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Abstract. We propose a new estimation procedure for general spatio-temporal point pro-
cesses that include a self-exciting feature. Estimating spatio-temporal self-exciting point pro-
cesses with observed data is challenging, partly because of the difficulty in computing and 
optimizing the likelihood function. To circumvent this challenge, we employ a Poisson clus-
ter representation for spatio-temporal self-exciting point processes to simplify the likelihood 
function and develop a new estimation procedure called “clustering-then-estimation” 
(CTE), which integrates clustering algorithms with likelihood-based estimation methods. 
Compared with the widely used expectation-maximization (EM) method, our approach 
separates the cluster structure inference of the data from the model selection. This has the 
benefit of reducing the risk of model misspecification. Our approach is computationally 
more efficient because it does not need to recursively solve optimization problems, which 
would be needed for EM. We also present asymptotic statistical results for our approach as 
theoretical support. Experimental results on several synthetic and real data sets illustrate 
the effectiveness of the proposed CTE procedure.
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1. Introduction
Point processes have been widely adopted in operations management research to model the times at which arri-
vals enter a system. The most common model for the arrival process of a queuing system is a Poisson process 
(Brown et al. 2005; Kim and Whitt 2014a, b; Zheng and Glynn 2017; Chen et al. 2019, 2024). See Zhang et al. 
(2014), Daw and Pender (2018), Gao and Zhu (2018), Liu et al. (2019a), and Chen (2021) for other arrival process 
models. These arrivals (or occurrences) are represented by points in a mathematical space (e.g., a vector space). 
When the locations of arrivals are taken into consideration, as is done in areas such as transportation and the 
sharing economy, a spatio-temporal point process is required (Diggle 2006, Zhou et al. 2015, Zhang and Zheng 
2020). The spatial information of the arrival is modeled as marks of the associated points. In this work, we specifi-
cally consider spatio-temporal point processes with a self-exciting feature. The self-exciting feature captures trig-
gering and clustering behaviors that are frequently observed in practical applications, such as in finance, 
epidemiology, commerce with network effects seismology, and criminology. See Reinhart (2018) for a review.

We study spatio-temporal self-exciting processes determined by the conditional intensity function (Daley and 
Vere-Jones 2003, 2007). This function is defined as the limiting ratio of the expected number of occurrences to the 
“volume” of the concerned infinitesimal time period times infinitesimal spatial area, conditional on the history of 
the point process. The statistical property of a point process is fully captured by the conditional intensity function 
through the finite-dimensional distribution (Daley and Vere-Jones 2003, 2007). Given observed data, the statisti-
cal estimation of the conditional intensity function is typically based on the maximum likelihood estimation 
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(MLE) method, but the corresponding optimization problem is difficult to solve and computationally intractable 
for two reasons. First, the likelihood function involves a summation of logarithms of conditional intensities, 
which themselves involve summations over previous points, making analytical maximization intractable. Sec-
ond, the likelihood function can be nearly flat in large regions of the parameter space, causing problems for 
numerical maximization algorithms and making convergence extremely slow; see Ozaki (1979) and Veen and 
Schoenberg (2008).

1.1. Existing Approaches and Challenges
To address this challenge of maximizing the log-likelihood function, Veen and Schoenberg (2008) exploited a 
Poisson cluster structure to facilitate the estimation. As first explored by Hawkes and Oakes (1974), a point of a 
self-exciting process can be attributed to either the background underlying process or the triggering of a previous 
point. If the point is attributed to the background process, then it is among the immigration points. The set of 
points that are attributed to the points in the immigration is the first generation, the second generation is the set 
of points that are attributed to the points in the first generation, and so on. The attribution of all the points in a 
self-exciting process is known as the branching structure. The likelihood function is greatly simplified when the 
branching structure is included because the summation term involved in each logarithm reduces to one specific 
term. This in turn makes the optimization problem is amenable to an analytical or numerical solution (Veen and 
Schoenberg 2008). In most scenarios, the branching structure of a spatio-temporal self-exciting process is not 
directly observed from the given data. Therefore, the expectation-maximization (EM) method (Dempster et al. 
1977) has been widely used to estimate the spatio-temporal self-exciting process by modeling the unobserved 
branching structure using latent variables.

However, methods based on EM are not without their own challenges. First, regarding the branching structure 
inference, EM relies on the model specification of the spatio-temporal self-exciting process. Thus, the accuracy of 
the branching structure inference suffers from any model misspecification. Second, from a computational point 
of view, iterating over the E and M steps requires solving optimization problems recursively and is therefore 
computationally inefficient and time-consuming. Finally, the Poisson cluster representation enables the self- 
exciting process to possess different triggering functions across different generations (Mehrdad and Zhu 2014, 
Fierro et al. 2015). On the other hand, because the EM method cannot exactly determine whether a given point is 
attributed to the background underlying process or the triggering of a previous point, it is not capable of estimat-
ing models with different triggering functions between different generations because no explicit generations are 
determined.

1.2. Contribution
The challenges faced by existing methods, including (1) the risk of model misspecification, (2) computational bur-
dens, and (3) a lack of model flexibility, motivate us to propose a new method named “clustering-then-estimation” 
(CTE) for estimating spatio-temporal self-exciting processes. The method operates as follows. We first apply clus-
tering algorithms to analyze the clustering behaviors of the points in a spatio-temporal self-exciting process. In par-
ticular, we select hard clustering algorithms that provide the exact attribution of each point, as opposed to 
probabilistic estimates such as those obtained by the EM method. Clustering algorithms are applied recursively, 
facilitating the inference of the branching structure. We then input the inferred branching structure into the log- 
likelihood function of the data and estimate the model by maximizing the log-likelihood function, simplified by 
the branching structure.

By separating the inference of the branching structure and model estimation, the proposed CTE method offers 
the following advantages. First, the inference of the branching structure through clustering algorithms is fully 
data driven and does not require knowledge of the self-exciting process model. Thus, it is less likely for CTE to 
suffer from model misspecification. Second, in the CTE method, the maximization of the simplified likelihood 
function is performed once after the branching structure is inferred by clustering algorithms. Without the need 
for recursive optimization procedures, CTE is more efficient to implement. Finally, the CTE method provides an 
explicit branching structure in which the attribution of each point is deterministic. As a result, different exciting 
features can be estimated through different pairs of generations, with different clusters provided. In other words, 
CTE enhances the model flexibility of the self-exciting process estimated from data.

Our contribution is summarized as follows: 
1. We propose a “clustering-then-estimation (CTE)” approach to estimate the spatio-temporal self-exciting pro-

cess. CTE utilizes clustering algorithms to infer the branching structure and simplifies the log-likelihood function 
to facilitate model estimation.
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2. We prove the consistency and asymptotic normality of the proposed CTE estimators. By incorporating the 
branching structure, we provide regularity conditions that exhibit greater ease of verification compared with exist-
ing theoretical results.

3. We also introduce the tree-edit distance to evaluate the self-exciting model estimation. We show through 
experimental results that, compared with existing methods, the CTE method exhibits (1) better accuracy on the 
model estimation and branching structure inference, (2) less risk of model misspecification, (3) higher efficiency in 
practice without the necessity of recursively solving optimization problems, and (4) more flexibility of different 
triggering effects between different pairs of generations.

2. Literature Review
In this section, we first discuss the literature on self-exciting processes and then describe clustering algorithms 
that can be used to infer the branching structure.

2.1. Modeling and Learning Self-Exciting Processes
The self-exciting point process (also known as a Hawkes process) was first introduced by Hawkes (1971) as a tem-
poral point process. The term “self-exciting” refers to the property that the occurrence of each event enhances 
the likelihood of future events, thereby creating a clustering behavior (Lima 2023). In some applications, there is 
a need to incorporate spatial dimensions, leading to the creation of a spatio-temporal self-exciting process. 
Spatio-temporal self-exciting processes have been widely used in modeling seismic events (Ogata 1998), crime 
activity (Mohler et al. 2011), ecology (Balderama et al. 2012), social network analysis (Yang and Zha 2013, Zhou 
et al. 2013a, Zipkin et al. 2016, Farajtabar et al. 2017, Rizoiu et al. 2017), financial markets (Errais et al. 2010, Fili-
monov and Sornette 2012), and “viral” processes on the Internet (Crane and Sornette 2008, Zhou et al. 2013b). 
Given the broad range of applications for spatio-temporal self-exciting processes, refining the estimation method 
for these processes can significantly enhance forecasting accuracy, bolster strategic decision-making, and catalyze 
new insights across diverse business sectors.

In recent years, the theory and technologies of machine learning have been extensively incorporated with the 
point process model in order to enhance model flexibility and prediction accuracy. For example, Recurrent Neu-
ral Networks (RNN) have been applied to construct the conditional intensity function of the self-exciting process; 
see Du et al. (2016), Mei and Eisner (2017), and Xiao et al. (2017b) for reference. In addition, Xiao et al. (2017a, 
2018) proposed incorporating the Wasserstein-GAN model to model the intensity-free point processes. The 
modeling of the point process is transformed into a reinforcement learning problem by regarding the event as 
the action and the intensity function learning as the policy learning problem; see Li et al. (2018). The spatio- 
temporal versions of these advanced point process models can be found in Zhu et al. (2020, 2021a), Zhu et al. 
(2021b), Zhu and Xie (2022), and Dong et al. (2023). These advanced models enhance the prediction power of the 
self-exciting process and therefore have become an active and quickly developing research field. We note that 
some of these models could be incorporated into the framework of the “clustering-then-estimation” method we 
propose, but this is beyond the scope of the present work.

