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Abstract— We investigate the problem of learning an ✏-
approximate solution for the discrete-time Linear Quadratic

Regulator (LQR) problem via a Stochastic Variance-Reduced

Policy Gradient (SVRPG) approach. Whilst policy gradient

methods have proven to converge linearly to the optimal

solution of the model-free LQR problem, the substantial re-

quirement for two-point cost queries in gradient estimations

may be intractable, particularly in applications where obtaining

cost function evaluations at two distinct control input con-

figurations is exceptionally costly. To this end, we propose

an oracle-efficient approach. Our method combines both one-

point and two-point estimations in a dual-loop variance-reduced

algorithm. It achieves an approximate optimal solution with

only O

⇣
log (1/✏)�

⌘
two-point cost information for � 2 (0, 1).

I. INTRODUCTION

Policy gradient (PG) methods have attracted significant
attention in model-free reinforcement learning (RL), in large
part due to their simplicity of implementation. Within the
context of control, and the LQR problem specifically (where
analytic solutions are known), a lot of recent work has
focused on connecting system theoretic properties such as
controllability, with learning theoretic measures such as sam-
ple complexity [1]. As first shown in [2] and further analyzed
in [3]–[5], PG methods converge to the global optimal
solutions despite the lack of convexity in the LQR problem.
This significant result, combined with the adaptability of PG
in the model-free setting, has opened up a line of research
that addresses classical control problems using PG-based
approaches [6], [7].

In the model-free LQR setting, policy gradient descent
relies on a finite-sample estimate of the true gradient, often
acquired through derivative-free (otherwise known as zeroth-
order) methods. We refer the reader to [4] for specific
application of zeroth-order methods to LQR control and
[8] for general background. Zeroth-order gradient estimation
approaches are particularly valuable for applications where
the computational resources needed for exact gradient eval-
uations may be impractical, or when cost-query information
is only accessible through a black-box procedure.

Despite providing flexibility by avoiding the explicit com-
putation of gradients, zeroth-order gradient estimations with
one-point (ZO1P) or two-point (ZO2P) queries frequently
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produce biased estimations accompanied by large variances
[4]. In order to counteract this, large sample sizes are
required to accurately estimate the gradients.

Whilst ZO2P provides a reduced variance relative to ZO1P,
it necessitates querying the cost function at two distinct
control input configurations, which can be prohibitively
impractical for certain applications (e.g., robot path planning
[9]). Addressing this limitation is crucial for developing
efficient approaches applicable to real-world scenarios.

Motivated by these challenges, one line of work focuses
on leveraging data from multiple similar systems to mitigate
variance and thereby reduce the sample complexity of policy
gradient methods [10], [11]. However, for the single-agent
setting it remains unclear how we can devise a more com-
putationally efficient approach without resorting to second-
order techniques.

On the other hand, in supervised learning and RL, SVRPG
approaches have demonstrated their effectiveness in signif-
icantly reducing variance and enhancing sample efficiency
for PG methods [12], [13]. Such methods leverage the well-
known control variate analysis, which incorporates both
current and past gradient information to form a descent
direction that reduces the estimation’s variance. This concept
motivates the following question addressed in this work:

Can we design an oracle-efficient solution for addressing

the model-free LQR problem by building upon the success of

stochastic variance-reduced approaches?.
Our Contributions: Toward this end, our main contributions
are summarized as follows:

• This is the first work to propose a stochastic variance-
reduced policy gradient algorithm featuring a mixed
zeroth-order gradient estimation scheme for tackling the
model-free and discrete-time LQR problem.

• Theoretical guarantees demonstrate the convergence
(Theorem 2) of our approach, while ensuring stability
of the system under the iterated policy (Theorem 1).

• We establish conditions on the problem parameters
under which our approach achieves an ✏-approximate
solution with O

⇣
log (1/✏)3�2�

⌘
queries, while utiliz-

ing only O

⇣
log (1/✏)�

⌘
two-point query information

for � 2 (0, 1). This oracle complexity improves upon
the best known result O (log (1/✏)) by a factor of
O

⇣
log (1/✏)1��

⌘
(Corollary 2).

