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Abstract: In directed energy deposition (DED), accurately controlling and predicting melt pool char-
acteristics is essential for ensuring desired material qualities and geometric accuracies. This paper
introduces a robust surrogate model based on recurrent neural network (RNN) architectures—Long
Short-Term Memory (LSTM), Bidirectional LSTM (Bi-LSTM), and Gated Recurrent Unit (GRU). Lever-
aging a time series dataset from multi-physics simulations and a three-factor, three-level experimental
design, the model accurately predicts melt pool peak temperatures, lengths, widths, and depths
under varying conditions. RNN algorithms, particularly Bi-LSTM, demonstrate high predictive
accuracy, with an R-square of 0.983 for melt pool peak temperatures. For melt pool geometry, the
GRU-based model excels, achieving R-square values above 0.88 and reducing computation time by
at least 29%, showcasing its accuracy and efficiency. The RNN-based surrogate model built in this
research enhances understanding of melt pool dynamics and supports precise DED system setups.

Keywords: directed energy deposition; surrogate model; recurrent neural network; melt pool
characterization; thermal history

1. Introduction

Directed energy deposition (DED) is an additive manufacturing (AM) technique for
metals that creates parts by melting metal feedstocks with concentrated thermal energy [1,2].
Compared to the laser powder bed fusion process, DED is more cost-efficient and capable
of producing parts with greater efficiency and adaptability [3]. These remarkable character-
istics make DED an attractive option for rapid prototyping, manufacturing functionally
graded materials, and repairing high-value components [4]. Specifically, DED excels in
repairing worn or damaged components, thereby extending the service life of industrial
and aerospace equipment by restoring structural integrity and functionality [5]. Over the
last decade, DED’s usage has expanded in the defense, manufacturing, and automotive
industries [6]. For instance, DED has been employed to repair airfoils in airplane engines [7].
The DED market size is projected to reach more than USD 700 million by 2025 [8]. Despite
DED’s advantages over other AM techniques, challenges remain in minimizing defects dur-
ing printing. Factors contributing to defect generation include gas entrapment, insufficient
melting, and unstable melt pool generation [9,10]. Comprehending the thermal behavior
and melt pool generation in relation to process parameters is essential for reducing defects
during DED printing [11].

In DED, the melt pool is defined as the regime where metal particles are melted during
laser–material interaction, generating an orbicular droplet [2,12]. Within the molten pool,
the thermal distribution plays a crucial role in defining the microstructure and defects
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of the manufactured part [13]. In the case of a small molten pool, a relatively reduced
thermal distribution can result in inadequate adjacent melt pools’ overlap, leading to the
lack of fusion defects [14]. Additionally, an irregular molten pool caused by elevated energy
density can cause keyhole formation, leading to substantial material vaporization [15,16].
The dense plasma plume results in a recoil force on the molten material which leads to
gas entrapment, creating defects [17,18]. Attaining and monitoring optimal thermal dis-
tribution is essential for an appropriate melting flow within the molten pool [19]. DED
often encounters non-uniform thermal distribution along with rapid heating and slow cool-
ing cycles, developing anisotropic microstructures, characterized by porosity and uneven
grains [20]. The uneven grains affect the mechanical properties negatively [21,22]. For the
DED process, the thermal distribution within the molten pool can be monitored using
sensors such as thermocouples, IR cameras, and pyrometers. IR camera, in combination
with image processing, was applied to observe thermal distribution within the melt pool.
Comparatively reliable results were obtained at a 100 kHz sampling rate as well as 20 µm
resolution [23]. In addition, the IR camera and pyrometers can monitor radiation from
moving bodies and capture thermal distribution without surface contact, thus assisting in
situ monitoring of the DED process [24]. On the other hand, thermocouples are flexible and
resource-effective compared to other sensing devices. However, direct contact is required
for thermocouples, which limits their usage [25].

To predict molten pool thermal distribution, researchers have explored multi-physics
and machine learning-based approaches [26,27]. In multi-physics techniques, FEM and
analytical methods have been elaborated. On the one hand, an extensive multi-physics FEM
model may provide reliable results on the verge of computational [28]. On the other hand,
a simplified FEM model faces limitations owing to incomplete multi-physics involved in
simulation analysis [29,30]. Furthermore, the accuracy of the FEM model is also affected
by factors such as element type, initial and boundary conditions, and meshing size [29].
In addition, the analytical techniques utilize multi-physics equations solved based on
the initial and boundary conditions, simulating the thermal distribution and melt pool
formation in the DED process [31]. These methods are unreliable due to mass and volume
variation with time and uncertainties involved in DED processes.