2.2. Clustering Algorithms
Given a data set, the selection of a clustering algorithm depends largely on the modeling assumptions. Typical 
cluster models (and associated algorithms) include (1) connectivity models (hierarchical clustering), (2) centroid 
models (K-means clustering), (3) distribution models (EM method), and (4) density models (DBSCAN algo-
rithm). We refer to Gan et al. (2020) for a detailed review of clustering algorithms.

Clustering algorithms are generally divided into two categories: hard and soft clustering. Hard clustering algo-
rithms definitively assign each data point to a specific cluster, whereas soft clustering algorithms offer the likeli-
hood of a data point’s affiliation to a particular cluster. For this analysis, hard clustering algorithms are the focus 
because of their necessity for recursive clustering. This requirement stems from the need for precise point attribu-
tion to each cluster, which in turn determines the next level of clustering in the branching structure inference. On 
the other hand, the EM method for estimating the spatio-temporal self-exciting process is an example of a soft 
clustering algorithm, offering a probability for a point’s attribution. Additional soft clustering algorithms and 
probabilistic models have been combined with the self-exciting process, including the Dirichlet process. These 
models are typically Bayesian, and the models’ posterior distributions can be approximated using methods such 
as Markov Chain Monte Carlo or Variational Bayesian inference. However, these methods are aimed predomi-
nantly at enhancing clustering algorithms and may modify the self-exciting process model, which is not the focus 
of the present analysis. Here, we refer to Du et al. (2015), Xu and Zha (2017), and Li and Bhowmick (2020).

Zhang et al.: CTE of Spatio-Temporal Self-Exciting Processes 
INFORMS Journal on Computing, Articles in Advance, pp. 1–20, © 2024 INFORMS 3 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

28
.5

9.
17

9.
90

] o
n 

17
 S

ep
te

m
be

r 2
02

4,
 a

t 1
3:

49
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



Some management problems require decision-making for complex operating systems (Bollapragada et al. 
2006, Li et al. 2016, Adikari and Dutta 2019, Guo et al. 2019, Bichler et al. 2021), and the status of the operating 
system requires estimation from the data (Tari et al. 2010, Chen and Liu 2014, Fan et al. 2017, Manrique-Vallier 
and Hu 2018, Liu et al. 2019b, Guo et al. 2020, Lin et al. 2022, Ahn et al. 2023). Clustering algorithms can be used 
to explore the intrinsic structure of the data, thus facilitating the estimation and management of operating sys-
tems. Research on clustering for management problems includes Gopal and Ramesh (1995), Brice et al. (2011), 
Seref et al. (2014), Hu et al. (2018), Ungun et al. (2019), Chen and Xie (2022), and Meng et al. (2022).

3. Model Description and Problem Statement
In Section 3.1, we present notions of the spatio-temporal self-exciting processes. Then, in Section 3.2, we formally 
state the problem we address.

3.1. Spatio-Temporal Self-Exciting Process
A spatio-temporal point process is a random point field that models both temporal and spatial dispersions of 
points. Each point represents the arrival of an event or an entity at a specific time and location. Let s à
(x1, x2, : : : , xd) 2 S ⇢ Rd denote the spatial variable and t 2 [0, T] denote the time variable. The finite-dimensional 
distributions of a spatio-temporal point process are uniquely determined by the associated conditional intensity 
function (Daley and Vere-Jones 2003, 2007), which is defined as

λ(s, t |Ht) à lim
�s,�t!0

E[N(B(s, �s) ⇥ [t, t + �t)) |Ht]
|B(s, �s) |�t , 

where Ht denotes the history of the process, N(·) is the counting measure, and |B(s, �s) | denotes the Lebesgue 
measure of a ball B(s, �s) centered at s with radius �s. For notational simplicity, we will omit the history Ht in 
the conditional intensity function. This function characterizes the full dynamics of the associated spatio-temporal 
point process.

For a spatio-temporal self-exciting process, given a parameter θ, the spatial locations si, and the time epochs ti 
of the observed points, the conditional intensity consists of two parts,

λ(s, t;θ) à µ(s, t;θ) +
X

ti < t
g(s� si, t� ti;θ), (1) 

where both the background intensity function µ(s, t;θ) and the triggering function g(s, t;θ) are nonnegative func-
tions defined on S ⇥ [0,1). That is, the conditional intensity function is random and depends on the history Ht 
of the process. The background intensity function µ(s, t;θ) generates a baseline Poisson process. For the model 
specification of the background intensity function, we refer the reader to the Poisson process-related literature 
(Henderson 2003, Chen and Schmeiser 2019, Morgan et al. 2019, Nelson and Leemis 2020). The nonnegative trig-
gering function g(s, t;θ) models the “self-exciting” feature. We present some examples of spatio-temporal self- 
exciting processes in the supplements.

The spatio-temporal self-exciting process has a Poisson cluster representation. Here, we provide a formal 
description.
Definition 1 (Poisson Cluster Process and Branching Structure). Consider a spatio-temporal point process so that (1) 
N0 is a spatio-temporal Poisson process with intensity function µ(s, t;θ) and (2) for any n 2 {1, 2, : : : }, Nn is a 
spatio-temporal Poisson process with intensity function 

P
(si, ti)2Nn�1

gn(s� si, t� ti;θ). The superposition [1nà0 Nn is 
a Poisson cluster process. That is, a Poisson process N0, referred to as the immigration process, is generated with inten-
sity function µ(s, t;θ). Each point in N0 triggers a Poisson process centered at itself with intensity function g1(s, t;θ). 
Points triggered by the immigration are denoted as the first-generation N1. The first generation then triggers the sec-
ond generation, and so on. This parent-offspring relationship between the points is known as the branching structure.
Proposition 1. Suppose a Poisson cluster process satisfying that (1) 

R
Sµ(s, t;θ)ds < 1, (2) gn(s, t;θ) ⌘ g(s, t;θ), and (3) 

ñà:
R1

0
R
Sg(s, t;θ)ds dt < 1. Then, the conditional intensity function of this process is exactly (1).

Proposition 1 describes the Poisson cluster representation of the spatio-temporal self-exciting process. That is, 
for a spatio-temporal self-exciting process (1), there exists a Poisson cluster process defined as in Definition 1 that 
shares the same conditional intensity function as well as the parameter θ. In this way, although the points in a 
spatio-temporal self-exciting process cannot be attributed exactly to either the background intensity or the previ-
ous points, the branching structure of the Poisson cluster process can be employed to impose a parent-offspring 
relationship. This branching structure facilitates the estimation of spatio-temporal self-exciting processes, which 
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we will describe in Section 3.2. For simplicity, the branching structure of a spatio-temporal self-exciting process 
is referred to as its Poisson cluster representation in the remaining text. Furthermore, we also provide the statisti-
cal property of the clusters in the branching structure; see the supplements.

3.2. Problem Definition
Our goal is to estimate the spatio-temporal self-exciting process given the observed data (a realization of the process). 
Consider a realization of the process over S ⇥ [0, T], sorted by the time coordinate in ascending order: R à {I1, I2: : : , 
In}, where Ii denotes the spatio-temporal information of the i-th arrival (si, ti), so 0 < t1 < t2 <⋯< tn < T. The esti-
mator attained by the maximum likelihood estimation (MLE) is

θ̂1;T, θ̂2;T à arg max
θ1,θ2

Xn

ià1
log µ(si, ti;θ1) +

X

j:tj < ti

g(si � sj, ti� tj;θ2)

0

@

1

A

8
<

:

�
Z T

0

Z

S
µ(s, t;θ1) +

X

j:tj< t
g(s� sj, t� tj;θ2)

0

@

1

Adsdt

9
=

;, (2) 

where θ1 and θ2 denote the parameters involved in the background intensity µ and the triggering function g, 
respectively. That is, we consider the scenario when θ à (θ1,θ2) is separate over the background intensity and 
the triggering function. The optimization problem defined in (2) can be computationally prohibitive to solve. 
First, the form of the likelihood function involves a summation of logarithms of conditional intensities, which 
themselves involve summations over previous points, making analytical maximization intractable. Second, the 
complexity of evaluating the objective function is O(n2) because of the double summation, where n is the number 
of observed arrivals. When n is large, it is computationally expensive to maximize the log-likelihood function. 
Finally, the likelihood function can be nearly flat in large regions of the parameter space, causing numerical pro-
blems and making convergence extremely slow; see also Ozaki (1979) and Veen and Schoenberg (2008).

In contrast, if the branching structure is known and incorporated, the log-likelihood function simplifies to

#(θ) à
X

i:(si, ti)2N0

log(µ(si, ti;θ1))�
Z T

0

Z

S
µ(s, t;θ1)dsdt

0

@

1

A

+
Xn

jà1

X

i2Dj

log(g(si � sj, ti � tj;θ2))�
Z T

tj

Z

S
g(s� sj, t� tj;θ2)dsdt

0

@

1

A, (3) 

where Dj denotes the set of indexes of the points directly triggered by the j-th point Ij à (sj, tj). In most applica-
tion scenarios, the observed data do not directly reveal the branching structure of a spatio-temporal self-exciting 
process. Therefore, the expectation-maximization (EM) method has been widely employed to estimate the 
spatio-temporal self-exciting process by modeling the unknown branching structure as the latent variable. How-
ever, the EM method suffers from (1) the risk of model misspecification, (2) computational burdens of iteratively 
solving optimization problems, and (3) limited model flexibility with an identical triggering function among dif-
ferent generations. See the supplements for a detailed review. Our “clustering-then-estimation” (CTE) method 
circumvents these challenges and facilitates the estimation of spatio-temporal self-exciting processes.