Main result overview: The SVRPG method we propose
requires a slightly larger number of queries, specifically we
require O

⇣
log (1/✏)3�2�

⌘
, (this includes one and two-point

2024 American Control Conference (ACC)
July 8-12, 2024. Toronto, Canada

979-8-3503-8265-5/$31.00 ©2024 AACC 4032

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 17,2024 at 20:33:47 UTC from IEEE Xplore.  Restrictions apply. 



queries) in comparison to O (log(1/✏)) required by the stan-
dard ZO2P approach, in order to achieve an ✏-approximate
solution – the difference is only a logarithmic factor, for
large �. However, our approach requires considerably fewer
two-point queries, specifically a factor of O

⇣
log (1/✏)1��

⌘

fewer, for small �. This underscores the benefit of our
technique, particularly in applications where conducting two-
point function evaluations is prohibitively costly.

A. Related Work

Model-free LQR via Policy Gradient Methods: PG meth-
ods have been extensively explored as a solution to solve
the model-free LQR problem in both discrete [1]–[6] and
continuous-time settings [14]–[16]. Despite of the non-
convexity of the LQR landscape under the policy search,
Fazel et al. [2] proved theoretical guarantees for the global
convergence of PG methods for both model-based and
model-free settings. Table I summarizes the sample com-
plexity of the aforementioned work.

Although there has been an evident sample complexity
reduction from O( 1✏ log (1/✏)) [4] to O (log (1/✏)) [5], this
is primarily a result of a more refined analysis rather than al-
gorithmic development.1 In this work, we propose a SVRPG
algorithm to reduce the number of two-point queries required
to obtain an ✏-approximate solution for the LQR problem.

Stochastic Variance-Reduced Policy Gradient: Stochastic
variance-reduced gradient descent (SVRG) have emerged as
a sample-efficient solution technique for non-convex finite-
sum optimization problems. Whilst SVRG methods have
long been established for non-convex optimization problems
(e.g., SVRG [12], SAG [17], and SAGA [18]), their exten-
sion to online RL settings is a relatively recent development
(e.g., SVRPG [13], [19], [20]). This extension has presented
unique challenges, primarily stemming from policy non-
stationarity and approximations in the computation of the
gradient. Furthermore, SVRPG approaches generally rely on
the assumption of unbiased gradient estimation, a condition
that rarely holds for derivative-free techniques. This has been
addressed in [21], [22] for finite-sum, non-convex problems.

We emphasize that our work does not revolve around a
simple extension of the results in [13], [19], [20] (online RL
setting) or [21], [22] (non-convex finite-sum problem). In
contrast to the latter, our LQR setting encompasses an online
optimization problem with a single cost function. As a result,
the sampling variance reduction benefit of using zeroth-
order variance-reduced methods cannot be simply extended
to our setting. On the other hand, in our setting we have the
stabilizing policy requirement which is commonly taken for
granted in the Markov Decision Process (MDP) case [13],
[19], [20] with irreducibly and aperiodicity assumptions on
the policy. Moreover, the zeroth-order gradient estimation
produces biased estimations. This necessitates further deriva-
tions to control this bias as we will discuss later.

1We use big-O notation O(·) to omit constant factors in the argument.

II. PRELIMINARIES

We summarize key policy gradient results for the LQR
problem as well as derivative-free optimization techniques.

A. Discrete-time Linear Quadratic Regulator

Consider the discrete-time LTI system

x⌧+1 = Ax⌧ +Bu⌧ , x0
i.i.d.
⇠ X0, (1)

where x⌧ 2 Rnx , u⌧ 2 Rnu , and x0 denote the state and
input at time ⌧ , and the initial condition. The optimal LQR
policy associated with (1) is u⌧ = �K⇤x⌧ where K⇤ solves

argmin
K2K

(
C(K) := Ex0⇠X0

" 1X

⌧=0

x>
⌧ Qx⌧ + u>

⌧ Ru⌧

#)
,

subject to (1) (2)

where Q 2 Snx
�0, R 2 Snu

�0, and K := {K|⇢(A�BK) < 1}
denotes all stabilizing controllers K 2 Rnu⇥nx . The optimal
cost is assumed to be finite. This is satisfied when (A,B) is
controllable.

