
  

1 

Abstract— Unmanned Aircraft Systems (UASs) offer many 
benefits in wildfire monitoring when compared to traditional 
wildfire monitoring technologies. Wildfire spread is a highly 
heterogeneous process with non-uniform spreading speed and 
fireline intensity in both space and time. When planning the path 
of a UAS for monitoring a dynamically growing wildfire, it is 
important to consider the uneven spread of the fire because 
different parts of the fire boundary would need different levels 
of monitoring attention. This paper presents a real-time path 
planning algorithm for a UAS to autonomously monitor the 
perimeter of a spreading wildfire with uneven importance. The 
proposed path planning algorithm allows the UAS to focus on 
the most active regions of a wildfire while still covering the entire 
fire perimeter. The design and implementation of this algorithm 
are described, and an in-depth analysis of the performance of the 
algorithm is provided. Experiment results based on simulated 
wildfires demonstrate the effectiveness and robustness of the 
proposed algorithm for monitoring dynamic wildfires. 
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I. INTRODUCTION 

Due to the increasing frequency of wildfires in recent years 
[1], wildfire monitoring has become a vital task and a subject 
of greater interest for researchers and practitioners. To 
support wildfire management, different strategies and 
technologies for wildfire monitoring and data collection have 
been used by them, including the use of satellite systems, 
manned aircraft systems, ground sensors, etc. Despite having 
some unique benefits, each of these technologies has its own 
limitations in terms of application. These limitations include 
- but are not limited to lower effectiveness, lower safety, 
higher cost, and limited adaptability to dynamically spreading 
wildfires. For example, satellite images typically have a lower 
spatial and temporal resolution [2]; helicopter missions are 
relatively unsafe and costly; real-time deployment of ground 
sensors is difficult and time-consuming, and it is impractical 
to make such sensor systems adaptive to the size and spread 
of a fire.  
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A more effective and cost-efficient option for wildfire 
monitoring is using Unmanned Aircraft Systems (UASs). Due 
to the recent developments of highly capable UASs, it is 
considered a very suitable option for collecting important 
information from wildfires. Modern UASs can fly over a wide 
range of altitudes at desired speed for hours. They can be 
equipped with different types of sensors and cameras to 
collect valuable information about a wildfire. Furthermore, 
UASs have the potential to fly autonomously to monitor a fire 
with minimal external supervision and communication. 
Altogether, UASs hold great potential for collecting real-time 
wildfire data and supporting wildfire management.  

A variety of factors influence the wildfire spreading 
process in a dynamic way. For example, the spatiotemporal 
speed and intensity of the fire spread can be impacted by 
different fuel loading, non-uniform terrain, and dynamic 
weather conditions. As a result, different parts of the fire 
spread at different speeds. Generally, the head of a fire has 
more frequent changes in fire state than the tail of the fire. 
Moreover, such active region(s) of a spreading wildfire might 
change over time due to the dynamic weather condition and 
non-uniform terrain and fuels across the wildland. From the 
wildfire monitoring perspective, it is important for the more 
active regions to be visited more frequently in order to capture 
a more accurate state of the fire spread. 

To effectively monitor wildfires with heterogeneous 
spreading behavior, previously we developed an importance 
based multi-UAS path planning algorithm that coordinates 
multiple UASs to monitor a simulated wildfire [3]. That work 
assumes that all the related wildfire and UAS data are 
available on a central computer (e.g., a ground station).  The 
central computer makes the path planning decisions and only 
the results are communicated to each UAS for execution. 
Thus, even if that algorithm is restricted to a single UAS, it 
will still depend on a centralized computer to support 
importance-based path planning. However, wildfires happen 
in extremely challenging environments, e.g., in mountain 
areas that have limited or unstable wireless communications. 
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To achieve robust and autonomous path planning, it is 
necessary for the UASs to have real-time on-board path 
planning capabilities so that they can monitor a wildfire 
without depending on a centralized computer. Furthermore, 
the algorithm presented in our previous work [3] has not been 
specifically designed considering a single UAS, it mainly 
focused on multi-UAS coordination. If this algorithm is used 
in a single UAS scenario, the UAS will cover the entire fire 
perimeter in a back-and-forth approach without focusing on 
the most active fire regions. Thus, a more tailored algorithm 
is required to achieve the importance-based wildfire 
monitoring goals in a single UAS scenario. Motived by the 
above needs, this paper presents a novel on-board path 
planning algorithm for wildfire monitoring using a single 
UAS. The proposed algorithm uses real-time data collected 
by the UAS and still supports importance-based monitoring 
by paying more attention to the more active fire regions.  

Real-time on-board path planning in a decentralized way 
for wildfire monitoring faces several unique challenges 
compared to a centralized approach. First and foremost, the 
UAS lacks full knowledge about the wildfire. To achieve 
effective path planning, a UAS needs to know the fire 
perimeter and rate of spread in real-time. For large-scale 
wildfires, at any moment a UAS can only monitor a small 
portion of the fire perimeter that is within the field of view of 
the UAS. This means the UAS needs to have a mechanism to 
construct the full fire perimeter in real-time and estimate the 
rate of spread of the different segments of the perimeter. 
Second, due to real-time requirements and the limited 
computing resources of UAS, computation efficiency is 
important for real-time on-board path planning. This means 
the proposed algorithm should take computation cost into 
consideration and achieve a balance between accuracy and 
computation cost.  

Based on the design principles described above, the 
developed algorithm presented in this paper dynamically 
constructs the perimeter of a wildfire based on real-time 
collected data and then uses it to perform fire monitoring with 
uneven importance. The path planning focuses on 
determining the UAS’s best flying direction (clockwise or 
counterclockwise) along the fire perimeter to effectively 
monitor a spreading wildfire. This paper significantly extends 
our previous work [4] that presented an initial design of the 
algorithm and preliminary results. It makes the following new 
contributions compared to the previous work: i) an improved 
algorithm is provided that introduces a new heterogeneity-
adjusting factor for modulating the tendency of staying at the 
active fire regions. In other words, the heterogeneity-
adjusting factor can be used to control the frequency of back-
and-forth visits over the most active fire region.; ii) a new 

analysis (both quantitative and qualitative) of the performance 
and robustness of the algorithm is added. These analyses help 
to reveal the characteristics of the algorithm and to better 
understand how it works; iii) comprehensive experiments are 
carried out to demonstrate the features and effectiveness of 
the algorithm. This includes more challenging experiment 
scenarios such as non-uniform fuel loadings and different 
wind conditions. 

The remainder of the paper is organized as: Section II 
describes the related works. Section III describes the 
conceptual design of the UAS path planning considering 
uneven importance. Section IV describes the implementation 
details of the real-time autonomous path planning algorithm. 
Section V presents analyses of the algorithm from several 
important perspectives. Section VI shows the experiment 
results for different simulated fire scenarios. Finally, Section 
VII concludes the paper. 

II. RELATED WORK 

UAS-based wildfire monitoring has received more and 
more attention from researchers over the years as the technical 
capabilities of UASs increased. One of the major interests 
among researchers is how to monitor a wildfire using UASs 
efficiently and autonomously. Wildfire monitoring can be 
regarded as a path planning problem where the area needed to 
be covered is the fire boundary and the mobile agents to be 
used are the UASs.  