Machine learning (ML)-based approaches have demonstrated significant advantages in
modeling the intricate thermal distributions and melt pool formations essential to Directed
Energy Deposition (DED), achieving solid accuracy and efficiency [32]. These approaches
significantly reduce the high costs associated with extensive experimental procedures
in research and development and alleviate the burden of lengthy computational times
typically required by traditional simulation methods [33]. ML-based models are fundamen-
tally data-driven, analyzing the relationship between each process parameter, like laser
power, scanning speed, powder feed rate, and its outputs, such as thermal distribution and
mechanical properties [34]. The data for training these models are usually collected from
experiments or simulations, and the predictive insights provided by ML models greatly
enhance the scalability of applications across various scenarios [35]. Various ML algorithms,
such as SVM, clustering, and artificial neural networks, have been utilized to predict melt
pool characteristics [36,37]. In addition, the defects of printed parts can be detected by
predicting the melt pool dimension [38]. Despite these advancements, the dynamics of
melt pools pose complex challenges. Primarily, the acquisition of large, robust datasets
necessary for training these models is prohibitively expensive and time-intensive [39].
Additionally, current research inadequately addresses the sequential nature of melt pool
dynamics, highlighting a critical need and understanding for more sophisticated appli-
cations of recurrent neural network (RNN) algorithms. Furthermore, the computational
demand and memory requirements of these models also need optimization to enhance
their reliability and robustness.

To address these challenges, this research introduces a pioneering RNN-based sur-
rogate model designed specifically to predict both the thermal history and the geometric
characteristics of melt pools in DED. The comprehensive framework that incorporates a
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factorial design of experiments, multi-physics modeling, refined data processing, and rigor-
ous surrogate model training, evaluation, and comparison are proposed for this research.
This innovative approach deepens the understanding of complex melt pool dynamics and
significantly advances the operational capabilities of DED systems. It marks a substantial
progression in the field, enhancing the precision and efficiency of ML-based surrogate
models and facilitating their practical application in optimizing DED processes.

2. Methodology

The method used to develop the robust machine learning-based surrogate model for
predicting melt pool thermal history and characteristics is presented in Figure 1. The process
begins with the design of experiments, focusing on various parameters such as geometry,
material, laser power, scanning speed, and hatch spacing. This is followed by multi-physics
modeling, which includes finite element (FE) simulations and thermal modeling with
temperature-dependent material properties. Key data points such as melt pool peak tem-
perature and dimensions are extracted for building the surrogate model. In this research,
the surrogate model is machine learning-based, employing multiple machine learning algo-
rithms including Extreme Gradient Boosting (XGBoost), Long Short-Term Memory (LSTM),
Bidirectional Long Short-Term Memory (Bi-LSTM), and Gated Recurrent Unit (GRU) to
ensure accurate predictions of melt pool thermal history and dimensions. The evaluation
and comparison of each algorithm are based on R-square values, Root Mean Square Error
(RMSE), and Mean Absolute Error (MAE), ensuring robust model performance. A detailed
description of each section is provided in the following content.

Figure 1. Proposed flow chart of current research.

2.1. Design of Experiments

In this research, a factorial design of experiments (DOE) is employed, involving three
factors, each at three different levels. This methodical approach is designed to thoroughly
investigate the interactions and effects of the variables on the outcomes. The chosen factors,
critical to the Directed Energy Deposition (DED) process, include laser power (W), scanning
speed (mm/s), and hatching space (%). Specifically, the laser power varies between 600
and 1000 watts, the scanning speed ranges from 2 to 6 mm per second, and the hatching
space is adjusted from 40% to 60%. These parameters are selected based on their significant
influence on the melt pool thermal distribution. A total of 27 experimental runs are
conducted to explore the full factorial space, providing a comprehensive understanding of
the process dynamics. The schematic detailing these experiments and their configurations
is depicted in Figure 2.



Materials 2024, 17, 4363 4 of 29

Figure 2. Factorial design of experiments.

In this research, Ti-6Al-4V is utilized as both the substrate material and the powder.
Figure 3 depicts the simulation setup and the laser tool path, featuring a substrate thickness
of 6.35 mm. This design incorporates four vertical single laser tracks that run from top to
bottom. The total width of the deposit varies from 4.4 mm to 5.6 mm depending on the
hatching space, with a length of 15 mm and a thickness of 0.5 mm. The red-colored line
indicates that the laser is active, while the purple dashed line signifies that the gantry is
moving to the next track and the laser is turned off. In this setup, cantilever clamping,
shown in green, extends from the left end to 20 mm. Table 1 details the process parameters
for the factorial design of experiments, while Table 2 presents the complete design used for
the subsequent multi-physics simulation analysis.

Figure 3. Tool path and simulation setup.

Table 1. Summary of process parameters.

Process Parameters (Unit) Values

Laser Power (W) 600, 800, 1000
Scanning Speed (mm/s) 2, 4, 6
Hatching Space (%) 40, 50, 60
Laser Beam Size (mm) 2
Layer Thickness (mm) 0.5
Thermal Properties Shown in Figure 4
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Table 2. The twenty-seven-run design of experiment for multi-physics simulation.

Run Laser Power (W) Scanning Speed (mm/s) Hatch Space (%)

1 600 2 60
2 600 2 50
3 600 2 40
4 600 4 60
5 600 4 50
6 600 4 40
7 600 6 60
8 600 6 50
9 600 6 40
10 800 2 60
11 800 2 50
12 800 2 40
13 800 4 60
14 800 4 50
15 800 4 40
16 800 6 60
17 800 6 50
18 800 6 40
19 1000 2 60
20 1000 2 50
21 1000 2 40
22 1000 4 60
23 1000 4 50
24 1000 4 40
25 1000 6 60
26 1000 6 50
27 1000 6 40

Figure 4. Thermal properties of Ti6Al4V [40].

