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Abstract— Unmanned Aircraft Systems (UASs) offer many
benefits in wildfire monitoring when compared to traditional
wildfire monitoring technologies. Wildfire spread is a highly
heterogeneous process with non-uniform spreading speed and
fireline intensity in both space and time. When planning the path
of a UAS for monitoring a dynamically growing wildfire, it is
important to consider the uneven spread of the fire because
different parts of the fire boundary would need different levels
of monitoring attention. This paper presents a real-time path
planning algorithm for a UAS to autonomously monitor the
perimeter of a spreading wildfire with uneven importance. The
proposed path planning algorithm allows the UAS to focus on
the most active regions of a wildfire while still covering the entire
fire perimeter. The design and implementation of this algorithm
are described, and an in-depth analysis of the performance of the
algorithm is provided. Experiment results based on simulated
wildfires demonstrate the effectiveness and robustness of the
proposed algorithm for monitoring dynamic wildfires.

Keywords — UAS Path Planning, Wildfire Monitoring,
On-board Computation, Simulation

I. INTRODUCTION

Due to the increasing frequency of wildfires in recent years
[1], wildfire monitoring has become a vital task and a subject
of greater interest for researchers and practitioners. To
support wildfire management, different strategies and
technologies for wildfire monitoring and data collection have
been used by them, including the use of satellite systems,
manned aircraft systems, ground sensors, etc. Despite having
some unique benefits, each of these technologies has its own
limitations in terms of application. These limitations include
- but are not limited to lower effectiveness, lower safety,
higher cost, and limited adaptability to dynamically spreading
wildfires. For example, satellite images typically have a lower
spatial and temporal resolution [2]; helicopter missions are
relatively unsafe and costly; real-time deployment of ground
sensors is difficult and time-consuming, and it is impractical
to make such sensor systems adaptive to the size and spread
of a fire.
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A more effective and cost-efficient option for wildfire
monitoring is using Unmanned Aircraft Systems (UASs). Due
to the recent developments of highly capable UASs, it is
considered a very suitable option for collecting important
information from wildfires. Modern UASs can fly over a wide
range of altitudes at desired speed for hours. They can be
equipped with different types of sensors and cameras to
collect valuable information about a wildfire. Furthermore,
UASs have the potential to fly autonomously to monitor a fire
with minimal external supervision and communication.
Altogether, UASs hold great potential for collecting real-time
wildfire data and supporting wildfire management.

A variety of factors influence the wildfire spreading
process in a dynamic way. For example, the spatiotemporal
speed and intensity of the fire spread can be impacted by
different fuel loading, non-uniform terrain, and dynamic
weather conditions. As a result, different parts of the fire
spread at different speeds. Generally, the head of a fire has
more frequent changes in fire state than the tail of the fire.
Moreover, such active region(s) of a spreading wildfire might
change over time due to the dynamic weather condition and
non-uniform terrain and fuels across the wildland. From the
wildfire monitoring perspective, it is important for the more
active regions to be visited more frequently in order to capture
a more accurate state of the fire spread.

To effectively monitor wildfires with heterogeneous
spreading behavior, previously we developed an importance
based multi-UAS path planning algorithm that coordinates
multiple UASs to monitor a simulated wildfire [3]. That work
assumes that all the related wildfire and UAS data are
available on a central computer (e.g., a ground station). The
central computer makes the path planning decisions and only
the results are communicated to each UAS for execution.
Thus, even if that algorithm is restricted to a single UAS, it
will still depend on a centralized computer to support
importance-based path planning. However, wildfires happen
in extremely challenging environments, e.g., in mountain
areas that have limited or unstable wireless communications.
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To achieve robust and autonomous path planning, it is
necessary for the UASs to have real-time on-board path
planning capabilities so that they can monitor a wildfire
without depending on a centralized computer. Furthermore,
the algorithm presented in our previous work [3] has not been
specifically designed considering a single UAS, it mainly
focused on multi-UAS coordination. If this algorithm is used
in a single UAS scenario, the UAS will cover the entire fire
perimeter in a back-and-forth approach without focusing on
the most active fire regions. Thus, a more tailored algorithm
is required to achieve the importance-based wildfire
monitoring goals in a single UAS scenario. Motived by the
above needs, this paper presents a novel on-board path
planning algorithm for wildfire monitoring using a single
UAS. The proposed algorithm uses real-time data collected
by the UAS and still supports importance-based monitoring
by paying more attention to the more active fire regions.

Real-time on-board path planning in a decentralized way
for wildfire monitoring faces several unique challenges
compared to a centralized approach. First and foremost, the
UAS lacks full knowledge about the wildfire. To achieve
effective path planning, a UAS needs to know the fire
perimeter and rate of spread in real-time. For large-scale
wildfires, at any moment a UAS can only monitor a small
portion of the fire perimeter that is within the field of view of
the UAS. This means the UAS needs to have a mechanism to
construct the full fire perimeter in real-time and estimate the
rate of spread of the different segments of the perimeter.
Second, due to real-time requirements and the limited
computing resources of UAS, computation efficiency is
important for real-time on-board path planning. This means
the proposed algorithm should take computation cost into
consideration and achieve a balance between accuracy and
computation cost.

Based on the design principles described above, the
developed algorithm presented in this paper dynamically
constructs the perimeter of a wildfire based on real-time
collected data and then uses it to perform fire monitoring with
importance. The path planning focuses on
determining the UAS’s best flying direction (clockwise or
counterclockwise) along the fire perimeter to effectively
monitor a spreading wildfire. This paper significantly extends
our previous work [4] that presented an initial design of the

uneven

algorithm and preliminary results. It makes the following new
contributions compared to the previous work: i) an improved
algorithm is provided that introduces a new heterogeneity-
adjusting factor for modulating the tendency of staying at the
active fire regions. In other words, the heterogeneity-
adjusting factor can be used to control the frequency of back-
and-forth visits over the most active fire region.; ii) a new

analysis (both quantitative and qualitative) of the performance
and robustness of the algorithm is added. These analyses help
to reveal the characteristics of the algorithm and to better
understand how it works; iii) comprehensive experiments are
carried out to demonstrate the features and effectiveness of
the algorithm. This includes more challenging experiment
scenarios such as non-uniform fuel loadings and different
wind conditions.

The remainder of the paper is organized as: Section II
describes the related works. Section III describes the
conceptual design of the UAS path planning considering
uneven importance. Section IV describes the implementation
details of the real-time autonomous path planning algorithm.
Section V presents analyses of the algorithm from several
important perspectives. Section VI shows the experiment
results for different simulated fire scenarios. Finally, Section
VII concludes the paper.

II. RELATED WORK

UAS-based wildfire monitoring has received more and
more attention from researchers over the years as the technical
capabilities of UASs increased. One of the major interests
among researchers is how to monitor a wildfire using UASs
efficiently and autonomously. Wildfire monitoring can be
regarded as a path planning problem where the area needed to
be covered is the fire boundary and the mobile agents to be
used are the UASs.

