO, and NOTEARS-TOPO.

We compare our method against state-of-the-art solvers
for (1), namely, NOTEARS (Zheng et al., 2018; 2020),
NOFEARS (KKTS) (Wei et al., 2020), and GOLEM (Ng
et al., 2020). For Topo (Algorithm 1), we consider the case
of random initialization (denoted by starting with ‘RAN-
DOM’), and initializing at the output of NOTEARS (denoted
by starting with ‘NOTEARS’). Here, random initialization
is conducted by sampling a topological sort 7 uniformly at
random, and solving problem (7) to get ©>. Details for each
experimental setting can be found in Appendix E.

Our main empirical results are shown in Tables 1, 2, 3 and 4.
In all the tables, we report: Whether or not the solution of the
algorithms satisfies the KKT conditions (1 indicating that
the method always returned a KKT point, and 0 indicating
that it never returns a KKT point); the score/loss attained
by the method; and the structural Hamming distance (SHD)
w.r.t. the ground-truth DAG.

In Table 1, we observe that, as expected, NOFEARS and
our algorithm are capable of returning a KKT point (and
local minimum in this setting since () is convex). We also
note that TOPO with random initialization (Random_Topo)

on ER4 graphs. The score is least squares, and d is the number of
nodes. Our method is NOTEARS-TOPO. Here ‘True’ means the
solution of problem (8) using the underlying true topological sort.

performs competitively in this case, even though the initial
topological sort was randomly sampled. Moreover, notice
that when initialized at the output of NOTEARS, our method
(Notears_Topo) improves the performance of NOTEARS
dramatically. The latter demonstrates the usability of our
method as a post-processing algorithm, as discussed in our
contributions.

In Table 2, for a non-convex score, we observe that
TOPO still obtains solutions satisfying KKT optimality and
achieves the lowest scores.

In Table 3, we study a very challenging setting where the
underlying graph is a fully connected DAG. We observe
that existing methods can perform reasonably well when
the number of nodes is very small (e.g., 10) but their per-
formance degrade severely for graph with larger number of
nodes. In contrast, TOPO works remarkably well in this
setting, which should come to no surprise since sparsity
assumptions are not required, consistent with our analysis
in Section 4.3.

In Table 4, we make explicit comparison to nonlinear
NOTEARS (Zheng et al., 2020). Comparison against other
methods is implicit in previous work (Zheng et al., 2020).
We observe that Notears_Topo outperforms all other meth-
ods and is close to the solution of problem (8) using the true
topological sort.

5.1. Additional experiments

In Appendix E, we provide further experiments. We con-
sider linear models with different noise distributions (e.g.,
Gaussian, Gumbel and exponential) for {ER1, ER2, ER4,
SF1, SF2, SF4} graphs. See Appendix E.4. There, we ob-
serve that our methods even with random initialization still
outperforms existing methods in terms of score and SHD,
also the solutions are guaranteed to be local minimal. Addi-
tionally, our results are not specific to certain non-linearities.
To illustrate this, we run experiments on a logistic model
(binary X), and neural networks. See details in the Ap-



Optimizing NOTEARS Objectives via Topological Swaps

pendix E.5. Finally, we also report the runtime and scores of
each method for linear and nonlinear models in Appendices
E4 and E.S.

We analyze the sensitivity of the hyperparameters Sgmai,
and Sjaee On Algorithm 1 (see Appendix E.3). That is, we
thoroughly study the effect of hyperparameters on the car-
dinality of the search spaces, see eq.(9), and how many
times our algorithm searches in a space of large cardinal-
ity. Moreover, we test our method when using randomly
chosen swapping set to demonstrate the effectiveness of (9)
(see Appendix E.6). Finally, we also include an analysis on
structural accuracy vs iterations to track the performance of
Algorithm 1 (see Appendix E.7).

6. Conclusion

Inspired by the KKT conditions, we developed new insights
into the optimization-theoretic properties of NOTEARS
objectives, and proposed a new bi-level algorithm with at-
tractive local optimality guarantees. As a by-product, it
can also improve the solutions of state-of-the-art solvers
for (1) (e.g., NOTEARS, KKTS, GOLEM). Although prov-
ing convergence to a global minimizer is expected to be
challenging, we have shown that our method has desirable
properties for an optimization scheme: (a) It decreases the
score in each iteration and (b) It is guaranteed to return a
local minimizer (and hence also a KKT point). The key
driver behind our approach is the interpretation of the KKT
conditions as a proxy for choosing promising node swaps
in a topological sort. An important open question for future
work is the convergence of Algorithm 1: What is its iteration
and computational complexity?

It is also interesting to note that unlike previous methods
that rely on explicitly enforcing acyclicity via h(B), our ap-
proach only uses i (B) indirectly in order to check the KKT
conditions. This idea was already implicit in the KKTS
method due to Wei et al. (2020), and could lead to new in-
sights into how to optimize NOTEARS objectives and other
acyclicity-constrained problems.

Acknowledgments and Disclosure of Funding

K. B. was supported by NSF under Grant # 2127309 to the
Computing Research Association for the CIFellows 2021
Project. B.A. was supported by NSF IIS-1956330, NIH
RO1GM 140467, and the Robert H. Topel Faculty Research
Fund at the University of Chicago Booth School of Busi-
ness. This work was done in part while B.A. was visiting
the Simons Institute for the Theory of Computing. P.R.
was supported by ONR via N000141812861, and NSF via
IIS-1909816, I1S-1955532, 11S-2211907. We also thank
the University of Chicago Research Computing Center for
assistance with the calculations carried out in this work.

References

Aragam, B. and Zhou, Q. Concave penalized estimation
of sparse Gaussian Bayesian networks. The Journal of
Machine Learning Research, 16(1):2273-2328, 2015.

Aragam, B., Amini, A., and Zhou, Q. Globally optimal
score-based learning of directed acyclic graphs in high-

dimensions. Advances in Neural Information Processing
Systems, 32, 2019.

Barabdsi, A.-L. and Albert, R. Emergence of scaling in
random networks. science, 286(5439):509-512, 1999.

Bello, K., Aragam, B., and Ravikumar, P. K. Dagma: Learn-
ing dags via m-matrices and a log-determinant acyclicity
characterization. In Advances in Neural Information Pro-
cessing Systems, 2022.

Bertsekas, D. P. Nonlinear programming. Journal of the
Operational Research Society, 48(3):334-334, 1997.

Boyd, S., Boyd, S. P, and Vandenberghe, L. Convex opti-
mization. Cambridge university press, 2004.

Biithlmann, P., Peters, J., and Ernest, J. Cam: Causal additive
models, high-dimensional order search and penalized
regression. The Annals of Statistics, 42(6):2526-2556,
2014.

Chickering, D. M. Optimal structure identification with
greedy search. JMLR, 3:507-554, 2003.

Cussens, J. Bayesian network learning with cutting planes.
arXiv preprint arXiv:1202.3713, 2012.

Drton, M., Chen, W., and Wang, Y. S. On causal dis-
covery with equal variance assumption. arXiv preprint
arXiv:1807.03419, 2018.

Geiger, D. and Heckerman, D. Parameter priors for directed
acyclic graphical models and the characterization of sev-
eral probability distributions. Annals of Statistics, 30:
1412-1440, 2002.

Ghoshal, A. and Honorio, J. Learning identifiable gaus-
sian bayesian networks in polynomial time and sample
complexity. In Proceedings of the 31st International Con-
ference on Neural Information Processing Systems, pp.
6460-6469, 2017.

Ghoshal, A. and Honorio, J. Learning linear structural equa-
tion models in polynomial time and sample complexity.
In Proceedings of the Twenty-First International Confer-
ence on Artificial Intelligence and Statistics, volume 84
of Proceedings of Machine Learning Research, pp. 1466—
1475. PMLR, 2018.



Optimizing NOTEARS Objectives via Topological Swaps

Jaakkola, T., Sontag, D., Globerson, A., and Meila, M.
Learning bayesian network structure using Ip relaxations.
In Proceedings of the Thirteenth International Confer-
ence on Artificial Intelligence and Statistics, volume 9 of
Proceedings of Machine Learning Research, pp. 358-365,
2010.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Lachapelle, S., Brouillard, P., Deleu, T., and Lacoste-Julien,
S. Gradient-based neural dag learning. In International
Conference on Learning Representations, 2020.

Loh, P.-L. and Biihlmann, P. High-dimensional learning of
linear causal networks via inverse covariance estimation.
The Journal of Machine Learning Research, 15(1):3065—
3105, 2014.

Margaritis, D. Learning bayesian network model structure
from data. Technical report, Carnegie-Mellon Univ Pitts-
burgh Pa School of Computer Science, 2003.

Margaritis, D. and Thrun, S. Bayesian network induction
via local neighborhoods. In Proceedings of the 12th Inter-
national Conference on Neural Information Processing
Systems, pp. 505-511, 1999.

Nandy, P., Hauser, A., and Maathuis, M. H. High-
dimensional consistency in score-based and hybrid struc-
ture learning. The Annals of Statistics, 46(6A):3151—
3183, 2018.

Nesterov, Y. et al. Lectures on convex optimization, volume
137. Springer, 2018.

Ng, I., Ghassami, A., and Zhang, K. On the role of spar-
sity and dag constraints for learning linear DAGs. In
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F,,
and Lin, H. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 33, pp. 17943-17954. Curran
Associates, Inc., 2020.