In the model-based setting the optimal controller is given
by: K⇤ := �

�
R+B>PB

��1
B>PA, where P 2 Snx

�0 is
the solution of the Algebraic Riccati Equation (ARE) [23]. In
the absence of the system model (A,B), there is no way to
implement an ARE-derived controller. Notably, motivated by
the fact that traditional RL techniques aim to find optimal
policies for unknown MDPs through direct exploration of
the policy space, the line of work led by Fazel et al. [2] and
followed by [3]–[5], [14], [16], [24] have proved guarantees
for the global convergence of PG methods for both model-
based and model-free LQR. This is achieved by leveraging
fundamental properties of the LQR cost function. Next, we
revisit the updating rule of the model-free LQR problem
through policy gradient, as well as its important properties.

Suppose that instead of having the true gradient rC(Kl)
at the l-th iteration, we posses a finite-sample estimate
brC(Kl). The policy gradient method’s update rule for the
LQR problem can be expressed as follows:

Kl+1 = Kl � ⌘ brC(Kl), l = 0, 1, . . . , L� 1 (3)

where ⌘ represents a positive scalar step-size. We require the
following standard assumption [2]–[5].

Assumption 1: We have access to an initial stabilizing
controller K0 such that ⇢(A�BK0) < 1.

Remark 1: Note that if the initial controller K0 fails to
stabilize system (1), the PG in (3) cannot iteratively converge
to a stabilizing policy since brC(K0) becomes undefined.

Definition 1: The sublevel set of stabilizing feedback con-
trollers G ✓ K is defined as follows

G := {K | C(K)� C(K⇤)  ⇠�0},

where �0 = C(K0)�C(K⇤) and ⇠ is any positive constant.
Lemma 1: Given two stabilizing policies K 0, K 2 G such

that kK 0
�KkF  h�(K) <1, it holds that

|C (K 0)� C(K)|  hcost(K)C(K)kK 0
�KkF ,

krC (K 0)�rC(K)kF  hgrad(K)kK 0
�KkF .
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TABLE I: Comparison on the sample complexity (Sc), and two-point oracle complexity (NZO2P) required to achieve
E (C(Kout)� C(K⇤))  ✏. Here � 2 (0, 1).

Methods Sample Complexity (Sc) Two-point Oracle Complexity (NZO2P)

PG - ZO1P (Fazel et al (2018), [2]) O(1/✏4 · log (1/✏)) -
PG - ZO1P (Gravell et al (2019), [3]) O(1/✏4 · log (1/✏)) -
PG - ZO1P (Malik et al. (2019), [4]) O(1/✏2 · log (1/✏)) -
PG - ZO2P (Malik et al. (2019), [4]) O(1/✏ · log (1/✏)) O(1/✏ · log (1/✏))

PG - ZO2P (Mohammadi et al. (2020), [5]) O(log (1/✏)) O(log (1/✏))

SVRPG - Algorithm 2 (This paper) O

⇣
log (1/✏)3�2�

⌘
O

⇣
log (1/✏)�

⌘

Lemma 2: Let K⇤
2 G be the optimal policy that solves

(2). Thus, it holds that

C(K)� C (K⇤) 
1

�
krC(K)k2F ,

for any stabilizing controller K 2 G.
A detailed proof of the above lemmas, along with the

explicit expressions for h�(K), hcost(K), hgrad(K), and �,
can be found in [3]. We direct the reader to [25, Appendix
A] for the definition of h̄grad, h̄cost, and h� that are positive
coefficients we use further in our derivations.