2.2. Multi-Physics Simulation

After designing the experiments, each of the 27 runs was simulated in Abaqus CAE us-
ing the AM Modeler plug-in. For the thermal simulation, temperature-dependent material
properties of Ti6Al4V were used, as shown in Figure 4.

To perform the calculation of thermal distribution during laser and material deposition,
3D heat conduction equation was employed over the domain shown as T(x, y, z, t) while
incorporating appropriate initial and boundary conditions as shown in Equation (1) [41,42].

ρC
∂T
∂t

=
∂

∂x

(
k

∂T
∂x

)
+

∂

∂y

(
k

∂T
∂y

)
+

∂

∂z

(
k

∂T
∂z

)
+ Q (1)

where ρ is density, C is specific heat, T is temperature, t is time, k is thermal conductivity,
and Q is heat flux in the form of laser heat source. To calculate heat loss due to convection,
Newton’s law cooling was employed as shown in Equation (2) [41,42].
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qconv = h(T − Tenv) (2)

where h is convective coefficient which is 30.0 (W/m2·K4), T is shown as temperature at
any given time on the surface of the substrate, and Tenv is room temperature which is
25.0 ◦C. Heat loss due to radiation is calculated using the Stephen–Boltzmann radiation
law as shown in Equation (3) [41,42].

qrad = ϵσ
(

T4 − T4
env

)
(3)

where ϵ is known as emissivity and its value is taken as 0.8, σ represents the Stephen–
Boltzmann constant with a value of 5.67× 10−8 W/m2·K4. For body heat flux, Goldaks’s
double ellipsoid heat distribution is used as shown in Equation (4) [42,43].

Q =
6
√

3Pη

abc
√

π
exp

(
−3x2

a2 −
3y2

b2 −
3(z + Vst)2

c2

)
(4)

where P is power in Watts, η is the efficiency of laser absorption and taken as 0.6, a and b
values are taken as 1 and 2 mm, c for both front and back are taken 1 and 2 mm, respectively.
Vs is the scan speed with which the laser moves in the z-direction.

2.3. Data Generation and Extraction

After solving all the given designs of experiments, data were extracted from each
of the ODB files using a Python script. Two types of data were extracted: maximum
temperature and melt pool dimensions. Therefore, separate scripts were used for each type.
For example, run number 27 is shown in Figure 5a during material deposition and analysis.

For the maximum temperature, the highest temperature value was extracted for each
increment from each frame as shown in Figure 5b during Run27 simulation. The same
concept was applied to extract and calculate the melt pool dimensions. For each successful
increment solved during the analysis, all nodal locations in all directions with values equal
to or above 1605 ◦C were extracted. Once extracted for the specific increment, the location
with the highest value in length was subtracted from the location with the lowest value of
length, essentially providing the relevant dimension. The same method was employed for
extracting the melt pool length, width, and depth as shown in Figure 5c.

Figure 5. Thermal simulation during material deposition of Run27 as shown in (a), maximum
temperature value extraction (b) and melt pool dimension (c).
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2.4. Machine Learning Models

After extracting data from finite element simulations, four machine learning algo-
rithms—Extreme Gradient Boosting (XGBoost), Long Short-Term Memory (LSTM), Bidi-
rectional Long Short-Term Memory (Bi-LSTM), and Gated Recurrent Units (GRUs)—are
prepared to build a surrogate model for predicting the thermal history and dimensions of
the melt pool. Both the accuracy and computational time of these algorithms are considered
to construct a robust machine learning-based surrogate model. The subsequent sections
describe each algorithm’s advantages and mathematical concepts.

2.4.1. Extreme Gradient Boosting (XGBoost)

XGBoost is recognized as one of the most effective applications of gradient-boosted
decision trees [44]. Explicitly proposed to augment memory utilization and leverage
hardware computational power, XGBoost significantly reduces accomplishment time while
enhancing performance compared to other ML algorithms. The core concept of boosting
involves sequentially constructing sub-trees from an original one, where each successive
tree aims to lessen the errors of the preceding one. This iterative method updates the
prior residuals, thereby minimizing the error of the cost function. Let us assume a dataset
illustrated as [44]

D = {(xi, yi) | xi ∈ Rm, yi ∈ R}. (5)

Here, m, xi, and yi are the feature dimensions and the samples’ (i) responses, respectively.
In addition, n represents the sample number (|D| = n). The forecasted output (yi) for an
entry (i) is as follows [44]:

yi =
K

∑
k=1

fk(xi), fk ∈ F. (6)

In the above Equation, fk represents a standalone tree within F, and fk(xi) indicates the
projected result from the ith trial and kth tree. The objective function (L) is written as [44]

L =
n

∑
i=1

l(yi, ŷi) +
K

∑
k=1

Ω( fk). (7)