Ng, L., Lachapelle, S., Ke, N. R., Lacoste-Julien, S., and
Zhang, K. On the convergence of continuous constrained
optimization for structure learning. In International Con-
ference on Artificial Intelligence and Statistics, pp. 8176—
8198. PMLR, 2022.

Park, Y. W. and Klabjan, D. Bayesian network learning
via topological order. The Journal of Machine Learning
Research, 18(1):3451-3482, 2017.

Peters, J. and Bithlmann, P. Identifiability of gaussian
structural equation models with equal error variances.
Biometrika, 101(1):219-228, 2014.

10

Peters, J., Mooij, J. M., Janzing, D., and Scholkopf, B.
Causal discovery with continuous additive noise models.
JMLR, 2014.

Peters, J., Janzing, D., and Scholkopf, B. Elements of causal
inference: foundations and learning algorithms. MIT
press, 2017.

Raskutti, G. and Uhler, C. Learning directed acyclic graph
models based on sparsest permutations. Stat, 7(1):e183,
2018.

Reisach, A., Seiler, C., and Weichwald, S. Beware of the
simulated dag! causal discovery benchmarks may be easy
to game. Advances in Neural Information Processing
Systems, 34:27772-27784, 2021.

Romain, M. and d’ Aspremont, A. A bregman method for
structure learning on sparse directed acyclic graphs. arXiv
preprint arXiv:2011.02764, 2020.

Scanagatta, M., de Campos, C. P., Corani, G., and Zaftalon,
M. Learning bayesian networks with thousands of vari-
ables. In NIPS, pp. 18641872, 2015.

Silander, T. and Myllymaki, P. A simple approach for find-
ing the globally optimal bayesian network structure. In
Proceedings of the 22nd Conference on Uncertainty in
Artificial Intelligence, 2006.

Solus, L., Wang, Y., and Uhler, C. Consistency guarantees
for greedy permutation-based causal inference algorithms.
Biometrika, 108(4):795-814, 2021.

Spirtes, P. and Glymour, C. An algorithm for fast recovery
of sparse causal graphs. Social Science Computer Review,
9(1):62-72, 1991.

Squires, C., Wang, Y., and Uhler, C. Permutation-based
causal structure learning with unknown intervention tar-
gets. In Conference on Uncertainty in Artificial Intelli-
gence, pp. 1039-1048. PMLR, 2020.

Teyssier, M. and Koller, D. Ordering-based search: A simple
and effective algorithm for learning bayesian networks.
In Proceedings of the Twenty-First Conference on Uncer-
tainty in Artificial Intelligence, UAT’05, pp. 584-590,
Arlington, Virginia, USA, 2005. AUAI Press. ISBN
0974903914.

Tsamardinos, I., Aliferis, C. F., Statnikov, A. R., and Stat-
nikov, E. Algorithms for large scale markov blanket dis-
covery. In FLAIRS conference, volume 2, pp. 376380,
2003.

Tsamardinos, 1., Brown, L. E., and Aliferis, C. F. The max-
min hill-climbing Bayesian network structure learning
algorithm. Machine Learning, 65(1):31-78, 2006.



Optimizing NOTEARS Objectives via Topological Swaps

Van de Geer, S. and Bithlmann, P. ¢y-penalized maximum
likelihood for sparse directed acyclic graphs. The Annals
of Statistics, 41(2):536-567, 2013.

Wang, X., Du, Y., Zhu, S., Ke, L., Chen, Z., Hao, J., and
Wang, J. Ordering-based causal discovery with reinforce-
ment learning. arXiv preprint arXiv:2105.06631, 2021.

Wei, D., Gao, T., and Yu, Y. DAGs with no fears: A closer
look at continuous optimization for learning bayesian
networks. In Advances in Neural Information Processing
Systems, 2020.

Xiang, J. and Kim, S. A* lasso for learning a sparse bayesian
network structure for continuous variables. Advances in
neural information processing systems, 26, 2013.

Ye, Q., Amini, A. A., and Zhou, Q. Optimizing regular-
ized cholesky score for order-based learning of bayesian
networks. [EEFE transactions on pattern analysis and
machine intelligence, 43(10):3555-3572, 2020.

Yu, Y., Chen, J., Gao, T., and Yu, M. Dag-gnn: Dag struc-
ture learning with graph neural networks. In Interna-
tional Conference on Machine Learning, pp. 7154-7163.
PMLR, 2019.

Zheng, X., Aragam, B., Ravikumar, P. K., and Xing, E. P.
DAGs with NO TEARS: Continuous optimization for
structure learning. In Advances in Neural Information
Processing Systems, 2018.

Zheng, X., Dan, C., Aragam, B., Ravikumar, P., and Xing, E.
Learning sparse nonparametric DAGs. In International
Conference on Artificial Intelligence and Statistics, pp.
3414-3425. PMLR, 2020.

Zhu, S., Ng, 1., and Chen, Z. Causal discovery with re-
inforcement learning. In International Conference on
Learning Representations, 2020.

11



SUPPLEMENTARY MATERIAL
Optimizing NOTEARS Objectives via Topological Swaps

A. Additional Discussion on Family of Approximators

Let F = {f : f; € F;,Vj € [d]} be a family of functions used to approximate the SCM in problem (2). In this section,
we focus on the general case and discuss under what conditions that family F can be used to approximate f; and how our
results apply in this general setting.

We consider approximations f = (f1,...,fq) € F that are parameterized by 0, i.e. f(z) := f(z;0). This defines
W(0) == W(f(-;0)) as the adjacency matrix defined by (3), which is characterized by 6. Although the following definition
is standard, we pause to make this precise since it is crucial in the development that follows:

Definition 3 (sub-vector). Given a vector 8 = (f1,...,0n) € R", and we say that o is a sub-vector of (3 if and only if
there is a subset J = {j1,...,jx} C{1,2,...,n}suchthata = By = (Bj,,- .., Bj)-

Under the following general assumptions, our results and proof in Section D still apply without any modification:

(i) The parametrization is separable in the following sense: § = (61, . .., 604) and each f; in (2) is only parameterized by
the sub-vector 6;, i.e., f;(x;0) = f;(x;0;).

(ii) There are sub-vectors 6;; of §; that can reveal if there is no edge from node i to node j (i.e., [W(6)];; = 0 if and only
if 0;; = 0.) In this case, the general definition in (3) can be replaced with [W(0)];; = ||0,;]|1 without loss of generality.

Write 6;; = (0, ), for each sub-vector 8;;. Since [W(0)];; = ||0;;

W0 +07)]i; = 1165+ 0510 = 1705 +05) = > (05, +05,)

ij J

1, we have

T

Therefore,

AW (B + 6y _ (f?[W(@+ + 9_)]”) = (1), =1.

003 005

g

OR(W (0T +67))
WO +67))

In Section 3.4, the KKT conditions for (5) involve the term 5
5

h(W (6" + 67)) is a function of §;; through [IW (6" + 67 )];;, so that by the chain rule we have
Oh(W (Ot +67))  Oh(W (Ot +67)) oW (O +67)];;
00;: EAGEYRT 007
= [VA(W (0" +67))]; 1
= [VA(W (10])))i;1,

. By the assumptions above, we see that

this equality is crucial to Lemma 1.
We conclude by discussing three important special cases that satisfy the assumptions above: (1) Linear SEMs, (2) Multilayer
perceptrons (MLPs), and (3) Basis expansions.
Linear SEMs. A linear SEM follows the following set of equations:
X;=fi(X,z)=w X +z, w;eRY Vjeld],

where z; € R represents the noise following any distribution. Let W = [w; | w2 | - | wg] € R4, In this case, all the
model parameters are § = . The parameters related to node j are 6; = w;, thus, each function f; is only characterized by
6;. Thus, condition (i) above is clearly satisfied. Furthermore, we have 6;; = W;; (the (4, j)-th entry of W), where clearly
there is no edge from node 7 to node j if and only if W;; = 0. Therefore, condition (ii) above is also satisfied.

12



Optimizing NOTEARS Objectives via Topological Swaps

Multilayer perceptrons (MLPs). Let a multilayer perceptron (MLP) with h hidden layers and a single activation
o : R — R be given by:

MLP(X; AN .. APy = o(AMo(... AP g(AD ),

AW g gmexme—1 mo = d, mp = 1.
Then the nonlinear SCM with additive noise can be written as:
sy N A (h) ,
X]*fJ(X’Z])*MLP(X7A] a"'vAj )+ZJ7

where z; ~ N(0,1). Let0; = (A;l), cey A;h)) denote the parameters for the j-th MLP, and let § = (64, . ..,0,) denote all

model parameters. Define 6;; to be the i-th column of A;l). Since MLP(X; Agl), ce Aéh)) is independent of X if and
only if 6;; = 0 (e.g., Zheng et al., 2020, Proposition 1), we can define [W(6)];; = ||6;;]|1. Then, in this case it is easy to
check that conditions (i) and (ii) above are satisfied.

Basis expansion. As an alternative to neural networks, we also consider the use of orthogonal basis expansions, as in
(Zheng et al., 2020). Let {¢, }2° be an orthonormal basis of functions such that E[p,.(X )] = 0 for each r and

f0 =Y o). ar= [ o)

Consider additive models and one-dimensional expansions as follows:

Xj=fi(X,2;) = Zfij(Xi) +z; = Zzaijr@r(%) + 2.

i i#j r=1

In this case, we let § = ()i, denote all model parameters, 8; = («;;,);r denote all parameters related to node j,
and 6,; = (a;jr)r denote the parameters that model the absence of an edge from node ¢ to node j. Additionally, set
(W (0)]:; = ||0s5]1 = >, |cvijr|. Similarly, it is easy to check that conditions (i) and (ii) above are both satisfied.