B. Zeroth-Order Gradient Estimation

Given a positive scalar smoothing radius, denoted as r, and
randomly sampled matrices U1, . . . , Um drawn i.i.d. from the
uniform distribution Sr of matrices with kUkF = r, and
considering a given stabilizing policy K 2 G, we define the
one-point and two-point zeroth-order gradient estimations of
the true gradient rC(K) as follows:

ZO1P : rC(K) :=
mX

i=1

dC(K + Ui)Ui

mr2
,

ZO2P : erC(K) :=
mX

i=1

d (C(K + Ui)� C(K � Ui))Ui

2mr2
,

where d = nxnu and C(·) denotes the true cost value
provided by an oracle.

We emphasize that, in practice, we have a finite number of
samples denoted by m to compute ZO1P and ZO2P. Conse-
quently, both ZO1P and ZO2P gradient estimation schemes
exhibit an inherent bias. In addition, for simplicity we assume
access to the true cost, as provided by an oracle [4]. In reality,
practical limitations prevent us from simulating our system
over an infinite horizon. However, as in [3, Appendix B] the
finite horizon approximation for the cost is upper-bounded
by the true cost, with the approximation error controllable by
the horizon length. Our work can thus be readily extended
to this finite-horizon approximated cost setting.

Moreover, the expressions of ZO1P and ZO2P shed light
on the fact that whilst ZO2P requires more computational
resources due to the need for two cost-query information
for each sampled matrix U

i.i.d.
⇠ Sr, it offers a lower-

variance estimation, which results in a more efficient sample
complexity, compared to ZO1P [4]. This makes ZO2P a

more favorable choice over ZO1P gradient estimation. Next,
we present the PG algorithm with ZO2P gradient estimations
for solving the model-free LQR.

Algorithm 1 PG with ZO2P Gradient Estimation.
1: Input: L, ⌘, n1, r, K0

2: for l = 0, . . . , L� 1 do

3: Compute erC(Kl) with r via ZO2P
4: Kl+1 = Kl � ⌘ erC(Kl)
5: end for

6: Output Kout := KL

It is well-established [5] that under certain conditions on
the quality of the estimated gradient, i.e., with n1 large and r
small, Algorithm 1 converges linearly to the optimal solution
of (2) while ensuring Kl 2 G at each iteration. However,
due to the still high variance of the gradient estimation step,
the required number of two-point queries to achieve an ✏-
approximate solution may become prohibitively large.

III. SVRPG ALGORITHM FOR MODEL-FREE LQR

With the purpose of reducing the number of two-cost query
information to achieve an ✏-approximate solution we propose
a SVRPG approach featuring a mixed gradient estimation
scheme. The idea is to use a ZO2P gradient estimate in
the outer-loop and a ZO1P estimate in the inner-loop so
as to lower the computational complexity associated with
two-point cost queries compared to Algorithm 1. The need
for two-point cost query information arises only periodically
instead of at each iteration.

Algorithm 2 LQR via SVRPG

1: Input: N , T , ⌘, n1, n2, rout, rin, K0
T := eK0 := K0.

2: for n = 0, . . . , N � 1 do

3: Kn+1
0 := eKn := Kn

T

4: Compute µ̃ = erC(K̃n) with rout . ZO2P
5: for t = 0, . . . , T � 1 do

6: Compute rC(Kn+1
t ), rC(K̃n) with rin . ZO1P

7: vn+1
t = µ̃+rC(Kn+1

t )�rC(K̃n)
8: Kn+1

t+1 = Kn+1
t � ⌘vn+1

t

9: end for

10: end for

11: Output Kout := KN
T .
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In contrast to Algorithm 1 our SVRPG algorithm divides
the total number of iterations into N epochs, each of length
T . For each epoch (outer-loop), we estimate gradients using
n1 samples with smoothing radius rout, whereas inside each
epoch (inner-loop) we use n2 samples with smoothing radius
rin. In line 3, we fix the current policy K̃n and compute
erC(K̃n) via ZO2P. Throughout the inner-loop iterations,
we estimate rC(Kn+1

t ) and rC(K̃n) with the same set of
samples via ZO1P. Finally, in line 8 we perform a gradient
descent step, using the stochastic variance-reduced gradient
computed in line 7.

