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Abstract: In recent decades, laser additive manufacturing has seen rapid development and has been
applied to various fields, including the aerospace, automotive, and biomedical industries. However,
the residual stresses that form during the manufacturing process can lead to defects in the printed
parts, such as distortion and cracking. Therefore, accurately predicting residual stresses is crucial for
preventing part failure and ensuring product quality. This critical review covers the fundamental
aspects and formation mechanisms of residual stresses. It also extensively discusses the prediction
of residual stresses utilizing experimental, computational, and machine learning methods. Finally,
the review addresses the challenges and future directions in predicting residual stresses in laser
additive manufacturing.

Keywords: residual stresses; experimental measurement; computational method; machine learning

1. Introduction

Laser Additive Manufacturing (AM) is an emerging technology that employs focused
laser beams to create complex geometries from a digital model, doing so layer by layer.
This process offers unparalleled design freedom, rapid prototyping, and the ability to create
internal structures [1]. Various techniques exist within additive manufacturing, each with
unique applications and material compatibility. Laser Powder Bed Fusion (LPBF) is widely
used in producing intricate parts and is ideal for materials like metal and plastic. Wire-
Directed Energy Deposition (W-DED) involves the use of wire feedstock, offering benefits in
terms of material usage and build rate. Powder-Directed Energy Deposition (P-DED) uses
powder feedstock and is better suited for repair applications or multi-material layering [2].

Laser additive manufacturing is also associated with various defects and disadvan-
tages, such as lack of fusion, porosity, low surface finish, and dimensional tolerance. The
formation of residual stresses during AM processes raises very critical issues, as it can
lead to delamination, cracking, and early failure in AM parts [3,4]. Figure 1 shows various
instances of part failure due to residual stress formation. Figure 1a–d shows cracking [5],
whereas Figure 1e,f show delamination and distortion of AM parts, respectively [6,7].
Residual stresses in AM result from uneven cooling rates and thermal gradients during
material deposition and solidification [8]. Residual stresses and distortion in AM can un-
dermine part quality and integrity, posing significant challenges such as decreased fatigue
strength, shrinking, and bending [9–11]. Potential applications of metal additive manufac-
turing include the manufacturing of complex free-form part designs and customization in
aerospace [12–14], automotive [15], and biomedical applications [16]. Due to the critical
nature of these applications, defects in AM parts could even lead to fatality. Residual
stresses, in part, if not accounted for, can cause early failure during service, leading to
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detrimental effects on various stakeholders. Thus, these issues must be carefully researched
and managed in the AM process.

Figure 1. Effect of residual stresses in additive manufactured parts: (a–d) cracking, (e) delamination,
and (f) distortion [17].

Residual stresses naturally reach an equilibrium state, encompassing tensile residual
stresses, which are often seen as detrimental, and compressive residual stresses, which
are typically considered beneficial [18]. In AM, residual stresses manifest in the following
three distinct types: Type I, macro-residual stresses, occur at a scale encompassing multiple
grains; Type II, micro-residual stresses, develop within a single grain due to microstructural
transformations; Type III, sub-micro-residual stresses, emerge within a few atomic units of
the grain, influenced by factors like crystalline vacancies and dislocations [19], as shown in
Figure 2.

Figure 2. Three types of residual stresses [19].

Understanding the impact of residual stresses on part quality underscores the sig-
nificance of both measuring and predicting residual stresses. This article provides an
overview of various residual stress measurement methods, encompassing destructive,
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semi-destructive, and non-destructive techniques. Given the constraints of time and cost
associated with experimental measurement, computational methods have gained popular-
ity in recent years for predicting residual stresses prior to manufacturing. To enhance the
versatility and control of computational approaches, analytical methods have also become
increasingly prevalent. Moreover, statistical methods and machine learning have found
applications in this research field, contributing to the efficiency of residual stress prediction.

The aim of this review is to provide readers with a comprehensive overview of current
techniques and knowledge related to predicting residual stresses in additive manufacturing
(AM) parts. The subsequent sections cover the fundamentals of residual stress and its for-
mation, as well as the measurement and prediction of residual stresses using experimental,
computational, analytical, and machine learning methods. Following this discussion, the
authors outline several future research trends in this field.

2. Basics of Residual Stress and Its Formation

Residual stresses in laser additively manufactured parts can be categorized in three
forms, as shown in Figure 3 [17,20]. The first phenomenon, known as the Thermal Gradient
Mechanism (TGM), begins with localized heating and eventually creates a molten pool
on the metal, while the remaining part of the metal plate maintains a normal temperature.
This molten pool generates an expanding force due to its higher temperature, attempting
to bend the plate outward. This localized bending often exceeds the elastic region of the
part, causing plastic deformation [21]. The second stage, which is the cool-down phase
(CDP) mechanism, involves the cooling of the molten pool. As the melted material tries to
solidify, it contracts inward, causing the surrounding material to compress along with it,
resulting in an inward distortion of the metallic plate.

Figure 3. Different mechanisms of residual stress formation [17].

The solid-state phase transition mechanism involves multiple phase transitions during
the solidification process [22]. Depending on the cooling rate of certain materials, the
ultimately solidified material may not have the same phase as it initially started with,
resulting in the formation of residual stresses [23]. This review exclusively focuses on
residual stress formation due to the first two mechanisms, namely TGM and CDP.

Throughout the AM process, no external forces are applied; instead, all the stresses
that arise stem from the laser heat source [24]. In simpler terms, residual stresses encompass
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the forces that persist within the deposit and substrate, even after all external operations
are finished. These residual stresses can be the reason for the generation of strain and,
consequently, deformation [25]. To determine whether these residual stresses surpass
acceptable limits and could potentially result in distortion or part failure, various failure
criteria must be satisfied. In many instances, stress components, maximum principal stress,
and von Mises criteria are examined to assess part qualification [26]. Envisioning a single
point within a 3D cube that is undergoing stresses, we can classify them into normal stresses
and shear stresses, known as stress tensors. In Figure 4, certain tensor components are
illustrated; these components play a pivotal role in comprehending each stress type on
any plane, as expressed in Equations (1)–(3). The symbol σ is normal stress, and τ is shear
stress, as shown in follow equations.