B. Algorithm Details
B.1. Full Algorithm Description

A full and reproducible outline of Algorithm 1 can be found in Algorithm 2. Note that Algorithms 4 (UPDATESORT) and 3
(FINDPARAMS) are subroutines used by Algorithm 2.

B.2. Additional Details on Hyperparameters

In this section, we describe more details of the proposed order-based search method in Algorithm 2. This involves initializing
the number of swapping pairs sgya to define a small search space, the number of swapping pairs s, to define a large
search space, and the maximum number of searches s to perform in the large swapping-pairs space. From line 31 to 32,
for each iteration, Algorithm 2 invokes Algorithm 3 to find out the best values for 7., £*, 7%, £, to control the number of
swapping pairs in the search space. For reference, the predefined 7" and = that we used in Algorithm 3 are given in Table 5.

By tuning Sgmay and Sjarge, We can control Algorithm 2 to quickly converge to a local minimum, or have the chance to escape
to a better local minimum in case it finds a suboptimal one. Specifically, in Line 4, if the running solution 8 does not
satisfy the KKT conditions, then, as prescribed by Lemma 3, a better topological sort can be found. In Line 10, although the
running solution 6} satisfies the KKT conditions, we use strict positive values for 7., and £* to expand the search space )
and consider potential swapping pairs that can lead us to a better local minimum. Here, the parameter sg specifies how many
times the algorithm can search in a large swapping-pairs space, with the goal to escape from a region of bad local minima.
These hyperparameters are determinant to Algorithm 2 performance and are tuned to balance the trade-off between accuracy
and efficiency.

Remark 7. One merit of Algorithm 2 over prior work is that it does not only search for a local minimum but also
tries to escape from bad local minima. Thus, our algorithm usually attains the best scores among all DAG learning

13



Optimizing NOTEARS Objectives via Topological Swaps

Algorithm 2 TorO
Require: Given a topological sort 7, two predefined numbers of swapping pairs Sgmall, Siarge» DUmMber of search in large
space sg and initialize corresponding Z. Solve (7) to get ©%, set k <— 0 and count < 0.
1: (74,&") < FINDPARAMS(OZ, Seman)

2: (7%,&) < FINDPARAMS(O%, Siarge)-
3: while V(0% 7,,£*) # 0 do
4: if Y(©%*,0,0) # () then
5: Y+ Y(0r,0,0)
6: for (i,7) € Y do
7: ;; <— UPDATESORT(0%, (4, j), opt = 2).
8: Solve (7) to obtain @j‘w.
9: end for
10:  else
11: V< Y(OL, 1., &%)
12: for (i,5) € Y do
13: 7;j < UPDATESORT(0%, (i, 7), opt = 1).
14: Solve (7) to obtain @j}ij.
15: end for
16:  end if
18: update 7 := arg min,; Q(O7, )
19:  else
20: if k£ < s( then
21: Ve VO5,7,8) #0
22: for (i,7) € Y do
23: mi; <= UPDATESORT(0%, (i, j), opt = 1).
24: Solve (7) to obtain G)j”j.
25: end for
26: if ming; jycy Q(@;w) < Q(O%) then
27: update 7 := argmin,,; Q(O7, ).k« k+1
28: else '
29: Return ©} then break
30: end if
31: else
32: Return ©} then break
33: end if
34:  endif
35:  Solve (7) to obtain ©%
36:  Update Y(O%, 7, %)
37:  count < count + 1
38:  (7x,&*) «+ FINDPARAMS(OZ, Sman)

39:  (7%,&.) < FINDPARAMS(OZ, Siarge ).
40: end while

Algorithm 3 FINDPARAMS

Require: Parameter O, integer ¢ that controls the size of the search space.
1: Create a predefined T = {7,..., 7} and 2 = {&1,..., &}
Ensure: (T7 E) = arg minTET,geE |q - |y(®v T, 5)”

algorithms—when comparable. A drawback of Algorithm 2 is the dependence on how large the search space is, which
could be computationally intensive. Finally, Algorithm 2 solves (13) repeatedly, whose runtime also heavily determines the
efficiency of Algorithm 2. See Section E for runtime comparisons against existing methods.

14



Optimizing NOTEARS Objectives via Topological Swaps

Algorithm 4 UPDATESORT

Require: Parameter 6 or topological sort 7, (i, j), opt. Initialize predefined € <— 10~% (small).
1: if opt = 1 then
2:  Swap nodes i and j, and denote the new topological sort by 7;;

3: else

4: 0«0 20(6)
. QO
5: 9;] — 091']' — € 0,

6:  Find the topological sort of W (|#’|), denoted as ;.
7: end if
Ensure: m;;

Parameters Values
T 0 1x1078% 1x1077 1x10% 1x10° 1x107* 1x1073
0 1x1077 1x107% 5x107% 1x107° 5x107®° 1x10~*
= 5x107% 1x1073 5x1073 1x1072 5x1072 1x107' 5x 1071
1 2 5 10 15 20 40

Table 5. Suggested values for parameters 7" and = in Algorithm 3.

C. Irreducibility and Comparison with Prior Work
C.1. Three-Node Example where KKTS and NOTEARS Fail

In this section, we expand on Example 1. In particular, we show that our example was not handpicked but instead there
exists several values a and b where the solutions from KKTS and NOTEARS either are DAGs with incorrect structure, or
are non-optimal solutions, or both. Recall that our example follows the following SEM:

Xl = z1,
X, = aX; + 2, (11)
X3 = bX3 + 23,

where z; ~ N(0,1) for i € [3]. For the purposes of this analysis we consider the class of SEMs such that a? > b?. Then,
the true adjacent matrix and topological sort are:

0 a O
Wiwe=10 0 b 5 Ttrue = [1, 2, 3]
0 0 O
X1 21
Letting X = | X5 | ,and Z = | z2 | . The SEM (11) in vector form can be written as:
X3 zZ3

X=wL X+ 2Z.

true
We will use the population least square (LS) as the score function, which is defined as follows:
QW) =E|X — XW[3 = (I = Wie) (I = W)|3

The motivation to choose such score is that it was shown by Loh & Biihlmann (2014) that Wiy is the unique global
minimizer of the population LS for linear SEMs with equal noise variances. Next, we provide a closer look as to why our
algorithm is capable of learning the correct structure, while KKTS and NOTEARS fail.

15



Optimizing NOTEARS Objectives via Topological Swaps

C.1.1. THE OuTtpPUT OF KKTS

In the KKTS algorithm of Wei et al. (2020), consider the set of edge absence constraints to be initialized at:

ZO = {(1’ 1)7 (17 2)’ (1’ 3>7 (27 1)7 (2’ 2)7 (27 3)’ (3’ 1)7 (3’ 2)’ (37 3)}
That is, the algorithm is initialized at the empty graph. Then, we have

1 a ab
W*(2p) =0, VQW*(20)=-2|a a*+1 b+ ab ,
ab b+a%b (ab)? +b*+1

and {(¢,7) | [VR(|W*(20)])];; = 0} = {(1,2),(1,3),(2,1),(2,3),(3,1),(3,2)}. Recall that the KKTS algorithm will
remove the pair (7, j) from Z; that satisfies the following property:

(,5) = arg max [VQW™(Z20))]i1-
{EDIIVR(W* (Z0))]i;=0}NZ0

Now, consider the case that max{|al, |ab|} < |(a® + 1)b], ir (3,2) is removed from Zj and the resulting set of
edge absence constraints is Z; = {(1, 1), (1,2), (1, 3),(2,1),(2,2),(2,3),(3,1),(3,3)}. Then, at the next step we have:

0 0 0 1 W))éﬁ ab
Wiz)= [0 0 0l V@) =2 |a iy @b |
0 @y O ab 0 (ab)? +v* + 1
and {(i, j) | [VR(W*(Z1)D]i; = 0} = {(1,2),(1,3),(2,1),(3,1),(3,2)}. Consider now the case that
max{m, |ab|} < |al, then the pair (2, 1) is removed from Z; and the resulting set of edge absence constraints is

i
Z,={(1,1),(1,2),(1,3),(2,2),(2,3),(3,1),(3,3)}. Then, at the next step we have:

8 0 0 a21+1 (ab)22-lll-b2+1 ab
W (Z2) = | 0 0 ) VQ(W*(22)) = -2 0 (ab)az% a?b+b )
0 a®b+b 0 2 2
(ab)Z+b2+1 0 0 (ab) +b°+1

and {(i, j) | [VA(IW*(22))]i; = 0} = {(2,1), (3,1), (3,2)}.

Now we note that {(4, 5) | [VR(|W*(Z22)])]:;; = 0} N Z2 = {(3,1)}. However, we have [VQ(W*(Z2))]s1 = 0, that is,
even if we remove the pair (3, 1) from 25, the corresponding Z3 = {(1,1),(1,2), (1,3),(2,2),(2,3), (3,3)} leads to

W*(23) = W*(22), VQW*(23)) = VQ(W*(Z2)).

Combining all the considerations on a and b, we can conclude that as long as the following is satisfied:
jabl < la| <|(a® +1)b],

KKTS will find a DAG with incorrect structure, in fact, a DAG where all edges are reversed. Finally, one can easily see
that there are infinitely many a and b satisfying the above condition. For example, let ¢ = 1 and b = —0.55. We want
to emphasize here that our result is also consistent with the result returned by the Python program provided by Wei et al.
(2020).