The work of [5] presented a range of path planning 
strategies for unmanned aerial vehicles to cover different 
shapes of areas of interest, such as rectangular, concave, and 
convex polygons. Different flight patterns were described, 
including geometric flight patterns, such as back-and-forth 
and spiral, and more complex grid-based solutions to cover 
areas with different shapes. However, the problem of 
monitoring a wildfire is different in the extent that the shape 
of the fire is different from a regular geometric shape. 
Moreover, the shape also changes over time as the fire 
progresses. Another UAS based path planning strategy was 
presented in [6] which uses an augmented planning space to 
generate vehicle paths concentrated around the area of 
interest, and its application has been demonstrated in 
precision farming. In case of multiple UASs, the area is 
partitioned into multiple sub-areas and then the path planning 
technique is applied to the smaller regions. An algorithm to 
compute UAS waypoints in nonconcave regions was 
presented in [7] where the UAS follows a spiral coverage 
pattern – starting from the boundary of the area towards the 
inner regions. This algorithm leads to a uniform coverage 
pattern where different regions of the area receive even 
monitoring attention. In case of a dynamically spreading 
wildfire, different parts of the fire demand different levels of 
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monitoring attention. Thus, the UAS based wildfire 
monitoring task is a different problem from many of the 
existing area coverage problems. 

Several previous works demonstrated the use of UASs in 
the context of wildfire monitoring. A deep learning-based 
forest fire monitoring system was presented in [8]. That 
system uses images acquired from unmanned aerial vehicles 
through the connected optical sensor. A convolutional neural 
network is pre-trained with past forest fire images and the 
unmanned aerial vehicle sends query images to this network. 
The presented system is dependent on a centralized system for 
recognizing a wildfire. In [9], The authors developed a 
collaborative framework for multi-agent reinforcement 
learning to train Unmanned Aerial Vehicles (UAVs) for 
monitoring wildfires. The work of [10] presents a multi-
modal UAV dataset with dual-feed videos (RGB and thermal) 
capturing a prescribed fire and introduces a deep learning 
method for detecting fire and smoke pixels. In [11], the 
authors study the performance and reliability of the UAV-IoT 
networks in wildfire detection and conclude that such 
networks offer more efficiency and reliability compared to the 
state-of-the-art satellite imaging-based solutions. The work of 
[12] proposes a real-time wildfire state estimation system to 
improve fire spread prediction and perimeter propagation 
tracking. 

Though some previous works addressed the problem of fire 
perimeter monitoring, however, very few of them investigated 
the problem considering the uneven importance of the fire 
perimeter. The work of [13] provides an extensive overview 
of different continuous object tracking methodologies and 
discusses their strengths and weaknesses. According to this 
survey, the accuracy of boundary detection and localization 
remains an open research challenge. The work of [14] 
proposes a high-level controller for UAVs considering 
dynamic resource allocation. The allocation is based on a cost 
function that incorporates fire location, wind speed and 
direction. In [15], the authors present a UAV path planning 
approach for wildfire monitoring considering realistic models 
of UAVs, terrain, and fire propagation. The work of [16] 
proposes and evaluates a decentralized approach for UAV-
based autonomous fire boundary tracking. For the patrolling 
problem with multiple UAVs, four different strategies have 
been discussed in [17] considering time, uncertainty, and 
communication. In this work, the authors presented an 
improved version of their previously developed centralized 
algorithm. 

The work of [3] presented a multi-UAS path planning 
algorithm for wildfire monitoring, which is defined as a fire 
perimeter coverage problem. The goal is to have a balanced 
coverage of the fire perimeter using multiple UASs so that the 

UASs can collect the most useful information about the fire 
and construct a fire shape as accurately as possible. The key 
concept is to treat different parts of the fire to have different 
levels of importance. UASs are assigned different regions of 
the perimeter to monitor those regions in a back-and-forth 
approach. Over time, adjacent UASs perform boundary 
negotiation between them to maintain a balanced 
responsibility. This work assumes that necessary path 
planning information will be provided to the UASs by a 
central ground station. A distributed leader-follower coalition 
formation model was presented in [18], where a set of drones 
are grouped into multiple sub-groups to cover a designated 
field. When a fire incident is reported, a mission is initiated 
by the UASs. A set of follower UASs relies on a group leader 
UAS for the monitoring task. This work supports on-board 
decision making; however, it does not support importance-
based identification and monitoring of the most actively 
spreading region. A more sophisticated approach is required 
for the identification and monitoring of the most active fire 
region.  

Given the most recent advancements of using UASs in 
wildfire monitoring, there is a high need for a real-time path 
planning algorithm that focuses more closely on the most 
active region of a fire while considering real-time and on-
board computation. To the best of our knowledge, none of the 
previous works considered such a real-time, decentralized, 
and importance-based approach in UAS-based wildfire 
monitoring. 

III. UAS PATH PLANNING CONSIDERING UNEVEN 
IMPORTANCE 

 
Fig. 1 Sample fire spread scenario 

For a spreading wildfire, the location of the burning fire 
perimeter is one of the most useful information to fire 
managers. In this work, the proposed path planning strategy 
focuses on the burning perimeter of the fire, which is 
consistent with other works in the literature. We assume that 
the UAS has the capability of boundary following and always 
flies on top of the fire perimeter. In other words, the UAS 
works as a mobile agent covering the boundary of the fire. It 
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follows the fire boundary by flying clockwise (CW) or 
counterclockwise (CCW) on top of the perimeter. Thus, the 
UAS’s path planning task essentially becomes deciding when 
the UAS needs to change its flying direction (CW or CCW) 
along the fire perimeter. As the most straightforward 
approach, a UAS can keep circling the fire perimeter without 
changing its flying direction. This allows the UAS to monitor 
the perimeter of the fire in a cyclic fashion. Nevertheless, it 
does not allow the UAS to pay more attention to the more 
active fire perimeter segments because it treats all segments 
with even importance.  

In real-life scenarios, a wildfire spreads at different speeds 
across different parts of the fire perimeter due to non-uniform 
fuel, terrain, and weather condition. Therefore, a segment of 
the fire that spreads more actively demands more monitoring 
attention compared to a segment that spreads slowly. This 
work focuses on this need and performs path planning based 
on the uneven importance of the burning fire perimeter 
segments.  

To demonstrate such a path planning need, let’s consider 
a sample fire spreading scenario presented in Fig. 1. The red 
region represents the fire region, the white dot in the middle 
represents the ignition point (from where the fire started), the 
yellow line represents the UAS trajectory since the UAS has 
been deployed, and the white arrows represent fire spread at 
different directions of the fire. It is clear that the fire spread is 
uneven across different regions of the fire and more 
monitoring attention is required on the fast-spreading region. 
Since fire spreads in a non-uniform way, it makes sense for 
the UAS to turn back and forth to monitor the fire segment 
that spreads very fast, while still covering the entire fire 
perimeter from time to time. The proposed path planning 
algorithm aims to decide when the UAS needs to change its 
flying direction along the fire perimeter. It focuses on the 
high-level path planning instead of the low-level UAS 
control.  

We represent the fire area as a 2D space and discretize it 
into a cell space, whose size can be set based on the 
granularity of path planning. Accordingly, in the path 
planning algorithm, we represent the fire perimeter as a 
discretized boundary comprising individual cells 
corresponding to the locations of the fire perimeter. Based on 
this discretized approach, we assume the UAS always flies 
from the center of a cell to the center of a neighboring cell that 
is on the fire perimeter along its flying direction (CW or 
CCW). After reaching the corresponding neighboring cell, it 
finds a new neighboring cell on the fire perimeter as the next 
destination to fly to and so on. When the UAS reaches a new 
cell, the proposed algorithm helps to decide if it should 
continue flying in the current flying direction (CW or CCW), 

or, it should turn back to cover more important segments of 
the fire perimeter. To make this decision, the UAS calculates 
the importance of visiting each perimeter cell, called cell 
importance, and utilizes the cell importance values. We note 
that this approach of space discretization is useful for 
providing a level of granularity for the UAS’s decision 
making (e.g., how often to carry out a path planning decision) 
as well as the importance computation (e.g., a continuous fire 
perimeter is divided into discretized cells for computing the 
importance). This design choice introduces some 
approximation but still works with a real-world environment. 
Below we describe in detail how the cell importance values 
are calculated and how the path planning is performed based 
on those cell importance values. 