To close this section, we briefly discuss the idea behind
SVRG-based methods. Consider a fixed stabilizing policy
K̃ 2 G and estimate erC(K̃) using n1 samples. Then
perform K  K � ⌘v, with

v = erC(K̃) +rC(K)�rC(K̃),

where rC(K) and rC(K̃) are estimated by using the
same set of n2 samples. Note that EerC(K̃) = ErC(K̃)
(see the extended version of our work [25, Appendix D]).
Therefore, sincerC(K), andrC(K̃) are correlated through
their samples, the variance of the stochastic gradient v might
be reduced by controlling the covariance across the gradient
estimations. That is, var(v) = var(X � Y ) = var(X) +
var(Y )� 2 cov(X,Y ), with X = rC(K), Y = erC(K̃)�
rC(K̃), and cov(·, ·) denotes the covariance operator.

IV. THEORETICAL GUARANTEES

Without loss of generality and for the purpose of the
theoretical analysis only, set rout = rin = r in Algorithm
2. In Proposition 1 we first establish the convergence rate
of Algorithm 1. This allows for a fair comparison on the
sample and oracle complexities of Algorithm 2, detailed in
Corollaries 1 and 2. Moreover, we outline the conditions
under which Algorithm 2 converge to the optimal solution
(Theorem 2), all while staying within the stabilizing sub-level
set (Theorem 1) throughout the algorithm’s iterations.

Proposition 1: (Convergence of Algorithm 1) Suppose
the smoothing radius, number of samples, and number of
iterations are in the order of n1 = O(1), r = O(

p
✏) and

L = O (log(1/✏)), respectively. Then, Algorithm 1 achieves
and ✏-approximate solution with O (log(1/✏)) samples.

Remark 2: We stress that linear convergence with ZO2P
was first established in [5] for this problem and extended to
continuous-time in [16], [24]. However, in [25, Appendix B]
we present an alternative and straightforward proof, one that
relies simply on the upper bound of the expectation2 of the
estimated gradient, i.e., Eker(K)k2F (Lemma 4) and does not
involve proving that herC(K),rC(K)i � µ1krC(K)k2F ,
and kerC(K)k2F  µ2krC(K)k2F are satisfied with high
probability, for µ1, µ2 2 R+ [5, Section V].

Assumption 2: Let g(K) = d
r2C(K + U)U be a single

sample ZO1P gradient estimation with U
i.i.d.
⇠ Sr. Then, for

any two stabilizing policies K, K 0
2 G, we assume that

Ekg(K)� g(K 0)kF  CgEkK �K 0
kF .

2Expectation is taken with respect to U
i.i.d.
⇠ Sr and x0

i.i.d.
⇠ X0.

for some positive constant Cg .
Remark 3: Note that this assumption on the local smooth-

ness of the estimated gradient is a standard requirement for
variance-reduced algorithms, as established in [26], [27]. In
the context of the LQR problem, this assumption has the
same flavor as the local Lipschitz condition on the empirical
cost function in [4, Section 2].

Next, we present two auxiliary results that are instrumental
in proving our main results. First, we control the bias in the
zeroth-order gradient estimation (Lemma 3) and establish a
uniform bound for ZO2P estimated gradient (Lemma 4).

Lemma 3: (Controlling the bias) Let brC(K) be the ZO1P
or ZO2P gradient estimations evaluated at the stabilizing
policy K 2 G. Then,

EkrC(K)� EbrC(K)k2F  B(r) :=
�
h̄gradr

�2
.

Proof: See [25, Appendix D].
Lemma 4: Let er(K) be the ZO2P gradient estimation.

For any stabilizing policy K 2 G, it holds that

Eker(K)k2F  8d2B(r) + 2d2EkrC(K)k2F .

Proof: See [25, Appendix C].

A. Stability Analysis

We now introduce the conditions on the number of sam-
ples {n1, n2}, step-size ⌘ and smoothing radius r to ensure
that Algorithm 2 produces a stabilizing policy Kn+1

t+1 at each
epoch n 2 {0, . . . , N � 1} and each t 2 {0, . . . , T � 1}.