C.1.2. THE OuTPUT OF NOTEARS

Since the NOTEARS implementation by Zheng et al. (2018) uses the augmented Lagrangian method and solve each inner
unconstrained subproblem using the Quasi-Newton L-BFGS method, it is impossible to derive an analytical solution. Instead,
we directly verify the DAG solution returned by NOTEARS by setting the ground-truth SEM a = 1, b = —0.55.

0 1.49 x 107*  —7.00 x 1077
Wnotears = |0.16 0 -1.55
-0.22 —1.59 x 107° 0

16



Optimizing NOTEARS Objectives via Topological Swaps

We can note that Wgeqrs 1S not ‘exactly’ a DAG. Thus, we use a threshold to remove small entries in Wgtears- The resulting
adjacency matrix is now a DAG and is denoted by Wiotears_thres- One can clearly see that the NOTEARS solution does not
recover the true structure.

0 0 0
Wnotearsﬁthres =1016 0 -1.55
022 0 0

Let us now check the KKT conditions given in Lemma 1. We have {(¢,7) | [VA(|Whotearsthres|)]i; = 0} =

{(37 1); (27 3)7 (2a 1)}’ and [VQ(Wnolears_thres)]Zl 7£ 07 [VQ(Wnotears_lhres)}QB # 0 and [VQ(Wnotears_thres)]Bl ?A 0. We
can then observe that NOTEARS fails at both outputting the true DAG structure, and a DAG that is a local minimum.

C.1.3. THE OUTPUT OF TOPO (ALGORITHM 2)

To study how TOPO works for this 3-node example, we first calculate the loss of all possible topological sorts in the
following table.

Topological sort 7 Score

(1,2,3) 3

(1,3,2) 24+ + 42

(2,1,3) 2+ad®+ 2

2

(3,1,2) L+ 0%+ (ad)* + 3 + Ty
(2,3,1) 2 +2a2 + o

(3,2,1) Hlag + 1+(1£)‘12+b2 + 14 b2+ (ab)?

Now, rewriting eq.(8) for the case of linear models, we have:
W € argmin Q(W).
%
To understand why TOPO is capable of returning the correct true structure, we next define adjacent topological sorts.

Definition 4. For two topological sorts w1 and o, we say that w1 and o are adjacent if there exists a pair of nodes in m;
such that when swapped the resulting topological ordering is mo.

Recall that 7y, = (1,2, 3). The following statement explains precisely the success of Algorithm 2.

Corollary 3. Assume that a # 0, b # 0, and a® > b?, then for any topological sort @ # e, we have that Q(W}) >
QW )= Q(Wiue) = 3. Moreover, there always exists an adjacent topological sort T.q; such that Q(W7>) > QW7 dj).

T true

In other words, for any initial topological sort ™ # (1,2, 3), TOPO (Algorithm 2) can always return 7, and W, at last.

All the situations are summarized in the Table 6.

Current order 71 Adjacent order myg; Current loss Better loss
(1,2,3) (1,2,3) 3 > 3
(1,3,2) (1,2,3) 240+ o > 3
(2,1,3) (1,2,3) 2+a’+ o > 3
(3,1,2) (1,3,2) 14+0%+ (ab)* + i + gy > 2+0%+ o
(2,3,1) (1,3,2) 2+a’+ o > 2+0°+
(3,2,1) (1,2,3) o+ H(l;)ffw F1402+ (ab)? > 3

Table 6. There always exists an adjacent topological sort whose score is strictly less than the current topological sort.

C.1.4. ANALYSIS

In this section we aim to provide more intuition as to why KKTS and NOTEARS fail in the above example. Regarding
the KKTS algorithm, it removes a pair (7, ) from the set of edge absence constraints at each iteration. Loosely speaking,

17



Optimizing NOTEARS Objectives via Topological Swaps

this is equivalent to adding an edge X; — X at each iteration, which implies that node ¢ must appear before node j in the
topological sort, and such relative ordering in the topological sort will never be reversed in later iterations of the algorithm.
Therefore, once a wrong pair (4, j) is removed from the set of edge absence constraints, the KKTS algorithm has no ability to
correct such erroneous step. Although KKTS ensures that a local minimum is returned, it can learn a completely erroneous
DAG structure, as shown in our example above. Regarding NOTEARS, as indicated by Wei et al. (2020), the algorithm does
not guarantee to return a local minimum even under the right formulation, and in most cases the NOTEARS solution is
neither the correct structure nor a local minimum.

In contrast to KKTS and NOTEARS, TOPO can return correct structure in the example above regardless of the initial
topological sort. Our swapping strategy allows TOPO to change the topological sort in each iteration; importantly, while
TOPO checks the optimality conditions, it uses the score function as the only criterion to find another topological ordering
with better score, thus, jumping from one local optimum to a better local optimum.

C.2. Detailed Discussion About Irreducibility

In this section, we discuss the differences between our method and the KKTS algorithm (Wei et al., 2020). One obvious
difference is the type of constraint used. Another important difference is that the KKTS algorithm proposed by Wei et al.
(2020) relies on an assumption they call irreducibility, which we will show by example is not needed in general.

In this section, we consider one of special case of (2): Linear SEMs, which is studied by previous work (Zheng et al., 2018;
Wei et al., 2020).

Xj=w/X+z, w;eR%. (12)
Let W = [wn, ..., wq]. In this case, 6 is equivalent to W and 0;; is equivalent to W, ;. Therefore, to be consistent with
previous works (Zheng et al., 2018; Wei et al., 2020), we use W to replace 6.

To connect the KKT conditions and local minimiality, Wei et al. (2020) used a related problem with explicit edge absence
constraints, which correspond to zero-value constraints on the matrix W. Specifically, given a set Z C V' x V, their explicit
edge absence constrained problem is given by:

r%[i/n Q(W;X) subjectto W;; =0,V (i,5) € Z. (13)

Following the notation in Wei et al. (2020), we denote its optimal solution by W*(Z). As with (7), this problem can be
solved efficiently—in fact, (7) is just a special case of (13) with Z = Z., where

Zr = A{(r(5), (@) [ i <j}.

Driven by Theorem 1, the KKT-informed local search (KKTS) algorithm in Wei et al. (2020) repeatedly solves the edge
absence problem (13) for different Z. The KKTS algorithm stops once an irreducible set Z is found, and the output W*(Z2)
is guaranteed to be a local minimum for problem (4). Wei et al. (2020) define irreducibility of a set Z as follows:

Definition 5 (Irreducibility, Wei et al., 2020). A set Z is called irreducible if (i, j) € Z = (Vh(|W*(Z)])),; > 0.

Although irreduciblity of Z is a sufficient condition for a feasible solution to be a KKT point (Theorem 8, Wei et al., 2020),
it is not necessary, as the following example shows.
Fix indices ig < jo and define a ground truth DAG W by

1 1fl:207.7:.707
(W) = .
0 otherwise.

Let = [d] x [d] denote all pairs of indices, we initialize Zy = Q \ {(o, jo)}. Recall that the KKTS algorithm repeatedly
removes elements from Z until it is irreducible. Let us assume KKTS takes m steps, the elements removed in order are
(i1, 41)s (42, J2); - - - (im, jm) and define Zj, = Q\ {(do, jo), (i1, J1) - - -, (ks k) }-

Lemma 4. Assume Q is separable and that W' is the unique global minimum of (4). Then initializing KKTS with
Zo = O\{(io, jo)}, we have the following:

1. W*(Z2,) = Wt foreach k =0,1,...m,

18



Optimizing NOTEARS Objectives via Topological Swaps

2. 2y,...,2Zm_1 are not irreducible,

3. Zm = {Uo,i0)}U{(4,0)]i = 1,...,d} is irreducible.

In other words, the global minimum W is a KKT point that is not always irreducible, although it can be written in terms of
an irreducible Z. Tt is easy to construct models (12) and score functions ) such that W1 is a global minimizer: Simply
choose the population least squares score with z; ~ A(0, 1) for each j; see Loh & Biihlmann (2014) for details.

Corollary 4. Irreduciblity of Z is sufficient but not necessary for KKTS to find a KKT point of problem 5.

Lemma 4 has direct implications when the underlying DAG is sparse. If the initial Zy = €2, KKTS needs to remove most of
the elements in 2 to reach an irreducible Z, thus, it can be computationally intense and inefficient. Moreover, the score
function in KKTS has a sparse regularization, and it can return the wrong W*(Z) even if the current Z characterizes the
edge absences of the ground truth exactly.

D. Proofs of Technical Results

In this section, we present the proofs of lemmas and theorems in detail. First, let us discuss more on how to solve problem
(8) in the algorithm 2 which is helpful for our proof. In problem (8), we can eliminate the constraint 0 (;) ( 5 =0, Vi > j
by plugging them back to the objective function, then it is equivalent to the following unconstrained optimization problem,

Note that we can write © = (0(s),x(j)> Ox(m),x(n), @), Where i > j and n > m. In this case, © = (0, 0 (1) x(n), ?)

({Hi(m)m(n)}n>m, 0*) = argmin Q(O) = arg min Q((0, O (1), x(n)> 5))

Therefore, we can use any off-shelf optimizer that can solve such unconstrained optimization to a stationary point that will
be suitable for our purpose, i.e., gradient descent or Adam (Kingma & Ba, 2014). Throughout the proof, we repeatedly use

the fact that 8%*@) = 0and aa?ﬂ =0,V n >m,V m. Atlast, we can construct 6,6~ from 6 by 6 = max{6,0}

7 (m),m(n)
and 6~ = max{—6,0}.