4. Methodology
In this section, we present a detailed description of the clustering-then-estimation (CTE) method to estimate the 
spatio-temporal self-exciting process. First, in Section 4.1, we describe the procedure of recursively applying clus-
tering algorithms to infer the branching structure. With the inferred branching structure, we present the estima-
tion procedure based on the simplified log-likelihood function in Section 4.2. The complete procedure of the CTE 
method is summarized in Figure 1.

4.1. Clustering for Branching Structure Inference
In this section, we present the procedure of recursive clustering to infer the branching structure. Here, we first 
present the general procedure of recursively performing the clustering algorithm for the branching structure 
inference in Section 4.1.1. Then, we describe a specific existing clustering algorithm named density-based spatial 
clustering of applications with noise (DBSCAN) as a representative in Section 4.1.2 and give the specific details of 
employing the DBSCAN algorithm in the CTE method in Section 4.1.3.
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4.1.1. General Recursive Clustering Procedure. We first justify our method by explaining (1) why the spatio- 
temporal self-exciting process exhibits clustering behaviors and (2) why we apply clustering algorithms recur-
sively to infer the branching structure. 

• Spatio-temporal self-exciting processes exhibit clustering behaviors. For each point Ij à (sj, tj), we denote 
the set of points that are directly or indirectly generated by Ij as Dj. Because the triggering functions serve as the 
intensity function of a Poisson process centered around Ij and the triggering functions are (generally) decreasing 
with time and spatial distance, the points in Dj are (generally) near Ij in both space and time. Thus, the set {Ij} [
Dj composes a cluster with center Ij.

• Recursive clustering algorithms infer the branching structure. From the bottom-up view, if a point Ij à
(sj, tj) is directly generated by another point, say Ij0 , the cluster {Ij} [Dj then belongs to the cluster that is centered 
at the point Ij0 . That is, {Ij} [Dj ⇢ {Ij0} [Dj0 . Recursively, all the points are directly or indirectly attributed to a 
point in the immigration N0. On the other hand, from a top-down view, the cluster excluding the cluster center, say Dj, 
is composed of smaller clusters if Dj ≠ ;. Based on the branching structure, these smaller clusters are respectively cen-
tered at those points that are directly generated by Ij, say Dj. In this way, the cluster excluding the cluster center Dj is 
further divided into several “smaller” clusters.

Thus, if we obtain the recursive structure of the clustering behaviors, the branching structure of the spatio- 
temporal self-exciting process can then be inferred.

In most applications, the branching structure of these clusters is not observed. Therefore, we recursively per-
form the clustering algorithm to infer the branching structure. The procedure is conducted top-down and is sum-
marized as follows: 

1. Initialization: Regard the entire observed data set R à {(s1, t1), (s2, t2), : : : , (sn, tn)} as the initial clustering result 
Clus(0).

2. First-level clustering: Perform the clustering algorithm on Clus(0), dividing it into several disjoint subsets 
(clusters) C(1)

j as Clus(1) à
 

C(1)
1 , C(1)

2 , : : : , C(1)
|Clus(1) |

⌦
. The point that occurs first in time within each cluster is specified 

as the cluster center c(1)j .
3. Immigration specification: The immigration, N0 à

 
c(1)1 , : : : , c(1)|Clus(1) |

⌦
, is specified as the set of all first-level 

cluster centers.
4. Second-level clustering: For each cluster obtained from the first-level clustering, we perform the clustering 

algorithm again after removing the cluster center. This results in subsets of each C(1)
j , which are the second-level 

clusters, represented as Clus(2)
j à

 
C(2)

(j), 1, C(2)
(j), 2, : : : C(2)

(j), |Clus(2)
j |

⌦
. The set of new cluster centers in each C(1)

j is 
 

c(2)(j), 1, c(2)(j), 2, : : : c(2)
(j), |Clus(2)

j |

⌦
. The second level clustering result is Clus(2) à[ |Clus(1) |

jà1 Clus(2)j .
5. First generation specification: The first generation,

N1 à[ |Clus(1) |
jà1 c(2)(j), 1, c(2)(j), 2, : : : c(2)

(j), |Clus(2)
j |

� ⌧
, 

is specified as the set of all second-level cluster centers.

Figure 1. (Color online) Graphic Description of the CTE Method 
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6. Recursive clustering and generation specification: Perform clustering and generation specification recur-
sively. For each k-th level clustering result Clus(k), apply the clustering procedure on each C(k)

j after removing the 
cluster center, leading to the (k + 1)-st level clusters. The centers of these clusters form the k-th generation.

7. Termination: Repeat the recursive clustering and generation specification process until the observed data are 
no longer separable; that is, every data point Ij forms a cluster by itself. An illustrative example consistent with the 
11 data points shown in Figure 1 is contained in Table 1.

4.1.2. DBSCAN Clustering Algorithm. In our CTE method, we do not impose specific restrictions on the choice of 
(hard) clustering algorithms, but we select the density-based spatial clustering of applications with noise (DBSCAN) 
algorithm (Ester et al. 1996, Schubert et al. 2017) as a representative to describe our method. This algorithm has 
been widely applied in clustering tasks for the following reasons. First, DBSCAN does not require specifying the 
number of clusters in advance, as opposed to the K-means algorithm. Second, DBSCAN takes the noise in the 
data into consideration and is robust to outliers. Third, DBSCAN can find arbitrarily shaped clusters. Most other 
density-based clustering algorithms are extensions of DBSCAN.

To describe the algorithm, we let P be a set of points in d-dimensional space Rd. Given two points p, q 2 Rd, we 
denote by dist(p, q) the Euclidean distance between p and q: Denote by B(p, r) the ball centered at a point p 2 Rd 

with radius r: The DBSCAN algorithm takes two parameters, ✏ and MinPts, where ✏ is the radius of the neighbor-
hood of a point and MinPts is the threshold for a data point to become the core point, defined below.
Definition 1. A point p 2 P is named as a core point if B(p,✏) covers at least MinPts points of P, including p itself. 
If not, p is then said to be a noncore point.
Definition 2. A point q 2 P is density-reachable from p 2 P if there is a sequence of points p1, p2, : : : , pt 2 P (for some inte-
ger tP2) such that (1) p1 à p and pt à q, (2) p1, p2, : : : , pt�1 are core points, and (3) pi+1 2 B(pi,✏) for each i 2 [1, t� 1].
Definition 3. Two points p and q are density connected if they are both density reachable from some point o. This 
definition is symmetric.
Definition 4. A cluster C is a nonempty subset of P such that if a core point p 2 C, then all the points that are den-
sity reachable from p belong to C as well.

With these definitions, the DBSCAN algorithm starts by first finding a core point, say p, and searches for all the 
density-reachable points from p. All these points, including the core point p, compose a cluster. After one certain 
cluster is found, another cluster is determined by starting from another core point that is outside the existing clus-
ters. The algorithm ends when all the remaining points that do not belong to a cluster are noise points. We provide 
the detailed procedure of the DBSCAN algorithm in the supplements. In addition to DBSCAN, we also perform 
spatio-temporal DBSCAN, agglomerative clustering, and self-organizing map clustering for comparison. We exhibit 
the experimental results in Section 5.1 and present descriptions of these methods in the supplements.

4.1.3. Recursive Clustering with DBSCAN. We describe how the DBSCAN algorithm is employed in the CTE 
method to recursively determine the clusters. The complete clustering procedure for the branching structure 
inference is accomplished recursively until the data set is no longer separable. At each level of the clustering, we 
perform the DBSCAN method on each set of points to be divided into clusters. Recall that, as in Section 2.2, there 
are two parameters required to perform the DBSCAN: MinPts and ✏. During the recursions, MinPts is set to be 1 
throughout because one point is able to form a cluster in the Poisson cluster representation of a spatio-temporal 
self-exciting process. Note that this setting will make all the points core points, and each point belongs to exactly 
one cluster. Meanwhile, this setting makes “density reachable” and “density connected” equivalent. Thus, for 
each set of points, the DBSCAN algorithm performs as follows with a determined radius ✏.

First, randomly select a point p (definitely a core point), find all the points within the radius ✏, and denote the 
set as C (including p). Second, for each point in C, say p0, find and include all the points within the radius from p0
into C. The inclusion procedure continues until all the remaining points excluded from C are not within the radius 

Table 1. An Illustrative Example on Recursive Clustering Results for the Branching Structure Inference, 
Consistent with the 11 Points Shown in Figure 1

Observed data Clus(0) à {I1, I2, I3, I4, I5, I6, I7, I8, I9, I10, I11}
First-level clustering Clus(1) à {{I1, I2, I4},{I3, I5, I6, I7}, {I8, I9, I10, I11}} N0 à {I1, I3, I8}
Second-level clustering Clus(2) à {{I2}, {I4}, {I5}, {I6, I7},{I9, I10, I11}} N1 à {I2, I4, I5, I6, I9}
Third-level clustering Clus(3) à {{I7}, {I10}, {I11}} N2 à {I7, I10, I11}

Zhang et al.: CTE of Spatio-Temporal Self-Exciting Processes 
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of any point in C. Finally, this set C composes a cluster. The algorithm then finds another point outside C to repeat 
the inclusion procedure. Note that all the points will finally be assigned to a cluster, possibly a singleton.