Theorem 1: (Per-iteration Stability) Given K0 2 G, sup-
pose we set the number of outer and inner-loop samples such
that satisfies {n1, n2} & h̄s

⇣
 
6 , �
⌘

, the step-size ⌘ . r2�0

h̄gradd2 ,
and the smoothing radius

r  hr

✓
 

6

◆
:= min

⇢
h�,

1

h̄cost
,

 

6h̄grad

�
,

with � 2 (0, 1),  :=
q

��0
4 . Then, with probability 1 � �,

it holds that Kn+1
t+1 2 G, for all n and t.

Proof: A detailed proof with the explicitly expression
of h̄s

⇣
 
6 , �
⌘

is provided [25, Appendix E].

Discussion: We emphasize that, unlike the RL setting in [13],
[19], in the LQR optimal control problem, it is imperative
to ensure the closed-loop stability of (1) under Kn+1

t+1 for
all n 2 {0, . . . , N � 1} and t 2 {0, . . . , T � 1}. However,
despite its dual-loop structure, demonstrating that Kn+1

t+1 2 G

throughout the iterations of Algorithm 2 can be achieved by
following a similar approach as outlined in previous works
without variance reduction [2]–[5].

To this end, we first set the first iteration as the base
case and demonstrate that as long as K0 2 G (Assumption
1), then C(K1

1 ) � C(K⇤)  C(K0) � C(K⇤) holds true,
indicating that K1

1 2 G. To establish this, we use the
Lipschitz property of the cost function (Lemma 1), along
with the gradient domination condition (Lemma 2), and
the matrix Bernstein inequality [28, Section 6]. The latter
provides the necessary conditions on n1, n2 and r to upper
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bound krC(K)� v10kF   . The stability analysis is then
completed by applying an induction step to this base case.

B. Convergence Analysis

We now proceed with our analysis to provide the necessary
conditions on the number of samples {n1, n2}, smoothing
radius r, step-size ⌘, and total number of iterations NT to
ensure the global convergence of Algorithm 2.

Theorem 2: (Convergence Analysis) Suppose we select

n2 � max

⇢
96d2,

(3C2
g+12h̄2

gradd
2)T 2

h̄2
grad

�
, and ⌘  1

4h̄grad
. Then,

the policy Kout returned by Algorithm 2 after NT iterations
enjoys the following property:

E (C(Kout)� C(K⇤))  �0 ⇥

✓
1�

⌘�

16

◆NT

+
B(r)�

�n2
.

with � = 120 + 192d2.
Proof: Below we provide the proof strategy for this

theorem. A detailed proof is presented in [25, Appendix F].

Proof Sketch: Theorem 2 is proved as follows:
1) With the fact that Kn+1

t+1 2 G for all n 2 {0, . . . , N � 1}
and t 2 {0, . . . , T � 1} (Theorem 1), along with Lemma 1
and Young’s inequality we can write

E
�
C(Kn+1

t+1 )� C(Kn+1
t )

�


3⌘

4
EkrC(Kn+1

t )� vn+1
t k

2
F

�
⌘

8
EkrC(Kn+1

t )k2F �
h̄grad

2
EkKn+1

t+1 �Kn+1
t k

2
F , (4)

2) We control EkrC(Kn+1
t ) � vn+1

t k
2
F in the above ex-

pression by decomposing it into bias and variance terms.
In particular, we have: biases from the inner and outer-loop
estimations + variance of the ZO2P outer-loop estimation +
ZO1P gradient estimation difference at Kn+1

t and K̃n. Both
ZO1P and ZO2P biases are controlled in Lemma 3. For the
variance of the ZO2P gradient estimation we use Lemma 4
and for the ZO1P gradient difference term we assume local
smoothness (Assumption 2). Thus, with n2 � 96d2, we have

EkrC(Kn+1
t )� vn+1

t k
2
F 

�⌘B(r)

16n2
+ �̃EkKn+1

t � K̃n
k
2
F

+
1

16
EkrC(Kn+1

t )k2F , with �̃ =
4

3n2

 
3C2

g

2
+ 6h̄2

gradd
2

!
.