The work of [5] presented a range of path planning
strategies for unmanned aerial vehicles to cover different
shapes of areas of interest, such as rectangular, concave, and
convex polygons. Different flight patterns were described,
including geometric flight patterns, such as back-and-forth
and spiral, and more complex grid-based solutions to cover
areas with different shapes. However, the problem of
monitoring a wildfire is different in the extent that the shape
of the fire is different from a regular geometric shape.
Moreover, the shape also changes over time as the fire
progresses. Another UAS based path planning strategy was
presented in [6] which uses an augmented planning space to
generate vehicle paths concentrated around the area of
interest, and its application has been demonstrated in
precision farming. In case of multiple UASs, the area is
partitioned into multiple sub-areas and then the path planning
technique is applied to the smaller regions. An algorithm to
compute UAS waypoints in nonconcave regions was
presented in [7] where the UAS follows a spiral coverage
pattern — starting from the boundary of the area towards the
inner regions. This algorithm leads to a uniform coverage
pattern where different regions of the area receive even
monitoring attention. In case of a dynamically spreading
wildfire, different parts of the fire demand different levels of
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monitoring attention. Thus, the UAS based wildfire
monitoring task is a different problem from many of the
existing area coverage problems.

Several previous works demonstrated the use of UASs in
the context of wildfire monitoring. A deep learning-based
forest fire monitoring system was presented in [8]. That
system uses images acquired from unmanned aerial vehicles
through the connected optical sensor. A convolutional neural
network is pre-trained with past forest fire images and the
unmanned aerial vehicle sends query images to this network.
The presented system is dependent on a centralized system for
recognizing a wildfire. In [9], The authors developed a
collaborative framework for multi-agent reinforcement
learning to train Unmanned Aerial Vehicles (UAVs) for
monitoring wildfires. The work of [10] presents a multi-
modal UAYV dataset with dual-feed videos (RGB and thermal)
capturing a prescribed fire and introduces a deep learning
method for detecting fire and smoke pixels. In [11], the
authors study the performance and reliability of the UAV-IoT
networks in wildfire detection and conclude that such
networks offer more efficiency and reliability compared to the
state-of-the-art satellite imaging-based solutions. The work of
[12] proposes a real-time wildfire state estimation system to
improve fire spread prediction and perimeter propagation
tracking.

Though some previous works addressed the problem of fire
perimeter monitoring, however, very few of them investigated
the problem considering the uneven importance of the fire
perimeter. The work of [13] provides an extensive overview
of different continuous object tracking methodologies and
discusses their strengths and weaknesses. According to this
survey, the accuracy of boundary detection and localization
remains an open research challenge. The work of [14]
proposes a high-level controller for UAVs considering
dynamic resource allocation. The allocation is based on a cost
function that incorporates fire location, wind speed and
direction. In [15], the authors present a UAV path planning
approach for wildfire monitoring considering realistic models
of UAVs, terrain, and fire propagation. The work of [16]
proposes and evaluates a decentralized approach for UAV-
based autonomous fire boundary tracking. For the patrolling
problem with multiple UAVs, four different strategies have
been discussed in [17] considering time, uncertainty, and
communication. In this work, the authors presented an
improved version of their previously developed centralized
algorithm.

The work of [3] presented a multi-UAS path planning
algorithm for wildfire monitoring, which is defined as a fire
perimeter coverage problem. The goal is to have a balanced
coverage of the fire perimeter using multiple UASs so that the

UAS:s can collect the most useful information about the fire
and construct a fire shape as accurately as possible. The key
concept is to treat different parts of the fire to have different
levels of importance. UASs are assigned different regions of
the perimeter to monitor those regions in a back-and-forth
approach. Over time, adjacent UASs perform boundary
negotiation between them to maintain a balanced
responsibility. This work assumes that necessary path
planning information will be provided to the UASs by a
central ground station. A distributed leader-follower coalition
formation model was presented in [18], where a set of drones
are grouped into multiple sub-groups to cover a designated
field. When a fire incident is reported, a mission is initiated
by the UASs. A set of follower UASs relies on a group leader
UAS for the monitoring task. This work supports on-board
decision making; however, it does not support importance-
based identification and monitoring of the most actively
spreading region. A more sophisticated approach is required
for the identification and monitoring of the most active fire
region.

Given the most recent advancements of using UASs in
wildfire monitoring, there is a high need for a real-time path
planning algorithm that focuses more closely on the most
active region of a fire while considering real-time and on-
board computation. To the best of our knowledge, none of the
previous works considered such a real-time, decentralized,
and importance-based approach in UAS-based wildfire
monitoring.

III. UAS PATH PLANNING CONSIDERING UNEVEN
IMPORTANCE

Fig. 1 Sample fire spread scenario

For a spreading wildfire, the location of the burning fire
perimeter is one of the most useful information to fire
managers. In this work, the proposed path planning strategy
focuses on the burning perimeter of the fire, which is
consistent with other works in the literature. We assume that
the UAS has the capability of boundary following and always
flies on top of the fire perimeter. In other words, the UAS
works as a mobile agent covering the boundary of the fire. It
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follows the fire boundary by flying clockwise (CW) or
counterclockwise (CCW) on top of the perimeter. Thus, the
UAS’s path planning task essentially becomes deciding when
the UAS needs to change its flying direction (CW or CCW)
along the fire perimeter. As the most straightforward
approach, a UAS can keep circling the fire perimeter without
changing its flying direction. This allows the UAS to monitor
the perimeter of the fire in a cyclic fashion. Nevertheless, it
does not allow the UAS to pay more attention to the more
active fire perimeter segments because it treats all segments
with even importance.

In real-life scenarios, a wildfire spreads at different speeds
across different parts of the fire perimeter due to non-uniform
fuel, terrain, and weather condition. Therefore, a segment of
the fire that spreads more actively demands more monitoring
attention compared to a segment that spreads slowly. This
work focuses on this need and performs path planning based
on the uneven importance of the burning fire perimeter
segments.

To demonstrate such a path planning need, let’s consider
a sample fire spreading scenario presented in Fig. 1. The red
region represents the fire region, the white dot in the middle
represents the ignition point (from where the fire started), the
yellow line represents the UAS trajectory since the UAS has
been deployed, and the white arrows represent fire spread at
different directions of the fire. It is clear that the fire spread is
uneven across different regions of the fire and more
monitoring attention is required on the fast-spreading region.
Since fire spreads in a non-uniform way, it makes sense for
the UAS to turn back and forth to monitor the fire segment
that spreads very fast, while still covering the entire fire
perimeter from time to time. The proposed path planning
algorithm aims to decide when the UAS needs to change its
flying direction along the fire perimeter. It focuses on the
high-level path planning instead of the low-level UAS
control.