D.1. The Extension of Theorem 1

The proof of Theorem 1 in (Wei et al., 2020) is for the case where the adjacency matrix W does not have any parametrization.
For completeness and ease of reference, we state the generalization to general parametrizations here:

Theorem 4 (Theorem (1) in our content). Assume that Q(0) is convex. Then if (07,07, é) satisfies the KKT condition in

(6), (6%, 0) is a local minimum for problem (4), where 0* = 0 — 6~.
Although the proof is similar, we include a proof for completeness in Appendix D.10.

D.2. Proof of Lemma 1

Proof. Let us denote 6;; as (6;,)r, here note 6;; is a vector and its each component is denoted as 6;;,, where r =1, .. ..

Therefore,
9Q(©) _ (0Q(©)
0635 005, )

T

Ah(W (8T +67))
26

ij

Let us simplify term . First, note that

(WOF + 075 = 105 + 0500 =17 (03 + 0;;) = > _ (050 +05;,)

(here we use the fact 0;; > 0,0;; > 0). Remember h(W (6" + 67)) is a function of 6;; through [W (6% + 67 )];;, we can
use chain rule

Oh(W (Ot +67)) Oh(W (0T +067)) oW (O +67)];;

00 W (0 +67)]4; 007

19



Optimizing NOTEARS Objectives via Topological Swaps

=[VR(W (8" +67))];; 1

=[VR(W(|0]))];; 1
First, for any (i, j) such that

VAW (8)],; = [VRW(6* +67))],, > 0,
we set
P TV
(4,9):[VR(W(16]))]i; >0 [Vh(W(|9|))]” .

Therefore, (6a) and (6b) are satisfied with M;g > 0 and Mi; > 0. From condition (i), we have 6;; = 0, that is, Qiij =0,
thus, (6¢) is satisfied since 9;; o M;; = 0;; 0 M =0.

Second, for any (4, j) such that

[VRW(0])];; = [VR(W (" +07))],; =0,
we have from (6a) and (6b)

9Q(9)
90" M;; 2 0. 00 Mij =

]

It is also known that

9Q(O) _ 9Q(©)
69;; 90

From condition (ii), we set corresponding M; = 0, then (6a) is satisfied. We also have HLiJ o Mf; = 0, hence (6¢) is satisfied.
From (iii), (6d) is satisfied. From (iv), we know 07 > 0~ > 0. Also, itis obvious that V(3, j), we have §o Vh(6F +67) = 0,
it is equivalent to k(0T + 07) = 0 (Wei et al., 2020, Lemma 4). The feasibility conditions in (5) are also satisfied. Thus,
(0T, 07) satisfies the KKT conditions in (6).

Finally, from Theorem 4, (67 — #~,8) is a local minimum for problem (4) if Q(©) is convex. O

D.3. Proof of Lemma 2

Proof. Assume p < g, node 7(p) comes before 7(g) in 7 by the definition of topological sort, so there is no directed walk

from 7(g) to 7(p), which implies (VA(W (|671))) x(p) r(q = 0 (Wei et al., 2020, Lemma 7) and (W (|07 )z (4) x(») = O-
By the optimality conditions of (8), % = 0. In other word, possible elements in )(©%,0,0) must has formula

(W(q), 7T(p)) wherep <q. Therefore, (aﬁ)ﬁ(q),ﬂ(p) =0. By the definition of [W(|9;|)]ﬂ(q)77r(p) = ||(9:.)7r(q)’ﬂ(p) ||1 =0 O

D.4. Proof of Lemma 3

Proof. Letany (i,j) € Y(07,0,0), then (VA(W (|07])));; = 0 and % # 0, it indicates there is no directed walk
from j to such <. From Lemma 2, (67),; = 0. Changing the value of (67), j‘ introduces new edge which can create a cycle,
however, from Lemma 6 in Wei et al. (2020), changing the value of (67), ; cannot create directed walks from j to ¢, by the

assumption of separability of (Q(©) and following the same argument of proof of Lemma 8 in Wei et al. (2020), changin
p P y g g p ging
2Q(07) 2Q(07)

the value of (¢ ),; will not create cycle. Therefore, (67),;,. can be increased or decreased (Fg,,= <Oor 5= >0)to
reduce the loss function while maintaining feasible, which implies 1 (|4]) in Algorithm 4 is still a DAG and Q() < Q(0%).
W(|0]) follows the topological sort ;5, so Q(O7, ) < Q(0) < Q(67). O

D.5. Proof of Lemma 4

Proof. For Zy = Q\{(i0,70)}, W*(Zy) is obviously a DAG, W is global minimum of problem (4), then Q(W1) <
Q(W*(2y)). WT is also a feasible solution for problem (13) with Zy, then Q(W*(Zy)) < Q(WT). WT is unique by

20



Optimizing NOTEARS Objectives via Topological Swaps

assumption, thus W = W*(Zy). For Z; = Q\{(40, j0), (i1, 71)}, we can use the same arguments. KKTS continues until
Z; = W\{(é0, 7o), (i1, 41), - - -, (41, J1) } can not guarantee the solution W*(Z;) to be a DAG. For example, if

Zi =0\{(i,j)li<j,i=1,...,d}
Z :Zlfl\{(imajm)}
The only requirement for (7,,,, ) i 4 > jm. Followed by the same argument, we know W*(2;_;) = WT. Using Lemma
8 from Wei et al. (2020), W*(Z;) is also a DAG, hence Q(WT) < Q(W*(2;)). Besides, W is also a feasible solution

for problem (13) with Z;, thus Q(W*(2Z;)) < Q(WT). WT is unique by assumption, so W = W*(Z;). By the same
arguments, KKTS continues until an irreducible Z,,, = {(jo, i)} U{(¢,%)|i = 1,...,d} is returned. O

D.6. Proof of Corollary 2

Proof. Because Y((6%),0,0) = (), we know for any (¢, j) such that [VA(W (|0%]))];; = 0, we have 8%22:) = 0, (ii) in
Lemma 1 is satisfied. Therefore, we only need prove for any (4, j) such that [VA(W (|6%]))];; > 0, then (6%),; = 0, i.e.
(W (|0%])]i; = 0. Because [VA(W (]0%]))];; > 0 implies there exist a directed walk from j to 4, which means node j appear
before node ¢ in topological sort, so 8;; = 0. Thus, (i) in Lemma 1 is also satisfied. The explanation given at the start of the

Section D fulfills condition (iii). (iv) is satisfied naturally by our construction. Therefore, O} is a KKT point by Lemma
1. O

D.7. Proof of Corollary 4

Proof. Follows from Lemma 4. O

D.8. Proof of Theorem 2

Proof. Forany p < ¢, [VR(W (|07]))](4)x(p) > 0 by definition of connected estimator. Because 7 (p) appears before 7(q)
in the topological sort, [W([07()]x(q),r(p) = 0. 1€ (07)(g) x(py = 0- All pairs (7(g), 7(p)) for p < ¢ satisfies Lemma 1
condition (i). By the same argument from proof of corollary 2, all pairs (7 (p), 7(q)) for p < ¢ satisfies Lemma 1 condition
(i1). Condition (iii) is satisfied by the reasoning presented at the beginning of Section D. (iv) is satisfied naturally by our
construction. Therefore, ©7 is KKT point, by Theorem 1, it is also a local minimum if @) is convex. Under the connected
estimator assumption, the solution at each iteration is a local minimum if ¢) is convex. O

D.9. Proof of Theorem 3

Proof. If Y(0%,0,0) # 0, we can always construct a new topological sort 7;; by Lemma 3 and strictly decreases score
function. Otherwise, Algorithm searches in space V(0% , 7., £*) or Y(©%, 7%, ,) to find better topological sort until it
cannot. Note that at last iteration, it must be that Y (0%, 0,0) = @, such 6% is KKT point, i.e. local minimum if @ is convex
by Theorem 4. [
D.10. Proof of Theorem 4

Before we jump into the proof, let us first consider the problem

Hgn Q(O) subjectto 6,; =0, (i,j) € Z (14)

Remember the definition § = © \ 0 .The necessary conditions of optimality for (14) are

oQ(©) .
20, =0, (i,j)¢Z (15a)
0i; =0, (i,j)€Z (15b)
9Q0) _, (15¢)
06
Given a KKT point (7,607, 6) in (6), we can define the set
P i={(i,J) : [VR(W (6T +67))];; > 0} (16)

21



Optimizing NOTEARS Objectives via Topological Swaps

Although set P doesn’t appear in Theorem 4 explicitly, but it appears in Lemma 5 which is key to prove the Theorem 4.

Lemma 5. If (6%,0™, 0~) satisfies the KKT conditions in (6), then ©* = (6%, é) satisfies the optimality conditions in (15)
for Z = P which is defined in (16), where 0* = 0T — 0~. If in addition Q(©) is convex, then ©* is a minimizer of (14) for
Z="P.

