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A B S T R A C T   

Climate zones play a significant role in shaping the forest ecosystems located within them by influencing multiple 
ecological processes, including growth, disturbances, and species interactions. Therefore, delineation of current 
and future climate zones is essential to establish a framework for understanding and predicting shifts in forest 
ecosystems. In this study, we developed and applied an efficient approach to delineate regional climate zones in 
the northeastern United States and maritime Canada, aiming to characterize potential shifts in climate zones and 
discuss associated changes in forest ecosystems. The approach comprised five steps: climate data dimensionality 
reduction, sampling scenario design, cluster generation, climate zone delineation, and zone shift prediction. The 
climate zones in the study area were delineated into four different orders, with increasing subzone resolutions of 
3, 9, 15, and 21. Furthermore, projected climate normals under Shared Socioeconomic Pathways 4.5 and 8.5 
scenarios were used to predict the shifts in climate zones until 2100. Our findings indicate that climate zones 
characterized by higher temperatures and lower precipitation are expected to become more prevalent, poten
tially becoming the dominant climate condition across the entire region. Thes changes are likely to alter regional 
forest composition, structure, and productivity. In short, such shifts in climate underscore the significant impact 
of environmental change on forest ecosystem dynamics and carbon sequestration potential.   

1. Introduction 

The characteristics of forest ecosystems are largely determined by 
their climate conditions, which strongly control the availability of en
ergy and water (Gounand et al., 2020; Grimm et al., 2013). Climate 
zones are geographical areas with similar prevailing weather conditions, 
which are defined by a combination of variables such as temperature, 
precipitation, atmospheric pressure, and humidity (Geletič et al., 2019; 
Liu and Shi, 2020). Thus, identifying the unique characteristics of 
different climate zones is essential for investigating how forest ecosys
tems respond to climate change, how tree species distributions shift in 
response to changing climate conditions, and what management stra
tegies are needed to ensure the long-term sustainability of forest eco
systems (Gilliam, 2016; Walther et al., 2002). For example, studying the 
relationship between climate and forest ecosystem productivity is 
crucial for comprehending how variations in temperature and 

precipitation affect forest production (Zhao et al., 2023a; Zhao et al., 
2023b) and carbon sequestration capabilities (Chapin et al., 2006; Wei 
et al., 2024). Additionally, analyzing the distribution and abundance of 
tree species across various climate zones is required to identify areas of 
high biodiversity and prioritize management or conservation efforts 
(Araújo et al., 2011; Hoffmann et al., 2015). Therefore, delineating 
climate zones is a crucial step in forest ecosystem research as it provides 
a framework for understanding the interactions between ecosystems and 
their environment (von Buttlar et al., 2018). Ultimately, this under
standing informs management and conservation strategies that are 
important for maintaining the health and resilience of ecosystems at 
various scales, from regional to global. 

The delineation of climate zones, ranging from regional to global 
scales (Demuzere et al., 2019; Rosentreter et al., 2020), is necessary for 
understanding and predicting forest ecosystems, including ecological 
processes, structure diversity, and vegetation species shifts (Manes et al., 
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2021; Rahbek et al., 2019). At the regional scale, climate zones can help 
identify the key environmental factors that shape tree species diversity, 
reveal how different species are distributed across these zones, and 
provide insight into how they might respond to climate change 
(Freeman et al., 2021; Taheri et al., 2021). At the continental scale, 
climate zones are useful in identifying forest regions of high conserva
tion value and biodiversity hotspots (Habel et al., 2019; Trew and 
Maclean, 2021) along with understanding and predicting how climate 
affects the broad-scale distributions of different forest ecosystems 
(Laganiere et al., 2010). At the global scale, climate zones are important 
for understanding the distribution, diversity, and productivity of 
different biomes across the world, as well as for developing effective 
policies and strategies for maintaining and conserving global ecosystems 
in the face of different environmental challenges (Gardner et al., 2020; 
Zheng et al., 2016). 