The hyperparameter ✏ in the DBSCAN algorithm must be adapted to each data set for clustering. To enable a 
data-driven algorithm, we set up a mechanism for fine-tuning the ✏ in each level of the clustering. The ✏ is com-
puted based on the sample mean of distances between points in the data set, say d̃. Given a data set with size n, a 
total of 

⌘n
2
✓

pairs of data are selected to calculate the distance. To enhance efficiency, we randomly select some 
pairs of data with equal probability to approximate the distance between points in the set so that we do not need 
to calculate the distances of all 

⌘n
2
✓

pairs of data. The number of pairs is decided by a positive integer-valued ratio 

function f(x) such that f n( ) <
⌘n

2
✓

, for example, f (x) à (x� d� 1)=(d + 1)[ ] + d + 1, where d is the dimension of the 
spatial space S. The ✏ is set as a perturbation of the average of the distance between pairwise points d̃. Specifically, we 
set ✏ à r0d̃ for the first-level clustering and ✏ à d̃ + r1 for all the remaining levels of clustering, where r0 and r1 are two 
user-selected parameters. We provide the detailed procedure of determining (r0, r1) in the supplements.

We introduce another variable StoppingList to determine whether the algorithm should be stopped or not, that 
is, whether all the clusters at the latest level are no longer separable. Specifically, at the beginning of each level of 
clustering, the StoppingList will be set as an empty list. Then, for the current clustering result Clus(k) à 

C(k)
1 , C(k)

2 , : : : , C(k)
|Clus(k) |

⌦
, a variable True or False will be appended to StoppingList if |C(k)

j | > 2 or otherwise. The 

reason is that, when |C(k)
j | > 2, the cluster excluding the cluster center C(k)

j \ {c(k)j } contains at least two points and 
therefore is separable. If |C(k)

j | à 2, then the former point triggers the latter one, and no further clustering is 
required. If |C(k)

j | à 1, then the single point constitutes a cluster itself. Therefore, when all the variables in Stop-
pingList are False, the recursive clustering is stopped. The complete procedure of the clustering for the branching 
structure inference with the DBSCAN algorithm is presented in Algorithm 1.

Algorithm 1 (Clustering for Branching Structure Inference with DBSCAN)
Input: A set of arrivals R à {(s1, t1), : : : , (sn, tn)}; sampling ratio function f(x); perturbation parameters r0, r1;
Output: The branching structure tree P; 

1: Set Clus(0) à R and C(0)
1 à R;

2: Set kà 0 and StoppingList à [True]
3: while StoppingList is not all False, do
4: StoppingList à [ ];
5: Clus(k+1) à [ ];
6: for C(k)

j 2 Clus(k), j à 1, : : : , |Clus(k) | , do
7: if |C(k)

j | > 2, then
8: Obtain the cluster center c(k)j and record it in P; (skip this step if kà0)
9: Randomly select f ( |C(k)

j | ) pairs of points (It, It0) 2 C(k)
j \ {c(k)j };

10: Compute average distance of the selected pairs d à (Pdist(It, It0))=f ( |C(k)
j | );

11: Apply DBSCAN to C(k)
j \ {c(k)j }, with MinPtsà1 and ✏ à r0d when kà0 or ✏ à d + r1 otherwise;

12: Append clustering results to Clus(k+1);
13: StoppingList append True;
14: else
15: if |C(k)

j | à 2, then
16: Obtain the cluster center c(k)j and record it in P;
17: StoppingList append False;
18: else
19: Record the only point c(k)j 2 C(k)

j in P;
20: StoppingList append False;
21: end if
22: end if
23: end for
24: k à k + 1;
25: end while
26: return P

Zhang et al.: CTE of Spatio-Temporal Self-Exciting Processes 
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4.2. Estimation Procedure
With the inferred branching structure, we now present the estimation procedure of the CTE method. In Section 
4.2.1, we explicitly present the CTE estimator and illustrate the reason why the incorporated branching structure 
facilitates the model estimation. In Section 4.2.2, we discuss the asymptotic properties of the CTE estimator as the 
time horizon T !1. In addition, to illustrate how the Poisson cluster representation enhances the model flexibil-
ity of a spatio-temporal self-exciting process, we present the CTE method with different triggering functions in 
Section 4.2.3. We note that the CTE method is not restricted to a specific conditional intensity function for the 
spatio-temporal self-exciting process. Nearly all the likelihood-based estimation procedures for the spatio- 
temporal self-exciting processes could be adapted to our CTE method. We present the incorporation of a non-
parametric conditional intensity function (Li et al. 2019, Yuan et al. 2019, Fuentes-Santos et al. 2021) with CTE in 
the supplements.

4.2.1. Estimation with Simplified Likelihood. Recall from (3) that incorporating the branching structure into the 
log-likelihood function simplifies the analysis because the MLE then decomposes into two decoupled problems. 
We denote the parameters involved in the background as θ1 and the parameters involved in the triggering func-
tion as θ2. Consider a realization of the spatio-temporal self-exciting process R à {(s1, t1), (s2, t2), : : : , (sn, tn)} on 
S ⇥ [0, T] with the inferred branching structure. The estimators are

θ̂1;T à arg max
θ12Θ1

X

i:(si, ti)2N0

log(µ(si, ti;θ1))�
Z T

0

Z

S
µ(s, t;θ1)ds dt

8
<

:

9
=

; (4) 

and

θ̂2;T à arg max
θ22Θ2

Xn

jà1

X

i2Dj

log(g(si � sj, ti� tj;θ2))�
Z T

tj

Z

S
g(s� sj, t� tj;θ2)ds dt

0

@

1

A

8
<

:

9
=

;, (5) 

where Θ1 and Θ2 are two compact sets of feasible parameters and are assumed to contain the ground-truth para-
meters. Compared with the original MLE (2), the explicit branching structure simplifies the log-likelihood function 
so that the logarithm terms do not involve any summation. Moreover, the complexity of evaluating the objective 
function is O(n)1 instead of the complexity of O(n2) for evaluating (2). In addition, analytically deriving the estima-
tors is possible in some scenarios when the intensity function has simple dependence regarding between para-
meters (see details in the supplements). When analytic derivation is not feasible, numerical optimization 
algorithms can be applied to (4) and (5), such as Newton’s method, gradient descent, and Nelder-Mead method.

4.2.2. Asymptotic Statistical Results. Next, we provide the asymptotic properties of the CTE estimators as the 
time horizon T !1. We denote the ground-truth background intensity parameter and the triggering function 
parameter as θ⇤1 and θ⇤2, respectively. First, we focus on the estimator of the background intensity function para-
meters θ̂1;T attained in (4) and present the required regularity conditions.
Assumption 1. Assume that: 

1. The background intensity function µ(s, t;θ1) is continuous in θ1, µ(s, t;θ1) > 0 ∀θ1 2Θ1, s 2 S, t > 0, and
Z T

0

Z

S
µ(s, t;θ1)ds dt < 1; 0 ⩽ T < 1:

In addition, ∀i, j the partial derivatives with respect to the parameters in the background intensity function

µ̇(i)(s, t;θ1) ⌘ @µ(s, t;θ1)=@θ1;(i)

and
µ̈(i, j)(s, t;θ1) ⌘ @2µ(s, t;θ1)=@θ1;(i)@θ1;(j)

exist and are continuous in θ1 ∀θ1 2Θ1, s 2 S, t > 0. Here, θ1;(i) denotes the i-th entry of θ1.
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2. It holds that ∀i, j,

sup
θ12Θ1

sup
t

Z

S

(µ̈(i, j)(s, t;θ1))2

µ(s, t;θ1)
ds < 1

and

sup
θ12Θ1

sup
t

Z

S

(µ̇(i)(s, t;θ1)µ̇(j)(s, t;θ1))2

(µ(s, t;θ1))3 ds < 1:

3. Define �ij(s, t;θ1) ⌘ {µ̇(i)(s, t;θ1)µ̇(j)(s, t;θ1)=µ(s, t;θ1)}. It holds that

lim
T!1

1
T

Z T

0

Z

S
�ij(s, t;θ⇤1)ds dt !u σij(θ⇤1)

and the matrix Σ1(θ⇤1), whose (i, j)-th element is σij(θ⇤1), is positive definite. In addition, ∀c > 0, and ∀i, j,

lim
T!1

sup
θ1,θ012Θ1;

ÇÇÇ
T

p
|θ01�θ1 | ⩽ c

1
T

Z T

0

Z

S
|�ij(s, t;θ1)��ij(s, t;θ01) | ds dt !u 0:

Here !u denotes uniform convergence for θ1 2Θ1.
The first condition in Assumption 1 is satisfied in most reasonable spatio-temporal self-exciting process mod-

els. The second condition is required so that the martingale associated with the spatio-temporal Poisson process 
is square integrable. When the spatial space S is compact, the background intensity function µ(s, t)Pµ > 0, and 
the derivatives are bounded, this condition can be easily verified. The third condition gives appropriate growth, 
convergence, and continuity of the second-order derivatives of the objective function (4). Because we know 
exactly the form of the background intensity function, this condition can be verified analytically or numerically 
by calculating the integrals. In contrast, previous theoretical results require verifying regularity conditions with 
the conditional intensity function λ(s, t;θ), which is random for self-exciting processes and makes verification dif-
ficult, as documented by Schoenberg (2005).