Proof of Theorem 4. Let 0 be feasible solution (i.e. W (||) is a DAG) to (4) with ||§ — 6*||r < € (the Frobenius norm is
used for concreteness). Since VA(W (]0])) is a continuous function of 6, there exists a sufficiently small € > 0 such that
[VR(W (|6]))];; > 0 whenever [Vh(W (|6*]))];; > 0, in other words for (¢, j) in the set P. Then for feasible # within such
an e-ball around 6*, it follows from the same argument in proof of Lemma 5, 6;; = 0 for (¢, j) € P. 0 is therefore a feasible
solution to (14) for Z = P. By Lemma 5 and the convexity of ), we then have Q(0*) < Q(O) for all feasible § such that

|0 —0*||F < e. O
D.11. Proof of Lemma 5
Proof. For (i,j) & Z = P, we have [VR(W(|0]))];; = 0, because %**” = [VR(W(|6]))]i;1. then
OMWOZ67)) — 0. From (6a) and (6b),
B
%@ﬁ:wgo —sz;zo
89ij J 89ij J
It is also know that 8;90(? ) — GBQQ(S) ), SO 639(_? ) — 0, it is equivalent to %QTE?) = 0. It means (15a) is satisfied.

For (i,7) € Z = P, we have [VA(W (|6]))];; > 0. Since (#*,07) is feasible solution, which means W (|6]) is a DAG.
Moreover, [VR(W(]0]))];; > 0 indicates there is a directed path from node j to 4, then it implies there is no edge from node
i tonode j. Hence, [IW(|0])];; = ||0:5]1 = ||0;;||1 + 110511 =0, ie. 0;} = 0;; = 0. we conclude 0]; = 9;; —0;; = 0. Now
(15b) is satisfied. From (6d), it is obvious (15¢) is satisfied.

Therefore, (6%, é) satisfies the optimality conditions in (15) for Z = P, where 6* = 0T — 6~. If Q(0) is convex function,
conditions in (15) is also sufficient for optimality in (14). ]

E. Detailed Experiments

E.1. Experimental Setting

Here we describe the details about how to generate graphs and data for Linear SEMs with different noise distributions, fully
connected graphs, logistic models and nonlinear models with neural networks. For each model, a random graph G was
generated from one of two random graph models, ErdGs-Rényi (ER) or scale-free (SF) with kd edges (k € {1,2,4}) on
average, denoted by ERk or SFk.

e Erdds-Rényi (ER), Random graphs whose edges are add independently with equal probability. We simulated models
with d, 2d and 4d edges (in expectation) each, denoted by ER1, ER2, and E R4 respectively.

¢ Scale-free network(SF). Network simulated according to the preferential attachment process (Barabasi & Albert, 1999).
We simulated scale-free network with d, 2d and 4d edges and = 1, where 3 is the exponent used in the preferential
attachment process.

Linear SEMs. Given a random DAG B € {0, 1}%*¢ from one of these two graphs, we assigned edge weights indepen-
dently from Unif([—2, —0.5] U[0.5, 2]) to obtain a weight matrix W € R%*?. Given W, we sampled X = WX + 2 € R?
according to the following three noise models:

* Gaussian noise with equal variance(Gauss—EV). z ~ N (0, Iyxq)
* Gaussian noise with unequal variance (Gauss—-NV): z; ~ N(0,02),i = 1,...,d where o; ~ Unif[1, 2]

* Exponential noise (Exp). z; ~Exp(1),j =1,...,d

22



Optimizing NOTEARS Objectives via Topological Swaps

* Gumbel noise (Gumbel). z; ~ Gumbel(0,1), j =1...,d

Based on these models, we generated random datasets X € R"*? by generating the rows i.i.d. according to one of the
models above. For each simulation, we generated n = 1000 samples for graphs with d € {10; 20; 50; 100} nodes. For each
dataset, we run FGS, PC, NOTEARS, KKTS with NOTEARS as initialization, TOPO with random initialization, TOPO with
NOTEARS as initialization, and GOLEM-EV (equal variance), GOLEM-NV(Unequal variance). Here random initialization
means a topological sort 7 is randomly sampled, the solve (7) to obtain 8 as initialization. Finally, a post-processing
threshold of w = 0.3 is applied on W, following (Zheng et al., 2018). Since FGS outputs a CPDAG instead of a DAG or
weight matrix, we orient the undirected edges favorably when making comparisons. In linear model with unequal variance
Gaussian noise, the minimax concave penalty (MCP) is used to approximate ¢, penalty,

otherwise

AMw| — 22 if |w| < BA
p(w):{ w| — 2 if [wl

BN
2

and set A = 0.005 and 8 = 10.

For TOPO, we use the least-square loss Q(W, X) = 5-||X — XW||%. without any regularization for all noise type. We
also use the polynomial acyclicity penalty h(A) = Tr((I + A/d)?) — d (Yu et al., 2019) and h(A) = —log det(I — A)
(Bello et al., 2022), because it is faster and more accurate than h(A) = Tr(e?) — d (Zheng et al., 2018). For the choices
of Sgmall; Slarge, S0, Table 7 summarizes the suggested hyerparameters. The basic idea is to increase Ssmall, Siarges So When d
grows or graph get denser.

#node | Ssmall  Slage S0
d=10 30 45 1
d =20 50 150 1
d =50 100 1000 10
d =100 150 2500 15

Table 7. Suggested hyperparamters for Sgmal, Slarge, S0

Logistic Models. Given G, we assigned edge weights independently from Unif([—2, —0.5] U[0.5, 2]) to obtain a weight
matrix W € R4, Given W, we sample X according to following

X; = Bemoulli(exp(w;rX)/(l + exp(wj—-rX))) j=1,...,d

Based on these models, we generated random datasets X € R"™*? by generating the rows i.i.d. according to one of the
models above. For each simulation, we generated n = 10000 samples for graphs with d € {10; 20; 30; 40; 50} nodes. For
each dataset, we run FGS, PC, NOTEARS, TOPO with random initialization, TOPO with NOTEARS as initialization. We
use penalized log-likelihood as score function, i.e.

1, (log(1, + exp(f;(X))) = x; 0 fi(X)) + AW |y
1

S|

Qf,X) =

d

K2

where A = 0.01.

Fully Connected Graphs. We randomly generate a topological sort 7, and generated a fully connected graph that is
consistent with topological sort 7. Other setting is the same as Linear SEM. Because this is a really hard problem, we
InCrease Sgmall, Starge, So compared to Table 7.

Nonlinear Models with Neural Networks. We mainly follow the nonlinear setting in Zheng et al. (2020). Given G, we
simulate the SEM:

Xj=[i(Xp) +2  Vjeld

where z; ~ N(0,1). Here f; is a randomly initialized MLP as described in Section 3.3

23



Optimizing NOTEARS Objectives via Topological Swaps

For TOPO, the score function is
d
1 .
Qf,X) = o > lxi = fi(X)1I3
i=1
Here each fz is chosen as MLP with one hidden layer of size 30 and sigmoid activation.

Implementation The implementation details of baseline are listed below:

* FGS and PC are standard baseline for structure learning. The implementation is based on the py-causal pack-
age, available at https://github.com/bd2kccd/py-causal. For PC algorithm, use Fisher Z test. For GES, we use
cg-bic-scores and maxDegree=50.

* NOTEARS (NOTERAS_MLP) was implemented using Python code: https://github.com/xunzheng/notears. Its score
function is least square loss with ¢; regularization. We use default threshold w = 0.3.

* KKTS was implemented using Python code: https://github.com/skypea/DAG_No_Fear. We allow KKTS to reverse
edges in each iteration to achieve best performance.

* GOLEM was implemented using Python and Tensorflow code: https://github.com/ignavierng/golem. We use default
parameters.

In the experiments, we use default hyperparameters for those baseline unless otherwise stated.

E.2. Metrics

We evaluate the performance of each algorithm with the following three metrics:

 Structure Hamming distance (SHD): A standard benchmark in the structure learning literature that counts the total
number of edges additions, deletions, and reversals needed to convert the estimated graph into the true graph. For PC
and GES, they all return CPDAG that may contain undirected edges, in which case we evaluate them favorably by
assuming correct direction for undirected edges whenever possible.

* Score: the value of least square score function.

¢ KKT: Whether solution satisfies the KKT conditions, 1 stands for Yes and O stands for No. Define a KKT matrix for 6,
denoted as K (0).

o, = | LA rTHE) =0
W(B)i| i VAW (6) >0

[ 1 if max;; [K(0)];; =0
KKT = { 0 if max;; [K(0)]i; # 0

e Timing: how much time the algorithm takes to run, we use it to measure the speed of the algorithms.