We represent the fire area as a 2D space and discretize it
into a cell space, whose size can be set based on the
granularity of path planning. Accordingly, in the path
planning algorithm, we represent the fire perimeter as a
discretized  boundary  comprising  individual  cells
corresponding to the locations of the fire perimeter. Based on
this discretized approach, we assume the UAS always flies
from the center of a cell to the center of a neighboring cell that
is on the fire perimeter along its flying direction (CW or
CCW). After reaching the corresponding neighboring cell, it
finds a new neighboring cell on the fire perimeter as the next
destination to fly to and so on. When the UAS reaches a new
cell, the proposed algorithm helps to decide if it should
continue flying in the current flying direction (CW or CCW),

or, it should turn back to cover more important segments of
the fire perimeter. To make this decision, the UAS calculates
the importance of visiting each perimeter cell, called cell
importance, and utilizes the cell importance values. We note
that this approach of space discretization is useful for
providing a level of granularity for the UAS’s decision
making (e.g., how often to carry out a path planning decision)
as well as the importance computation (e.g., a continuous fire
perimeter is divided into discretized cells for computing the
importance). This design choice introduces some
approximation but still works with a real-world environment.
Below we describe in detail how the cell importance values
are calculated and how the path planning is performed based
on those cell importance values.

A. Cell Importance

The basic idea of importance-based path planning is to
treat different segments of a fire perimeter to have different
importance levels that represent different levels of monitoring
attention. Each cell that makes up the fire perimeter is
assigned a dynamic value that represents the importance of
visiting that cell for data collection. This importance can be
thought of as the value of the data to be collected from a cell,
which is related to the information uncertainty of that cell. If
a specific segment of the fire perimeter spreads very fast
and/or has not been visited for a long time, then there is more
information uncertainty for that segment of the fire perimeter,
and thus the segment has more importance.
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Fig. 2 Angle based trajectory cell tracking

Based on the above idea, the algorithm utilizes several key
measurements that are necessary for quantifying the
importance of the different parts of the fire perimeter. For the
on-board path planning, the UAS needs to calculate those
measurements in real-time based on the information collected
along its flying trajectory. As the UAS flies, it saves the
visiting time for each cell that it has visited. The cells that
have been visited by the UAS are referred to as the trajectory
cells in this paper. For each trajectory cell, the UAS assigns
an angle value to it to represent the direction of the cell from
the ignition point of the fire. Due to limited computing
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resources, we only consider a discretized set of angle values.
The granularity of the discretization of the angles is a tradeoff
between computation precision and on-board computation
efficiency. In this work, we consider 360 discrete angles to
keep track of the visited cells as it provides adequate precision
and efficiency. Fig. 2 illustrates four trajectory cells A, B, C,
D and their corresponding angles 6 and 6. Among them, cell
A and B have the same angle 6, and cell C and D have the
same angle &. The angle lines are based on the cell I, which
is the original ignition point of the fire. Cell O represents the
location where the UAS is first deployed. In this example, the
UAS flies clockwise around the fire without changing
direction. The real fire shape is not shown in the figure.

The importance of a cell is directly related to how fast the
fire spreads in the direction of the cell and how much time has
elapsed since the cell was last visited. Based on this idea, we
consider three measurements for computing the importance of
a cell at an angle @ 1) the rate of spread (ROS?); 2) the elapsed
time since the cell was last visited (¢%cerisir), and 3) the time
it will take for the UAS to reach the cell along the fire
perimeter from its current location (%,cen).

First, the ROS? is the measure of how fast the fire is
spreading along the direction of angle 6. To calculate ROS?,
we use the most recent trajectory cell along the angle € and
the previous trajectory cell along the same angle. The former
is referred to as the outer cell, and the latter is referred to as
the inner cell. Specifically, in our implementation for each
angle 6, the UAS keeps track of the distance of the outer cell
and inner cell from the ignition point (d%uer and d%umer) and
the visit time of those cells (t%uer and t%uer). When the UAS
reaches a new cell at the same angle 6, the previous outer cell
at that angle becomes the inner cell. The outer cells and inner
cells at two sample angles €, and & are displayed in Fig. 2.
With the information of the outer cell and inner cell the ROS?
is calculated using (1).

Secondly, for each angle 6, the time since last visit %ucerisic
is measured by the difference between the current time (Zcurent)
and the visit time of the outer cell at the direction € and
calculated as per (2).

ROSB — dguter - dienner (1)

0 0
touter — Linner

[’ — 6
tsinceVisit = teurrent — touter (2)

te — dtgoCell (3)
tocell ™ yAS SPEED

impe =R0OSY * tsaincevisit +ROS? « ttgo(:ell )

The multiplication of the ROS? and t%ncerisi allow us to
compute how far the fire has spread in the direction of a cell
since the cell was last visited. This spreading distance is
directly related to the importance of the cell at the current
moment. Note that the ROS? may dynamically change due to
the varying condition of the fire area. In this work, we ignore
that dynamics and use the most recent ROS? to calculate the
spreading distance.

While we can develop the path planning algorithm based
on the current importance of cells, it makes more sense to
consider the “potential importance” of cells, which is the
importance when the UAS actually reaches the direction of
the cell from its current location following the fire perimeter.
This is because it takes time for the UAS to reach a cell and
during this time period the fire will spread further in the
direction of the cell. The longer it will take for the UAS to
reach a cell, the larger the “potential importance” is. Based on
this idea, when computing the importance of a cell we
consider the third measurement %,c.;, which is the time
needed for the UAS to travel from its current location to the
cell at the angle 6. Since the UAS always flies CW or CCW
along the fire perimeter, the t%,c.; would be the “perimeter
distance” to the cell, denoted as d%c.u, divided by the flying
speed of the UAS, as shown in (3).

To calculate t%,con, we need to know d%,c.i. Several things
are worthy of mention for computing the d%ces. First,
depending on if the UAS flies CW or CCW, the distance to a
specific cell would be different. In the example of Fig. 2, if
the UAS keeps moving CW, the d%,c.i to cell A would be the
length covering all the perimeter cells between the UAS and
cell A along the CW direction. If the UAS turns back and
moves CCW, the d%,c.ir to cell A would be the length covering
the perimeter cells between the UAS and cell A along the
CCW direction. Second, as the fire is always spreading, the
UAS does not have full knowledge about the fire perimeter.
This means to compute d%,c.; the UAS needs to construct the
fire perimeter based on the information it has collected. The
fire perimeter construction needs to take into account the fact
that the trajectory cells following the UAS might not be
smoothly aligned into a closed loop at the current location of
the UAS. This is because, as the fire is continuously
spreading, there is some unvisited fire region ahead of the
UAS. To fill this monitoring gap, it is important to construct
the fire shape as accurately as possible based on the UAS
trajectory. We use a fire shape construction procedure to
estimate the fire perimeter of that unvisited region as shown
by the dashed red line in Fig. 2 (see later for more details).
The reconstructed fire perimeter represents the best
knowledge about the real fire shape based on the UAS
trajectory. Thus, we use this reconstructed perimeter as the
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real fire perimeter to calculate d%,ces. Third, because the fire
is always spreading, by the time the UAS reaches the direction
of a target cell, the fire has already spread further. In other
words, there is an error between the d%c.; that we calculate
based on the “current perimeter” and the actual travel distance
for reaching the direction of the target cell (in fact, d%ceu
would always be smaller than the actual travel distance
because the fire grows larger). In our current implementation,
we ignore this error and use the currently estimated fire
perimeter to compute the d%cei.