A. Cell Importance 
The basic idea of importance-based path planning is to 

treat different segments of a fire perimeter to have different 
importance levels that represent different levels of monitoring 
attention. Each cell that makes up the fire perimeter is 
assigned a dynamic value that represents the importance of 
visiting that cell for data collection. This importance can be 
thought of as the value of the data to be collected from a cell, 
which is related to the information uncertainty of that cell. If 
a specific segment of the fire perimeter spreads very fast 
and/or has not been visited for a long time, then there is more 
information uncertainty for that segment of the fire perimeter, 
and thus the segment has more importance.  

 
Fig. 2 Angle based trajectory cell tracking 

Based on the above idea, the algorithm utilizes several key 
measurements that are necessary for quantifying the 
importance of the different parts of the fire perimeter. For the 
on-board path planning, the UAS needs to calculate those 
measurements in real-time based on the information collected 
along its flying trajectory. As the UAS flies, it saves the 
visiting time for each cell that it has visited. The cells that 
have been visited by the UAS are referred to as the trajectory 
cells in this paper. For each trajectory cell, the UAS assigns 
an angle value to it to represent the direction of the cell from 
the ignition point of the fire. Due to limited computing 
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resources, we only consider a discretized set of angle values. 
The granularity of the discretization of the angles is a tradeoff 
between computation precision and on-board computation 
efficiency. In this work, we consider 360 discrete angles to 
keep track of the visited cells as it provides adequate precision 
and efficiency. Fig. 2 illustrates four trajectory cells A, B, C, 
D and their corresponding angles j and i. Among them, cell 
A and B have the same angle j, and cell C and D have the 
same angle i. The angle lines are based on the cell I, which 
is the original ignition point of the fire. Cell O represents the 
location where the UAS is first deployed. In this example, the 
UAS flies clockwise around the fire without changing 
direction. The real fire shape is not shown in the figure. 

The importance of a cell is directly related to how fast the 
fire spreads in the direction of the cell and how much time has 
elapsed since the cell was last visited. Based on this idea, we 
consider three measurements for computing the importance of 
a cell at an angle : 1) the rate of spread (ROS); 2) the elapsed 
time since the cell was last visited (tsinceVisit), and 3) the time 
it will take for the UAS to reach the cell along the fire 
perimeter from its current location (ttoCell). 

First, the ROS is the measure of how fast the fire is 
spreading along the direction of angle . To calculate ROS, 
we use the most recent trajectory cell along the angle  and 
the previous trajectory cell along the same angle. The former 
is referred to as the outer cell, and the latter is referred to as 
the inner cell. Specifically, in our implementation for each 
angle , the UAS keeps track of the distance of the outer cell 
and inner cell from the ignition point (d

outer and d
inner) and 

the visit time of those cells (touter and tinner). When the UAS 
reaches a new cell at the same angle , the previous outer cell 
at that angle becomes the inner cell. The outer cells and inner 
cells at two sample angles i and j are displayed in Fig. 2. 
With the information of the outer cell and inner cell the ROS 
is calculated using (1).  

Secondly, for each angle , the time since last visit tsinceVisit 

is measured by the difference between the current time (tcurrent) 
and the visit time of the outer cell at the direction  and 
calculated as per (2). 

𝑅𝑂𝑆𝜃 =  
𝑑𝑜𝑢𝑡𝑒𝑟

𝜃 − 𝑑𝑖𝑛𝑛𝑒𝑟
𝜃

𝑡𝑜𝑢𝑡𝑒𝑟
𝜃 − 𝑡𝑖𝑛𝑛𝑒𝑟

𝜃
 

(1) 

𝑡𝑠𝑖𝑛𝑐𝑒𝑉𝑖𝑠𝑖𝑡
𝜃 = 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑡𝑜𝑢𝑡𝑒𝑟

𝜃  (2) 

𝑡𝑡𝑜𝐶𝑒𝑙𝑙
𝜃 =  

𝑑𝑡𝑜𝐶𝑒𝑙𝑙
𝜃

𝑈𝐴𝑆_𝑆𝑃𝐸𝐸𝐷
 

(3) 

𝑖𝑚𝑝 = 𝑅𝑂𝑆𝜃 ∗ 𝑡𝑠𝑖𝑛𝑐𝑒𝑉𝑖𝑠𝑖𝑡
𝜃 + 𝑅𝑂𝑆𝜃 ∗ 𝑡𝑡𝑜𝐶𝑒𝑙𝑙

𝜃  (4) 

The multiplication of the ROS and tsinceVisit allow us to 
compute how far the fire has spread in the direction of a cell 
since the cell was last visited. This spreading distance is 
directly related to the importance of the cell at the current 
moment. Note that the ROS may dynamically change due to 
the varying condition of the fire area. In this work, we ignore 
that dynamics and use the most recent ROS to calculate the 
spreading distance.  

While we can develop the path planning algorithm based 
on the current importance of cells, it makes more sense to 
consider the “potential importance” of cells, which is the 
importance when the UAS actually reaches the direction of 
the cell from its current location following the fire perimeter. 
This is because it takes time for the UAS to reach a cell and 
during this time period the fire will spread further in the 
direction of the cell. The longer it will take for the UAS to 
reach a cell, the larger the “potential importance” is. Based on 
this idea, when computing the importance of a cell we 
consider the third measurement ttoCell, which is the time 
needed for the UAS to travel from its current location to the 
cell at the angle . Since the UAS always flies CW or CCW 
along the fire perimeter, the ttoCell would be the “perimeter 
distance” to the cell, denoted as d

toCell, divided by the flying 
speed of the UAS, as shown in (3). 

To calculate ttoCell, we need to know d
toCell. Several things 

are worthy of mention for computing the d
toCell. First, 

depending on if the UAS flies CW or CCW, the distance to a 
specific cell would be different. In the example of Fig. 2, if 
the UAS keeps moving CW, the d

toCell to cell A would be the 
length covering all the perimeter cells between the UAS and 
cell A along the CW direction. If the UAS turns back and 
moves CCW, the d

toCell to cell A would be the length covering 
the perimeter cells between the UAS and cell A along the 
CCW direction. Second, as the fire is always spreading, the 
UAS does not have full knowledge about the fire perimeter. 
This means to compute d

toCell the UAS needs to construct the 
fire perimeter based on the information it has collected. The 
fire perimeter construction needs to take into account the fact 
that the trajectory cells following the UAS might not be 
smoothly aligned into a closed loop at the current location of 
the UAS. This is because, as the fire is continuously 
spreading, there is some unvisited fire region ahead of the 
UAS. To fill this monitoring gap, it is important to construct 
the fire shape as accurately as possible based on the UAS 
trajectory. We use a fire shape construction procedure to 
estimate the fire perimeter of that unvisited region as shown 
by the dashed red line in Fig. 2 (see later for more details). 
The reconstructed fire perimeter represents the best 
knowledge about the real fire shape based on the UAS 
trajectory. Thus, we use this reconstructed perimeter as the 
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real fire perimeter to calculate d
toCell. Third, because the fire 

is always spreading, by the time the UAS reaches the direction 
of a target cell, the fire has already spread further. In other 
words, there is an error between the d

toCell that we calculate 
based on the “current perimeter” and the actual travel distance 
for reaching the direction of the target cell (in fact, d

toCell 
would always be smaller than the actual travel distance 
because the fire grows larger). In our current implementation, 
we ignore this error and use the currently estimated fire 
perimeter to compute the d

toCell.  