We provide two examples of the background intensity function satisfying all the conditions in Assumption 1. 
The first example is

µ1(s, t;θ1) à µe�(x�xc)2�(y�yc)2
, 

where µ > 0 and (xc, yc) are unknown parameters to estimate. Also, the spatial space S à R2. That is, the back-
ground intensity function does not depend on t and exhibits a Gaussian decaying regarding an unknown center 
(xc, yc). Similar models have been used in Zhuang et al. (2004) and Mohler (2014). The other model is

µ2(s, t;θ1) à C1 + sin(αt), 
where C1 > 1 is the unknown parameter to estimate and α�is known. This background intensity µ2 exhibits a 
cyclical behavior regarding time t (Lee et al. 1991, Kuhl and Wilson 2001). We consider a compact spatial space 
S à [0, X1] ⇥ [0, Y1]. The detailed reasons why these two models satisfy Assumption 1 are included in the 
supplements.
Theorem 1. Suppose that the immigration N0 is correctly specified by the clustering algorithm and Assumption 1 holds. 
The background intensity parameter estimator θ̂1;T in (4) is consistent and asymptotically normal as T !1. That is,

lim
T!1
θ̂1;T!

P
θ⇤1 

and

lim
T!1

ÇÇÇÇ
T

p
(θ̂1;T � θ⇤1)!

D
N (0, {Σ1(θ⇤1)}

�1), 

where θ⇤1 denotes the ground-truth parameter of the background intensity function, “!P ” is “convergence in probability,” 
and “!D ” is “convergence in distribution.”
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In Theorem 1, we assume that the initial branching structure (in terms of immigration) inferred by the cluster-
ing algorithm is exactly the ground-truth branching structure. However, in some scenarios, the clustering algo-
rithm may lead to misspecification of the immigration, which will further influence the estimation. We denote 
the set of misspecified immigrants as Nm

0 , which contains (1) the points that are triggered by previous points but 
are classified as immigrants and (2) the immigrants that are classified as the points triggered by the previous 
points. We note that |Nm

0 | is nondecreasing with the time horizon T. We have the following corollary for the 
asymptotic behavior of θ̂1;T when misspecification of immigration exists.

Corollary 1. Suppose that limT!1 |Nm
0 |=T ! 0, that µ̈(i, j)(s, t;θ⇤1)=µ(s, t;θ⇤1) and µ̇(i)(s, t;θ⇤1)µ̇(j)(s, t;θ⇤1)=(µ(s, t;θ1))2 are 

bounded ∀s 2 S, t 2 [0, T], and that Assumption 1 holds. The consistency and the asymptotic normality of the estimator 
θ̂1;T based on the misspecified immigration still holds as in Theorem 1.

In other words, when the proportion of misspecified immigrants approaches zero as the time horizon 
approaches infinity, the asymptotic behavior of the background intensity estimator θ̂1;T remains as if the specifi-
cation of the immigration was correct. We provide a procedure to justify the condition limT!1 |Nm

0 |=T ! 0; see 
details in the supplements.

In terms of the triggering function, the maximum likelihood estimation (5) is based on multiple sample paths of 
Poisson processes with intensity function g(s,τ). Indeed, the number of sample paths of the Poisson processes up to 
time t is approximately 

R t
0
R
Sµ(s,τ)dsdτ=(1�

R
S

R1
0 g(s,τ)dsdτ). From the complete independence property (see Resnick 

1992) of the Poisson process, the superposition of multiple sample paths of a Poisson process with intensity function 
g(s,τ) is distributionally equivalent to a sample path of a Poisson process with intensity function multiplied by the 
number of sample paths. Consequently, if the rescaled triggering function g⇤(s, t) à g(s, t)

R t
0
R
Sµ(s,τ)dsdτ=(1�R

S

R1
0 g(s,τ)dsdτ) satisfies the same conditions in Assumption 1 as µ(s, t), and if the branching structure inference 

attained by the clustering algorithm is correct, then the consistency and the asymptotic normality of θ̂2;T are also 
guaranteed; that is, analogs of Theorem 1 and Corollary 1 hold. Their detailed proofs are included in the 
supplements.

Finally, the variance-covariance matrix provided by the asymptotic normality helps to quantify the estimation 
uncertainty. We note that because of the third condition in Assumption 1, the variance-covariance matrix of CTE 
can be derived by integrating deterministic functions, where the estimated value approximates the ground-truth 
parameter. In comparison, for the previous MLE estimator (Rathbun 1996), the variance-covariance matrix esti-
mator involves not only the parameter estimator θ̂�but also the estimated conditional intensity function λ(s, t;θ), 
which further depends on the observed data. That is, prior results require more approximation and, therefore, 
involve more uncertainty. We also provide a parametric bootstrap procedure to quantify the estimation uncer-
tainty; see details in the supplements.

4.2.3. Estimation with Different Triggering Functions. The Poisson cluster process representation enables the self- 
exciting process to possess different triggering functions in different generations (Fierro et al. 2015). That is, the 
(m + 1)-th generation Nm+1 is triggered by the m-th generation Nm with the triggering function gm. The model 
flexibility is enhanced by allowing the triggering functions {gm}1mà0 to possess different values of parameters or 
even different analytic forms.

With the explicit branching structure, where the attribution of each point to its appropriate cluster is exact, the 
CTE method is capable of estimating the triggering functions for different pairs of generations. Specifically, the 
parameters of the triggering function that incites the (m + 1)-th generation (by the m-th generation) are estimated 
by maximizing the log-likelihood

#m(θ2;m) à
X

j:(sj, tj)2Nm

X

i2Dj

log(gm(si� sj, ti� tj;θ2;m))�
Z T

tj

Z

S
gm(s� sj, t� tj;θ2;m)dsdt

0

@

1

A:

Here, Dj denotes the points that are directly triggered by Ij, and Nm denotes the m-th generation. In addition to 
estimating the parameters of the triggering functions separately for different generations, the CTE method can 
also handle the model where there is a trend in the triggering effects. For example, the triggering function 
between the m-th and (m + 1)-th generations may possess the form

gm(s, t;θ2) à g(s, t;θ2)e�γm, γ > 0, 
so the triggering effects are decaying as the generations increase. In this model, the parameters (θ2,γ) are 
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estimated by maximizing the log-likelihood function

#(θ2;γ) à
X

mà0

X

j:(sj, tj)2Nm

X

i2Dj

log(gm(si� sj, ti� tj;θ2))�
Z T

tj

Z

S
gm(s� sj, t� tj;θ2)ds dt

0

@

1

A

0

@

1

A:

This is an example of the model flexibility of the CTE method.
In addition to the frequentist view, where the MLE is employed to estimate the parameters, the proposed CTE 

method can also be used with the Bayesian inference of the spatio-temporal self-exciting processes. We present 
the discussion in the supplements.

5. Experiments
We conduct numerical experiments to demonstrate the effectiveness and superiority of the proposed clustering- 
then-estimation (CTE) method compared with (1) the maximum likelihood estimation (MLE) of the original log- 
likelihood function using different numerical optimization algorithms, (2) the expectation-maximization (EM) 
method, and (3) the EM-declustering method that samples a deterministic branching structure in each iteration 
of EM. The details of these baseline approaches are included in the supplements. Below, we first apply the esti-
mation methods to the synthetic data generated by simulation experiments and then apply the CTE method to 
real-world data. The experiments were run with Python on an Intel i-7 CPU with a clock speed of 2:60GHz. The 
implementation of our numerical experiments can be found in Zhang et al. (2024).

5.1. Experiments on Synthetic Data
Our experiments are based on synthetic data simulated with the conditional intensity function

λ(s, t) à µ +
X

ti < t
αe�β(t�ti)�1

2

�
(x�xi)2

σ2x
+(y�yi)2

σ2y

⇥

, (6) 

where µ,α,β,σx,σy > 0 and 2πσxσyα < β. We consider the two-dimensional space S à [0, 10] ⇥ [0, 10] with time 
horizon Tà10. The detailed calculation procedures of the estimators (CTE and EM) for this model are in the sup-
plements. The simulation algorithm is based on the Poisson cluster representation of the spatio-temporal self- 
exciting process; see details in the supplements. The detailed procedures of simulating Poisson processes can be 
found in Pasupathy (2010) and Saltzman et al. (2012). We compare the estimated parameters with the ground- 
truth parameter set and the branching structure inferred by the CTE method and the EM method with the 
ground-truth branching structure. The metric utilized for the comparison between branching structures is the 
tree-edit distance (TD), which was proposed in Zhang and Shasha (1989)2 and is described in the supplements. 
We note that the branching structure derived from the EM method (as well as EM-declustering) is the probability 
of the attribution of each point, not an explicit deterministic tree. Therefore, to evaluate the branching structure 
inference of the EM method, we should apply the stochastic declustering procedure introduced in Zhuang et al. 
(2002) to get a batch of sample trees (size of 30 in our experiments) from the stochastic branching structure. We 
then take the sample mean of the tree distances to estimate the distance between the stochastic branching struc-
ture and the ground-truth branching structure. We note that MLE with the original likelihood function does not 
generate the inference of branching structure. Each set of experimental results in this section is based on 30 simu-
lation experiments.

5.1.1. General Comparison. We compare the CTE method and baseline approaches in three ways: (1) parameter 
estimation (6 standard deviation), (2) branching structure inference, and (3) computation time.3 The EM method 
requires an initialization of the branching structure; we set P(ui à j) à 1=i for j à 0, 1, : : : , i� 1.