By minimizing the actual function (L), the regression tree model functions ( fk) are attained.
The loss function (l(yi, ŷi)) assesses the differentiation between estimated (ŷi) and real
outputs (yi). So, the term Ω is applied to prevent the overfitting issue by correcting the
model intricacy, explained as [44]

Ω( fk) = γT +
1
2

λ∥w∥2. (8)

Here, γ as well as λ are regularization factors, T and w are designated as the number and
score of the leaf, respectively. A Taylor series expansion with the second degree can be
applied to estimate the target function. We assume that Ij = {i | q(xi) = j} is an insistence
set of leaf j having q(x) as a permanent configuration. The optimum weights w∗j of j and
the subsequent quantity are estimated as [44]

w∗j = −
gj

hj + λ
. (9)

L∗ = −1
2

T

∑
j=1

(
∑i∈Ij

gi

)2

∑i∈Ij
hi + λ

+ λT. (10)

Here, the first- and second-order gradients for L are represented by gi and hi, respectively. L
can be applied as a quality index of the tree (q) so that the model is outstanding if the
score is lower. It is not possible to consider the whole tree structure at a time. An excellent
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algorithm should resolve the challenge by initiating from an individual leaf and iteratively
increasing branches. We assume that the right and left instance nodes are represented by
IR as well as IL, respectively. Considering I = IR ∪ IL, the loss reduction can be written as
following the split [44]:

Lsplit =
1
2

[ (
∑i∈IL

gi
)2

∑i∈IL
hi + λ

+

(
∑i∈IR

gi
)2

∑i∈IR
hi + λ

− (∑i∈I gi)
2

∑i∈I hi + λ

]
− γ. (11)

The XGBoost model employs numerous simple trees and assigns scores to leaf nodes during
the splitting process.

2.4.2. Long Short-Term Memory (LSTM)

LSTM networks, an advanced type of recurrent neural networks, effectively address
long-range dependencies in sequence data, crucial in scenarios like directed energy deposi-
tion processes. Characterized by three distinct gates—input, forget, and output—LSTMs
manage information flow, selectively retaining or discarding data to precisely learn depen-
dencies. The input state (it) decides which new information to incorporate into the cell
state (ct) and candidate state (c̃t), enabling the model to update its memory with relevant
data. The forget gate ( ft) selectively removes irrelevant information from the cell state to
maintain the model’s focus on pertinent data through time. The output gate (ot) controls
the flow of information from the cell state to the next layer or time step, determining what
part of the hidden state (ht) is used to compute the output and pass to next iteration.

This architecture mitigates gradient vanishing and exploding issues, enhancing ro-
bustness and accuracy in predictive models and making LSTM ideal for capturing complex
thermal and mechanical interactions in additive manufacturing. The LSTM architecture
is shown in Figure 6. The operator ‘×’ denotes pointwise multiplication, and ’+’ denotes
pointwise addition. The mathematical framework of LSTMs is presented in [45].

Forget gate:
ft = σ(W f hht−1 + W f xxt + Pf · ct−1 + b f ) (12)

Input gate:
it = σ(Wihht−1 + Wixxt + Pi · ct−1 + bi) (13)

c̃t = tanh(Wchht−1 + Wcxxt + bc̃) (14)

ct = ft · ct−1 + it · c̃t (15)

Output gate:
ot = σ(Wohht−1 + Woxxt + Po · ct + bo) (16)

ht = ot · tanh(ct) (17)

Here, W f , Wi, Wc, and Wo are the weights of each input. The xt, ht, and yt are represented
as input, hidden state (recurrent information), and output concerning time. Furthermore,
the ft is the forget cell starting from 0, Pf , Pi, and Po are the peephole weights for ft, input,
and output gates. The ct denotes the LSTM cell state, and bi, b f , bc̃, and bo are the biases.
Figure 7 shows the architecture of the series of LSTM structures.
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Figure 6. Architecture of LSTM algorithm.

Figure 7. Series of LSTM architecture.

2.4.3. Bidirectional Long Short-Term Memory (Bi-LSTM)

Bi-LSTM networks enhance traditional LSTM by processing data both forwards and
backwards, enriching sequence context understanding. This dual-path approach not only
boosts predictive accuracy in tasks like outcome prediction in directed energy deposition
but also captures nuanced temporal dynamics from both past and future contexts. Despite
their increased computational demands and potential for overfitting with small datasets,
Bi-LSTMs remain valuable for thoroughly analyzing thermal and mechanical properties
in AM. Leveraging LSTM strengths, they effectively manage long-term dependencies and
mitigate gradient issues, providing a robust model for complex material behaviors. The Bi-
LSTM architecture is defined in Figure 8, and the LSTM block within this architecture
follows the structure shown in Figure 6. The mathematical expression is given in [45].

f L
t = σ(WL

f hhL
t−1 + WL

f xhL−1
t + bL

f ) (18)

iL
t = σ(WL

ihhL
t−1 + WL

ixhL−1
t + bL

i ), (19)

c̃L
t = tanh(WL

c̃hhL
t−1 + WL

c̃xhL
t−1 + bL

c̃ ), (20)

cL
t = f L

t · cL
t−1 + iL

t · c̃L
t , (21)

oL
t = σ(WL

ohhL
t−1 + WL

oxhL
t−1 + bL

o ) (22)

hL
t = oL

t · tanh(cL
t ). (23)

yt = W→hy ht + W←hy ht + by (24)

Here, hL
t represents the output of the hidden state in the (L)th layer at time t. Equa-

tion (24) shows the output of architecture, where W→hy denotes the weight of the forward
pass, W←hy indicates the weight of the backward pass, and by signifies the bias of the output.
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Figure 8. Architecture of Bi-LSTM algorithm.