Based on the three measurements described above, we 
calculate the importance of a cell using (4). Here, the 
importance of a perimeter cell is determined by two factors: 
𝑅𝑂𝑆𝜃 ∗ 𝑡𝑠𝑖𝑛𝑐𝑒𝑉𝑖𝑠𝑖𝑡

𝜃  and 𝑅𝑂𝑆𝜃 ∗ 𝑡𝑡𝑜𝐶𝑒𝑙𝑙
𝜃 . The first factor 

represents the new spread distance at the angle 𝜃 since the cell 
was last visited, and the second factor represents the new 
spread distance at the angle 𝜃 until the cell is projected to be 
visited again. Thus, the importance of a cell is essentially 
defined by the new fire spread distance in the direction of a 
cell between when the cell was last visited and when the cell 
is projected to be re-visited by the UAS. These two factors 
have specific types of influences on the path planning of a 
UAS. How these two factors impact the path planning of a 
UAS will be discussed in detail in the Analysis section of this 
paper (Section V). 

B. Cell Importance Based Path Planning 

Having described the importance of visiting a cell, the next 
step is to utilize cell importance values to carry out path 
planning. In our design, we say that the UAS should keep 
moving forward unless it is more beneficial to turn back, i.e., 
to change its flying direction. It makes sense for the UAS to 
turn back when the fire is spreading significantly faster on the 
back of the UAS. In such situations, the cell importance 
values in the back of the UAS are higher. A mechanism is 
required to identify if the total cell importance at the back of 
the UAS is higher compared to the front of the UAS. 

To measure how much benefit the UAS can obtain by keep 
moving forward or by moving backward, we introduce a 
concept called planning window. We consider two identical 
sized planning windows from the current position of the UAS 
- one window represents 50% of the fire perimeter at the back 
of the UAS called the back window and the other one 
represents 50% of the remaining fire perimeter in front of the 
UAS called the front window. Here, a 50%-50% split of the 
perimeter ensures that the front and back windows don’t 
overlap. Furthermore, it also ensures that every cell of the fire 
perimeter is considered in the decision-making process.  

The UAS then computes and compares the cumulative 
importance in the front and back window and makes its 

decision regarding its optimal flying direction. Between the 
two defined planning windows, the UAS dynamically 
chooses the one with more importance. For that purpose, we 
calculate the total importance of the back window (IMPBACK) 
and compare it to the total importance in the front window 
(IMPFRONT). If IMPBACK is larger, it means that fire in the back 
window is more active than the front window, therefore, the 
UAS changes its flying direction along the perimeter to cover 
the more active region. Every time the UAS reaches a new 
cell, this procedure for checking the best flying direction is 
invoked. Thus, the real-time UAS path planning is performed 
dynamically to guide the UAS towards the best flying 
direction along the perimeter. 

Assuming there are total 2N number of cells in the current 
perimeter, IMPBACK and IMPFRONT are calculated according to 
(5) and (6) respectively, where i represents the angle of the 
ith perimeter cell. Here, the index (i; where 1<=i<=2N) of a 
perimeter cell is relative to the position of the UAS on the fire 
perimeter. As the indexing convention, we consider the 
indices start from the cell that is currently occupied by the 
UAS; it increases along the opposite direction of UAS’s 
flying direction on the perimeter; and ends at the cell that is 
just in front of the UAS. 

𝐼𝑀𝑃𝑂𝑅𝑇𝐴𝑁𝐶𝐸𝐵𝐴𝐶𝐾 =  ∑ 𝑖𝑚𝑝𝜃𝑖

𝑁

𝑖=1

 
 

(5) 

𝐼𝑀𝑃𝑂𝑅𝑇𝐴𝑁𝐶𝐸𝐹𝑅𝑂𝑁𝑇 =  ∑ 𝑖𝑚𝑝𝜃𝑖

2𝑁

𝑖=N+1

 
 

(6) 

 
Fig. 3 Importance based path planning 

The overall concept of decomposing the fire perimeter into 
the back and front planning window is illustrated in Fig. 3. 
Based on the fire spreading scenario presented in Fig. 1, the 
dashed red line represents the perimeter of the actual fire 
shape. The blue line represents the back window, the black 
line represents the front window. It is worth noting that the 
back window and front window are based on the fire 
perimeter constructed by the UAS using the on-board data in 
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real-time. This constructed fire perimeter is different from the 
actual fire perimeter (the red line in Fig. 3), which is unknown 
to the UAS. The rest of the UAS trajectory marked by the grey 
dashed line is not a part of the reconstructed fire perimeter. 
Therefore, in this sample scenario, IMPBACK is the sum of the 
importance of the cells falling under the blue line (cell number 
1 to N), and IMPFRONT is the sum of the importance of the cells 
falling under the black line (cell number N+1 until 2N). By 
comparing these two values, the best flying direction is 
determined.  

C. Modulating path planning sensitivity by adjusting 
heterogeneity of fire spread 

 The heterogeneous spreading behavior of the fire has a 
significant impact on the importance-based UAS path 
planning algorithm. In the proposed algorithm, the UAS 
changes its flying direction based on the total importance in 
the front and back planning windows, which is directly related 
to the heterogeneous rates of spread of the different cells on 
the fire perimeter. Therefore, heterogeneity of the fire spread 
is an important consideration in the proposed algorithm. If the 
fire spread is more heterogeneous, the UAS changes its flying 
direction more frequently compared to when the fire is less 
heterogeneous. Based on this characteristic, we introduce an 
additional parameter for the algorithm, named as the 
heterogeneity-adjusting factor (α), which provides the 
proposed algorithm with the capability of modulating the 
tendency of flying direction change.  

In our fire spread model, the heterogeneity of fire spread is 
represented by the ROS values of the perimeter cells. The 
heterogeneity-adjusting factor is a non-negative real number 
(i.e., α ≥ 0) that works by adjusting the ROS values of the 
perimeter cells when computing the importance of the front 
and back planning windows. Equation (7) shows how the 
adjustment is carried out for a cell, where 𝑅𝑂𝑆𝜃  is the original 
ROS value of the cell (the value before adjustment), 𝑅𝑂𝑆𝑚𝑖𝑛

  
is the minimum ROS value among all the cells, 𝑅𝑂𝑆𝑎𝑣𝑔 is the 
average of the ROS values of all the cells, and 𝑅𝑂𝑆𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑

𝜃  is 
the adjusted ROS value. When making the fire spread to be 
more heterogeneous than the original fire spread (i.e., α>1), 
the adjustment is applied to those perimeter cells that have 
larger ROS values than the 𝑅𝑂𝑆𝑎𝑣𝑔. Other cells which have 
lower ROS values than the 𝑅𝑂𝑆𝑎𝑣𝑔 hold their original ROS 
values as showed in (7). Thus, the ROS values of the above-
average cells are magnified to make the fire spread more 
heterogenous. In contrast, when making the fire spread less 
heterogenous (i.e., 0 ≤  α < 1 ) the adjustment is applied to all 
the cells on the fire perimeter. Thus, based on the value of α 
and 𝑅𝑂𝑆𝑎𝑣𝑔, the adjusted ROS values of the perimeter cells are 
calculated as per (7). 