Based on the three measurements described above, we
calculate the importance of a cell using (4). Here, the
importance of a perimeter cell is determined by two factors:
ROS® x t8, yiic and ROS® xtf .. The first factor
represents the new spread distance at the angle 6 since the cell
was last visited, and the second factor represents the new
spread distance at the angle 8 until the cell is projected to be
visited again. Thus, the importance of a cell is essentially
defined by the new fire spread distance in the direction of a
cell between when the cell was last visited and when the cell
is projected to be re-visited by the UAS. These two factors
have specific types of influences on the path planning of a
UAS. How these two factors impact the path planning of a
UAS will be discussed in detail in the Analysis section of this
paper (Section V).

B. Cell Importance Based Path Planning

Having described the importance of visiting a cell, the next
step is to utilize cell importance values to carry out path
planning. In our design, we say that the UAS should keep
moving forward unless it is more beneficial to turn back, i.e.,
to change its flying direction. It makes sense for the UAS to
turn back when the fire is spreading significantly faster on the
back of the UAS. In such situations, the cell importance
values in the back of the UAS are higher. A mechanism is
required to identify if the total cell importance at the back of
the UAS is higher compared to the front of the UAS.

To measure how much benefit the UAS can obtain by keep
moving forward or by moving backward, we introduce a
concept called planning window. We consider two identical
sized planning windows from the current position of the UAS
- one window represents 50% of the fire perimeter at the back
of the UAS called the back window and the other one
represents 50% of the remaining fire perimeter in front of the
UAS called the front window. Here, a 50%-50% split of the
perimeter ensures that the front and back windows don’t
overlap. Furthermore, it also ensures that every cell of the fire
perimeter is considered in the decision-making process.

The UAS then computes and compares the cumulative
importance in the front and back window and makes its

decision regarding its optimal flying direction. Between the
two defined planning windows, the UAS dynamically
chooses the one with more importance. For that purpose, we
calculate the total importance of the back window (IMPg.ck)
and compare it to the total importance in the front window
(IMPrront). If IMPgack is larger, it means that fire in the back
window is more active than the front window, therefore, the
UAS changes its flying direction along the perimeter to cover
the more active region. Every time the UAS reaches a new
cell, this procedure for checking the best flying direction is
invoked. Thus, the real-time UAS path planning is performed
dynamically to guide the UAS towards the best flying
direction along the perimeter.

Assuming there are total 2N number of cells in the current
perimeter, IMPgcx and IMPrront are calculated according to
(5) and (6) respectively, where & represents the angle of the
i perimeter cell. Here, the index (i; where 1<=i<=2N) of a
perimeter cell is relative to the position of the UAS on the fire
perimeter. As the indexing convention, we consider the
indices start from the cell that is currently occupied by the
UAS; it increases along the opposite direction of UAS’s
flying direction on the perimeter; and ends at the cell that is
just in front of the UAS.

N
IMPORTANCEgscx = Z impbi
= ®)
2N
IMPORTANCErgont = imp?
2N ©)

Cell number 1 _ Cell number 2N

- — Back window
\ — Front window
\ -~ Actual perimeter

Cell number N

Fig. 3 Importance based path planning

The overall concept of decomposing the fire perimeter into
the back and front planning window is illustrated in Fig. 3.
Based on the fire spreading scenario presented in Fig. 1, the
dashed red line represents the perimeter of the actual fire
shape. The blue line represents the back window, the black
line represents the front window. It is worth noting that the
back window and front window are based on the fire
perimeter constructed by the UAS using the on-board data in
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real-time. This constructed fire perimeter is different from the
actual fire perimeter (the red line in Fig. 3), which is unknown
to the UAS. The rest of the UAS trajectory marked by the grey
dashed line is not a part of the reconstructed fire perimeter.
Therefore, in this sample scenario, IMPgck is the sum of the
importance of the cells falling under the blue line (cell number
1 to N), and IMPrronr is the sum of the importance of the cells
falling under the black line (cell number N+/ until 2N). By
comparing these two values, the best flying direction is
determined.

C. Modulating path planning sensitivity by adjusting
heterogeneity of fire spread

The heterogeneous spreading behavior of the fire has a
significant impact on the importance-based UAS path
planning algorithm. In the proposed algorithm, the UAS
changes its flying direction based on the total importance in
the front and back planning windows, which is directly related
to the heterogeneous rates of spread of the different cells on
the fire perimeter. Therefore, heterogeneity of the fire spread
is an important consideration in the proposed algorithm. If the
fire spread is more heterogeneous, the UAS changes its flying
direction more frequently compared to when the fire is less
heterogeneous. Based on this characteristic, we introduce an
additional parameter for the algorithm, named as the
heterogeneity-adjusting factor (o), which provides the
proposed algorithm with the capability of modulating the
tendency of flying direction change.

In our fire spread model, the heterogeneity of fire spread is
represented by the ROS values of the perimeter cells. The
heterogeneity-adjusting factor is a non-negative real number
(i.e., a = 0) that works by adjusting the ROS values of the
perimeter cells when computing the importance of the front
and back planning windows. Equation (7) shows how the
adjustment is carried out for a cell, where ROS? is the original
ROS value of the cell (the value before adjustment), ROS,,;,
is the minimum ROS value among all the cells, ROS,,, is the
average of the ROS values of all the cells, and ROSZ;jysteq 1S
the adjusted ROS value. When making the fire spread to be
more heterogeneous than the original fire spread (i.e., 1),
the adjustment is applied to those perimeter cells that have
larger ROS values than the R0OS,, . Other cells which have
lower ROS values than the ROS,,, hold their original ROS
values as showed in (7). Thus, the ROS values of the above-
average cells are magnified to make the fire spread more
heterogenous. In contrast, when making the fire spread less
heterogenous (i.e., 0 < a < 1) the adjustment is applied to all
the cells on the fire perimeter. Thus, based on the value of o
and ROS,,4, the adjusted ROS values of the perimeter cells are
calculated as per (7).

Rosgdjusted =
ROS? ROS® < ROSg,y and a > 1
@)
ROS,in + a(ROS® — ROS,;.,) otherwise
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Fig. 4 Heterogeneity adjustment for fire spread

When 0=0, the adjusted ROS values of every perimeter cell
is constant (ROS¢, justea = ROSmin), thus there is no
heterogeneity in the adjusted ROS values. As a increases, the
adjusted heterogeneity of the fire spread also increases. When
o=1.0, the adjusted heterogeneity is the same as the original
heterogeneity. The adjusted fire spread is more heterogeneous
than the actual spread when « is larger than 1. Fig. 4 shows
the heterogeneity adjustment for different o values for a
sample fire spread scenario. We can see that there is no
heterogeneity in the fire spread when a=0, while the fire
spread is very heterogeneous when o=5. By choosing
different a values, one can modulate the level of sensitivity of
the path planning (i.e., the tendency of flying direction change
of the UAS) to the heterogeneity of the fire spread.