Climate zones are typically defined by grouping regions with similar 
long-term weather conditions based on statistical clustering of long-term 
weather data. The clustering approach simplifies the analysis of large 
multivariate climate datasets into a smaller number of discrete values 
(Iyigun et al., 2013). Numerous methods have been developed and 
applied to delineate climate zones. For example, the Köppen climate 
classification system is a prevalent method for delineating homogeneous 
climate zones at regional to global scales, using temperature and pre
cipitation as essential meteorological elements for categorization (Beck 
et al., 2018; de Sá Júnior et al., 2012; Demuzere et al., 2019). Briggs and 
Lemin (1992) delineated climate zones in Maine, USA, by employing 
historical observations from 63 weather stations and using a cluster 
analysis methodology. Bunkers et al. (1996) used an objective modifi
cation approach and long-term climate records obtained from 147 
weather stations in the U.S. Northern Plains to improve the borders of 
existing identified climate zones. Rhee et al. (2008) obtained weather 
information from both in-situ observations and remote sensing, then 
applied a consensus clustering method to delineate climate zones in the 
Carolinas region of the USA. Nusrat et al. (2020) developed a machine 
learning approach that used both remotely-sensed and model-estimated 
weather data to delineate climate zones within river basins of Pakistan. 
Mahmud et al. (2022) employed several clustering algorithms, such as 
hierarchical clustering, partitioning around medoids, and K-means, to 
identify climate zones in Bangladesh using weather station data. These 
approaches differ in their selection of climate variables, input data 
format (e.g., point data, surface data), methods of cluster generation, 
and statistical grouping techniques. Consequently, identifying the most 
suitable climate data and employing the optimal methodology for 
delineating climate zones within a study region presents a challenge, as 
the most effective approach is contingent upon the characteristics of 
climate. 

In the past three decades, climate monitoring systems and interpo
lation methods have undergone significant advancements that enable 
the recording of numerous climate variables at high frequencies and fine 
spatial resolutions (Atzberger, 2013; Bramer et al., 2018). However, 
selecting the appropriate climate variables and the approach to effec
tively capture and represent all climate conditions across a given study 
area remains a challenge. Climate is the primary driving factor for the 
diversity of forest ecosystems in the northeastern United States and 
maritime Canada, which covers numerous transitional forest ecosystems 
(Evans and Brown, 2017). Therefore, delineating climate zones in this 
region and projecting their plausible futures are required to study and 
predict forest ecosystem shifts (Samal et al., 2017). In this study, we 
developed an efficient approach for delineating regional climate zones 
under projected climate change scenarios in this region and exploring 
potential forest ecosystem changes. 

2. Materials and methods 

2.1. Study area and climate data 

The study area encompasses the northeastern United States and 
adjacent maritime Canada (Fig. 1), covering an area exceeding 533,000 
km2 and including all or portions of seven U.S. states (New York, Con
necticut, Rhode Island, Massachusetts, Vermont, New Hampshire, and 
Maine) and four Canadian provinces (Quebec, New Brunswick, Nova 
Scotia, and Prince Edward Island). The majority of this region is situated 
at the polar front, which is a dynamic boundary zone between the moist 
subtropical air masses of the lower latitudes and the cold sub-polar 
maritime air masses to the north (Ricketts, 1999). Forest ecosystems 
in this region experience a wide range of average annual temperatures, 
varying from −4◦C to 15 ◦C, and the average annual precipitation levels 
ranging from 500 to 1500 mm (NCEI, 2023). The spatiotemporal dis
tribution of precipitation in this region is highly variable, with the 
summer months typically experiencing the highest levels while the 
winter months tend to be drier (NCEI, 2023). This climate variability can 
be attributed to several factors, including the complex topography, 
proximity to the coast or the Great Lakes, and their interactions (Old
father et al., 2020). In addition, recent climate observations indicate that 
the region is experiencing a rapid warming trend and an increase in both 
the frequency and intensity of extreme precipitation events (Fernandez 
et al., 2020; Leduc et al., 2019). 

The climate information provided by the ClimateNA database (Wang 
et al., 2016) was used to delineate climate zones in the study area. Cli
mateNA provides high spatial resolution and gridded climate informa
tion (1 × 1 km) for the entire North American continent, and it includes 
more than 200 climate variables such as the mean annual temperature, 
mean annual precipitation, and annual heat-moisture index (Mahony 
et al., 2022; Wang et al., 2016). ClimateNA uses a combination of 
weather station observations, climate model output, remote sensing 
images, and digital elevation models to calculate monthly, seasonal, and 
annual climate variables for any specific location (Wang et al., 2016). In 
addition, it provides projected climate predictions representing future 
Shared Socioeconomic Pathways 4.5 (SSP2-4.5) and 8.5 (SSP5-8.5) 
scenarios by using a 13-model ensemble and an 8-model subset from the 
Coupled Model Intercomparison Project Phase 6 (CMIP6) archives 
(Wang et al., 2016). Plausible shifts of current climate zones were pro
jected using predicted climate information under scenarios SSP2-4.5 and 
SSP5-8.5. Therefore, four sets of climate normals including historical 
records and projected futures were used, spanning the time periods of 
1961–1990, 2011–2040, 2041––2070, and 2071–2100. The gridded 
climate data extracted from ClimateNA was comprised of 533,768 1 × 1 
km cells for our study area. 