 

𝑅𝑂𝑆𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
𝜃 = 

{
𝑅𝑂𝑆𝜃                                                

 
𝑅𝑂𝑆𝑚𝑖𝑛

 + 𝛼(𝑅𝑂𝑆𝜃 − 𝑅𝑂𝑆𝑚𝑖𝑛
 ) 

𝑅𝑂𝑆𝜃 ≤ 𝑅𝑂𝑆𝑎𝑣𝑔 𝑎𝑛𝑑 𝛼 ≥ 1 
 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     (7)   

 

 
Fig. 4 Heterogeneity adjustment for fire spread 

When α=0, the adjusted ROS values of every perimeter cell 
is constant (𝑅𝑂𝑆𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑

𝜃 = 𝑅𝑂𝑆𝑚𝑖𝑛
 ), thus there is no 

heterogeneity in the adjusted ROS values. As α increases, the 
adjusted heterogeneity of the fire spread also increases. When 
α=1.0, the adjusted heterogeneity is the same as the original 
heterogeneity. The adjusted fire spread is more heterogeneous 
than the actual spread when α is larger than 1. Fig. 4 shows 
the heterogeneity adjustment for different α values for a 
sample fire spread scenario. We can see that there is no 
heterogeneity in the fire spread when α=0, while the fire 
spread is very heterogeneous when α=5. By choosing 
different α values, one can modulate the level of sensitivity of 
the path planning (i.e., the tendency of flying direction change 
of the UAS) to the heterogeneity of the fire spread.  

IV. THE REAL-TIME AUTONOMOUS PATH PLANNING 
ALGORITHM 

LISTING 1: OVERVIEW OF THE PROPOSED ALGORITHM 

1. Initialize the on-board fire map when UAS is deployed 
2. In each step (after UAS reaches a new cell), DO: 
    i. Reconstruct fire shape based on the on-board fire map 
    ii. Determine the importance of the backward and forward window 
    iii. IF IMPBACK > IMPFRONT 
             Change flying direction 
         ELSE  
             Keep flying in the current flying direction 
    iv. Select the next cell along flying direction and fly over there 

Based on the importance-based path planning concepts 
discussed in the previous section, this section describes the 
design and implementation details of the real-time 
autonomous path planning algorithm. The algorithm can be 
decomposed into three main components: i) Initialization of 
the on-board fire map ii) Fire shape construction iii) 
Determining the optimal flying direction. The overall steps 
involved in the algorithm are shown in listing 1. 
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A. Initialization of the on-board fire map 

The UAS is deployed at the boundary of the fire after a 
certain time since the fire was started. The UAS needs the 
initial fire spread information such as which cells are burning 
at the time of UAS deployment. In our previous work, we 
assumed that initial fire spread information will be provided 
at the time of UAS deployment. However, this may not be 
always practical to have an exact fire spread information 
beforehand. In this work, we implemented an automated on-
board fire map initialization process which removes the 
dependency of external input for initialization. In this process, 
the UAS completes one initial round along the fire perimeter 
to gather the initial fire spread information such as the 
location of the fire perimeter. The UAS is initially deployed 
at a perimeter cell and the angle of that cell relative to the 
ignition point is denoted as init.. The UAS keeps flying along 
the fire perimeter until it returns back to init and thus 
completes one round. Along the way, the UAS generates and 
updates an on-board fire map to keep track of the necessary 
information of the fire spread. The structure of the on-board 
fire map is shown in Table 1. The map is based on 360 discrete 
angles around the ignition point and it keeps track of the outer 
cells and inner cells along each angle. It is worthwhile to note 
that the map may not contain any outer and inner cells for 
some angles, e.g., when there are no cells located along those 
angles. In contrast, the map may contain multiple outer and 
inner cells along a same angle, e.g., when those cells lie along 
the same angle.  

Table 1: On-board fire map 

 

LISTING 2: PROCEDURE FOR ON-BOARD FIRE MAP 
INITIALIZATION 

OUTPUT: Initialized on-board fire map 
Determine the angle init of the UAS deployment cell from the ignition 
point 

REPEAT UNTIL the UAS comes back to init : 
    i. Determine the angle  of the cell from the ignition point 
    ii. Add the cell as the outer cell at the angle  in on-board fire map 
    iii. Add ignition point as the inner cell at the angle  
    iv. Move to the next cell along UAS’s current flying direction 
END  

When the UAS is initially deployed, it has no knowledge 
about the inner cells of the initial fire perimeter. In our 
implementation, the ignition point is considered as the initial 
inner cell. Then, as the UAS moves along the perimeter, the 
outer cells and inner cells are updated on the map accordingly. 

Note that here we assume the ignition point is known. When 
the ignition cell is unknown, we can use the center of the fire 
as the ignition cell. The center of the fire can be calculated 
after the UAS finishes the initial circling of the fire perimeter. 
The on-board fire map initialization procedure is shown in 
listing 2. 

B. Fire Shape Construction 

  
                      (a)                                                 (b) 

Fig. 5 On-board fire perimeter construction a) before 
construction b) after construction 

Every time the UAS arrives at a new cell, an on-board fire 
perimeter construction procedure is invoked to generate a 
more accurate fire perimeter. The on-board fire perimeter 
construction procedure utilizes the previous trajectory cells to 
form a full loop of the fire perimeter. To deal with the issue 
that the trajectory cells following the UAS might not be 
smoothly aligned into a closed loop at the current location of 
the UAS (as illustrated in Fig. 5(a)), a scan method is used to 
find the best cell among the previous trajectory cells that can 
generate a smooth closed loop by connecting with the UAS’ 
current cell. The scan method works as below:  starting from 
the inner cell of the UAS’ current location, it keeps scanning 
the trajectory cells along the moving direction of the UAS as 
long as the angle from UAS’s current cell to the trajectory cell 
keeps increasing. This scan method is based on the 
assumption that fire spread tends to generate convex shapes. 

Fig. 5 illustrates how the on-board fire perimeter 
construction works. In Fig. 5(a), the white cells are previous 
trajectory cells; the yellow cell is the UAS’s location, and the 
best cell found by the scan method is represented by the green 
cell. This is the best cell because the angle (shown by dashed 
lines) from UAS’s current position keeps increasing until this 
cell. Beyond this cell, the angle decreases if scanned further 
along the trajectory cells. Finally, the trajectory cells between 
the UAS occupied cell and the best cell are replaced by the 
cells that fall under the connecting straight line, as highlighted 
by the green cells in Fig. 5(b). This way a smooth fire shape 
is generated using the on-board information collected by the 
UAS. 
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C. Determining Optimal Flying Direction 

After the fire perimeter construction, the final step is to 
calculate IMPBACK and IMPFRONT and decide the optimal 
flying direction for the UAS. The decision-making procedure 
is shown in listing 3. This procedure needs the on-board fire 
map, UAS’s current flying direction as inputs. From the 
current position, the UAS first extracts a list of connected 
cells that represents the perimeter of the constructed fire 
shape. Next, it calculates the importance of each cell on the 
constructed perimeter according to (4). Finally, the total 
importance of the front and back planning window is 
calculated from those individual cell importance values. The 
UAS changes its current flying direction if  IMPBACK is 
larger than IMPFRONT. 
 
LISTING 3: PROCEDURE FOR FINDING OPTIMAL FLYING 
DIRECTION 

INPUT: On-board fire map, UAS’s current flying direction, heterogeneity-
adjusting factor 
OUTPUT: Optimal flying direction (CW/CCW) along the fire perimeter 

Calculate the importance of the perimeter as: 
FOR each cell “current_cell” in the on-board fire perimeter DO: 
    i. Calculate 𝑅𝑂𝑆𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑

𝜃  of the current_cell 

    ii. Calculate tsinceVisit of the current_cell 
    iii. Calculate ttoCell of the current_cell 
    iv. Determine imp of the current_cell 
END FOR 
Calculate IMPBACK and IMPFRONT  
Change the flying direction if IMPBACK > IMPFRONT 

V. ANALYSIS OF THE PROPOSED ALGORITHM 

In this section, we briefly analyze the proposed path 
planning algorithm from several important perspectives. 
These analyses are important to have a thorough 
understanding of how the proposed algorithm controls the 
path of a UAS. We divide the analyses into two parts – 
quantitative analyses and qualitative analyses. The 
quantitative analyses use a representative fire spread scenario 
to analyze the flying decisions made by the UAS at different 
locations of the fire perimeter. The qualitative analyses focus 
on factors that impact UAS’s flying direction in a more 
general context. 