IV. THE REAL-TIME AUTONOMOUS PATH PLANNING
ALGORITHM

LISTING 1: OVERVIEW OF THE PROPOSED ALGORITHM

1. Initialize the on-board fire map when UAS is deployed
2. In each step (after UAS reaches a new cell), DO:
i. Reconstruct fire shape based on the on-board fire map
ii. Determine the importance of the backward and forward window
iii. IF IMPgack > IMPrront
Change flying direction
ELSE
Keep flying in the current flying direction

iv. Select the next cell along flying direction and fly over there

Based on the importance-based path planning concepts
discussed in the previous section, this section describes the
design and implementation details of the real-time
autonomous path planning algorithm. The algorithm can be
decomposed into three main components: i) Initialization of
the on-board fire map ii) Fire shape construction iii)
Determining the optimal flying direction. The overall steps
involved in the algorithm are shown in listing 1.
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A. Initialization of the on-board fire map

The UAS is deployed at the boundary of the fire after a
certain time since the fire was started. The UAS needs the
initial fire spread information such as which cells are burning
at the time of UAS deployment. In our previous work, we
assumed that initial fire spread information will be provided
at the time of UAS deployment. However, this may not be
always practical to have an exact fire spread information
beforehand. In this work, we implemented an automated on-
board fire map initialization process which removes the
dependency of external input for initialization. In this process,
the UAS completes one initial round along the fire perimeter
to gather the initial fire spread information such as the
location of the fire perimeter. The UAS is initially deployed
at a perimeter cell and the angle of that cell relative to the
ignition point is denoted as 4,.. The UAS keeps flying along
the fire perimeter until it returns back to &, and thus
completes one round. Along the way, the UAS generates and
updates an on-board fire map to keep track of the necessary
information of the fire spread. The structure of the on-board
fire map is shown in Table 1. The map is based on 360 discrete
angles around the ignition point and it keeps track of the outer
cells and inner cells along each angle. It is worthwhile to note
that the map may not contain any outer and inner cells for
some angles, e.g., when there are no cells located along those
angles. In contrast, the map may contain multiple outer and
inner cells along a same angle, e.g., when those cells lie along
the same angle.

Table 1: On-board fire map

Angle Outer Cells Inner Cells

0 outer_cells, inner_cells,

1 outer_cells, inner_cells,
359 outer_cellsysy inner_cellsys,

LISTING 2: PROCEDURE FOR ON-BOARD FIRE MAP
INITIALIZATION

OUTPUT: Initialized on-board fire map
Determine the angle 6., of the UAS deployment cell from the ignition
point
REPEAT UNTIL the UAS comes back to 8, :
i. Determine the angle 6 of the cell from the ignition point
ii. Add the cell as the outer cell at the angle @1in on-board fire map
iii. Add ignition point as the inner cell at the angle 6
iv. Move to the next cell along UAS’s current flying direction
END

When the UAS is initially deployed, it has no knowledge
about the inner cells of the initial fire perimeter. In our
implementation, the ignition point is considered as the initial
inner cell. Then, as the UAS moves along the perimeter, the
outer cells and inner cells are updated on the map accordingly.

Note that here we assume the ignition point is known. When
the ignition cell is unknown, we can use the center of the fire
as the ignition cell. The center of the fire can be calculated
after the UAS finishes the initial circling of the fire perimeter.
The on-board fire map initialization procedure is shown in
listing 2.

B. Fire Shape Construction

. it '
: ‘:: Ignitio’ pnerr, w3 Ignitin!puintﬂ
|
$E [ i—l
8 Enugaal
(a) (b)

Fig. 5 On-board fire perimeter construction a) before
construction b) after construction

Every time the UAS arrives at a new cell, an on-board fire
perimeter construction procedure is invoked to generate a
more accurate fire perimeter. The on-board fire perimeter
construction procedure utilizes the previous trajectory cells to
form a full loop of the fire perimeter. To deal with the issue
that the trajectory cells following the UAS might not be
smoothly aligned into a closed loop at the current location of
the UAS (as illustrated in Fig. 5(a)), a scan method is used to
find the best cell among the previous trajectory cells that can
generate a smooth closed loop by connecting with the UAS’
current cell. The scan method works as below: starting from
the inner cell of the UAS’ current location, it keeps scanning
the trajectory cells along the moving direction of the UAS as
long as the angle from UAS’s current cell to the trajectory cell
keeps increasing. This scan method is based on the
assumption that fire spread tends to generate convex shapes.

Fig. 5 illustrates how the on-board fire perimeter
construction works. In Fig. 5(a), the white cells are previous
trajectory cells; the yellow cell is the UAS’s location, and the
best cell found by the scan method is represented by the green
cell. This is the best cell because the angle (shown by dashed
lines) from UAS’s current position keeps increasing until this
cell. Beyond this cell, the angle decreases if scanned further
along the trajectory cells. Finally, the trajectory cells between
the UAS occupied cell and the best cell are replaced by the
cells that fall under the connecting straight line, as highlighted
by the green cells in Fig. 5(b). This way a smooth fire shape
is generated using the on-board information collected by the
UAS.
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C. Determining Optimal Flying Direction

After the fire perimeter construction, the final step is to
calculate IMPgacx and IMPrronr and decide the optimal
flying direction for the UAS. The decision-making procedure
is shown in listing 3. This procedure needs the on-board fire
map, UAS’s current flying direction as inputs. From the
current position, the UAS first extracts a list of connected
cells that represents the perimeter of the constructed fire
shape. Next, it calculates the importance of each cell on the
constructed perimeter according to (4). Finally, the total
importance of the front and back planning window is
calculated from those individual cell importance values. The
UAS changes its current flying direction if IMPBACK is
larger than IMPFRONT.

LISTING 3: PROCEDURE FOR FINDING OPTIMAL FLYING
DIRECTION

INPUT: On-board fire map, UAS’s current flying direction, heterogeneity-
adjusting factor

OUTPUT: Optimal flying direction (CW/CCW) along the fire perimeter

Calculate the importance of the perimeter as:
FOR each cell “current cell” in the on-board fire perimeter DO:
i. Calculate ROS?,

adjustea Of the current_cell
ii. Calculate %, .y of the current _cell
iii. Calculate #%,c.s of the current_cell
iv. Determine imp? of the current_cell
END FOR
Calculate IMPgack and IMPgront

Change the flying direction if IMPgack > IMPrront

V. ANALYSIS OF THE PROPOSED ALGORITHM

In this section, we briefly analyze the proposed path
planning algorithm from several important perspectives.
These important to have a thorough
understanding of how the proposed algorithm controls the
path of a UAS. We divide the analyses into two parts —
quantitative and qualitative analyses. The
quantitative analyses use a representative fire spread scenario

analyses are

analyses

to analyze the flying decisions made by the UAS at different
locations of the fire perimeter. The qualitative analyses focus
on factors that impact UAS’s flying direction in a more
general context.