σ33 = lim
∆→0

∆F3

∆A
(1)

τ32 = lim
∆→0

∆F2

∆A
(2)

τ31 = lim
∆→0

∆F1

∆A
(3)

Figure 4. Distribution of Stress components in 3D.

In Figure 5, materials IN718 and Ti64 use similar process parameters, i.e., a scan
speed of 15 mm/s and laser power of 250 W. It was observed that for Ti64, the melt pool
dimensions were larger as compared to IN718, creating more residual stresses in their
respective directions [27].

Newkirk et al. conducted a numerical analysis by depositing 304 L using L-DED with
three layers arranged in a zig-zag fashion, utilizing a laser power of 607 W and a scan
speed of 250 mm/min. They also predicted the residual stresses [24]. Figure 6 illustrates
the directional stresses forecasted by Abaqus CAE. It is noticeable that the majority of the
tensile stresses occur in the longitudinal direction, possibly due to the cooling phase in
the molten layers. During the solidification process, the remelted lower layers solidify,
creating tensile stress due to restrictions imposed by the lower materials or previously
solidified material.
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Figure 5. Stress distribution in x, y, and z directions during deposition of IN718 (a–c) and Ti64
(d–f) [27].

Figure 6. Directional stresses, in Pascal units, forecasted by Abaqus CAE in the x, y, and z planes on
the deposit before sectioning in half (1) and after sectioning in half (2) [24].

Although the stress tensor explains the evolution of stresses in the respective directions,
it is still essential to establish fail-safe criteria. Typically, for brittle materials, the maximum
principal stress failure criterion is considered [28]. Three different variants of principal
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stress help understand the fracture location of the final part. The relationship between
principal stress and the stress tensors in two dimensions is explained in Equation (4) [29].

σ1,2 =
σ11 + σ22

2
±

√(
σ11 − σ22

2

)2
+ τ2

12 (4)

Li et al. [26] conducted a numerical analysis using a square substrate with a single layer
to compare different scan strategies with the same process parameters. They concluded
that a longer scan path would result in more residual stresses. Consequently, the spiral
scan, with the longest track length, exhibited the highest principal stresses, while the S-scan
type displayed the lowest principal stresses, as depicted in Figure 7 [26].

tan 2θP =
τ12

(σ1 − σ2)/2
(5)

Having a failure criterion that addresses ductile materials is crucial because relying
solely on the Maximum Principal Theory is inadequate for predicting the yield limit. The
Maximum Distortion Energy Theory, also known as the von Mises criteria, asserts that
yielding occurs when the combination of stress tensors surpasses the material’s yield point,
as demonstrated in Equation (6) [29].

σvon =

√
1
2
[(σ11 − σ22)

2 + (σ22 − σ33)
2 + (σ33 − σ11)

2] + 3
[(

τ2
12
)
+

(
τ2

23
)
+

(
τ2

31
)]

(6)

Figure 7. Distribution of maximum principal stresses, units in Pascal, using different scan strategies,
(top view, unit: Pa): (a) zig-zag; (b) raster; (c) alternate line; (d) out–in spiral; (e) in–out spiral;
(f) S. [26].

Denlinger et al. conducted experiments on Ti64 and Inconel 625, utilizing identical
process parameters but varying the interlayer dwell time from 0 to 40 s. They observed
that increasing the dwell time led to an upsurge in von Mises stress for Ti64, while the
opposite held true for Inconel 625 [30]. The variation in residual stresses between these
two materials can be attributed to their structural distinctions [31]. Inconel maintains a
face-centered cubic structure and does not undergo solid-state transformation, whereas Ti64
undergoes a two-phase (alpha–beta) allotropic solid-state transition [32]. In a related study,
Lan Li et al. conducted experiments and numerical analyses to repair two geometries (V
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and rectangle-shaped), using powder DED technology with the same process parameters.
It was noticed that more energy was transmitted in the rectangle shape, as it had a larger
area to be deposited at the bottom, consequently exhibiting higher von Mises stresses, as
shown in Figure 8. It was concluded that using a rectangle shape for repairs could lead to
delamination as a result of exceeding the yield limit for Ti64 [33].

Figure 8. von Mises stress distributionwhile repairing using L-DEDin (a)V-shaped and (b) rectangular
groove geometries [33].

3. Experimental Method

Residual stresses in AM parts are often measured using various experimental meth-
ods [34]. Over the years, numerous researchers have worked on residual stresses measure-
ment of traditionally manufactured parts [35]. Residual stress formation in welded joints
has been well explored using various experimental methods [36,37]. These experimental
methods are also utilized for RS measurement of AM parts. Most of these methods have
been extensively studied and are well developed for practical applications [38]. This section
provides a brief overview of the experiment-based RS measurement methods followed by
a discussion of their capabilities and comparison for AM parts.

As direct measurement of residual stresses in a manufactured part is not possible,
measurement techniques often measure the strain or deformation of the final part and
compare it with a non-stressed reference state [39,40]. Variation in the strain or material
property can be correlated to the residual stress through established formulations such
as Hooke’s law. These methods can be broadly classified into three categories, namely
destructive, semi-destructive, and non-destructive methods. In destructive methods, a spec-
imen completely loses its integrity as it is subjected to irreversible, macro-level alterations
and cannot be used for its intended applications [41]. Some of the destructive methods
include the contour method, hole drilling, the deep hole technique, etc. Non-destructive
techniques such as the ultrasonic method and the Barkhausen noise method retain the
integrity of the specimen after testing [42]. They analyze the variation of the material
property in the stressed state to compute the stress values [43]. Semi-destructive methods
can retain the integrity of the specimen to a certain extent but often lead to surface defects
and micro-damage to the part, either during sample preparation or during the testing
process [44]. X-ray diffraction and nanoindentation are examples of this category. Due to
micro defects and damage, specimens are often discarded for critical applications. Figure 9
shows the classification of various experiment-based residual stress measurement methods,
including destructive, semi-destructive, and non-destructive methods.
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Figure 9. Experiment-based residual stress measurement methods.