A. Quantitative Analysis 

We consider a representative fire spread scenario that has a 
minimum (rmin) and a maximum fire spread direction (rmax) as 
showed in Fig. 6(a), and the rate of spread (ROS) along the 
fire perimeter gradually increases from rmin to rmax as 
illustrated in Fig. 6(b). The difference of ROS between each 
pair of adjacent perimeter cell () can be calulated as  = 
(rmax-rmin)/N. Assuming rmax is a (a >1) times larger than rmin 
(i.e., rmax = armin ), then  can be alternatively expressed as  
=(armin -rmin)/N. Thus, the rate of spread at any cell which is i 
cells away from the rmin direction can be expressed as 

(rmin+i). Based on the above description of the representative 
fire spread model, we consider four locations on the fire 
perimeter as shown in Fig. 6(a) and analytically find out 
whether the UAS should change its flying direction at those 
locations. We assume the speed of the UAS is s, the size of 
each perimeter cell is c, the ROS of perimeter cell i is ri, and 
the flying direction is CW. 

 
Fig. 6 Representative fire spread scenario 

To analyze the UAS’s decision regarding its flying 
direction change at those locations, we consider a metric 
(IMPDIFF) which is calculated according to Equation (8). If 
IMPDIFF is positive at a location, the UAS should move 
forward at that location because IMPFRONT is larger. 
Otherwise, the UAS should change its flying direction by 
turning back. 

IMPDIFF = IMPFRONT – IMPBACK (8) 

Below we show the IMPDIFF at those four locations and 
discuss their impact on the UAS’s flying direction. The 
IMPDIFF is calculated based on IMPFRONT and IMPBACK which 
have been shown in Appendix A for each of these four 
locations. To save space only the derived final equations have 
been shown there.  

Location 1: 

IMPDIFF = [𝑁𝑟𝑚𝑖𝑛(𝑁 − 1) +
2𝑁3

3
+

𝑁

2
(𝑁 −

1

3
)] ∗

𝑐

𝑠
 

Therefore, for location 1, if the window size (N) is larger 
than 1, IMPDIFF is positive and the UAS should keep moving 
forward. Practically, N is always to be larger than 1, hence the 
UAS should always move forward at location 1. 

Location 2: 

IMPDIFF = 𝑁
2𝑟𝑚𝑖𝑛

2
(𝑎 − 1) ∗

𝑐

𝑠
 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



  

Therefore, for location 2, if a>1, i.e., rmax>rmin, IMPDIFF is 
positive and the UAS should keep moving forward in the 
clockwise direction at this location. 

Location 3: 

IMPDIFF =  (2𝑟𝑚𝑖𝑛 ∑ 𝑖 + 2  𝑁
𝑖=1 ∑ 𝑖2) ∗

𝑐

𝑠
  

𝑁

𝑖=1
 

Therefore, similar to location 1 and 2, the UAS should 
always move forward at location 3. 

Location 4: 

IMPDIFF  =  𝑁
2𝑟𝑚𝑖𝑛

4
(5 − 𝑎) ∗

𝑐

𝑠
 

Therefore, for location 4, the UAS might keep moving 
forward or turn backward depending on the value of a. If a<5, 
IMPDIFF is positive and the UAS should keep moving forward 
in its clockwise direction. On the other hand, if a >= 5 the 
UAS should turn backward to fly in the counterclockwise 
direction. 

Thus, the UAS might turn back only when it is travelling 
from the maximum spread direction (location 3) towards the 
minimum spread direction (location 1) in the clockwise 
direction.  This is because, IMPDIFF starts to decrease within 
this segment, thereby increasing the tendency of turning back. 
Depending on the value of a, the IMPDIFF becomes negative 
at a specific cell and then the UAS turns back. The turning 
back makes the UAS to revisit the most active region of the 
fire, which is what we want.  

The smaller the value of a, the larger the distance that the 
UAS needs to fly to reach such a cell. However, if the value 
of a is lower than a minimum threshold, the UAS might never 
find such a cell and will keep flying forward and reach the 
minimum spread direction (location 1). This means that, if the 
heterogeneity of fire spreading is not significant enough, the 
proposed algorithm will work just like a basic circling 
algorithm. This is also desired because circling would be the 
best strategy if different parts of the fire perimeter spread 
more or less uniformly.  

B. Qualitative Analysis 

In this section, we qualitatively examine how the two 
important properties of the fire perimeter, tsinceVisit and ttoCell, 
impact the UAS’s flying direction. These analyses are based 
on the incremental fire spread scenario described in the 
preceding section. In the following description, we refer to a 
segment of the fire perimeter starting from location A and 
ending at location B as SEGAB. 

Impact of tsinceVisit on UAS’s flying direction: 

In Equation (4), we can see how the ROS and tsinceVisit 
values participate in the cell importance calculation (the first  

 
Fig. 7 Pattern of tsinceVisit and ttoCell values along the fire perimeter 

term of the equation). For each cell in the front and back 
window, these two values are multiplied and a portion of cell 
importance is obtained. When the UAS is at location 1, the 
back window consists of SEG14 and SEG43, the front window 
consists of SEG12 and SEG23. We can see that the back and 
front window have the same set of ROS values. However, 
tsinceVisit values in the front window are always higher than the 
back window, as shown in Fig. 7(a). Thus, the UAS will move 
forward at this location because the total importance in the 
front window will be higher due to the higher tsinceVisit values. 
As the UAS keeps moving forward, it reaches location 2 and 
then location 3 because the total importance in the front 
window remains larger at these locations. However, when the 
UAS reaches location 4, the front window consists of SEG41 
and SEG12, which has lower ROS values compared to the 
segments of the back window. Therefore, at location 4, ROS 
values of the back window pull the UAS to turn back, while 
the tsinceVisit values of the front window push the UAS to move 
forward. If the ROS values at the back window are large 
enough to dominate the higher tsinceVisit values at the front 
window, the UAS will turn back. Otherwise, the UAS will 
keep flying towards location 1. 

From this analysis, we conclude that the first term of 
equation (4) is responsible for pushing the UAS forward along 
the fire perimeter. 

Impact of ttoCell on UAS’s flying direction: 

The ttoCell parameter indicates the time needed to reach a 
perimeter cell from the current location of the UAS. A typical 
pattern of the ttoCell values has been shown in Fig. 7(b). During 
the cell importance calculation based on Equation (4), ttoCell is 
multiplied with the ROS value and another portion of the cell 
importance is obtained. Below we discuss how the UAS’s 
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flying behavior is influenced by only this portion of the cell 
importance. 

When the UAS is at location 1, the front and back window 
has the same set of ROS and ttoCell values. Hence the 
importance of the front and back window will be the same and 
the UAS will move forward. As the UAS moves towards 
location 2, the importance in the front window will increase 
because it will acquire cells with higher ROS values. This is 
also true when the UAS keeps moving from location 2 to 
location 3. However, when the UAS moves one cell ahead of 
location 3, the importance in the back window will become 
larger as it releases a cell with a lower ROS value (the cell 
next to rmin direction) and acquires a new cell with a higher 
ROS value (cell next to rmax direction). Therefore, the UAS 
will turn back and come to location 3 again in the 
counterclockwise direction. Now, when it moves one cell 
ahead of location 3 in the counterclockwise direction, 
importance in the back window will become higher again and 
it will turn back again. Thus, the UAS will keep oscillating 
around the rmax direction. To conclude, in our formula for 
determining the cell importance (4), the second term of the 
equation is responsible for keeping the UAS on the most 
active region. 