2.4.4. Gated Recurrent Units (GRUs)

GRUs offer a streamlined alternative to LSTMs and Bi-LSTMs, ideal for modeling
thermal histories in directed energy deposition. By employing just two gates—the reset
and update gates—GRUs enhance computational efficiency and reduce model complex-
ity, making them well-suited for scenarios with limited data or computational resources.
The reset gate determines how much past information to forget. In contrast, the update
gate decides how much of the current input should be incorporated, allowing the model
to handle time dependencies dynamically. Although GRUs may struggle with extremely
long dependencies, their ability to efficiently process sequential data without significant
computational overhead keeps them highly relevant for improving predictive models in
AM. Based on Figure 9, the following mathematical model has been proposed for GRU [45]:

Reset gate:
rt = σ(Wrhht−1 + Wrxxt + br), (25)

Update gate:
zt = σ(Wzhht−1 + Wzxxt + bz), (26)

h̃t = tanh(Wh̃h(rt · ht−1) + Wh̃xxt + bh̃), (27)

ht = (1− zt) · ht−1 + zt · h̃t. (28)

Here, Wr, Wz, and Wh̃h are the weights, and br and bz are the biases.
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Figure 9. Architecture of GRU algorithm.

2.4.5. Model Evaluation

In the model evaluation part, the performance of the surrogate model is assessed
using several statistical metrics to ensure accuracy and reliability. These metrics include
R-squared (R²), which measures the proportion of variance in the dependent variable that
is predictable from the independent variables; Root Mean Square Error (RMSE), which
provides the standard deviation of the prediction errors or residuals; and Mean Absolute
Error (MAE), which represents the average magnitude of the errors in a set of predictions,
without considering their direction. The mathematical formulas are presented as follows:

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (29)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (30)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (31)

Here, yi are the observed values, ŷi are the predicted values, and y is the mean of
the observed values. Additionally, the computation time of the training model is also
considered a factor in evaluating model performance.

3. Results and Discussion
3.1. Data Pre-Processing and Model Training

The data used to build the surrogate models for melt pool peak temperature and
melt pool dimension in this research originated from 27 runs of multi-physics modeling,
employing a three-level, three-factor factorial design of experiments. A total of 54,956
data points were extracted. For the melt pool peak temperature model, data points that
did not reach the melting point of Ti-6Al-4V (1605 ◦C) or exceeded (3200 ◦C) were ex-
cluded. The vaporization point of Ti-6Al-4V is 3040 ◦C, but melt pool peak temperatures
occasionally exceed this threshold. To accommodate most conditions during deposition,
temperatures above the vaporization point were also considered. After cleaning, the dataset
contained 38,867 peak temperature points, with 28,683 allocated for training and 10,184 for
testing. The training and testing sets accounted for 73.8% and 26.2%, respectively. Figure 10
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displays the training features: time, x position, y position, z position, laser power, scanning
speed, and hatch space. Figure 11 depicts the training label for melt pool peak temperature.
A detailed and clear description of the training label is shown in Figure 12. The peak
temperature dramatically increases when the laser is on and drops when it is off. Each run
consists of four tracks, and fluctuations occur during the movement in each track.

Figure 10. Training Features of melt pool peak temperature model.

Figure 11. Training Label of melt pool peak temperature model.
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Figure 12. Training label of Run10 in melt pool peak temperature model.

Regarding the melt pool dimension model, 27,772 data points were collected because
data on melt pool dimensions are extracted only when the border of the melt pool exceeds
1605 ◦C, as described in Section 2. These points are divided into 20,182 (72.6%) for training
and 7590 (27.4%) for testing. The features and labels are shown in Figure 13. In the melt
pool dimension model, time (s), laser power (W), scanning speed (mm/s), hatching space
(%), and peak temperature (◦C) are considered as features, while melt pool length, width,
and depth (mm) are considered as labels. After removing outliers, such as extremely high
and low thermal histories, 19 runs of data remain: 14 runs are designated for training
and 5 runs for testing. To mitigate the impact of disproportionately large values among
the process parameters and training features, normalization is applied in the data pre-
processing stage. The details of the data for the two surrogate models, the melt pool peak
temperature model, and the melt pool dimension model are described in Table 3.