According to the analysis of ClimateNA data, the northeastern United 
States and adjacent maritime Canada are anticipated to experience 
significant climatic alterations in the future (Table 1). During the 
reference period of 1961–1990, the mean annual temperature was 
recorded at 5.5 ± 2.1 ◦C. However, projections under the SSP2-4.5 and 
SSP5-8.5 scenarios indicate an escalation to 9.1 ± 2.0 ◦C and 11.5 ± 1.8 
◦C, respectively, by the 2071–2100 timeframe. In parallel, both the 
mean warmest month and mean summer temperatures are predicted to 
experience moderate increases. Winters are projected to become 
warmer, as the mean winter temperature is anticipated to increase from 
−7.4 ± 2.9 ◦C to −3.2 ± 2.6 ◦C under the SSP2-4.5 scenario, and further 
to −0.8 ± 2.3 ◦C under the SSP5-8.5 scenario. Additionally, annual 
precipitation is projected to increase, reaching 1206 ± 145 mm and 
1248 ± 147 mm under the SSP2-4.5 and SSP5-8.5 scenarios, respec
tively, within the 2071–2100 interval. Furthermore, an increase in frost- 
free days is anticipated, accompanied by an increase in relative hu
midity. The annual and summer heat moisture indices are projected to 
exhibit an upward trajectory, signifying a transition towards warmer 
and more humid conditions within the region. 
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2.2. Climate zones delineation and prediction 

The approach comprised five steps: climate data dimensionality 
reduction, sampling scenario design, cluster generation, climate zone 
delineation, and zone shift prediction. Initially, Principal Component 
Analysis (PCA) was applied to reduce the dimensionality of 75 climate 
variables and address multicollinearity, identifying key components that 
capture the majority of variance in climate data. In the sampling sce
nario design, various sample sizes were tested against criteria such as 
computational efficiency and representativeness to determine the 
optimal strategy for effectively delineating climate zones. Cluster gen
eration was realized through agglomerative hierarchical clustering, 
using principal components to group similar samples and minimize 
within-cluster variance based on Euclidean distance. Climate zone 
delineation then categorized the remaining cells into distinct clusters 
using the K-nearest neighbor algorithm, leveraging its non-parametric 
nature for spatial data classification, informed by the clusters gener
ated in the previous step. Finally, zone shift prediction employed 

predictive models, utilizing historical and predicted climate normals 
based on climate models and emission scenarios, to forecast future 
climate zone shifts and identify regions likely to experience obvious 
climate changes. This comprehensive methodology ensures a robust 
analysis of climate zone dynamics and their potential shifts. 

2.2.1. Climate dimensionality reduction 
In this study, we selected monthly normals for 75 climate variables, 

which describe temperature and precipitation from various perspec
tives, such as monthly mean temperature and total precipitation, to 
delineate the current climate zones (Table S1); however, numerous 
variables are highly correlated and may result in the overfitting of our 
delineation. Therefore, a PCA was performed to identify highly corre
lated climate variables, investigate the relative contribution of each 
variable in maximizing the variance in climate data among different 
regions, and reduce the dimensionality of the data set (Daffertshofer 
et al., 2004). Because these climate variables are in different units, a 
correlation matrix was used in performing PCA. The PCA results suggest 

Fig. 1. The study region is the northeastern United States and adjacent maritime Canada.  

Table 1 
A summary of key climate variables (mean ± one standard deviation) for the northeastern United States and adjacent maritime Canada using the ClimateNA data.  

Climate variable 1961–1990 SSP2-4.5 SSP5-8.5 
2011–2040 2041–2070 2071–2100 2011–2040 2041–2070 2071–2100 