3.1. Destructive Methods

Destructive methods are often referred to as mechanical methods because they involve
a stress relaxation procedure, and their fundamental principles of operation are similar. The
presence of residual stresses in a part results in a distortion from the initial geometry and
material removal from the part, which can lead to the relaxation of these stresses, followed
by deformation to the initial geometry. Measurement of the magnitude and direction of
this deformation can be correlated to the residual stress values of the part [41]. The most
common examples of these destructive methods are detailed below.

3.1.1. Slitting Method

The slitting method is used to determine the variation of residual stresses along the
specimen thickness from the surface. As the name suggests, a thin slit or groove is made
on the top surface, and the resulting strain relaxation is measured using strain gauges. The
process is repeated with incremental increases in the depth of the slit [45]. Recorded strain
data are used to map the stress profiles perpendicular to the cut surface using elasticity
theory. The cutting method should not induce additional heating of the sample, which
could release the stresses.

3.1.2. Contour Method

The contour method also employs material removal for a stress relaxation procedure.
In this method, a specimen is cut along the section where the stress has to be measured.
Wire EDM is often used to ensure a that flat, ideal plane is obtained after cutting the
contour. Relaxation and redistribution of the residual stress cause the contour to deform.
The external reverse stress required to reinstate the plain state of the contour before cutting
is calculated using simulation models. This external stress is considered equivalent to
the residual stresses acting perpendicular to the cut surface [46]. The repeatability of this
method for RS measurement is the same as or better than that of other methods [47].

3.1.3. Hole-Drilling Method

Hole drilling is a very common and fast method used to obtain a 2D stress distribution.
This method involves drilling a hole in the specimen surface and measuring the strain
due to stress relaxation using strain gauges. It has excellent repeatability and is backed by
the ASTM E837 standard [9]. The accuracy of the process depends on the quality of the
drilling process.
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3.1.4. Ring Core Method

The ring core method can be thought of as a reversal of the hole-drilling method. In
hole drilling, a hole is created, and the surrounding material on the outside is allowed to
expand. However, in this method, a ring is machined, and the cylindrical specimen inside
the hollow ring is allowed to deform, followed by strain measurements and RS calculations.
This method offers larger surface strains but degrades the specimen significantly [9].

3.1.5. Deep Hole Method

The deep hole method is a combination of the hole-drilling and ring core methods.
The experimental procedure for this method begins with drilling a hole through the height
of the sample. The diameter of this hole is accurately measured, followed by drilling a ring
around it. This results in the deformation of the core material between the ring and the
hole, changing the diameter of hole. This variation is used to calculate the stresses. All
these methods are useful in hybrid manufacturing scenarios when there is a requirement to
machine a hole in an additively manufactured part [45].

3.2. Semi-Destructive Methods

Semi-destructive methods employ either stress relaxation or material property compar-
ison to determine the residual stresses. They do not destroy the specimen completely but
often result in surface defects and sub-surface damage, which could potentially affect the
performance of the part in critical applications such as the aerospace or biomedical fields.

3.2.1. X-ray Diffraction

XRD is one of the most popular and widely used residual stress measurement methods.
It is based on the variation of lattice spacing or inter-planar distance. Crystal lattices have
characteristics of inter-planar distance during the unstressed state. An X-ray beam incident
on the specimen surface is diffracted and captured by a detector at different reflective
angles [48,49]. The lattice spacing of the specimen can be calculated using Bragg’s law. The
change in the inter-planar spacing can be used to calculate the elastic strain, which can be
utilized to calculate the magnitude and direction of residual stresses, provided the elastic
properties of the material are known [50]. Different methods are utilized to extract the stress
values from the diffraction readings, such as the sin2 method and the cos method [51,52].

Even though the operating mechanism of the XRD method does not cause any material
destruction, the success of the method depends on the surface finish of the specimen. Sam-
ple preparation for XRD often involves surface polishing to obtain a micron-level surface
finish, which can affect the residual stresses of the sample. Also, X-rays can penetrate to
only few microns (<30 µm) [46]. Hence, to map the stress state of the material, layer-by-
layer material removal is required, which destroys the specimen. High-energy synchrotron
X-rays can be used to analyze Type III stress with nanometer-level penetration [53]. XRD
combined with ion beam milling can be utilized to measure residual stresses [44,54]. How-
ever, the very high cost and scarcity of research facilities make it almost unavailable for
most applications.

3.2.2. Neutron Diffraction

Neutron diffraction is a method similar to XRD, employing the same principle for RS
measurement. However, as the source irradiation is a neutron, it can penetrate into deeper
sections, ranging from 25 mm for steel to 100 mm for aluminum. However, the availability
of neutron diffraction equipment is very limited. Neutron diffraction can also employ the
time-of-flight method to find the variation in lattice spacing for poly-crystalline materials.
The time taken by the incident beam to be detected can be correlated to the lattice spacing.
In this method, the incident angle and rotation angle are kept constant, but pulsed incident
beams of different wavelengths are used [9].
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3.2.3. Nanoindentation

Nanoindentation utilizes the variation in localized hardness and elastic properties due
to the presence of residual stresses. In this method, an indentation is made on the specimen
surface at the nano scale. Tensile residual stresses allow for a larger contact area and deeper
penetration, whereas compressive RS inversely affects the indentation. This method can be
utilized to map the localized variation in AM samples but is limited to surface levels [46].