A. Quantitative Analysis

We consider a representative fire spread scenario that has a
minimum (rmin) and a maximum fire spread direction (rmax) as
showed in Fig. 6(a), and the rate of spread (ROS) along the
fire perimeter gradually increases from rmin tO TImax as
illustrated in Fig. 6(b). The difference of ROS between each
pair of adjacent perimeter cell (8) can be calulated as 6 =
(Tmax-Vmin)/N. Assuming rmax is a (a >1) times larger than rmin
(i.e., rmax = armin ), then & can be alternatively expressed as o
=(armin -I'min)/N. Thus, the rate of spread at any cell which is i
cells away from the rmin direction can be expressed as

(rminti6). Based on the above description of the representative
fire spread model, we consider four locations on the fire
perimeter as shown in Fig. 6(a) and analytically find out
whether the UAS should change its flying direction at those
locations. We assume the speed of the UAS is s, the size of
each perimeter cell is ¢, the ROS of perimeter cell i is 7;, and
the flying direction is CW.

Location 4 <" Location 1

& .

@ Location 2

&
4
Location 3 % — Fire Perimeter

® Ignition point
= UAS locations
- ROS

(a)

r

max
@

ROS

Jmin

rmm

1 N 2N
(b)

Cell Number

Fig. 6 Representative fire spread scenario

To analyze the UAS’s decision regarding its flying
direction change at those locations, we consider a metric
(IMPpirr) which is calculated according to Equation (8). If
IMPpir is positive at a location, the UAS should move
forward at that location because IMPrront is larger.
Otherwise, the UAS should change its flying direction by
turning back.

IMPpirr = IMPrronT — IMPBACK (®)

Below we show the IMPprr at those four locations and
discuss their impact on the UAS’s flying direction. The
IMPprr is calculated based on IMPrront and IMPgack which
have been shown in Appendix A for each of these four
locations. To save space only the derived final equations have
been shown there.

Location 1:

IMPpirr = [NTmin(N -D+ @ + B?N(N _i)] 5

S

Therefore, for location 1, if the window size (N) is larger
than 1, IMPprrr is positive and the UAS should keep moving
forward. Practically, N is always to be larger than 1, hence the
UAS should always move forward at location 1.

Location 2:

2
N Tmin

IMPpirr =

(a—1)*§
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Therefore, for location 2, if a>1, i.€., I'max>Tmin, IMPpirr 18
positive and the UAS should keep moving forward in the
clockwise direction at this location.

Location 3:
N c
IMPoirr= (27pin 2ieq i+ 28 Z i%) *
i=1

Therefore, similar to location 1 and 2, the UAS should
always move forward at location 3.

Location 4:
2 B
IMPpirr = %(5 -a) *E

Therefore, for location 4, the UAS might keep moving
forward or turn backward depending on the value of a. If a<5,
IMPprer is positive and the UAS should keep moving forward
in its clockwise direction. On the other hand, if a >= 5 the
UAS should turn backward to fly in the counterclockwise
direction.

Thus, the UAS might turn back only when it is travelling
from the maximum spread direction (location 3) towards the
minimum spread direction (location 1) in the clockwise
direction. This is because, IMPpgr starts to decrease within
this segment, thereby increasing the tendency of turning back.
Depending on the value of @, the IMPpirr becomes negative
at a specific cell and then the UAS turns back. The turning
back makes the UAS to revisit the most active region of the
fire, which is what we want.

The smaller the value of a, the larger the distance that the
UAS needs to fly to reach such a cell. However, if the value
of a is lower than a minimum threshold, the UAS might never
find such a cell and will keep flying forward and reach the
minimum spread direction (location 1). This means that, if the
heterogeneity of fire spreading is not significant enough, the
proposed algorithm will work just like a basic circling
algorithm. This is also desired because circling would be the
best strategy if different parts of the fire perimeter spread
more or less uniformly.

B. Qualitative Analysis

In this section, we qualitatively examine how the two
important properties of the fire perimeter, tencevisic and tiocel,
impact the UAS’s flying direction. These analyses are based
on the incremental fire spread scenario described in the
preceding section. In the following description, we refer to a
segment of the fire perimeter starting from location 4 and
ending at location B as SEGag.

Impact of tsincevisic on UAS’s flying direction:

In Equation (4), we can see how the ROS and tgincevisit
values participate in the cell importance calculation (the first

ts\n(e\ﬂs\t

= Cell Number
- = 2N
Front window

(a)

Back window

Locen

-p- Cell Number

g = . ¥
Back window Front window

(b)

Fig. 7 Pattern of fsinceisir and tiocen values along the fire perimeter

term of the equation). For each cell in the front and back
window, these two values are multiplied and a portion of cell
importance is obtained. When the UAS is at location 1, the
back window consists of SEG4 and SEGu3, the front window
consists of SEGi, and SEG;3. We can see that the back and
front window have the same set of ROS values. However,
tsincevisit Values in the front window are always higher than the
back window, as shown in Fig. 7(a). Thus, the UAS will move
forward at this location because the total importance in the
front window will be higher due to the higher tsncevisic values.
As the UAS keeps moving forward, it reaches location 2 and
then location 3 because the total importance in the front
window remains larger at these locations. However, when the
UAS reaches location 4, the front window consists of SEG4;
and SEG,, which has lower ROS values compared to the
segments of the back window. Therefore, at location 4, ROS
values of the back window pull the UAS to turn back, while
the tincevisic values of the front window push the UAS to move
forward. If the ROS values at the back window are large
enough to dominate the higher tsncevisic values at the front
window, the UAS will turn back. Otherwise, the UAS will
keep flying towards location 1.

From this analysis, we conclude that the first term of
equation (4) is responsible for pushing the UAS forward along
the fire perimeter.

Impact of tcen on UAS’s flying direction:

The tiwcen parameter indicates the time needed to reach a
perimeter cell from the current location of the UAS. A typical
pattern of the ti,cen values has been shown in Fig. 7(b). During
the cell importance calculation based on Equation (4), tcen 1S
multiplied with the ROS value and another portion of the cell
importance is obtained. Below we discuss how the UAS’s
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flying behavior is influenced by only this portion of the cell
importance.

When the UAS is at location 1, the front and back window
has the same set of ROS and tocen values. Hence the
importance of the front and back window will be the same and
the UAS will move forward. As the UAS moves towards
location 2, the importance in the front window will increase
because it will acquire cells with higher ROS values. This is
also true when the UAS keeps moving from location 2 to
location 3. However, when the UAS moves one cell ahead of
location 3, the importance in the back window will become
larger as it releases a cell with a lower ROS value (the cell
next to rmin direction) and acquires a new cell with a higher
ROS value (cell next to rmax direction). Therefore, the UAS
will turn back and come to location 3 again in the
counterclockwise direction. Now, when it moves one cell
ahead of location 3 in the counterclockwise direction,
importance in the back window will become higher again and
it will turn back again. Thus, the UAS will keep oscillating
around the rmax direction. To conclude, in our formula for
determining the cell importance (4), the second term of the
equation is responsible for keeping the UAS on the most
active region.

In summary, these two parameters (tsincevisit and tiocel),
together with the heterogeneous ROS values of different cells,
make the UAS have the capability of both revisiting the most
active fire region and covering the entire fire perimeter from
time to time.