We use the following clustering algorithms with the CTE method with different clustering algorithms: (1) 
DBSCAN, (2) spatio-temporal DBSCAN (ST-DBSCAN) (Birant and Kut 2007), (3) the self-organizing mapping 
(SOM) (Kohonen 1990), and (4) the agglomerative hierarchical clustering (Nielsen 2016). The description of the 
latter three clustering algorithms is given in the supplements. In terms of the numerical optimization algorithms 
used to maximize the original log-likelihood function (2), we employ (1) Netwton’s method, (2) the gradient 
descent (GD) method, and (3) the Nelder–Mead (NM) method. Experimental results are presented in Table 2. We 
also plot the mean relative error | (θ̂�θ⇤)=θ⇤ | ⇥ 100% of the estimated parameters in Figure 2, where θ̂�denotes 
the estimator of a general scalar parameter and θ⇤ is the corresponding ground-truth value. The proposed CTE 
method with different clustering algorithms is shown in black, whereas the compared baseline methods are in 
gray. The experimental results provide the following insights.
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Table 2. General Comparisons on (1) Parameter Estimation, (2) Tree-Edit Distance for Branching Structure Inference (TD), 
and (3) Computation Time Between CTE and Baseline Methods

Simulation setting µ à 0:02, α�à 10, β�à 5, σx à 0:2, σy à 0:2
Methods TD µ α β σx σy Time

MLE-Newton N/A 0.023 6 0.007 12.65 6 0.51 5.92 6 0.35 0.20 ! 0.02 0.21 6 0.02 82.90
MLE-GD N/A 0.024 6 0.009 13.44 6 0.57 6.64 6 0.43 0.19 6 0.01 0.21 6 0.02 129.31
MLE-NM N/A 0.023 6 0.008 12.03 6 0.54 5.68 6 0.33 0.21 6 0.01 0.20 6 0.01 84.47
EM 1,070.0 0.020 ! 0.007 2.04 6 0.34 1.93 6 0.29 0.18 6 0.02 0.18 6 0.02 206.99
EM-declustering 1,257.5 0.031 6 0.010 1.98 6 0.39 4.38 6 0.29 0.18 6 0.03 0.17 6 0.02 131.51
CTE-DBSCAN 427.0 0.018 6 0.004 8.48 6 0.30 5.33 6 0.21 0.22 6 0.01 0.20 ! 0.01 8.45
CTE-ST-DBSCAN 402.6 0.017 6 0.004 10.10 6 0.28 4.53 6 0.19 0.22 6 0.01 0.19 6 0.01 7.89
CTE-SOM 456.7 0.018 6 0.003 9.91 ! 0.30 5.11 ! 0.20 0.22 6 0.01 0.19 6 0.01 10.43
CTE-Agglomerative 460.0 0.022 6 0.004 8.04 6 0.29 4.35 6 0.19 0.21 6 0.01 0.19 6 0.01 8.27

Simulation setting µ à 0:05, α�à 10, β�à 5, σx à 0:2, σy à 0:2
Methods TD µ α β σx σy Time

MLE-Newton N/A 0.058 6 0.012 13.10 6 0.66 5.40 6 0.45 0.23 6 0.03 0.24 6 0.03 323.17
MLE-GD N/A 0.060 6 0.015 13.54 6 0.73 5.29 6 0.54 0.30 6 0.03 0.29 6 0.04 487.25
MLE-NM N/A 0.056 6 0.011 12.23 6 0.54 5.30 6 0.43 0.23 6 0.03 0.22 6 0.03 296.90
EM 1,980.0 0.055 6 0.012 6.86 6 0.48 4.04 6 0.37 0.23 6 0.03 0.22 6 0.03 317.38
EM-declustering 2,343.3 0.062 6 0.017 5.65 6 0.60 7.19 6 0.45 0.17 6 0.04 0.15 6 0.05 263.23
CTE-DBSCAN 1,044.0 0.053 6 0.005 9.62 ! 0.37 6.10 6 0.29 0.22 ! 0.02 0.22 6 0.03 19.68
CTE-ST-DBSCAN 1,127.3 0.051 ! 0.004 8.82 6 0.39 5.13 ! 0.28 0.23 6 0.02 0.21 6 0.02 20.41
CTE-SOM 1,090.0 0.055 6 0.005 7.91 6 0.41 5.46 6 0.31 0.18 6 0.03 0.20 ! 0.02 35.78
CTE-agglomerative 1,276.0 0.056 6 0.004 8.83 6 0.38 5.37 6 0.31 0.23 6 0.02 0.23 6 0.02 24.08

Simulation setting µ à 0:1, α�à 5, β à 2:5, σx à 0:15, σy à 0:15
Methods TD µ α β σx σy Time

MLE-Newton N/A 0.121 6 0.019 12.32 6 0.87 7.32 6 0.65 0.24 6 0.04 0.25 6 0.04 897.63
MLE-GD N/A 0.127 6 0.023 15.88 6 0.98 8.54 6 0.73 0.33 6 0.05 0.34 6 0.05 1,351.29
MLE-NM N/A 0.115 6 0.017 12.70 6 0.83 7.12 6 0.60 0.23 6 0.04 0.23 6 0.04 813.82
EM 2,908.0 0.106 6 0.014 10.36 6 0.64 2.19 6 0.49 0.17 6 0.04 0.17 6 0.04 506.86
EM-declustering 3,356.7 0.119 6 0.024 13.81 6 0.81 3.31 6 0.62 0.20 6 0.04 0.20 6 0.04 430.49
CTE-DBSCAN 1,376.0 0.103 ! 0.010 6.50 6 0.49 3.86 6 0.36 0.17 6 0.03 0.15 ! 0.03 22.67
CTE-ST-DBSCAN 792.0 0.096 6 0.009 4.40 ! 0.46 2.55 ! 0.35 0.14 ! 0.03 0.14 6 0.03 21.94
CTE-SOM 1,088.0 0.115 6 0.010 3.23 6 0.53 2.83 6 0.40 0.17 6 0.03 0.16 6 0.04 50.36
CTE-agglomerative 1,334.0 0.090 6 0.009 5.69 6 0.50 3.60 6 0.37 0.18 6 0.03 0.17 6 0.03 29.91

Note. The value representing the best performance is highlighted in bold.

Figure 2. Mean Relative Error of the Estimated Parameters with Different Estimation Methods 

Note. The setting is µ à 0:1,α à 5,β à 2:5,σx à 0:15,σy à 0:15.
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1. The EM method generally performs better than the original MLE in terms of model estimation, as documen-
ted by previous literature (Veen and Schoenberg 2008). The CTE methods with different clustering algorithms out-
perform the classical EM method in terms of (1) more accurate parameter estimation, (2) smaller TDs (indicating 
more accurate branching structure inference), and (3) less computation time.

2. The baseline methods, which include both MLE and EM, can relatively accurately estimate the background 
intensity µ, but their performance on the estimation of triggering functions is suboptimal. Compared with EM, the 
EM-declustering method is more computationally efficient. However, the EM-declustering method suffers from 
lower accuracy in both branching structure inference and model estimation. It also exhibits a higher standard devi-
ation, which aligns with the fact that EM-declustering can be regarded as a Monte Carlo Markov Chain approxima-
tion for the EM method (Li et al. 2019).

3. Among all clustering algorithms, ST-DBSCAN achieves the most stable and effective performance across all 
sets of experiments because ST-DBSCAN has two separate thresholds, a spatial threshold (✏1) and a temporal 
threshold (✏2), to distinguish the time dimension from the spatial dimensions.

4. As the background intensity µ increases, all the baseline approaches’ errors increase because of the increasing 
complexity of evaluating the log-likelihood functions. In contrast, the performance of CTE remains acceptable, and 
its superiority becomes more significant for larger µ.

Differences in the computation time for CTE methods result from different clustering algorithms. After the 
branching structure is inferred, the estimation procedure (maximization of the likelihood) of the CTE method is 
accomplished efficiently.

5.1.2. Risk of Model Misspecification. Recall that for the CTE method, the branching structure inference is sepa-
rated from the model specification. In this section, we show through experiments that CTE suffers less from 
model misspecification than the EM method. That is, we retain the model assumption (6) for estimation while 
using a different spatio-temporal self-exciting process model to generate synthetic data. Specifically, we use

λ(s, t) à µ(s, t) +
X

ti < t
e�γk�i(s, t)k2 

to generate data, where
�i(s, t) à (x� xi, y� yi, t� ti)>,

µ(s, t) à
µ1, t 2 [0, T=2], s 2 S

µ2, t 2 [T=2, T], s 2 S,

(

and γ�denotes the rate of the triggering effects. For the branching structure inference, CTE directly applies the 
clustering algorithms (DBSCAN as a representative in this section) to the data set, whereas the EM method relies 
on the model assumption (6). We display the Tree-edit Distance (TD) for the methods in Table 3. We also per-
form the estimation steps for the CTE method with the parametric model (6). Because we cannot compare the 
estimated parameters with the ground-truth parameters, we instead present the attained values of log-likelihood 
functions in Table 3.

The experimental results presented in Table 3 indicate that the CTE method suffers less from the model mis-
specification with higher log-likelihood function values and lower TDs.

5.1.3. Sensitivity to Branching Structure Inference. In this section, we show through experiments that the results 
provided by the CTE method depend on the inferred branching structure, which further depends on the hyper-
parameter of the clustering algorithms. We present a procedure to determine the hyperparameter in the supple-
ments. In this procedure, each sample path of the observed spatio-temporal self-exciting process is divided into 
two periods, with one used for estimating the model and the other for validating the estimated model.