With regard to model training, the grid search method is applied to find the proper
hyperparameters. For the XGBoost algorithm, the tree depth is set to five to avoid over-
fitting, with a learning rate of 0.01 to ensure steady convergence. The objective is defined
as ‘reg:squarederror’ to minimize squared errors in regression tasks. L1 regulariza-
tion (reg_alpha) is applied at 0.01 to promote parameter sparsity, and L2 regularization
(reg_lambda) is set at 1 to reduce weight extremes. Both subsample and colsample_bytree
are maintained at 0.8, allowing the model to learn from 80% of data and features, respec-
tively, to prevent overfitting. The evaluation metric used is ‘rmse’, measuring prediction
accuracy. Training involves 10,000 rounds, optimizing learning against computational de-
mands. In terms of RNN algorithms, the hyperparameters for all LSTM, Bi-LSTM, and GRU
algorithms are unified to ensure a fair comparison among the models. The sequence length
of data is set to 10, batch size to 64, dropout rate to 0.25, hidden dimension to 100, number
of layers to 2, learning rate to 0.001, and number of epochs to 100.
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Figure 13. Training features and labels of melt pool dimension model.

Table 3. Summary of training and testing data of surrogate models.

Model Training Data Testing Data Training Size Testing Size Features Labels

Melt Pool Peak
Temperature

Run2-4, Run10-13,
Run15-18, Run24-26

Run1, Run5, Run14,
Run23, Run27

28683 10184

Time,
Position X, Y, Z,
Laser Power,
Scanning Speed,
Hatch Space

Melt Pool Peak Temperature

Melt Pool Dimension Run2-4, Run10-13,
Run15-18, Run24-26

Run1, Run5, Run14,
Run23, Run27

20182 7590

Time,
Peak Temperature,
Laser Power,
Scanning Speed,
Hatch Space

Melt Pool Length,
Melt Pool Width,
Melt Pool Depth

3.2. Melt Pool Peak Temperature Model

In this section, four different algorithms—XGBoost, Bi-LSTM, LSTM, and GRU—are
applied to this research. To compare the pros and cons of tree-based versus RNN algo-
rithms, the predicted results by XGBoost and Bi-LSTM are presented together in one figure.
In terms of comparing the complexity of RNN algorithms, the results of LSTM and GRU are
displayed together in another figure. Additionally, two specific runs, Run1 (Laser Power:
600W, Scanning Speed: 2 mm/s, Hatching Space: 60%) and Run27 (Laser Power: 1000 W,
Scanning Speed: 6 mm/s, Hatching Space: 40%), are extracted and analyzed to facilitate a
detailed comparison and enhance clarity. A comprehensive comparison of predictions by
four algorithms is also included in this section.

Figure 14 depicts the comparison of Run1 among actual values and predicted values
by Bi-LSTM and XGBoost. It shows that the melt pool peak temperatures predicted by
Bi-LSTM closely match the actual peak temperatures. The results from XGBoost also
demonstrate reasonably good prediction performance. However, in Run27, the predictions
by XGBoost significantly deviate from the actual peak temperatures, especially in the
second and third tracks, where the predictions have more fluctuation and are higher than
the actual values. In contrast, the results from Bi-LSTM closely align with the actual values,
demonstrating the robustness of the model built using the Bi-LSTM algorithm, as shown
in Figure 15. In terms of the other two algorithms, LSTM and GRU, both achieve good
predictions that closely fit the actual values. In the first track of Run1, both predictions
are slightly lower than the actual values, yet the remaining predictions demonstrate good
performance, as depicted in Figure 16. In Run27, shown in Figure 17, except for the fourth
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track, where the predictions are slightly lower than the actual values, most of the results
closely match the actual values.

Figure 14. Run1: actual peak temperature versus prediction by Bi-LSTM and XGBoost.

Figure 15. Run27: actual peak temperature versus prediction by Bi-LSTM and XGBoost.

All predicted temperatures versus actual temperatures scatter plots are shown in
Figure 18. It demonstrates that the predicted values by XGBoost are relatively less accurate
than those produced by RNN algorithms. Most of the predicted results by RNN algorithms
closely match the red line, which has a slope of one, indicating that the predictions are both
accurate and robust. To compare the performance of the four algorithms, Table 4 reveals
that the Bi-LSTM model has the highest accuracy, longest computational time, and greatest
memory usage. Although XGBoost performs well in terms of computational time and
memory usage, its accuracy is not robust enough to predict melt pool peak temperatures
reliably. The accuracy of the LSTM and GRU models is similar; however, the computational
time and memory usage of the GRU model are lower than those of the LSTM model by
20.7% and 5.4%, respectively. In conclusion, the Bi-LSTM model provides the most accurate
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results, while the GRU model offers comparable accuracy with lower computational time
and memory usage.

Figure 16. Run1: actual peak temperature versus prediction by LSTM and GRU.

Figure 17. Run27: Actual peak temperature versus prediction by LSTM and GRU.

Table 4. Evaluation and comparative analysis: melt pool peak temperature model.

Algorithms R-Square RMSE MAE Computation
Time (s)

Memory
Usage (GB)

XGBoost 0.852 0.0550 0.0382 16.67 0.747
LSTM 0.979 0.0178 0.0126 238.60 2.41

Bi-LSTM 0.983 0.0153 0.0101 290.25 5.24
GRU 0.978 0.0179 0.0129 189.30 2.28
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Figure 18. Actual peak temperature with predictions from four algorithms.