3.3. Non-Destructive Methods

Non-destructive methods maintain the integrity of the specimen or part, thus making
it available for the intended use even after measurement. These methods compare a specific
material property of the stressed part with a non-stressed reference state. Hence, no material
removal is required for these methods.

3.3.1. Ultrasonic Method

The ultrasonic method utilizes the acoustoelastic effect; the presence of applied or
residual stresses in a solid varies the propagation characteristics of an acoustic wave.
Compared to other non-destructive methods, the ultrasonic method can measure deeper
stresses in the sample [55]. However, knowledge of acoustoelastic coefficients that define
the linear relationship between stress and ultrasonic velocity is required prior to testing.
Also, the change in ultrasonic velocities for each MPa of stress is very low (0.001%), which
necessitates highly accurate measurement systems [53].

3.3.2. Barkhausen Noise Method

The BNM is a non-destructive method applicable to ferromagnetic materials that can
be magnetized. It is based on magneto-elastic interaction, where the elastic properties
vary with the domain and magnetic property of the specimen [56]. Barkhausen noise,
defined as the variation in electrical pulses induced in a coil due to a jump in the magnetic
force field of the specimen when small-order magnetic domains are aligned parallel to the
applied magnetic field, is analyzed for RS characterization [45]. Due to magneto-elastic
interaction, for positive magnetic anisotropic materials such as iron, steels, and cobalt,
compressive stresses tend to decrease Barkhausen noise intensity, whereas tensile stresses
increases it [57].

BNM is also influenced by the microstructure of the specimen. Hence, initial cal-
ibration is highly significant in obtaining accurate results using this method [56]. This
feature limits the the application of the BNM for AM parts, as the microstructure is highly
non-homogeneous.

3.4. Comparison of Different Methods for AM Parts

Various methods used for measuring residual stresses were discussed previously. This
section compares the discussed methods based on their advantages and limitations in
measuring residual stresses in AM parts. Non-destructive methods are often preferred
for AM parts, as they maintain the integrity of the part. However, RS measurement
using non-destructive methods is associated with a lack of accuracy and difficulty in the
experimental setup. Semi-destructive methods such as X-ray diffraction are widely utilized
and are sometimes considered non-destructive. However, in reality, measurement using
these methods depends on sample preparation and the dimensional limitations of the
equipment [58]. Preparation of samples for XRD or neutron diffraction causes irreversible
damage to the specimens, making these methods semi-destructive. Some of the widely
used RS measurement methods are destructive or semi-destructive techniques. These
are more mature technologies and can provide accurate, repeatable results. Additively
manufactured parts lack repeatability compared to their conventional counterparts [59].
As a result, the standard testing procedure of randomly selecting a few specimens from
a batch and extending the test results to the entire batch does not fit well [60]. Moreover,
due to the intricate designs and high costs associated with producing AM parts, it is
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crucial to avoid any testing methods that could damage the parts’ structural integrity.
This presents a decision-making scenario while choosing a method for measuring residual
stresses, with benefits and disadvantages of different methods to be considered. Table 1
provides a summary of this comparison. Figure 10 provides an approximate map of the
spatial resolution, penetration depth, and type of stress measured by various methods.

Figure 10. Capability of experiment-based RS measurement methods (gray–destructive, White–semi
destructive, red–non destructive methods); adapted from [53].

Table 1. Comparison of RS measurement methods for AM parts; compiled from [45,46].

Method Principle Stress Type Advantages Limitations

Slitting Method Strain release + elastic
mechanics Type I Stress profile over entire

specimen depth

Specimen destroyed; only
stresses normal to cut

surface

Contour Method
Strain release +

Bueckner’s superposition
principle

Type II
Wide range of materials;

larger components;
high-resolution maps

Destructive; immature
theory; complex

interpretation of data

Hole Drilling Strain release + elastic
mechanics Type I

3 in-plane stresses; fast
and easily available
method; handheld

equipment

Specimen destroyed;
strain gauge affects

accuracy

Ring Core Strain release + elastic
mechanics Type I Large depth measurement

range; high accuracy

Significant damage to
specimen; specialized

equipment needed

Deep Hole Drilling Strain release + elastic
mechanics Type I

Deep interior stress
measurement; thick

sections; wide range of
materials

Specimen destroyed;
interpretation of data;

limited strain sensitivity

X-ray Diffraction Lattice spacing variation +
elastic mechanics Type II

Matured technology;
widely used method; high

resolution

Works for crystalline
materials with grains up
to 100 microns; specimen
texture controls accuracy;

laboratory equipment
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Table 1. Cont.

Method Principle Stress Type Advantages Limitations

Slitting Method Strain release + elastic
mechanics Type I Stress profile over entire

specimen depth

Specimen destroyed; only
stresses normal to cut

surface

Neutron Diffraction Lattice spacing variation Type I & Type II Deep penetration and
high resolution

Neutron source
availability; lab-based

system

Nanoindentation Hardness variation, Hertz
contact theory Type II

High resolution for
mapping of localized

stress variation

Limited to surface stresses
and thin films

Ultrasonic Method Acoustoelastic effect Type I

Independent of material,
geometry, and texture;

quick process; handheld
equipment

Limited resolution; bulk
measurements over large

volume

Barkhausen Noise Method Magnetoelastic interaction Type I
Rapid process; no

specimen contact; suitable
for circular geometry

Only ferromagnetic
materials; Microstructure

affects measurement;
MBN signal saturation

limits range of measurable
stresses

4. Computational Measurement Methods
4.1. Governing Equations of AM Processes

As discussed earlier, the formation of residual stresses in additive manufacturing (AM)
parts is attributed to the laser heat source during both the heating and cooling processes.
Therefore, this section can be divided into the following two parts: (1) thermal equations
and (2) mechanical Equations.

4.1.1. Thermal Model

The temperature distribution within a body, characterized by density (ρ) and specific
heat (C), can be calculated by incorporating Fourier’s law of conduction, as shown in
Equation (7) [24].