VI. EXPERIMENT RESULTS

The experiments are based on simulated wildfires; we used
DEVS-FIRE model [19] to simulate different fire spreading
scenarios. In this section, we will present: i) a brief description
of wildfire spread simulation for our experiments ii) an in-
depth demonstration of how the algorithm works iii)
demonstration of path planning for non-uniform fuel models
iv) demonstration of path planning for non-uniform wind
conditions v) comparison of the algorithm with a baseline
method.

NORTH

IGNITION POINT]

Fig. 8 Wildfire spread simulation using DEVS-FIRE

A. Wildfire Spread Simulation

Wildfire spread simulation is used to test and demonstrate
the proposed path planning algorithm. The wildfire spread
simulation uses the DEVS-FIRE model [19, 20], which is a
discrete event simulation model developed based on the
Discrete Event System Specification (DEVS) formalism.
DEVS-FIRE uses a cellular space to represent a wildland
area, where each cell has its own terrain and fuel (vegetation)
data corresponding to the sub-regions in the area. All cells are
coupled to a weather model to receive weather data (wind
speed and wind direction) dynamically. Thus, the cellular
space model incorporates spatial fuel data, terrain data, and
temporal weather data into the simulation of wildfire behavior
across both time and space. Fire spreading is modeled as a
propagation process as burning cells ignite their unburned
neighboring cells. Once a cell is ignited, it uses Rothaermel’s
model [21] to compute the fire spread rate and direction
within the cell. This model has been extensively used and
tested by researchers and practitioners and is proven to be
very robust. When implementing the UAS’ path planning in
the wildfire spread simulation-based experiment, the UAS is
modeled as a mobile agent flying along the fire perimeter. The
UAS agent obtains information from the cellular space of
DEVS-FIRE. It dynamically constructs an on-board map of
the fire perimeter and makes decisions about its flying
direction based on the on-board data.

Fig. 9 UAS trajectory based on the proposed algorithm

A sample fire spread scenario using DEVS-FIRE has been
shown in Fig. 8. The green regions represent the part of the
land that is not impacted by the fire yet. The red region
represents the currently burning area and the black region
represents the area that has already burnt out. To describe the
fire spread and path planning results, we specify the directions
of the cell space as shown in Fig. 8. In this sample scenario,
the fire is mostly spreading towards the west and south-west
direction since it started from the ignition point.

For the experiments, the wildland has been modeled as a
200x200 cell space using DEVS-FIRE. A specific cell is
ignited in the beginning and starting from there, the fire
spreads as per the fire spread model and weather
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configuration. The UAS is deployed on the fire perimeter 1
hour after the fire has started.

B. Demonstration of Real-time Autonomous Path Planning
Algorithm

First, we are going to demonstrate the path planning result
in detail through a simulated fire spread scenario. In this
scenario, as shown in Fig. 9, the fire starts from the northeast
side of the cell space and spreads towards the southwest
direction over time. During the first 3 hours of the simulation,
the fire was not spreading very fast, as a result, the UAS did
not make too many revisits during that period. However, for
the remaining simulation time, the fire was spreading
significantly faster. During that time, the UAS made frequent
back and forth revisits to cover the most spreading part of the
fire towards the southwest direction.
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Fig. 10 Illustre(l(t:i)on of back and front wind(g\)v importance

Fig. 10(c) presents a snapshot from the simulation where the
UAS is moving towards the most active fire region; the spread
in the back of the UAS is very slow. The corresponding
importance values of the constructed fire perimeter cells have
been plotted in Fig. 10(a). From the plot, we can see that the
total importance in the back region is significantly smaller than
in the front region. Therefore, it is better for the UAS to keep
flying in the same direction in this scenario. In contrast, Fig.
10(d) presents a snapshot where the fire is spreading much
faster behind the UAS. The importance of the constructed fire
perimeter cells has been plotted in Fig. 10(b). In this case, the
total importance in the back region has just got larger than the
total importance in the front region. Hence, the UAS needs to
change its flying direction to cover the most active region of

the fire. In this experiment the value of the heterogeneity-
adjusting factor (a) is 1.0.

Fig. 11 compares the UAS trajectories for six different o
values for the same fire spread scenario presented in Fig. 9.
When the value of a is smaller than 1, the UAS changes its
flying direction less frequently because the fire spread is less
heterogeneous in this case. In contrast, when the value of a is
larger than 1, the UAS changes its flying direction more
frequently to put more monitoring attention on the most
actively spreading region of the fire. As the value of a
increases, this tendency of changing the flying direction also
increases. With 0.0, 0.8, 1.0, 1.2, 1.5 and 5.0 as the values of
a, the UAS changed its flying direction 0, 8, 11, 15, 20, and 43
times respectively as showed in Fig. 11. It should be noted that
the UAS made no direction change when a is very small (e.g.,
0.0). In contrast, the UAS made a large number of direction
changes when o is much higher than 1.0 (e.g., 5.0). Thus, the
sensitivity of the UAS’s flying direction change can be
controlled by adjusting the value of a. This feature greatly
improves the flexibility of the algorithm as one can make the
UAS to focus on the - i) entire perimeter of the fire by setting
a very small value of a ii) most active fire front by setting a
higher value of a. iii) both the entire perimeter and the most
active fire front by setting an intermediate value of a.

Fig. 11 UAS trajectory for different a values
C. Path planning for non-uniform fuel loading

@ (b)
Fig. 12 UAS trajectory based on non-uniform fuel loadings

In this section, we consider fire spread in two different
types of fuel combinations, thus two different spreading
characteristics. In the first type of fuel combination, we



O J o U bW

AT UTUTUTUTUTUTUTOTE BB DB DD DSDNWWWWWWWWWWNNNONNNMNNNNNNRE R PR ERRRRP R R
O WNRPOWVWOUJdANT D WNRPRPOW®O-TAURWNROWOWO®-JdANUD™WNRFROW®OW-JIOUD™WNR OW®W-IO U B WN R O W

consider fuel with relatively slow-burning characteristics
followed by fuel with relatively fast-burning characteristics.
We consider one half of the cell space consists of young brush
which has moderate burning characteristics, and another half
of the cell space consists of short grass which has faster
burning characteristics. Fig. 12(a) shows the UAS trajectory
while monitoring a fire in such a fuel combination. From the
trajectory, we can see that the UAS circled the fire while it
spread on the upper half of the cell space because the
spreading speed was relatively slow. However, when the fire
spread much faster on the second half of the cell space, the
UAS made back-and-forth visits over the most actively
spreading fire front. Thus, the proposed algorithm captured
the fire spreading speed difference in different fuel types and
adjusted its monitoring strategy accordingly.

In the second type of fuel combination, we consider fuel
with relatively fast-burning characteristic followed by fuel
with slow-burning characteristic. Here, we consider one half
of the cell space consists of young brush (Fuel Model 5) and
another half consists of short needle timber litter (Fuel Model
8) which has slow-burning characteristics. Fig. 12(b) shows
the UAS trajectory for this type of fuel combination based on
the proposed algorithm. The fire front was spreading much
faster on the upper half of the cell space, consequently, the
UAS made back-and-forth visits over the fire front. However,
when the fire front reached the lower half of the cell space,
the fire spreading speed is significantly reduced due to the
slow-burning fuel type. Consequently, the UAS did not make
any further back-and-forth visits, instead, it monitored the fire
by circling the perimeter.