3.3. Melt Pool Geometry Model

In this section, three surrogate models are presented: melt pool length, width, and
depth, respectively. To clarify the comparison, results from Run23 and Run14 are extracted
for discussion. Additionally, the overall results of the four algorithms are compared using
scatter plots and a comprehensive table in the subsequent contents.

3.3.1. Melt Pool Length Model

In Run14 and Run23, the Bi-LSTM model consistently outperforms the XGBoost model
in predicting melt pool length. As depicted in Figure 19, the Bi-LSTM model demonstrates
superior accuracy in predicting higher melt pool lengths, particularly for data points
from 5700 to 5800. Moreover, towards the end of Run14, from data points 6300 to 6700,
the Bi-LSTM model shows significantly less fluctuation compared to the XGBoost model,
indicating its enhanced stability under varying conditions. In Figure 20, although the
XGBoost model accurately predicts the melt pool lengths for data points from 3400 to 3750,
the overall performance of the Bi-LSTM model remains more consistent and aligned with
the actual length.
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Figure 19. Run14: Actual length versus prediction by Bi-LSTM and XGBoost.

Figure 20. Run23: Actual length versus prediction by Bi-LSTM and XGBoost.

Regarding the LSTM and GRU models, the GRU model exhibits less error in predict-
ing longer melt pool lengths, as evident in Figure 21 for data points from 5700 to 5800.
Throughout the remainder of Run14, both models achieve commendable accuracy in fitting
the actual length. In Run23, despite both models displaying a similar trend in capturing
the actual values, the LSTM model exhibits greater deviations from the actual lengths
compared to the GRU model, as illustrated in Figure 22. This result suggests that while
the LSTM model is generally reliable, the GRU model may offer better consistency and
precision under certain conditions.

The comparison of overall predictions among four algorithms is presented in a scatter
plot. Figure 23 demonstrates that the melt pool lengths predicted by the RNN algorithms
are more accurate than those predicted by the XGBoost algorithm. Notably, when the
melt pool length exceeds 2 mm, predictions from the XGBoost model deviate significantly
from the ideal fit, resulting in decreased accuracy. Table 5 summarizes the evaluation and
comparative analysis of the melt pool length models. Although the XGBoost algorithm
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impresses with its computation time and memory usage, its accuracy needs improvement.
In terms of RNN algorithms, the GRU and Bi-LSTM models perform better. In particular,
the GRU model not only achieves the highest R-square value but also requires the least
computation time and memory usage among all RNN algorithms. Compared to the Bi-
LSTM model, the GRU model’s computation time and memory usage are lower by 44%
and 51%, respectively, making it the most suitable candidate for predicting melt pool length
in this research.

Figure 21. Run14: actual length versus prediction by LSTM and GRU.

Figure 22. Run23: actual length versus prediction by LSTM and GRU.
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Figure 23. Actual length versus predictions from four algorithms.

Table 5. Evaluation and comparative analysis: melt pool length model.

Algorithms R-Square RMSE MAE Computation
Time (s)

Memory
Usage (GB)

XGBoost 0.698 0.1031 0.0629 16.22 0.269
LSTM 0.888 0.0539 0.0412 76.23 1.37

Bi-LSTM 0.902 0.0501 0.0369 120.55 2.65
GRU 0.903 0.0503 0.0381 67.75 1.30

3.3.2. Melt Pool Width Model

In the melt pool width model, Figures 24 and 25 illustrate the predictions made by the
Bi-LSTM and XGBoost algorithms for Run14 and Run23, respectively. Those scatter plots
show a notable variance in accuracy between the algorithms. For Run14, particularly from
data point 5500 to 5900, and in Run23 from data point 3100 to 3400, the predictions by the
XGBoost model significantly exceed the actual width, highlighting its lower accuracy com-
pared to the Bi-LSTM model. The Bi-LSTM model more consistently aligns with the actual
measurements, particularly in complex segments where the melt pool width fluctuates.
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Figure 24. Run14: actual width versus prediction by Bi-LSTM and XGBoost.

Figure 25. Run23: actual width versus prediction by Bi-LSTM and XGBoost.

Figures 26 and 27 showcase the performance of the LSTM and GRU models for Run14
and Run23, respectively. Both models exhibit similar trends and achieve commendable
accuracy in fitting the actual widths in Run14, with the GRU model slightly outperforming
the LSTM. Notably, in Run23, while neither model perfectly replicates the fluctuation
observed in the actual width measurements, they successfully capture the broader trends.
The GRU model consistently demonstrates a slight edge over the LSTM in terms of align-
ment with the actual data across both runs, indicating its robustness in modeling the melt
pool width.

The overall predictive performance of four algorithms is displayed in a scatter plot
for comparison, as shown in Figure 28. The RNN algorithms, particularly Bi-LSTM and
GRU, exhibit superior performance in predicting sequential data such as melt pool width,
evidenced by their close alignment with the ideal fit line. Both models display similar
commendable accuracy, effectively capturing the sequential dependencies within the data.
In contrast, predictions by the XGBoost algorithm are notably more dispersed, indicating
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less accuracy. This dispersion becomes especially pronounced when the actual width
exceeds 2 mm, where XGBoost predictions significantly deviate from the ideal fit. Table 6
summarizes the comparison among all algorithms, highlighting that the Bi-LSTM model
achieves the highest R-square value. However, the GRU model offers comparable accuracy
with lower computation time and memory usage—40% and 51% less than the Bi-LSTM
model, respectively—demonstrating its greater robustness.