3) The proof is completed by using the PL condition (Lemma
2) and telescoping (4) over outer and inner-loop iterations,
with n2 �

(3C2
g+12h̄2

gradd
2)T 2

h̄2
grad

, and ⌘  1
4h̄grad

.
Corollary 1: (Sample Complexity) Under the conditions

of Theorem 2, and suppose we select the total number of
iterations and smoothing radius according to

NT �
16 log (2�0/✏)

⌘�
, r 

s
n2�✏

2�h̄2
grad

,

then Algorithm 2 achieves E (C(Kout)� C(K⇤))  ✏ with
O

⇣
log (1/✏)3�2�

⌘
cost queries.

Proof: The total number of cost queries required in
Algorithm 2 is given by Sc := NTn2 + Nn1. Therefore,

since n1 = O(1), the sample complexity of Algorithm 2 is
dominated by the order of NTn2. As a result, by setting
N = O (log (1/✏))� and T = O (log (1/✏))1�� , with � 2
(0, 1), Algorithm 2 returns an ✏-approximate solution with
O

⇣
log (1/✏)3�2�

⌘
total number of cost queries.

Corollary 2: (Oracle Complexity Reduction) Under the
conditions of Theorem 2 and Corollary 1, it holds that
Algorithm 2 achieves an ✏-approximate solution with a
reduction of O (log (1/✏))1�� in the two-point cost queries
when compared to Algorithm 1, where � 2 (0, 1).

Discussion: Similar to Corollary 1, we select N =
O (log (1/✏))� and T = O (log (1/✏))1�� . Then, we ob-
serve that Algorithm 2, with number of outer-loop samples
n1 = O(1), demands only O (log (1/✏))� two-point queries
(i.e., the more resource-intensive cost queries to obtain) to
achieve an ✏-approximate solution. This improves upon the
two-point oracle complexity of Algorithm 1 by a factor of
O (log (1/✏))1�� . To verify this we simply note that our
algorithm necessitates NZO2P = Nn1 = O (log (1/✏))� ,
whereas Algorithm 1 requires NZO2P = O (log (1/✏)) two-
point cost queries to attain E (C(Kout)� C(K⇤))  ✏.

V. NUMERICAL EXPERIMENTS

Numerical experiments 3 are now conducted to illustrate
and evaluate the effectiveness of Algorithm 2. To ensure a
fair comparison on the performance of the algorithms we
set x>

0 = [1, 1, 1] for computing the normalized cost gap
between the current and optimal cost, namely, C(Kl)�C(K⇤)

C(K0)�C(K⇤) ,

and X0
d
= N (0, Inx) for the cost oracle generation.

Consider a unstable system with nx = 3 states and nu = 1
input, where the system and cost matrices are detailed in
[25, Appendix G]. We set the initialization parameters of
Algorithms 1 and 2 as follows: 1) r = 1 ⇥ 10�4, n1 = 50,
⌘ = 1⇥ 10�4. 2) rin = 5⇥ 10�2, rout = 1⇥ 10�4, n1 = 50,
n2 = 25, N = 125, T = 4, ⌘ = 1⇥ 10�4.

Figure 1 demonstrates the convergence of Algorithms 1
and 2. It also includes the result for the policy gradient
descent under the model-based setting. The latter highlights
the limit of how well the PG algorithms discussing in this
work can do without knowing the system model.

The figure shows that both Algorithms 1 and 2 achieve
an equivalent convergence performance for the specified
parameters. We emphasize that Algorithms 1 and 2 use
Sc = 50000 and Sc = 37500 cost queries, respectively, to
attain ✏ = 3⇥10�2. Moreover, in terms of two-point queries,
Algorithm 2 necessitates only NZO2P = Nn1 = 6250,
whereas Algorithm 1 is entirely reliant on two-point queries,
requiring 25000 to achieve the same accuracy as shown in
the figure. The figure also shows that the performance of
Algorithm 1 degrades when the number of two-point queries
decreases to 6500. This demonstrates that with our SVRPG
approach we are able to effectively reduce the two-point
oracle complexity for solving the model-free LQR problem.