E.3. Sensitivity of ssman, Siarge, S0

In Tables 2, 3, 4, and 5, we investigate the effect of sizes of search space and the number of searching times in larger spaces
on Algorithm 2. Here we focus on two cases: (1) Simple case: FR1 graphs with Gaussian noise and d = 100. (2) Hard
case: SF4 graphs with Guassian noise and d = 100. Columns represent different sgn,; = 50, 150, 200. Rows represent
different s15ge = 1000, 2000, 3000. Blank implies algorithm has stopped at current iteration. Here we use ng to indicate
how many large searches has been used. Generally speaking, for sparser graphs, using small search space and small s are
enough to return a good solution. While for denser graphs, the performance of Algorithm 2 is more sensitive to the choice of

Ssmally Slarge; SO-

24



Optimizing NOTEARS Objectives via Topological Swaps

TL():O TL():l 710:2 TL():?)
50 150 200 50 150 200 50 150 200 S50 150 200
1000 136 136 136 20 11 0 8 6 5 0
2000 136 136 136 19 11 0 8 6 4 0
3000 136 136 136 19 11 0 8 6 2 0

Table 8. Structural Hamming Distance (SHD) for different Semalt, Starge, 20 With d = 100 and n = 1000 on an Gaussian ER1 graph

TL():O TL():l 710:2 TL():?)
50 150 200 50 150 200 50 150 200 50 150 200
1000 113.017 113.017 113.017 49.570 48.291 47.215 47.731 47.874 47451 47.219
2000 113.017 113.017 113.017 49.281 48.291 47.215 48.141 47.874 47.438 47.219
3000 113.017 113.017 113.017 49.281 48.291 47.215 48.141 47.874 47369 47.219

Table 9. Score for different sgmali, Siarge, 20 With d = 100 and n = 1000 on an Gaussian ER1 graph

non n():l 7’LOZ2 n0=3
50 150 200 50 150 200 50 150 200 50 150 200
1000 776 405 322 672 244 144 568 185 143 295 58 143
2000 774 405 349 693 311 40 455 112 38 56 0 38
3000 779 405 366 574 119 144 272 118 71 44 0 50

Table 10. Structural Hamming Distance (SHD) for different sgmai, Siarge, 20 With d = 100 and n = 1000 on an Gaussian SF4 graph

TL():O

n():l

n0:2

TLO:3

50 150

200

50 150

200

50

150

200

50 150 200

1000
2000
3000

194.871 67.834
189.561 67.834
187.662 67.843

63.498
62.848
62.79

162.679 57.024 50.124  82.946

157.953
106.329  54.097

61.346 48.028

51.45

83.159
56.241

55.102 49.199 58.244
47.800 47.905

50.351
49.924

49.70

48.113
47.695
47.694

49.198
47.799

47.925 47.71

Table 11. Loss for different Sgmai, Starge, 70 With d = 100 and n = 1000 on an Gaussian SF4 graph

25



Optimizing NOTEARS Objectives via Topological Swaps

E.4. Linear Models
SHD comparisons: ER and SF graphs without FGES and PC

joquinG
=
8
joquinG
joquin6
joquin6

ER2 ER4 SF2 SF4
40-
1 60 75
30 100- I
20- 2 = g 4 2 50 2
s 3 5 / 5
f ] ; 7
8 10- / f — 20 ; %5 4 l
¥ ¥ ———— “ L—
D .. 0 //_J 0- == g —t
§25 150
g ]
§20 l 75 60 *
a /
o'® g 100 8 50 s 40 |
£ 7 | g g g
€ 10- @ + @ 13 * 8
£ 50 ]
i — "= oy | =
+ - 4 s = ~ o —T
K 0,:_‘——4 = e S 0.0 L 0- o——— H
2 120~
]
= 150-
D 20- 20 90-
1 60-
i ¥ 10
+
00

/ir ] 50- I/ 30- 7
o ¥ ; o= L l o—‘-i—;’

25 50 75 1 25 50 75 100 25 50 75 100 25 75 100
d (Number of nodes) d (Number of nodes) d (Number of nodes) d (Number of nodes)
Methods —— GOLEM —=— NOFEARS_NOTEARS —— NOTEARS —— NOTEARS_TOPO -—=— RANDOM_TOPO

Figure 1. Stuctural Hamming distance (SHD) (lower is better). Row: noise type of SEM. Columns: random graph types, {SF, ER}-k =
{Scale-Free,ErdGs-Rényi } graphs with kd expected edges. Here, nofears_notears (KKTS algorithm (Wei et al., 2020) uses NOTEARS
solution as initial point). Our methods are Random_Topo (random initialization), and Notears_Topo (using NOTEARS solution as
initial point.) Error bars represent standard errors over 10 simulations.

SHD comparisons: ER graphs

ER1 ER2 ER4
15 }
0 | 750
10
) 60 o 500 o
s 3 3
¥
o | Iz
- — 30 | 250
7! < — ¥ 1
= — . % — 4
ot ) f Pt mmm—
80 4 0
I
[ZAH] 800 |
]
c 90
2 600
5 10 -3 «Q «Q
2 g 60 2 40 ¥ 2
£ @ & a
£ 13 3 2
2 il
5
©
T | 0 4 { 200
s ’ 4
s A L ETE
k5 = ) _
So 0 0
? |
15 90 ‘ 750
2w f g s £
10 | S s s
8 g . g
] s
5 30- ' 250
> L o
L_.—L = = r———— : —i= t
0 — 0- = . - —— :
25 50 75 100 25 50 75 100 25 50 75 100
d (Number of nodes) d (Number of nodes) d (Number of nodes)
Methods —— FGES —— GOLEM —— NOFEARS_NOTEARS —— NOTEARS —— NOTEARS_TOPO PC —— RANDOM_TOPO

Figure 2. Stuctural Hamming distance (SHD) (lower is better). Row: noise type of SEM. Columns: random graph types, {ER}-k =
{Erd6s-Rényi } graphs with kd expected edges. Here, nofears_notears (KKTS algorithm (Wei et al., 2020) uses NOTEARS solution as
initial point). Our methods are Random_Topo (random initialization), and Notears_Topo (using NOTEARS solution as initial point.)
Error bars represent standard errors over 10 simulations.

26



Optimizing NOTEARS Objectives via Topological Swaps

SHD comparisons: SF graphs

SF1 SF2 SF4
50- | *
| 1
40- 300
100
30-
[ [ 200 + [
2 1 2 2
B | 5 5
20- 50
100
10 7 ¥ ¥ l
+ - e
—— - - — e
o 0 o == -+ ot 0- S —
I
(2 120 1
® 40
2 300
ko
B 30-
8% 80
a a a
2 e 5| 20 i =
'€ 20- 13 13 &
5 40 {
E 100
® + { t ¥ +
5 : = : =
° —_—t——— —_—
s R ——— 0 0
[}
300
60 100
e e 200 e
401 El El ¥ El
g g g
g 50 t g g
20- i 100
¥ } z
v - p -
0 v—— ey 0- e} o Sm———iz
25 50 75 100 25 50 75 100 25 50 75 100
d (Number of nodes) d (Number of nodes) d (Number of nodes)
Methods —— FGES —— GOLEM —— NOFEARS_NOTEARS —— NOTEARS —— NOTEARS_TOPO PC —— RANDOM_TOPO

Figure 3. Structural Hamming distance(SHD) (lower is better). Row: noise type of SEM. Columns: random graph types, {SF}-k = {scale
free} graphs with kd expected edges. Here, nofears_notears (KKTS algorithm (Wei et al., 2020) uses NOTEARS solution as initial
point). Our methods are Random_Topo (random initialization), and Notears_Topo (using NOTEARS solution as initial point.) Error
bars represent standard errors over 10 simulations.

Running time comparisons: ER graphs

ER1 ER2 ER4
15001
500 1500- A A
4000-
1000- 1000] i
2 2 2
3 3 3
4 2000- b
500- . 500- .

1500-

3000~

' 1500- + ;

o) 4
S 1000-
8 g 100 € 2000~ A
8 = } Iz a iz
2 2 2
b 13 @ 13
g 500 T |
= / 500 p . 1000~ 1 2
1 . — e .
o- ——4' 0- + : o- /
2500-
A A \
’ 4000-
2000- 15001 *
1500~ - N 30007 b
S 1000~ S 45
1000- g * 8 2000- 4 8
500 I
500- / 4 / - 1000~
/ — s _/
——— : — = :
0- = = 0- ——————s 2 0-
25 50 75 100 25 50 75 100 25 50 75 100
d (Number of nodes) d (Number of nodes) d (Number of nodes)
Methods —— FGES —— GOLEM —— NOFEARS_NOTEARS —— NOTEARS —— NOTEARS_TOPO PC —— RANDOM_TOPO

Figure 4. Runtime. Row: noise type of SEM. Columns: random graph types, {ER}-k = {Erd&s-Rényi } graphs with kd expected edges.
Here, nofears_notears (KKTS algorithm (Wei et al., 2020) uses NOTEARS solution as initial point). Our methods are Random_Topo
(random initialization), and Notears_Topo (using NOTEARS solution as initial point.) Error bars represent standard errors over 10
simulations.

27



Optimizing NOTEARS Objectives via Topological Swaps

Running time comparisons: SF graphs

| |

1000- 1000

1000- *

dxe
dxe

- - 7
500- 500
P e 1
v e
— 7
Nl o ___4—4/‘ o ___/
+ 1000-
900
5 1000 750-
g A
8 600- 9 ] ]
8 2 2 2
8 2 & 500 / - &
2 1 48 y a
o 500 4
E 00 v/
IS v | L 250 ¥/
F = S
;;4;./ *
0 e o 0 =
1000 + 1500 '
900 )
7
0 1000- #
5 600 € ) 12
500 3 ‘3 B
1 & - 8 g
A 500~ 4
250 300 7 v S
—F . — 1 —/ 7
o - 1 o ee—— o
25 50 75 100 2 50 75 100 25 50 75 160
d (Number of nodes) d (Number of nodes) d (Number of nodes)
Methods —— FGES —— GOLEM —— NOFEARS NOTEARS —— NOTEARS —— NOTEARS TOPO PC —— RANDOM_TOPO

Figure 5. Structural Hamming distance(SHD) (lower is better). Row: noise type of SEM. Columns: random graph types, {SF}-k = {scale
free} graphs with kd expected edges. Here, nofears_notears (KKTS algorithm (Wei et al., 2020) uses NOTEARS solution as initial
point). Our methods are Random_Topo (random initialization), and Notears_Topo (using NOTEARS solution as initial point.) Error
bars represent standard errors over 10 simulations.