ρC
∂T
∂t

=
∂

∂x

(
k

∂T
∂x

)
+

∂

∂y

(
k

∂T
∂y

)
+

∂

∂z

(
k

∂T
∂z

)
+ Q (7)

In this equation, T represents temperature, t stands for time, k denotes thermal conduc-
tivity within the respective frame of reference, and Q represents internal heat generation. To
solve this equation, proper initial and boundary conditions are necessary, as discussed below.

Various heat source models have been employed, and they can be essentially catego-
rized into two types based on whether they use surface or body heat flux. Surface heat flux
equations involve 2D heat flux that can be applied to the surface. A few examples include
uniform heat sources, concentrated heat sources, and 2D Gaussian heat sources. The most
commonly used body heat flux is Goldak’s double ellipsoidal heat source, as shown in
Equation (8) [61].

Q =
6
√

3Pη

abc
√

π
exp

(
−3x2

a2 − 3y2

b2 − 3(z + Vst)2

c2

)
(8)

where P is power in Watts; η is the absorption co-efficient; a, b, and c are the width, depth,
and length of the 3D Gaussian curve, respectively; and x, y, and z are the axes of the
coordinate system, where the heat source moves in the z direction with respect to time (t)
and velocity (Vs) [62].

During the additive manufacturing (AM) process, heat loss occurs through several
methods, including convection and radiation. Among these, convection is a significant
source of heat loss [63]. Convection mechanisms can be categorized as either free/natural
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or forced. Natural convection, which occurs when fluid or air movement is driven solely
by buoyancy forces arising from temperature variations without external mechanical
assistance, typically has values ranging from 5 to 15 W/m2C [64]. The measurement of
free convection can be readily accomplished using either the lumped capacitance method
or analytical techniques [65]. Forced convection happens when air/fluid moves due to
external force. This phenomenon can be experienced by the melt pool due to shielding
and the carrier gas of powder during deposition. Things get even more complex when
deposition arms or fixtures are moving in different directions to perform 3D deposition;
hence, this is difficult to measure and requires a wide range of experimentation [62]. In
various literature reports, the peak of its value ranges from 40 to 120 W/m2C [66]. In some
literature, this value was approximated as 18 W/m2C to obtain accurate results for thermal
analysis [30]. For LPBF, it was observed that a forced convection value in the range of
5–20 W/m2C produced accurate models [67].

Heat loss due to radiation can be calculated using the Stephen–Boltzman law, as shown
in Equation (9) [62].

qrad = ϵσ
(

T4
s − T4

∞

)
(9)

where ϵ is emissivity, σ is Stephen Boltzmann’s constant, and Ts and T∞ represent the
surface and room temperature, respectively. Sometimes, the above-mentioned loss of heat
can be considered as a combined heat loss, as shown in Equations (10) and (11).

h = h f ree + h f orced + hrad (10)

qconv = h(Ts − T∞) (11)

where h f ree, h f orced and hradiation are the coefficients of free, forced, and radiation heat
transfer, respectively, and qconv is heat loss due to convection.

4.1.2. Mechanical Model

The one-way or weakly coupled solution involves utilizing thermal data calculated in
the preceding section to compute residual stresses in an additively manufactured part. For
mechanical calculation, Equation (12) [66] serves as the equilibrium equation.

∇ · σ + b = 0 (12)

where σ is the stress tensor and b is body forces. A relationship is required to obtain
information on stress and strain; hence, Equation (13) is used for that purpose.

σ = Cϵe (13)

where ϵe is elastic strain and C is the fourth-order stiffness of the material [66]. In this
process, residual stress forms due to strain induced by thermal or mechanical factors. When
we expand these terms in the form of Equation (14), it appears as follows [24]:

ϵij = ϵE
ij + ϵP

ij + ϵT
ij + ϵ∆V

ij + ϵ
Trp
ij (14)

where ϵE
ij is strain due to elasticity, ϵP

ij is due to plasticity, ϵT
ij is due to thermal strain, ϵ∆V

ij is

due to volumetric change because of plastic transformation, and ϵ
Trp
ij is due to solid-state

transition. ϵ
Trp
ij and ϵ∆V

ij are due to solid-state phase transformation and are not discussed
here so can be ignored for the purposes of this study.

4.2. Numerical Modeling Using FEA

To conduct numerical analysis, the governing equations are transformed into their
weak form through the Galerkin method. The nodal values obtained from this weak
formulation can then be employed to extract thermal data. The computation of thermal
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values first, followed by subsequent derivation of mechanical or stress values based on
them is referred to as the one-way or decoupled method or the sequential method. This
approach assumes that the mechanical model does not affect the thermal model [68]. One of
the advantages of employing this method is that it reduces computational time compared
to the coupled method. The partial differential equation of thermal analysis is parabolic to
solve for thermal history, whereas for mechanical analysis it is of a quasi-static nature and
is elliptical [62].

The addition of material can be mimicked using various methods, which include quiet
activation, inactive activation, and hybrid activation.

The quiet-element method involves introducing elements representing metal deposi-
tion regions initially and assigning properties to minimize their impact. In heat transfer
analyses, thermal conductivity (k) is reduced to limit conduction, and specific heat (Cp) is
adjusted for energy transfer. This approach is easy to implement, maintaining a constant
number of equations without the need for renumbering or solver initialization. However,
inappropriate scaling factors can lead to errors from energy conduction or ill-conditioned
Jacobians. In modeling additive manufacturing, where most of the domain consists of quiet
elements, this method may result in lengthy computations [62].

The inactive-element method removes elements representing metal deposition regions
from the analysis, focusing solely on nodal degrees of freedom for active elements. This
approach avoids errors or ill-conditioning from scaling factors and results in smaller
algebraic systems during Newton–Raphson linearization. However, it is less adaptable
to general-purpose commercial codes, requiring repeated equation numbering and solver
initialization when elements are activated and potentially introducing artificial energy
when shared nodes have different initial temperatures [62].