For both types of fuel combinations considered in this
section, the UAS automatically adjusted its monitoring
strategy based on the fire spreading speed. This capability
helped the UAS to obtain less monitoring gap on the faster
spreading part of a fire. Thus, the proposed algorithm works
adaptively for non-uniform fuel combinations.

D. Path planning for different wind conditions

We consider three different fire spreading behaviors
resulting from three different wind conditions and evaluate
how the proposed algorithm performs on those fire spread
scenarios. Here, we consider uniform fuel loading for the
entire cell space. First, we consider a scenario where fire
spreads very fast towards a specific direction as shown in Fig.
13(a). Here, the fire started from the northeast corner of the
cell space and spread towards the southwest direction much
faster. As a specific region of this fire is spreading very fast,
the UAS revisits that fire front very frequently to put more
monitoring attention. Second, we consider a scenario where
the fire is spreading slowly around the ignition point as shown
in Fig. 13(b). There is no significantly fast-spreading region

in this scenario, therefore IMPg4cx has never grown larger
than IMPrronr. Consequently, the UAS always moved
forward cyclically while monitoring this slowly spreading
fire. Third, we consider a fire spreading scenario where the
wind significantly changes its direction during the fire spread.
In this experiment, the wind blows towards the north during
the first three hours of simulation and then changes its
direction towards the south for the remaining three hours.
Consequently, the fire spread more actively on the north side
during the first three hours and on the south side during the
last three hours. From the UAS trajectory showed in Fig.
13(c), we can see that the UAS made back-and-forth visits on
the north side initially and later on the south side of the fire.
Thus, the proposed algorithm is able to shift its monitoring
attention depending on the location of the most active region.

In summary, the proposed algorithm is robust towards
different fire spread behaviors resulting from different wind
conditions. When the fire spread is slow, the proposed
algorithm works like a basic circling algorithm. In contrast,
when a region is spreading significantly faster, the UAS puts
more monitoring attention on the most active region of the
fire. Furthermore, the proposed algorithm is capable of
shifting its monitoring attention in case the most active region
gets shifted due to non-uniform wind conditions.

(b) (©)
Fig. 13 UAS trajectory in different wind conditions
E. Comparison with a Baseline Method

(a) (b)
Fig. 14 UAS trajectory based on the circling-based approach

One of the baseline approaches for monitoring a wildfire is
just circling the perimeter for the entire time. This method is
straightforward and doesn’t consider the uneven importance
of the fire perimeter. This approach makes sense when the fire
is spreading slowly and evenly at all angles around the fire
center. However, if a section of the fire is spreading much
faster, this approach is unable to provide higher monitoring
attention to that region. Fig. 14(a) and Fig. 14(b) show the
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UAS trajectories based on the circling-based approach
corresponding to the fire spread scenarios used in Fig. 9 and
Fig. 13(a) respectively. For both scenarios, we can notice
larger monitoring gaps on the faster-spreading southwest side
of the fire compared to the proposed algorithm.

While the UAS is visiting a section of the perimeter, the
fire is possibly spreading in other sections with different
spreading speeds. Therefore, the UAS lacks knowledge about
those unvisited parts until it visits those sections again. This
knowledge gap results in inaccuracies between the actual fire
shape and fire shape constructed from UAS data. To quantify
this inaccuracy for both the circling-based method and the
proposed algorithm, we measure the difference between the
original fire shape and the constructed fire shapes at each of
the 360 discrete angles. We name this difference as “distance
error” in this paper. Fig. 15 illustrates the concept of distance
error for a sample fire monitoring scenario. The original fire
shape has been highlighted by the red region and the fire
shape constructed from the UAS trajectory has been marked
by the blue region. To construct fire shape from UAS
trajectory, first, we used the convex hull algorithm [22] to
construct the convex hull (the smallest convex set containing
a set of points) of the on-board perimeter cells. Then, we have
filled in that convex hull to get constructed fire shape.
Between these two shapes, a different amount of distance
error is present in different parts of the fire as shown by the
yellow arrows in Fig. 15.

Fig. 15 Distance error between the original fire shape and
constructed fire shape

One of the major goals of UAS based wildfire monitoring
is to construct a fire shape from the collected data in real-time
as accurately as possible. The maximum distance error for a
more accurate fire shape will be smaller compared to a less
accurate fire shape. To quantitively compare the proposed
algorithm with the circling-based method, we have recorded
this maximum distance error during the simulation whenever
the UAS moved to a new cell. Fig. 16(a) compares the
maximum distance error of these two approaches for the fire
spread scenario shown in Fig. 14(a). From the comparison,
we can see that the maximum distance error is similar for the
first 3 hours of the simulation as the fire was spreading slowly
during that time. However, when the fire started to spread
faster after that time period, the difference between the

average maximum distance error starts to increase. At the end
of the simulation, the average maximum distance error for the
proposed algorithm and the circling-based method is 7.3 and
8.5 respectively. The lower average distance error implies that
the fire shape constructed from the real-time UAS data is
more accurate.

Fig. 16(b) compares the maximum distance error for the
fire spread scenario shown in Fig. 14(b). In this scenario, the
fire was spreading very fast towards the southwest direction
from the very beginning. From the comparison, we can see
that the circling-based approach has much larger maximum
distance errors for this fast-spreading scenario. This is
because, when the UAS was visiting the slower spreading
northeast side of the fire to make full cycles, the fire on the
southwest side was spreading very fast, which resulted in
higher inaccuracy for the circling-based method. In contrast,
the proposed algorithm was making frequent revisits to the
faster-spreading southwest side, which resulted in smaller
maximum distance errors. When the simulation is finished,
the average maximum distance error for the proposed
algorithm and the circling-based method is 12.2 and 15.8
respectively. Therefore, for a faster spreading fire scenario,
the proposed algorithm is capable to construct the fire shape
with a larger accuracy margin compared to the baseline
approach.
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Fig. 16 Comparison of the proposed algorithm and circling
based approach

VII. CONCLUSION AND FUTURE WORK

In this work, we presented a new approach for real-time
autonomous path planning intended to be used for UAS based
wildfire monitoring. Real-time and autonomous path
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planning can be a very useful mechanism in challenging
scenarios like lack of a ground system, unknown
environment, lack of information about the land and weather,
and many more. The proposed algorithm takes the uneven
nature of wildfire spread into account and puts more
monitoring attention for faster spreading segments of the fire.
Simulation results for a variety of fire spread scenarios have
been presented to show the effectiveness and adaptiveness of
the proposed algorithm. In addition, an analysis of the
algorithm has been presented which provides some important
insights about the proposed algorithm. In the future, we want
to take more complex fire spread factors (such as the
spatiotemporal uncertainty of fire spread) into account and
enhance the algorithm to make it more robust. In addition, we
want to extend the algorithm to support multiple UASs. To
conclude, the path planning algorithm presented in this paper
can perform more advanced wildfire monitoring tasks and
holds the potential to enhance wildfire management
strategies.
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