Score comparisons: ER graphs

100-

Score
ssneb

120-

! 2 Z
¥
40- / / /
25 50 75 100 160 25 50 75

25 50 75
d (Number of nodes)

f

joquinb

100

Methods —s— NOFEARS_NOTEARS —s— NOTEARS —=— NOTEARS_TOPO —=— RANDOM_TOPO

Figure 6. least square score (lower is better). Row: noise type of SEM. Columns: random graph types, {ER}-k = {Erd6s-Rényi } graphs
with kd expected edges. Here, nofears_notears (KKTS algorithm (Wei et al., 2020) uses NOTEARS solution as initial point). Our
methods are Random_Topo (random initialization), and Notears_Topo (using NOTEARS solution as initial point.) Error bars represent
standard errors over 10 simulations.

28



Optimizing NOTEARS Objectives via Topological Swaps

Score comparisons: SF graphs

50- 1 ¥ ] J 2

2- / //

?: | / PREE

;

]
50- 3 7
25-
0 25 50 7

25 50 75 100 25 50 75 1
d (Number of nodes)

Score
ssneb

joquinb.

100

Methods —— GOLEM —s— NOFEARS_NOTEARS —— NOTEARS —e— NOTEARS_TOPO —— RANDOM_TOPO

Figure 7. least square score (lower is better). Row: noise type of SEM. Columns: random graph types, {SF}-k = {scale free} graphs with
kd expected edges. Here, nofears_notears (KKTS algorithm (Wei et al., 2020) uses NOTEARS solution as initial point). Our methods
are Random_Topo (random initialization), and Notears_Topo (using NOTEARS solution as initial point.) Error bars represent standard
errors over 10 simulations.

E.5. Nonlinear Models

E.5.1. LOGISTIC MODEL

ERT ER2 ER4
-
50 | 160 |
5
&
5 10-
g i o }
g
g aml . i B
210 2 } ¢ 48
E & s 80 ¥ 5
£ '
£ / 21 et _| t i ! ¥
T s | ¥ v
W e EARET [ =l
[ — 4 v ¥
=T = -
10 20 30 40 50 o 10 20 30 40 0 10 20 30 40 50
d (Number of nodes) d (Number of nodes) d (Number of nodes)
s s A
_» | A 4
Q 150
2 /
2] | 0
8 r
g I' y /’ y I
2 | g o g " 4 H
)
£ 10- 2 ¥ } 5 ¥ z
: A - ’
T, ¥ - { ] ; © 4 +
s / = 4 = - ¥
& _—— - +
= = =
o o
o o o 5 o 5

o ) o % 30 o E) 3 Q0
d (Number of nodes) d (Number of nodes) d (Number of nodes)

method —=— fges —=— notear —=— pc —=— topo_notear —=— topo_random

Figure 8. Structural Hamming distance(SHD) for Logistic Model, Row: random graph types, {SF, ER}-k = {Scale-Free,Erdés-Rényi }
graphs. Columns: kd expected edges. Our methods are Random_Topo (random initialization), and Notears_Topo (using NOTEARS
solution as initial point.) Error bars represent standard errors over 10 simulations.

29



Optimizing NOTEARS Objectives via Topological Swaps

E.5.2. NEURAL NETWORKS

SHD comparison

— mip mip mip
g
& , 60 4 150 }
g2 1
2
8
&5 } 40 100
=) m m m
£ & f 4 &
E 10
g { 20 50 Z]
T } ¥ ) ; |
TS ¥ :
EN f i '
3 . [=
=0 0 0
@? 10 20 30 40 10 20 30 40 10 20 30 40
d (Number of nodes) d (Number of nodes) d (Number of nodes)

mip mip mip

N
S

{ 4 100

40

o

— /5/ :/:

0- —— 0-

o
o

Structural Hamming Distance (SHD!
@ >
3
\
& 8
48

2

40 10 40 10 40

20 30 20 30 20 30
d (Number of nodes) d (Number of nodes) d (Number of nodes)
Methods —— FGES —— NOTEARS_MLP —— NOTEARS_TOPO —— PC —— TRUE

Figure 9. Structural Hamming distance(SHD) for Nonlinear Model with Neural Network, Row: random graph types, {SF, ER} = {Scale-
Free,Erd6s-Rényi } graphs. Columns: kd expected edges. Our methods are Random_Topo (random initialization), and Notears_Topo
(using NOTEARS solution as initial point.) True(baseline): solution to (8) with true topological sort using Neural Network. Error bars
represent standard errors over 10 simulations.

Score comparison

mip mip mip
, ')
20~
20 . 25
4
15 20-
)
8 AT E o
3 - N B
/ 1 15 v
10- y . 10 - 1
/ 10- /
5- 5
10 20 30 40 10 20 30 40 10 20 30 40
d (Number of nodes) d (Number of nodes) d (Number of nodes)
mip mip mip
’ "
20- 25-

’ / ? ya 20 1

@
8 IRE 4 @
2 - S 15- =
’ 4
10- z ; '
0 10-
o K L7
10 20 30 40 10 20 30 40 10 20 30 40

d (Number of nodes) d (Number of nodes) d (Number of nodes)
Methods —— NOTEARS_MLP —— NOTEARS_TOPO —— TRUE

Figure 10. Score for Nonlinear Model with Neural Network, Row: random graph types, {SF, ER} = {Scale-Free,Erd6s-Rényi } graphs.
Columns: kd expected edges. Our methods are Random_Topo (random initialization), and Notears_Topo (using NOTEARS solution
as initial point.) True(baseline): solution to (8) with true topological sort using Neural Network. Error bars represent standard errors over
10 simulations.

30



Optimizing NOTEARS Objectives via Topological Swaps

E.6. Comparison against randomly chosen swapping set

TOPO Random
n d #edge SHD loss SHD loss

1000 20 80 0.1 985 325 2685
1000 50 200 3 2433  126.7 57.33
1000 100 400 13.75 4745 2869 107.95

Table 12. TOPO: the candidate swapping set Y (0, 7, ) by (9) .“Random”: the TOPO algorithm chooses the candidate swapping set
Y(0, 7, &) randomly. Model: Linear model with Gaussian noise. Graph type: ER4 graphs. It justifies choosing swapping set J(0, 7, &) by
(9) can significantly improve the performance of TOPO Algorithm.

31



Optimizing NOTEARS Objectives via Topological Swaps

E.7. Accuracy vs iteration

Iteration vs SHD

80 1

60 4

SHD

40

204

— Small Space
@ Large Space

15
Iteration

() d =20

Iteration vs SHD

20

25

350 4

300

250+

2004

SHD

150

100

50 +

—— Small Space
® Large Space

T T
80
Iteration

(c) d =50

Iteration vs SHD

T
100

T T
120 140

800 1

600

HD

@
400 +

200

—— Small Space
® Large Space

o 100

Figure 11. Iteration vs SHD (left)/Score (right). Model: linear model with Gaussian noise. Graph type: ER4 graphs. Black: search in
small space. Red: search in large space. When graph is small, searching in small space is enough for finding a good local optimal, but

200 300

Iteration

(e) d =100

400

500 600

Score

Score

Iteration vs Score

— Small Space
® Large Space
120 4 2P
100
80 4
60
40 4
20+
0 5 10 15 20 25
Iteration
Iteration vs Score
200
—— Small Space
180 ® Large Space

T T T T T
80 100

T T
120 140

0 20 40 60
Iteration
(d) d =50
Iteration vs Score
400
—— Small Space
L S|
350 ® Large Space
300 4
2504
200+
150 4
100
- T T T i T
0 100 200 300 400 500 600
Iteration
() d =100

when graph gets larger, searching in large space helps to jump out of local point and decrease the score.

32



Optimizing NOTEARS Objectives via Topological Swaps

E.8. Greedy Strategy

ER4 SF4

n
o
———

—_
(6]

o
ssneb

Gt
75 100 25 50 75 100
d (Number of nodes)
Methods —— RANDOM_GREEDY_TOPO —— RANDOM_TOPO

Structural Hamming Distance (SHD)

\

N
(&)
(2
o

(a) Structural Hamming Distance (SHD)

ER4 SF4

1000-
& 750-
° 4
5
o «Q

[
g 50 { :
(0]
£ * +
= 250-
&
Q- ot T -

25 50 75 100 25 50 75 100
d (Number of nodes)
Methods —— RANDOM_GREEDY_TOPO —— RANDOM_TOPO

(b) Run-time (seconds)

Figure 12. Comparison between greedy scheme and non-greedy scheme by SHD & running time. Random_Topo (TOPO starts with
random initialization and uses the swap that decreases the score the most at each iteration), and Random_Greedy_Topo (TOPO starts
with random initialization and uses the swap once it is found to decrease score.) Model: linear model with Gaussian noise. Graph type:
ER4 graphs. Greedy scheme significantly improves time efficiency by sacrificing just a little accuracy.

F. Broader Impacts

Bayesian networks are fundamental models that represent the probabilistic relationship about how data are generated by
a set of random variables. Our work contributes to the most fundamental questions: What is the underlying structure
that generates data? Specifically speaking, how can one recover such structure accurately and efficiently? We propose an
algorithm with theoretical guarantees to address them. The significant contribution of this work is about better solving a
nonconvex continuous score-based structure learning formulation. The dramatic improvements in accuracy means better
structure recovery and more accurate discovery about the underlying probabilistic relationships.

A potential negative impact of this work is that errors in structure learning may compound into potentially more serious
downstream errors. For example, a false discovery about causality may result in a company investing tons of money and
efforts to remedy an incorrectly detected cause to a problem, resulting in immeasurable losses. How to prevent incorrect
causation under this continuous framework is a crucial and exciting future research direction.

33