We also propose a methodology to alleviate the error of the CTE method when the branching structure is not 
accurately inferred by the clustering algorithm. In particular, we take the attained CTE estimator as the 

Table 3. Tree-Edit Distance and Likelihood of Misspecified Models

Simulation setting EM EM-declustering CTE-DBSCAN

µ1 µ2 γ TD Log-Likelihood TD Log-likelihood TD Log-likelihood

0.05 0.03 0.3 955.3 �560.56 1,145.3 �601.35 542.0 "345.17
0.05 0.08 0.3 2,252.5 �842.29 2,637.8 �1,039.67 1,013.0 "488.80
0.08 0.03 0.3 1,242.0 �668.18 1,787.5 �704.29 661.2 "415.39

Note. The value representing the best performance is highlighted in bold.
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initialization of the EM method. In this way, by iterating the E-step and the M-step, the inferred branching struc-
ture will be modified toward the ground-truth branching structure. We write this methodology as CTE-EM. We 
present the results in Table 4, where we specifically select the DBSCAN algorithm as the clustering algorithm 
used in the CTE method. We perform the DBCSCAN algorithm with three sets of hyperparameters,4 and the 
associated “-EM” indicates that the EM method takes the branching structure attained by the CTE method as the 
initialization. We also present the results when ground-truth branching structure is taken into the CTE method 
and EM method, respectively. The experiments provide the following insights:

1. For the CTE method, there exists a positive correlation between the accuracy of the inferred branching struc-
ture (indicated by smaller tree-edit distances) and the accuracy of the corresponding model estimation. Notably, 
the accuracy peaks when the ground-truth branching structure is incorporated into the CTE method.

2. The implementation of the EM method following the CTE method enhances model estimation. However, 
when the branching structure inferred by the CTE method is sufficiently accurate, the enhancement offered by the 
EM method is minimal, as evidenced by the ground-truth case. Given that the EM method is sensitive to the initial-
ization of the branching structure, the results of the CTE-EM method are also contingent on the branching structure 
inferred by the clustering algorithm. Overall, the outcomes derived solely from implementing the CTE method out-
perform those from the existing approaches.

5.1.4. Different Triggering Functions. In this section, we show through experiments that the CTE method is capa-
ble of estimating the spatio-temporal self-exciting process with different triggering functions, which is infeasible 
for either the original MLE or the EM method. Theoretical support of the self-exciting process with different trig-
gering functions can be found in Mehrdad and Zhu (2014) and Fierro et al. (2015). The experimental results pre-
sented in Table 5 indicate that the CTE method is capable of handling different triggering functions for different 
generations. Also, the CTE method with the ST-DBSCAN algorithm generally outperforms the CTE method 
with DBSCAN.

5.2. Experiments on Real-World Data
In this section, we further illustrate the effectiveness of the CTE method by experimenting with four real-world 
data sets: (1) 911-calls, (2) earthquakes, (3) bike-sharing services, and (4) online retail transactions. For ease of 
comparison, we normalize the space region of both data sets to the same space, S ⇥ [0, T], where Tà10 and 
S à [0, 10] ⇥ [0, 10].

Table 4. Branching Structure Inference and Parameter Estimation by CTE-DBSCAN with Different Clustering 
Hyperparameters

Simulation setting µ à 0:05, α�à 5, β à 2:5, σx à 0:15, σy à 0:15
Methods TD µ α β σx σy

CTE-ground truth 0 0.051 6 0.001 6.70 6 0.21 3.13 6 0.16 0.14 6 0.01 0.15 6 0.01
MLE N/A 0.056 6 0.010 7.37 6 0.49 4.04 6 0.41 0.17 6 0.03 0.17 6 0.03
EM-random initialization 1,316.6 0.055 6 0.011 7.15 6 0.43 4.76 6 0.39 0.16 6 0.03 0.16 6 0.03
EM-ground truth 52.5 0.050 6 0.002 6.70 6 0.29 3.13 6 0.21 0.14 6 0.01 0.15 6 0.01
CTE-DBSCAN1 687.0 0.052 6 0.003 6.68 6 0.32 4.51 6 0.27 0.17 6 0.02 0.18 6 0.02
CTE-DBSCAN1-EM 677.5 0.051 6 0.002 6.67 6 0.30 4.51 6 0.27 0.17 6 0.02 0.18 6 0.02
CTE-DBSCAN2 709.0 0.052 6 0.004 9.23 6 0.38 4.99 6 0.32 0.16 6 0.02 0.16 6 0.02
CTE-DBSCAN2-EM 702.3 0.051 6 0.004 9.16 6 0.34 4.82 6 0.30 0.16 6 0.03 0.15 6 0.03
CTE-DBSCAN3 796.0 0.037 6 0.005 3.22 6 0.45 1.94 6 0.40 0.18 6 0.03 0.19 6 0.03
CTE-DBSCAN3-EM 755.5 0.052 6 0.004 4.55 6 0.43 2.52 6 0.41 0.16 6 0.02 0.16 6 0.03

Note. The EM method takes results attained by associated CTE method as starting points and serves as calibration.

Table 5. Parameter Estimation with Different Triggering Functions (µ à 0:050)

Simulation setting CTE-DBSCAN CTE-ST-DBSCAN

Generation α β σx σy α β σx σy α β σx σy

1st-G 8 4 0.20 0.20 6.714 3.580 0.241 0.217 7.081 4.339 0.232 0.250
2nd-G 8 3 0.22 0.22 6.183 1.745 0.253 0.230 6.711 2.109 0.304 0.288
3rd-G 6 2 0.26 0.26 5.575 0.980 0.304 0.330 4.010 1.107 0.263 0.290
4th-G 10 5 0.28 0.28 5.406 3.220 0.331 0.318 6.325 3.523 0.301 0.287
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The spatio-temporal self-exciting process we consider here is a nonparametric model,
µ(s, t) à αu(s)v(t), g(s, t) à βh(s, t), 

where u(s), v(t) and h(s, t) are scale parameters that are estimated by nonparametric methods (e.g., kernel density 
estimation), and α�and β�are estimated by maximum likelihood estimation. The detailed descriptions of CTE 
with a nonparametric model are in the supplements. In our experiments, we specifically select Gaussian kernel 
density estimation as the nonparametric method. In terms of the clustering algorithms used in the CTE method, 
we employ the ST-DBSCAN algorithm because this clustering algorithm achieves the most stable and effective 
performance in synthetic data experiments. We also perform the EM method as the baseline approach. We record 
the value of the log-likelihood functions with the estimated model, which is a commonly selected comparison 
metric with real data (Zhu et al. 2021a).

5.2.1. 911-Calls Historic Data.5 911 calls follow a particular causal relationship with each other. Each 911-call 
report is associated with the time (accurate to the second) and the geolocation (latitude and longitude), indicating 
when and where the call occurred. We extract 1,000 reported calls from the data set for modeling.

5.2.2. Italy’s Earthquake in 2016.6 This data set contains data about earthquakes that hit the center of Italy 
between August 24 and November 30, 2016, collected by the Italian Earthquakes National Center. The data set 
contains the time, latitude, longitude, depth/km, and magnitude of 8,087 earthquake events. We selected 1,000 
relatively significant (in magnitude) events for testing our CTE method to mine the spatio-temporal patterns and 
estimate parameters.

5.2.3. Citi Bike Data.7 The Citi Bike data set contains the transaction details of the bike-sharing service in New 
York City. We select the first 1,000 records to test the models’ performance. The start times, start station latitudes, 
and start station longitudes are inputs to the model as time t spatial coordinates x and y.

5.2.4. Online Retail Transactions.8 This is a transnational data set containing all the transactions occurring 
between January 12, 2010, and September 12, 2011, for a U.K.-based and registered non-store online retail com-
pany. The company mainly sells all-occasion gifts, and many customers are wholesalers. Each transaction 
includes the time, the country, the customer identity number, and the unit price and quantity of each good. The 
information vector, excluding the time, is projected into two-dimensional Euclidean space by Principal Compo-
nent Analysis (Jolliffe and Cadima 2016). This two-dimensional vector represents the spatial information of 
the point.

The results in Table 6 indicate that the CTE method attains larger log-likelihoods on all data sets compared 
with the EM method, indicating a better fit. Moreover, the superiority of the CTE method over the classical EM 
method is much more significant in real-data experiments than in synthetic data experiments (Section 5.1).

We now include some further analysis based on the estimated model. 
1. Temporal analysis: In a spatio-temporal model, scrutinizing changes over time can be advantageous because 

it may reveal cyclical patterns, emerging trends, or abrupt shifts. Such temporal analysis paves the way for a more 
comprehensive understanding of the process dynamics. For instance, after obtaining an accurate estimated model 
of earthquake activity with the spatio-temporal self-exciting process, we can study the temporal patterns, seeking 
to identify any periodic characteristics, which may facilitate the supply chain design considering disruptions (Cui 
et al. 2010, Yamin et al. 2022).

Table 6. Real-World Data Experiment Results of Earthquake (2 Upper Rows), 
911-Call (2 Middle-Upper Rows), Citi Bike (2 Middle-Lower Rows), and Online 
Retails (2 Lower Rows)

Estimation/Metric EM CTE-ST-DBSCAN

Parameters(α,β) 255.23, 0.76 151.81, 0.85
Log-likelihood 513.73 764.57
Parameters(α,β) 212.85, 0.80 263.08, 0.74
Log-likelihood 708.21 1,164.38
Parameters(α,β) 235.06, 0.71 132.61, 0.88
Log-likelihood 1,036.95 1,261.91
Parameters(α,β) 179.80, 0.15 182.30, 0.83
Log-likelihood 1,081.24 1,465.61

Note. The value representing the best performance is highlighted in bold.
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2. Spatial analysis: Assessing the spatial dimension of the estimated model also provides insight. Considering 
the Citi Bike data set, it becomes evident that specific spatial regions have considerable impacts. Moreover, some 
areas display notable heterogeneity. These insights serve to aid the companies in refining their bike provisioning 
policies (Liu et al. 2018).