The hybrid-element activation strategy was introduced as an enhancement over the
quiet and inactive methods. Initially, elements are set as inactive, but they are gradually
transitioned layer by layer to quiet, then to active, based on heat input. This approach
minimizes equation numbering and solver initialization, leading to faster computations
with comparable results [69].

4.3. Analytical Method

The analytical solution is the one that uses partial differential equations to solve for
exact solutions. For example, a 1D governing equation that includes conduction and
convection can be written as Equation (15) [62].

−k
dT
dx

+ h(T − T∞) = 0 (15)

After solving the above differential equation for temperature, Equation (16) is obtained,

TL =
k
L T0 + hT∞

h + k
L

(16)

where L is the length of the plate, TL is the temperature on that plate, and the remaining
variables bear the same meanings as above. This method can not only be used to solve for
temperature values of the 1D system but can also be used to verify the FE code to observe
the error [62]. Ning et al. conducted analytical modeling to solve for thermal stresses, as
shown in the equations below [70,71].



Materials 2024, 17, 1498 15 of 26

σtherm
xx (x, z) = − αE

1 − 2v

∫ ∞

0

∫ ∞

−∞

(
Gxh

∂T
∂x

(x′, z′) + Gxv
∂T
∂z

(x′, z′)
)

dx′dz′ (17)

+
2z
π

∫ ∞

−∞

p(t)(t − x)2

((t − x)2) + z2)
2 dt − αET(x, z)

1 − 2v

σtherm
zz (x, z) = − αE

1 − 2v

∫ ∞

0

∫ ∞

−∞

(
Gzh

∂T
∂x

(x′, z′) + Gzv
∂T
∂z

(x′, z′)
)

dx′dz′ (18)

+
2z3

π

∫ ∞

−∞

p(t)

((t − x)2) + z2)
2 dt − αET(x, z)

1 − 2v

σtherm
xz (x, z) = − αE

1 − 2v

∫ ∞

0

∫ ∞

−∞

(
Gxzh

∂T
∂x

(x′, z′) + Gxzv
∂T
∂z

(x′, z′)
)

dx′dz′ (19)

+
2z2

π

∫ ∞

−∞

p(t)(t − x)

((t − x)2) + z2)
2 dt

σtherm
xz (x, z) = v(σtherm

xx + σtherm
zz )− αET(x, z) (20)

p(t) =
αET(x, z = 0)

1 − 2v
(21)

where the above-mentioned thermal stresses (σ) are calculated using Green’s function (G).
Khan et al. [72] conducted analytical modeling and compared their results of residual stress
prediction with the numerical method, as shown in Table 2.

Table 2. Comparison of computational time for prediction of residual stresses during LPBF deposition
using numerical and analytical methods [72].

Dimensions (mm3)
Simulation Details Single-Core Run Time (h)

Computed Layers Nodes Elements Numerical Analytical

35 × 15 × 0.15 1 111,908 63,820 8.4 [73] 0.0003
50 × 5 × 50 100 495,504 494,010 29.4 [74] 0.0833
20 × 10 × 10 200 344,750 329,250 9280 [75] 0.015

Numerous studies have employed modeling techniques, utilizing both numerical
and analytical methods, to calculate residual stresses in laser additive manufacturing, as
presented in Table 3.

Table 3. Numerical and analytical models used in laser additive manufacturing for the prediction
of residual stresses for Selective Laser Melting (SLM), Powder Bed Fusion (PBF) and Laser Powder
Directed Energy Deposition (LPDED).

Technology Beam Dia (mm) Scale (mm3) Method Elements Computer Compute Time (h) Ref.

SLM 0.4 6 × 6 × 0.09 Numerical/Abaqus 20,800 Xeon E5 72 (thermal) + 20
(mechanical) [76]

SLM 0.08 0.5 × 0.5 × 0.2 Numerical/ANSYS (APDL) * * * [77]

SLM 2 20 × 20 × 4 Numerical/ANSYS 200 * * [78]

SLM 0.07 1.19 × 0.315 × 0.2175 Numerical/ANSYS (APDL) * * * [79]

SLM 0.05 1.92 × 0.48 × 0.08 Numerical/In-house developed * * * [80]

SLM 0.07
3 × 3 × 0.05
3 × 3 × 0.250
3 × 3 × 1.250

Analytical NA * * [81]

PBF 0.15 40 × 5 × 2 Analytical/Matlab NA 2.8 GHz 7.26 s [70]

PBF 0.054 10 × 5 × 5 Analytical NA * * [82]

PBF * 20 × 10 × 3 Analytical NA 4 cores 45 s [82]

LPDED 0.74 12 × 5 × 12 Numerical/Abaqus 343,728 8 cores 2.1 GHz 216 [83]
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Table 3. Cont.

Technology Beam Dia (mm) Scale (mm3) Method Elements Computer Compute Time (h) Ref.

SLM 0.4 6 × 6 × 0.09 Numerical/Abaqus 20,800 Xeon E5 72 (thermal) + 20 (mechanical) [76]

SLM 0.08 0.5 × 0.5 × 0.2 Numerical/ANSYS (APDL) * * * [77]

LPDED 3 20 × 80 × 4 Numerical/COMET 19,040 * * [84]

LPDED 5 100 × 5 × 3 Numerical/Abaqus * * * [85]

* Unspecified in the original source.

5. Machine Learning Method

The aforementioned reviews essentially show that the results of residual stresses calcu-
lated through computational methods are accurate and reliable. However, computational
efficiency remains a significant challenge [86]. In order to facilitate the industrialization of
additive manufacturing, it is crucial to create process simulation models capable of quickly
forecasting the quality of parts. To address this issue, researchers have attempted to reduce
the computation time by employing statistical methods and machine learning [87].