Annual temperature (◦C) 5.5 ± 2.1 7.3 ± 2.1 8.4 ± 2.0 9.1 ± 2.0 7.5 ± 2.0 9.4 ± 2.0 11.5 ± 1.8 
Warmest month temperature 18.9 ± 1.7 20.7 ± 1.7 21.8 ± 1.7 22.4 ± 1.7 20.8 ± 1.7 22.7 ± 1.7 25.0 ± 1.7 
Summer temperature 17.5 ± 1.8 19.3 ± 1.8 20.4 ± 1.8 21.0 ± 1.8 19.5 ± 1.8 21.3 ± 1.8 23.5 ± 1.8 
Winter temperature −7.4 ± 2.9 −5.4 ± 2.8 −4.0 ± 2.7 −3.2 ± 2.6 −5.2 ± 2.7 −3.0 ± 2.5 −0.8 ± 2.3 
Coldest month temperature −8.6 ± 3.1 −6.6 ± 3.0 −5.2 ± 2.8 −4.3 ± 2.7 −6.6 ± 2.9 −4.2 ± 2.7 −1.8 ± 2.4 
Annual precipitation (mm) 1106 ± 135 1168 ± 139 1192 ± 144 1206 ± 145 1159 ± 140 1208 ± 143 1248 ± 147 
Summer precipitation 481 ± 43 502 ± 45 506 ± 46 510 ± 46 502 ± 45 512 ± 46 514 ± 46 
Winter precipitation 257 ± 63 279 ± 66 286 ± 67 296 ± 68 272 ± 66 294 ± 67 315 ± 71 
Number of frost free days 160 ± 20 178 ± 21 189 ± 21 197 ± 22 179 ± 20.5 200 ± 21 223 ± 22 
Relative humidity (%) 61.9 ± 4.3 63.0 ± 4.3 63.8 ± 4.3 64.2 ± 4.3 63.2 ± 4.3 64.5 ± 4.4 66.0 ± 4.3 
Annual heat moisture index 14.2 ± 2.7 15.0 ± 2.7 15.7 ± 2.8 16.1 ± 2.8 15.3 ± 2.7 16.3 ± 2.8 17.5 ± 2.9 
Summer heat moisture index 39.6 ± 5.4 41.6 ± 5.6 43.5 ± 5.9 44.4 ± 5.9 41.9 ± 5.7 44.9 ± 6.0 49.1 ± 6.3  
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that loadings of multiple monthly climate variables are similarly 
distributed, and they are correlated to seasonal patterns. Consequently, 
we recalculated the mean, minimum, and maximum temperatures, as 
well as total precipitation for each season, replacing their monthly 
values. Eventually, 39 climate variables were used to delineate climate 
zones for our study area (Table S2). In addition, 96 % of the total vari
ance in the climate data can be accounted for by the first five principal 
components (PCs). The cumulative explained variance by the first PC is 
63.5 %, which is primarily influenced by temperature-related seasonal 
and annual averages, frost-free periods, and degree-day variables 
(Fig. 2). The second PC has higher magnitude loadings for non-summer 
precipitation variables, relative humidity, moisture indices, and conti
nental climate effects. It has a cumulative explained variance of 83.4 %. 
The third PC has a cumulative explained variance of 91.6 %, which has 
higher magnitude loadings for non-winter precipitation variables, 
evaporation, and relative humidity. The fourth PC (cumulative 
explained variance = 94.4 %) is characterized by higher magnitude 
loadings for solar radiation, relative humidity, precipitation, and mois
ture deficit, while the fifth PC (cumulative explained variance = 96.7 %) 
is dominated by solar radiation with little contribution from other 
variables. 

2.2.2. Sampling scenario design 
Given the computational challenges of directly delineating climate 

zones from the large number of cells in our study area (533,768 1 × 1 
km2 grids), we input a sample of cells to an agglomerative algorithm to 
generate clusters. Subsequently, we employed a K-nearest neighbor 
classification method to categorize the remaining cells. Initially, various 
sampling scenarios were tested to identify the optimal sampling strat
egy. Instead of using a statistical index, such as maximum distance 
thresholds, to discretize an arbitrary number of climate zones, a 
maximum number of climate zones was predefined. The National Cen
ters for Environmental Information (NCEI, 2023) identified 25 climate 
divisions within the northeastern United States and Gullett and Skinner 
(1992) characterized three distinct climate regions in maritime Canada. 
As the climate divisions are also demarcated by state boundaries, we 
integrated those with similar characteristics that spanned across multi
ple states, ultimately identifying 20 climate regions within the north
eastern United States. Consequently, the maximum number of climate 
zones in the study area was determined to be 23. 

Formann (1984) suggested that to obtain reliable cluster results, it 
requires more than 5 × 2δ samples across the study area, where δ is the 

number of objective variables. In addition, Qiu and Joe (2009) deter
mined that the required number of samples is no less than 10 × δ × ξ, 
where ξ is the number of target clusters. In this study, the objective 
variables are the five PCs, and the maximum number of clusters (climate 
zones) is 23, making the minimum required sample size 160 or 1150 
based on the two approaches. According to these requirements, we 
designed eight sample scenarios, which increased the number of samples 
from 3,000 to 10,000 with a 1,000 increment. For each sample size, the 
sample cells’ locations were randomly generated on the landscape and 
this step was repeated 50 times. So, 400 (8 sample size × 50 random 
sample scenarios) tests were performed for each predefined number of 
clusters (climate zones, ranging from 2 to 23 for increments of one). 