3Code for exact reproduction of the proposed experiments can be down-
loaded from https://github.com/jd-anderson/LQR_SVRPG
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Fig. 1: Normalized gap between the current and optimal cost
with respect to the iteration count.

VI. CONCLUSIONS AND FUTURE WORK

We proposed an oracle efficient algorithm to solve
the model-free LQR problem. Our approach combines a
SVRPG-based approach with a mixed zeroth-order gradient
estimation scheme. This mixed gradient estimation yields
a reduction in the number of two-point cost queries re-
quired to achieve an ✏-approximate solution since the more
resource-expensive queries are now required less frequently.
We proved that our approach improves by a factor of
O (log (1/✏))1�� two-point query information upon the stan-
dard ZO2P gradient estimation method. Future work will in-
volve exploring loop-less variants and recursive momentum-
based approaches to further reduce the two-point oracle
complexity required to solve the model-free LQR problem.
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“Convergence and sample complexity of gradient methods for the
model-free linear–quadratic regulator problem,” IEEE Transactions on

Automatic Control, vol. 67, no. 5, pp. 2435–2450, 2021.
[17] N. Roux, M. Schmidt, and F. Bach, “A stochastic gradient method with

an exponential convergence _rate for finite training sets,” Advances in

neural information processing systems, vol. 25, 2012.
[18] A. Defazio, F. Bach, and S. Lacoste-Julien, “SAGA: A fast incremental

gradient method with support for non-strongly convex composite ob-
jectives,” Advances in neural information processing systems, vol. 27,
2014.

[19] P. Xu, F. Gao, and Q. Gu, “An improved convergence analysis
of stochastic variance-reduced policy gradient,” in Uncertainty in

Artificial Intelligence. PMLR, 2020, pp. 541–551.
[20] Y. Liu, K. Zhang, T. Basar, and W. Yin, “An improved analysis of

(variance-reduced) policy gradient and natural policy gradient meth-
ods,” Advances in Neural Information Processing Systems, vol. 33, pp.
7624–7636, 2020.

[21] K. Ji, Z. Wang, Y. Zhou, and Y. Liang, “Improved zeroth-order
variance reduced algorithms and analysis for nonconvex optimization,”
in International conference on machine learning. PMLR, 2019, pp.
3100–3109.

[22] S. Liu, B. Kailkhura, P.-Y. Chen, P. Ting, S. Chang, and L. Amini,
“Zeroth-order stochastic variance reduction for nonconvex optimiza-
tion,” Advances in Neural Information Processing Systems, vol. 31,
2018.

[23] G. Hewer, “An iterative technique for the computation of the steady
state gains for the discrete optimal regulator,” IEEE Transactions on

Automatic Control, vol. 16, no. 4, pp. 382–384, 1971.
[24] H. Mohammadi, M. R. Jovanovic, and M. Soltanolkotabi, “Learning

the model-free linear quadratic regulator via random search,” in
Learning for Dynamics and Control. PMLR, 2020, pp. 531–539.

[25] L. F. Toso, H. Wang, and J. Anderson, “Oracle Complexity Reduction
for Model-free LQR: A Stochastic Variance-Reduced Policy Gradient
Approach,” arXiv preprint arXiv:2309.10679, 2023.

[26] P. Khanduri, P. Sharma, H. Yang, M. Hong, J. Liu, K. Rajawat,
and P. Varshney, “Stem: A stochastic two-sided momentum algorithm
achieving near-optimal sample and communication complexities for
federated learning,” Advances in Neural Information Processing Sys-

tems, vol. 34, pp. 6050–6061, 2021.
[27] C. Fang, C. J. Li, Z. Lin, and T. Zhang, “Spider: Near-optimal non-

convex optimization via stochastic path-integrated differential estima-
tor,” Advances in neural information processing systems, vol. 31, 2018.

[28] J. A. Tropp, “User-friendly tail bounds for sums of random matrices,”
Foundations of computational mathematics, vol. 12, pp. 389–434,
2012.

4037

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 17,2024 at 20:33:47 UTC from IEEE Xplore.  Restrictions apply. 