Machine learning techniques are basically the data-driven methods for predicting the
values that researchers expect. By using machine learning techniques to predict residual
stresses and distortions, knowing what factors may affect the prediction is not mandatory
but beneficial for collecting datasets and features for the training of machine learning
models [88]. In the context of additive manufacturing, the intricate interplay of process
parameters such as laser power, scanning speed, dwell time, building direction, and
scanning strategy plays a pivotal role in influencing the formation of residual stresses
within manufactured components [89,90]. Higher laser power, for instance, can increase the
temperature gradient between melted and solidified layers, leading to significant thermal
stresses that cool and contract differently across the part [91–94]. Conversely, scanning
speed affects the heat input and cooling rates, where faster speeds may reduce the overall
heat input and lead to uneven cooling rates, potentially increasing the likelihood of residual
stress formation, as shown in Figure 11 [95,96]. Adjusting these parameters is crucial for
managing thermal gradients and minimizing the internal stresses that can compromise the
structural integrity and dimensional accuracy of 3D-printed parts.

Furthermore, dwell time, the delay between subsequent scans, and the building
direction are critical factors affecting residual stress levels [30,58,97]. A longer dwell
time allows for more heat dissipation into the surrounding material, potentially reducing
thermal gradients but also increasing the risk of unwanted thermal effects if not carefully
controlled [98,99]. The building direction influences the layer-by-layer construction of
the part, with vertical or angled building directions affecting how heat accumulates and
dissipates through the structure [100–104].

Strategic manipulation of these parameters can help control the cooling rates and
thermal gradients, thus mitigating the formation of residual stresses [105]. Researchers
have developed models and experimental studies to understand and predict the effects
of these variables on residual stresses, emphasizing and strengthening the need for a ma-
chine learning technique to predict residual stresses and optimize additive manufacturing
processes [106].

In this chapter, the article discusses various additive manufacturing processes, includ-
ing welding, wire-arc additive manufacturing, laser powder-directed energy deposition,
and laser powder bed fusion, to categorize and predict residual stresses using machine
learning. Considering the correspondence between residual stresses and distortion, the
prediction of distortion using machine learning techniques is also included in the follow-
ing parts [107].
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Figure 11. Effects of process parameters on residual stress [95].

In the welding process, incorporating statistical methods to estimate residual stresses
values, researchers have included parameters such as the depth of laser penetration
and laser bead width into non-linear statistical regression analyses to predict residual
stresses [107]. To further enhance the potential of obtaining residual stress predictions
using machine learning, researchers have developed various algorithms with a wide ar-
ray of input variables. In electron beam welding (EBW), input process parameters such
as accelerating voltage, beam current, welding speed, and natural frequency have been
considered [108]. Moreover, the heat source, cooling rate, and mechanical properties were
considered in a series of research [109]. By implementing a variety of machine learning
algorithms, M5 algorithm-based (M5P) model regression trees and multi-layer perceptions
(MLPs) achieve better prediction performance [110]. Evolution fuzzy support vector regres-
sion (FSVG) can also achieve the accurate prediction of residual stresses [111]. Artificial
neural networks (ANNs) and fuzzy neural networks (FNNs) have also been applied and
compared to predict residual stresses, and FNNs were found to achieve better prediction
accuracy [112].

In wire-arc additive manufacturing (WAAM), standard and enhanced ANNs are
implemented to train models to estimate distortion [113]. Process parameters such as
the number of beads, preheating temperature, welding speed, wire feed, and energy are
considered input parameters for the training model, as shown in Figure 12. Random forests
(RFs) and ANN algorithms are applied to explore the hierarchy of influential variables, and
the substrate preheating temperature is the most critical factor of residual stress [114]. Three
levels of ANNs, namely the thermal history and field history of the deposition process, the
cooling process, and the residual von Mises stress field, were developed to predict RSS,
and the predicted time achieved the second level [115]. In laser powder-directed energy
deposition (LP-DED), three classic geometries, namely a plane wall, L-shaped wall, and
rectangular box, are included in finite element analysis with thermal–mechanical modeling
to generate training datasets; then, an ANN is applied to build up a model to predict
residual stresses [116], as shown in Figure 13. In addition to the ANN model, a convolution
neural network is also applied to predict geometric deviation before deposition to avoid
defects [117]. The gray-box model approach is also included in the shot-peening process.
This gray-box-based model acts as the foundation for the machine learning technique by
incorporating data from practical residual stress experiments, and the algorithm refines the
initial model, steadily enhancing accuracy [118].
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Figure 12. Input parameters of welding process [113].

Figure 13. Integrating ANNs and FEA to predict RSS in LP-DED [116].

In laser powder bed fusion (LPBF), distortion and residual stress are always accom-
panied by deposition and cause unqualified geometry. To mitigate those issues, finding
the optimum value of process parameters such as laser power, scanning speed, and hatch
spacing is critical [119]. Non-linear regression analysis is applied to obtain optimized
process parameters to alleviate the residual stresses and distortion [120]. An ANN is ap-
plied to estimate the stress distribution on the cured layer from selective laser melting,
achieving near-real-time results [121]. A convolution neural network (CNN) with a 3D
U-Net architecture is applied to predict part-scale RSS, and three basic types of geometries
are mutually combined by a full-order model (FOM) and included in training datasets [122],
as shown in Figure 14. Considering that it is relatively challenging and time-consuming to
collect data of residual stress, deep learning is also utilized to predict distortion during the
LPBF process [123]. Additionally, real-time identification of layer-wise surface deformation
of overhang geometries is presented by an imaged-based CNN algorithm [124]. A series
of research has also utilized long-short term memory (LSTM) to predict real-time thermal
history. The result was an acceleration of the efficiency of the finite element model in
calculating residual stresses [125]. The researcher also compared the computational time
between the machine learning and finite element models. One of the results showed that
machine learning stress prediction required only about 0.47 s, which significantly less than
the 5–10 h needed for finite element (FE) simulation [126]. Therefore, machine learning
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models have significant potential to integrate the existing data from simulations and ex-
periments to predict residual stresses and deformation. The research studies that utilize
machine learning methods to predict residual stresses and distortion are listed in Table 4.