3. Future prediction and decision making: The estimated model can be employed to make predictions about 
the spatial and temporal information of upcoming arrivals. Moreover, spatio-temporal self-exciting processes serve 
as the input to other stochastic systems, so accurately modeling those inputs can lead to better decisions in those 
systems. For instance, a spatio-temporal self-exciting process model for online retail transactions helps to assess 
various shipping and warehousing strategies in terms of profitability and environmental sustainability. In terms of 
methodology, the estimated spatio-temporal self-exciting process model can be used, for example, in simulation 
optimization; see Jian and Henderson (2015) and Wang et al. (2022), the details of which are beyond the scope of 
this work.

6. Conclusion
In this paper, we present an estimation procedure for the spatio-temporal self-exciting processes called 
“clustering-then-estimation” (CTE). In our methodology, we first apply the density-based clustering algorithm to 
the data set, directly inferring the branching structure. Then, we obtain estimators of parameters by maximizing 
the likelihood function simplified by the inferred branching structure. We show the consistency and asymptotic 
normality of the CTE estimators. We conduct experiments to compare the CTE method with baseline approaches. 
Numerical results on both synthetic data and real-world data indicate that the CTE method demonstrates (1) bet-
ter accuracy on the model estimation and branching structure inference, (2) less risk of model misspecification, 
(3) higher efficiency in practice without the necessity of recursively solving optimization problems, and (4) more 
flexibility in terms of capturing different triggering effects between different pairs of generations.

In future work, we plan to consider the design of clustering algorithms specific to the structure of spatio- 
temporal self-exciting processes. Existing clustering algorithms largely assume that the cluster is a “ball” around 
a center, whereas we observe that the cluster for a spatio-temporal self-exciting process exhibits a “cone” shape. 
Thus, the adjustment of clustering algorithms to take this into account may improve the branching structure 
inference and model estimation. In addition, other potential future directions include (1) generalizing our 
approach to multivariate self-exciting processes, (2) taking the estimation of marks of each arrival into consider-
ation, and (3) incorporating a neural network-based conditional intensity function.
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Endnotes
1 The complexity O(n) results from the fact that there are |N0 | summation terms in (4) and 2n� |N0 | summation terms in (5).
2 The implementation of calculating TD between two tree-structures is in https://zhang-shasha.readthedocs.io.
3 The computation time of CTE includes both times for performing the clustering algorithm and for estimating the parameters through the 
likelihood functions.
4 DBSCAN1 uses r0 à 0:2 and r1 à 0:64. DBSCAN2 uses r0 à 0:3 and r1 à 0:64. DBSCAN3 uses r0 à 0:3 and r1 à 0:5.
5 https://www.kaggle.com/mchirico/montcoalert/notebooks.
6 https://www.kaggle.com/blackecho/italy-earthquakes.
7 https://www.kaggle.com/datasets/sujan97/citibike-system-data.
8 https://archive.ics.uci.edu/dataset/352/online+retail#dataset.

References
Adikari S, Dutta K (2019) A new approach to real-time bidding in online advertisements: Auto pricing strategy. INFORMS J. Comput. 

31(1):66–82.
Ahn D, Shin D, Zeevi A (2023) Feature misspecification in sequential learning problems. Research paper, Columbia Business School, 

New York.
Balderama E, Schoenberg FP, Murray E, Rundel PW (2012) Application of branching models in the study of invasive species. J. Amer. Statist. 

Assoc. 107(498):467–476.
Bichler M, Hammerl A, Morrill T, Waldherr S (2021) How to assign scarce resources without money: Designing information systems that are 

efficient, truthful, and (pretty) fair. Inform. Systems Res. 32(2):335–355.
Birant D, Kut A (2007) St-dbscan: An algorithm for clustering spatial–temporal data. Data Knowl. Eng. 60(1):208–221.

Zhang et al.: CTE of Spatio-Temporal Self-Exciting Processes 
INFORMS Journal on Computing, Articles in Advance, pp. 1–20, © 2024 INFORMS 17 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

28
.5

9.
17

9.
90

] o
n 

17
 S

ep
te

m
be

r 2
02

4,
 a

t 1
3:

49
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 

https://zhang-shasha.readthedocs.io
https://www.kaggle.com/mchirico/montcoalert/notebooks
https://www.kaggle.com/blackecho/italy-earthquakes
https://www.kaggle.com/datasets/sujan97/citibike-system-data
https://archive.ics.uci.edu/dataset/352/online+retail#dataset


Bollapragada R, Li Y, Rao US (2006) Budget-constrained, capacitated hub location to maximize expected demand coverage in fixed-wireless 
telecommunication networks. INFORMS J. Comput. 18(4):422–432.

Brice P, Jiang W, Wan G (2011) A cluster-based context-tree model for multivariate data streams with applications to anomaly detection. 
INFORMS J. Comput. 23(3):364–376.

Brown L, Gans N, Mandelbaum A, Sakov A, Shen H, Zeltyn S, Zhao L (2005) Statistical analysis of a telephone call center: A queueing- 
science perspective. J. Amer. Statist. Assoc. 100(469):36–50.

Chen X (2021) Perfect sampling of Hawkes processes and queues with Hawkes arrivals. Stoch. Syst. 11(13):264–283.
Chen N, Liu Y (2014) American option sensitivities estimation via a generalized infinitesimal perturbation analysis approach. Oper. Res. 

62(3):616–632.
Chen H, Schmeiser BW (2019) Mise-optimal intervals for MNO–PQRS estimators of Poisson rate functions. 2019 Winter Simulation Conf. 

(WSC) (IEEE, Piscataway, NJ), 368–379.
Chen S, Xie W (2022) On cluster-aware supervised learning: Frameworks, convergent algorithms, and applications. INFORMS J. Comput. 

34(1):481–502.
Chen N, Lee DK, Negahban SN (2019) Super-resolution estimation of cyclic arrival rates. Ann. Statist. 47(3):1754–1775.
Chen N, Gürlek R, Lee DK, Shen H (2024) Can customer arrival rates be modelled by sine waves? Service Sci. 16(2):70–84.
Crane R, Sornette D (2008) Robust dynamic classes revealed by measuring the response function of a social system. Proc. Natl. Acad. Sci. USA 

105(41):15649–15653.
Cui T, Ouyang Y, Shen ZJM (2010) Reliable facility location design under the risk of disruptions. Oper. Res. 58(4-part-1):998–1011.
Daley DJ, Vere-Jones D (2003) An Introduction to the Theory of Point Processes: Volume I: Elementary Theory and Methods (Springer, New York), 

211–275.
Daley DJ, Vere-Jones D (2007) An Introduction to the Theory of Point Processes: Volume II: General Theory and Structure (Springer Science & Busi-

ness Media, New York).
Daw A, Pender J (2018) Queues driven by Hawkes processes. Stoch. Syst. 8(3):192–229.
Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the em algorithm. J. Royal Statist. Soc. Series B 

(Methodological) 39(1):1–38.
Diggle PJ (2006) Spatio-temporal point processes: Methods and applications. Monogr. Statist. Appl. Probab. 107:1–46.
Dong Z, Zhu S, Xie Y, Mateu J, Rodrı́guez-Cortés FJ (2023) Non-stationary spatio-temporal point process modeling for high-resolution 

COVID-19 data. J. Royal Statist. Soc. Ser. C App. Statist. 72(2):368–386.
Du N, Farajtabar M, Ahmed A, Smola AJ, Song L (2015) Dirichlet-Hawkes processes with applications to clustering continuous-time docu-

ment streams. Proc. 21th ACM SIGKDD internat. Conf. knowledge Discovery Data Mining (ACM, New York), 219–228.
Du N, Dai H, Trivedi R, Upadhyay U, Gomez-Rodriguez M, Song L (2016) Recurrent marked temporal point processes: Embedding event his-

tory to vector. Proc. 22nd ACM SIGKDD Internat. Conf. Knowledge Discovery Data Mining (ACM, New York), 1555–1564.
Errais E, Giesecke K, Goldberg LR (2010) Affine point processes and portfolio credit risk. SIAM J. Financial Math. 1(1):642–665.
Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. Second 

Internat. Conf. Knowledge Discovery Data Mining 96(34):226–231.
Fan S, Li X, Zhao JL (2017) Collaboration process pattern approach to improving teamwork performance: A data mining-based methodology. 

INFORMS J. Comput. 29(3):438–456.
Farajtabar M, Wang Y, Gomez Rodriguez M, Li S, Zha H, Song L (2017) Coevolve: A joint point process model for information diffusion and 

network co-evolution. Cortes C, Lawrence N, Lee D, Sugiyama M, Garnett R, eds. Advances in Neural Information Processing Systems, vol. 
28 (Curran Associates, Inc., Red Hook, NY).

Fierro R, Leiva V, Møller J (2015) The Hawkes process with different exciting functions and its asymptotic behavior. J. Appl. Probab. 
52(1):37–54.

Filimonov V, Sornette D (2012) Quantifying reflexivity in financial markets: Toward a prediction of flash crashes. Phys. Rev. E 85(5):056108.
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