In summary, these two parameters (tsinceVisit and ttoCell), 
together with the heterogeneous ROS values of different cells, 
make the UAS have the capability of both revisiting the most 
active fire region and covering the entire fire perimeter from 
time to time.  

VI. EXPERIMENT RESULTS 

The experiments are based on simulated wildfires; we used 
DEVS-FIRE model [19] to simulate different fire spreading 
scenarios. In this section, we will present: i) a brief description 
of wildfire spread simulation for our experiments ii) an in-
depth demonstration of how the algorithm works iii) 
demonstration of path planning for non-uniform fuel models 
iv) demonstration of path planning for non-uniform wind 
conditions v) comparison of the algorithm with a baseline 
method. 

 
Fig. 8 Wildfire spread simulation using DEVS-FIRE 

A. Wildfire Spread Simulation 
Wildfire spread simulation is used to test and demonstrate 

the proposed path planning algorithm. The wildfire spread 
simulation uses the DEVS-FIRE model [19, 20], which is a 
discrete event simulation model developed based on the 
Discrete Event System Specification (DEVS) formalism. 
DEVS-FIRE uses a cellular space to represent a wildland 
area, where each cell has its own terrain and fuel (vegetation) 
data corresponding to the sub-regions in the area. All cells are 
coupled to a weather model to receive weather data (wind 
speed and wind direction) dynamically. Thus, the cellular 
space model incorporates spatial fuel data, terrain data, and 
temporal weather data into the simulation of wildfire behavior 
across both time and space. Fire spreading is modeled as a 
propagation process as burning cells ignite their unburned 
neighboring cells. Once a cell is ignited, it uses Rothaermel’s 
model [21] to compute the fire spread rate and direction 
within the cell. This model has been extensively used and 
tested by researchers and practitioners and is proven to be 
very robust. When implementing the UAS’ path planning in 
the wildfire spread simulation-based experiment, the UAS is 
modeled as a mobile agent flying along the fire perimeter. The 
UAS agent obtains information from the cellular space of 
DEVS-FIRE. It dynamically constructs an on-board map of 
the fire perimeter and makes decisions about its flying 
direction based on the on-board data.  

 
Fig. 9 UAS trajectory based on the proposed algorithm 

A sample fire spread scenario using DEVS-FIRE has been 
shown in Fig. 8. The green regions represent the part of the 
land that is not impacted by the fire yet. The red region 
represents the currently burning area and the black region 
represents the area that has already burnt out. To describe the 
fire spread and path planning results, we specify the directions 
of the cell space as shown in Fig. 8. In this sample scenario, 
the fire is mostly spreading towards the west and south-west 
direction since it started from the ignition point.  

For the experiments, the wildland has been modeled as a 
200x200 cell space using DEVS-FIRE. A specific cell is 
ignited in the beginning and starting from there, the fire 
spreads as per the fire spread model and weather 
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configuration. The UAS is deployed on the fire perimeter 1 
hour after the fire has started.  

B. Demonstration of Real-time Autonomous Path Planning 
Algorithm 

First, we are going to demonstrate the path planning result 
in detail through a simulated fire spread scenario. In this 
scenario, as shown in Fig. 9, the fire starts from the northeast 
side of the cell space and spreads towards the southwest 
direction over time. During the first 3 hours of the simulation, 
the fire was not spreading very fast, as a result, the UAS did 
not make too many revisits during that period. However, for 
the remaining simulation time, the fire was spreading 
significantly faster. During that time, the UAS made frequent 
back and forth revisits to cover the most spreading part of the 
fire towards the southwest direction.  

 
  (a) 

 
   (b) 

   
                         (c)                                             (d) 

Fig. 10 Illustration of back and front window importance 

Fig. 10(c) presents a snapshot from the simulation where the 
UAS is moving towards the most active fire region; the spread 
in the back of the UAS is very slow. The corresponding 
importance values of the constructed fire perimeter cells have 
been plotted in Fig. 10(a). From the plot, we can see that the 
total importance in the back region is significantly smaller than 
in the front region. Therefore, it is better for the UAS to keep 
flying in the same direction in this scenario. In contrast, Fig. 
10(d) presents a snapshot where the fire is spreading much 
faster behind the UAS. The importance of the constructed fire 
perimeter cells has been plotted in Fig. 10(b). In this case, the 
total importance in the back region has just got larger than the 
total importance in the front region. Hence, the UAS needs to 
change its flying direction to cover the most active region of 

the fire. In this experiment the value of the heterogeneity-
adjusting factor (α) is 1.0.  

Fig. 11 compares the UAS trajectories for six different α 
values for the same fire spread scenario presented in Fig. 9. 
When the value of α is smaller than 1, the UAS changes its 
flying direction less frequently because the fire spread is less 
heterogeneous in this case.  In contrast, when the value of α is 
larger than 1, the UAS changes its flying direction more 
frequently to put more monitoring attention on the most 
actively spreading region of the fire. As the value of α 
increases, this tendency of changing the flying direction also 
increases. With 0.0, 0.8, 1.0, 1.2, 1.5 and 5.0 as the values of 
α, the UAS changed its flying direction 0, 8, 11, 15, 20, and 43 
times respectively as showed in Fig. 11. It should be noted that 
the UAS made no direction change when α is very small (e.g., 
0.0). In contrast, the UAS made a large number of direction 
changes when α is much higher than 1.0 (e.g., 5.0). Thus, the 
sensitivity of the UAS’s flying direction change can be 
controlled by adjusting the value of α. This feature greatly 
improves the flexibility of the algorithm as one can make the 
UAS to focus on the - i) entire perimeter of the fire by setting 
a very small value of α ii) most active fire front by setting a 
higher value of α. iii) both the entire perimeter and the most 
active fire front by setting an intermediate value of α. 

   

   
Fig. 11 UAS trajectory for different α values 

C. Path planning for non-uniform fuel loading 

    
                              (a)                                         (b) 

Fig. 12 UAS trajectory based on non-uniform fuel loadings  

In this section, we consider fire spread in two different 
types of fuel combinations, thus two different spreading 
characteristics. In the first type of fuel combination, we 
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consider fuel with relatively slow-burning characteristics 
followed by fuel with relatively fast-burning characteristics. 
We consider one half of the cell space consists of young brush 
which has moderate burning characteristics, and another half 
of the cell space consists of short grass which has faster 
burning characteristics. Fig. 12(a) shows the UAS trajectory 
while monitoring a fire in such a fuel combination. From the 
trajectory, we can see that the UAS circled the fire while it 
spread on the upper half of the cell space because the 
spreading speed was relatively slow. However, when the fire 
spread much faster on the second half of the cell space, the 
UAS made back-and-forth visits over the most actively 
spreading fire front. Thus, the proposed algorithm captured 
the fire spreading speed difference in different fuel types and 
adjusted its monitoring strategy accordingly. 

 In the second type of fuel combination, we consider fuel 
with relatively fast-burning characteristic followed by fuel 
with slow-burning characteristic. Here, we consider one half 
of the cell space consists of young brush (Fuel Model 5) and 
another half consists of short needle timber litter (Fuel Model 
8) which has slow-burning characteristics. Fig. 12(b) shows 
the UAS trajectory for this type of fuel combination based on 
the proposed algorithm. The fire front was spreading much 
faster on the upper half of the cell space, consequently, the 
UAS made back-and-forth visits over the fire front. However, 
when the fire front reached the lower half of the cell space, 
the fire spreading speed is significantly reduced due to the 
slow-burning fuel type. Consequently, the UAS did not make 
any further back-and-forth visits, instead, it monitored the fire 
by circling the perimeter. 