Figure 14. 3D U-Net architecture [122].

Table 4. Predicting residual stresses and distortion using machine learning.

Process Material Data Source Prediction Algorithm Ref.

Welding Al Alloy Experiments Distortion Linear regression [107]
EBW SS304 Experiments RSS M5P, SVR [110]

Welding Mild Steel FEM RSS FSVG [111]
Welding Stainless Steel Experiments RSS ANN, FNN [112]
WAAM Iron Experiments Distortion Enhanced ANN [113]
WAAM SS316, IN718 Experiments FEM RSS RF, ANN [114]
WAAM ER308L FEM RSS Three-level ANNs [115]

LPBF AlSi10Mg FEM Distortion Multiple regression [120]
LPBF Unspecified CAD Drawings RSS 3D U-Net CNN [127]
LPBF Ti-6Al-4V Experiments Distortion CNN [123]
LPBF AlSi10MG Experiments Distortion CNN [124]

LP-DED SS304L FEM RSS ANN [116]

6. Future Trends

Measurement of residual stresses of AM parts requires significant improvement in
terms of accuracy, feasibility, and resolution. As discussed in the previous sections, these
methods can be based on experiments, computation, or machine learning algorithms. While
each of these categories has its own advantages, they lack in certain aspects.

Experiment-based methods involve measuring the strain or changes in material prop-
erties to calculate the residual stresses using elastic mechanics. However, these methods
often require certain assumptions that limit the accuracy and applicability of the results. For
example, the isotropic nature of the material and the absence of shear force are commonly
adopted assumptions in experiment-based methods. As AM parts are largely anisotropic,
experiment-based methods need to adopt modified stress–strain conversion. Also, damag-
ing the integrity of AM parts during testing is highly undesirable, as batch-wise testing is
not feasible for AM. Hence, pure non-destructive tests like the ultrasonic method or the
Barkhausen noise method need to be adopted, and research on non-destructive methods
needs to be explored further.

Numerical and analytical models are employed to predict the thermal history and
distortion in laser additive manufacturing components. Numerical methods, while accurate,
often demand substantial computational time. Researchers have begun implementing layer-
based deposition techniques to alleviate this issue. However, this approach sacrifices some
level of detail, reducing the accuracy of models. On the other hand, despite their limitation
to two dimensions, analytical methods offer a trade-off between computational time and
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detail. Further exploration of analytical methods is warranted to incorporate all necessary
dimensions for comprehensive modeling.

Prediction of residual stresses and distortion using machine learning methods involves
a range of algorithms, as discussed previously, demonstrating their effectiveness in achiev-
ing accurate predictions. However, certain drawbacks and future research directions in
this area are worth mentioning. First, concerning manufacturing processes, the majority of
related studies have concentrated on welding, wire-arc additive manufacturing, and laser
powder bed fusion. Consequently, it is desirable to expand research efforts into areas such
as laser powder-directed energy deposition and electron beam welding.

Secondly, there is a need for finer and more reliable datasets. Most current research
relies heavily on data from finite element analysis due to their abundance and the huge
cost of collecting data in experiments. However, incorporating datasets from experiments
can enhance the practicality of these datasets. Therefore, developing fast and accurate
measurement methods is crucial and needed rapidly. Finally, in the realm of algorithms,
exploring time-series algorithms like recurrent neural networks (RNNs) and long short-
term memory (LSTM) networks is advisable because the distribution of residual stresses is
essentially time-dependent. Moreover, given the complexity and the need for explainable
AI models, the investigation of the use of physics-informed neural networks (PINNs) for
prediction of residual stresses holds significant promise [128]. PINNs integrate physics and
governing equations directly into the machine learning model. The loss function in PINNs
includes partial differential equations (PDEs), boundary conditions, and initial conditions.
Understanding the correspondence between thermal and mechanical models is crucial for
the application of PINNs to predict residual stresses. Additionally, knowledge of material
properties during additive manufacturing is also significant. Although some researchers
have applied PINNs to analyze additive manufacturing processes for prediction of thermal
distribution and melt pool characteristics, most research focuses on simple geometries, 2D
dimensions, and the lack of residual stress analysis [129]. Therefore, there is potential to
explore the prediction of residual stresses using PINNs [130].

Additionally, to enhance the versatility of the application, it is beneficial to consider
a broader range of geometries in AI models. Improving the accuracy, efficiency, and
compatibility of machine learning models is urgently required for further development in
AM research, such as digital twins and digital factories, as it will be necessary to qualify
AM parts for critical applications.

7. Conclusions

Residual stress evaluation in additively manufactured parts is critical, as residual stress
leads to early failure and damages parts. The mechanism of residual stress formation in
AM parts was discussed in this paper. Various methods used for residual stress evaluation
were described, leading to the following conclusions:

• Experiment-based methods provide accurate results at the expense of the integrity
of the part, which is highly undesirable. The development of easily accessible, non-
destructive methods based on a matured theory that can measure different stress levels
is required.

• Numerical modeling enables the prediction of residual stress and part distortion in
three dimensions for various laser additive manufacturing processes. This versatility
grants users the freedom to work with intricate geometries. However, it is associated
with extended computational times and demands a high level of expertise to ensure
model stability and prevent divergence.

• Machine learning and deep learning techniques have been employed to construct fast,
predictive models for prediction of residual stresses in AM parts. They also provide
the additional flexibility of in situ prediction of residual stresses. However, model
accuracy is based on data developed by other methods, creating a dependency on
experiment-based and computational methods.
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• Future research directions were identified with respect to the potential development
of a comprehensive method that incorporates experiment-based approaches, compu-
tational techniques, machine learning, and physics-informed neural networks. The
interpretability provided by physics-informed algorithms can significantly enhance
accuracy and reduce computation time, enabling better integration with experimental
and computational models.
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