Figure 26. Run14: actual width versus prediction by LSTM and GRU.

Figure 27. Run23: actual width versus prediction by LSTM and GRU.
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Figure 28. Actual width versus predictions from four algorithms.

Table 6. Evaluation and comparative analysis: melt pool width model.

Algorithms R-Square RMSE MAE Computation
Time (s)

Memory
Usage (GB)

XGBoost 0.752 0.0963 0.0762 16.95 0.371
LSTM 0.946 0.0418 0.0313 86.26 1.37

Bi-LSTM 0.952 0.0399 0.0293 128.70 2.65
GRU 0.951 0.04 0.0291 76.73 1.30

3.3.3. Melt Pool Depth Model

In the melt pool depth model, the XGBoost model displays a surprising parity with the
Bi-LSTM model in terms of performance in Run14, especially noticeable at the start where
XGBoost surpasses Bi-LSTM in accuracy, as shown in Figure 29. In contrast, during Run23
as depicted in Figure 30, although the overall trends of both models align closely with
the actual depth measurements, the XGBoost predictions show greater deviations from
the actual values, suggesting less consistency compared to the Bi-LSTM model. This
indicates that while XGBoost can match the performance of Bi-LSTM in certain scenarios,
its performance can be less reliable in others.
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Figure 29. Run14: actual depth versus prediction by Bi-LSTM and XGBoost.

Figure 30. Run23: actual depth versus prediction by Bi-LSTM and XGBoost.

Regarding the LSTM and GRU models, their performance in predicting melt pool
depth is commendably consistent, exhibiting similar trends. Both models closely align
with the actual values, demonstrating their effectiveness in capturing sequential data
characteristics. In Run14, although the predictions start slightly below the actual values,
both LSTM and GRU adjust quickly and maintain a good match throughout the data range,
as shown in Figure 31. Run23 shows a slight divergence in the predictions from both
models, especially in the latter half, where the LSTM model exhibits more deviation than
the GRU model, yet both still maintain a general adherence to the trend of actual depth
values, as illustrated in Figure 32.

The scatter plots of predictions by all four algorithms are presented in Figure 33. Un-
like the melt pool peak temperature and other geometric models, no single model exhibits
particularly strong performance. All models deviate from the ideal fit, especially when pre-
dicting maximum and minimum melt pool depths. For a more comprehensive comparison
and analysis, Table 7 reveals that the XGBoost model has the shortest computation time and
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lowest memory usage, but relatively lower accuracy. Additionally, the GRU model boasts
the highest R-square value and has lower computation time and memory usage—29% and
50% less, respectively, compared to the Bi-LSTM model—highlighting the reliability and
robustness of the GRU model.

Figure 31. Run14: actual depth versus prediction by LSTM and GRU.

Figure 32. Run23: actual depth versus prediction by LSTM and GRU.
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Figure 33. Actual depth versus predictions from four algorithms.

Table 7. Evaluation and comparative analysis: melt pool depth model.

Algorithms R-Square RMSE MAE Computation
Time (s)

Memory
Usage (GB)

XGBoost 0.751 0.0892 0.0555 20.20 0.344
LSTM 0.871 0.0479 0.0360 97.69 1.44

Bi-LSTM 0.881 0.0476 0.0359 120.19 2.72
GRU 0.885 0.0420 0.0293 85.43 1.37

4. Conclusions

This study developed a recurrent neural network (RNN)-based surrogate model to
predict melt pool characteristics, such as peak temperature, length, width, and depth,
in directed energy deposition (DED) processes. By integrating a three-level, three-factor
design of experiments and multi-physics simulation data into an LSTM, Bi-LSTM, and GRU
framework, the model demonstrates exceptional predictive accuracy for sequential melt
pool data under varied processing conditions. The research also presents a comprehensive
evaluation and comparative analysis of surrogate models built with different algorithms.
Key contributions of this research include:
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• Robust Model Architecture: Employed advanced RNN architectures—LSTM, Bi-
LSTM, and GRU—to effectively capture the sequential and dynamic behavior of melt
pools in DED processes.

• High Predictive Accuracy: Achieved an R-square of 0.983 for melt pool peak tempera-
ture predictions using the Bi-LSTM algorithm. Demonstrated superior performance in
melt pool geometry predictions:

– Melt pool length: R-square of 0.903 with the GRU algorithm.
– Melt pool width: R-square of 0.952 with the Bi-LSTM algorithm.
– Melt pool depth: R-square of 0.885 with the GRU algorithm.

• Efficiency and Robustness: The GRU-based surrogate model outperformed other
algorithms in terms of accuracy, computation time, and memory usage, showing a
reduction of at least 29% in computation time and 50% in memory usage, highlighting
the model’s efficiency and robustness.
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