 For both types of fuel combinations considered in this 
section, the UAS automatically adjusted its monitoring 
strategy based on the fire spreading speed. This capability 
helped the UAS to obtain less monitoring gap on the faster 
spreading part of a fire. Thus, the proposed algorithm works 
adaptively for non-uniform fuel combinations. 

D.  Path planning for different wind conditions 

We consider three different fire spreading behaviors 
resulting from three different wind conditions and evaluate 
how the proposed algorithm performs on those fire spread 
scenarios. Here, we consider uniform fuel loading for the 
entire cell space. First, we consider a scenario where fire 
spreads very fast towards a specific direction as shown in Fig. 
13(a). Here, the fire started from the northeast corner of the 
cell space and spread towards the southwest direction much 
faster. As a specific region of this fire is spreading very fast, 
the UAS revisits that fire front very frequently to put more 
monitoring attention. Second, we consider a scenario where 
the fire is spreading slowly around the ignition point as shown 
in Fig. 13(b). There is no significantly fast-spreading region 

in this scenario, therefore IMPBACK has never grown larger 
than IMPFRONT. Consequently, the UAS always moved 
forward cyclically while monitoring this slowly spreading 
fire. Third, we consider a fire spreading scenario where the 
wind significantly changes its direction during the fire spread. 
In this experiment, the wind blows towards the north during 
the first three hours of simulation and then changes its 
direction towards the south for the remaining three hours. 
Consequently, the fire spread more actively on the north side 
during the first three hours and on the south side during the 
last three hours. From the UAS trajectory showed in Fig. 
13(c), we can see that the UAS made back-and-forth visits on 
the north side initially and later on the south side of the fire. 
Thus, the proposed algorithm is able to shift its monitoring 
attention depending on the location of the most active region. 

In summary, the proposed algorithm is robust towards 
different fire spread behaviors resulting from different wind 
conditions. When the fire spread is slow, the proposed 
algorithm works like a basic circling algorithm. In contrast, 
when a region is spreading significantly faster, the UAS puts 
more monitoring attention on the most active region of the 
fire. Furthermore, the proposed algorithm is capable of 
shifting its monitoring attention in case the most active region 
gets shifted due to non-uniform wind conditions. 

   
            (a)                              (b)                             (c) 

Fig. 13 UAS trajectory in different wind conditions 

E. Comparison with a Baseline Method 

    
                               (a)                                       (b) 

Fig. 14 UAS trajectory based on the circling-based approach 

One of the baseline approaches for monitoring a wildfire is 
just circling the perimeter for the entire time. This method is 
straightforward and doesn’t consider the uneven importance 
of the fire perimeter. This approach makes sense when the fire 
is spreading slowly and evenly at all angles around the fire 
center. However, if a section of the fire is spreading much 
faster, this approach is unable to provide higher monitoring 
attention to that region. Fig. 14(a) and Fig. 14(b) show the 
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UAS trajectories based on the circling-based approach 
corresponding to the fire spread scenarios used in Fig. 9 and 
Fig. 13(a) respectively. For both scenarios, we can notice 
larger monitoring gaps on the faster-spreading southwest side 
of the fire compared to the proposed algorithm. 

While the UAS is visiting a section of the perimeter, the 
fire is possibly spreading in other sections with different 
spreading speeds. Therefore, the UAS lacks knowledge about 
those unvisited parts until it visits those sections again. This 
knowledge gap results in inaccuracies between the actual fire 
shape and fire shape constructed from UAS data. To quantify 
this inaccuracy for both the circling-based method and the 
proposed algorithm, we measure the difference between the 
original fire shape and the constructed fire shapes at each of 
the 360 discrete angles. We name this difference as “distance 
error” in this paper. Fig. 15 illustrates the concept of distance 
error for a sample fire monitoring scenario. The original fire 
shape has been highlighted by the red region and the fire 
shape constructed from the UAS trajectory has been marked 
by the blue region. To construct fire shape from UAS 
trajectory, first, we used the convex hull algorithm [22] to 
construct the convex hull (the smallest convex set containing 
a set of points) of the on-board perimeter cells. Then, we have 
filled in that convex hull to get constructed fire shape. 
Between these two shapes, a different amount of distance 
error is present in different parts of the fire as shown by the 
yellow arrows in Fig. 15. 

 
Fig. 15 Distance error between the original fire shape and 

constructed fire shape 

One of the major goals of UAS based wildfire monitoring 
is to construct a fire shape from the collected data in real-time 
as accurately as possible. The maximum distance error for a 
more accurate fire shape will be smaller compared to a less 
accurate fire shape. To quantitively compare the proposed 
algorithm with the circling-based method, we have recorded 
this maximum distance error during the simulation whenever 
the UAS moved to a new cell. Fig. 16(a) compares the 
maximum distance error of these two approaches for the fire 
spread scenario shown in Fig. 14(a). From the comparison, 
we can see that the maximum distance error is similar for the 
first 3 hours of the simulation as the fire was spreading slowly 
during that time. However, when the fire started to spread 
faster after that time period, the difference between the 

average maximum distance error starts to increase. At the end 
of the simulation, the average maximum distance error for the 
proposed algorithm and the circling-based method is 7.3 and 
8.5 respectively. The lower average distance error implies that 
the fire shape constructed from the real-time UAS data is 
more accurate.  

Fig. 16(b) compares the maximum distance error for the 
fire spread scenario shown in Fig. 14(b). In this scenario, the 
fire was spreading very fast towards the southwest direction 
from the very beginning. From the comparison, we can see 
that the circling-based approach has much larger maximum 
distance errors for this fast-spreading scenario. This is 
because, when the UAS was visiting the slower spreading 
northeast side of the fire to make full cycles, the fire on the 
southwest side was spreading very fast, which resulted in 
higher inaccuracy for the circling-based method. In contrast, 
the proposed algorithm was making frequent revisits to the 
faster-spreading southwest side, which resulted in smaller 
maximum distance errors. When the simulation is finished, 
the average maximum distance error for the proposed 
algorithm and the circling-based method is 12.2 and 15.8 
respectively. Therefore, for a faster spreading fire scenario, 
the proposed algorithm is capable to construct the fire shape 
with a larger accuracy margin compared to the baseline 
approach. 

 
(a) 

 
(b) 

Fig. 16 Comparison of the proposed algorithm and circling 
based approach 

VII. CONCLUSION AND FUTURE WORK 

In this work, we presented a new approach for real-time 
autonomous path planning intended to be used for UAS based 
wildfire monitoring. Real-time and autonomous path 
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planning can be a very useful mechanism in challenging 
scenarios like lack of a ground system, unknown 
environment, lack of information about the land and weather, 
and many more. The proposed algorithm takes the uneven 
nature of wildfire spread into account and puts more 
monitoring attention for faster spreading segments of the fire. 
Simulation results for a variety of fire spread scenarios have 
been presented to show the effectiveness and adaptiveness of 
the proposed algorithm. In addition, an analysis of the 
algorithm has been presented which provides some important 
insights about the proposed algorithm. In the future, we want 
to take more complex fire spread factors (such as the 
spatiotemporal uncertainty of fire spread) into account and 
enhance the algorithm to make it more robust. In addition, we 
want to extend the algorithm to support multiple UASs. To 
conclude, the path planning algorithm presented in this paper 
can perform more advanced wildfire monitoring tasks and 
holds the potential to enhance wildfire management 
strategies. 

APPENDIX A 

Location 1: 

𝐼𝑀𝑃𝐵𝐴𝐶𝐾 = (𝑁2𝑟𝑚𝑖𝑛 + 𝑁𝑟𝑚𝑖𝑛 +
𝑁3
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𝑐

𝑠
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Location 3: 
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Location 4: 
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