2.2.3. Cluster generation 
Ward’s method, an agglomerative hierarchical clustering algorithm 

(Murtagh and Legendre, 2014; Szekely and Rizzo, 2005), was used to 
group similar samples into clusters based on the five PCs. This method 
groups similar sample cells together into clusters and minimizes the 
within-cluster variance based on the Euclidean distance between cluster 
centers and sample cells. Therefore, this approach produces compact 
and spherical clusters of roughly equal size (Szekely and Rizzo, 2005). 
After agglomerating these 5,000 samples to clusters, the silhouette score 
was used to measure how similar a sample is to its own cluster (cohe
sion) compared to other clusters (separation) (Shahapure and Nicholas, 
2020). The silhouette score was calculated for each sample and ranges 
between −1 and + 1. A higher score indicates that a sample is well- 
matched to its own cluster and poorly matched to neighboring clus
ters, while a lower score indicates the opposite. A score of 0 indicates 
that the sample cell is on the boundary between two clusters. 

For each sampling scenario, the Ward’s hierarchical clustering 
method was applied to generate clusters, then the silhouette score was 
calculated to assess its performance. The results indicate that the sam
pling scenario of 5,000 samples is the optimal choice and increasing the 
sample size did not provide significant improvement in the silhouette 
score. The 50 random sampling scenarios indicate that the sample lo
cations have no obvious influence on silhouette score (Fig. 3a). There
fore, we found that a random selection of samples from the landscape 
can reliably identify and delineate well-defined climate zones. This is 
because adequate samples (5,000) ensure that the delineation of climate 
zones is not influenced by the random positioning of sample cells 
(Dalmaijer et al., 2022). Furthermore, we found that the silhouette score 
significantly decreased when the number of climate zones increased 

Fig. 2. The 39 climate variables identified by the Principal Component Analysis (PCA) and their loadings. (The detail of each climate variable is in the supporting 
information Table S1.). 

S. Roy et al.                                                                                                                                                                                                                                      



Ecological Indicators 160 (2024) 111921

5

from 2 to 10 before stabilizing (Fig. 3b). In this study, we decided to 
delineate the study region into 3 (silhouette score = 0.377), 9 (0.247), 
15 (0.255), and 21 (0.249) climate zones, which adequately represented 
the various levels of silhouette scores. 

2.2.4. Climate zone delineation 
To categorize the remaining cells (excluding the 5,000 samples) into 

distinct clusters (climate zones), the K-nearest neighbor classification 
algorithm was used, with the PCs serving as objective variables. The K- 
nearest neighbor algorithm is a non-parametric, supervised learning 
classifier that relies on proximity to classify individual cells (Chomboon 
et al., 2015). In addition, the clusters generated by the 5,000 samples 
were used as target variables to train this algorithm. Furthermore, each 
climate zone was identified in the northeastern United States and 
maritime Canada. In this study, the delineating processes were repeated 
for 3, 9, 15, and 21 climate zones. Because the same training data were 
used, the four orders of climate zones have a nested structure. For 
example, three primary climate zones were subdivided to produce nine 
second order zones. 

2.2.5. Zone shift prediction 
We delineated climate zones for four time periods by using historical 

climate normals in the period of 1961–1990 and predicted climate 
normals for 2011–2040, 2041–2070, and 2071–2100. Because this 
delineation approach could not generate new clusters (climate zones), 
we therefore applied the local outlier factor algorithm (Mishra and 
Chawla, 2019; Xu et al., 2022) to identify regions projected to undergo 
significant climate change. The local outlier factor algorithm identifies 
anomalous cells by measuring the local deviation of a cell with respect to 
its neighbor cells using the same five PCs. When the predicted climate 
normals for given cells are identified as outliers from their current 
climate zone, and they exhibit similar predicted climate conditions, 
these cells are reclassified into a new climate zone nested within the 
previous one. 

This approach is sensitive to automatically identifying cells with 
projected changes in climate; however, the constraint to generate new 
climate zones is a manipulated condition. In this study, we employed a 
contamination parameter of 0.1 % to define the proportion of outliers in 
each climate zone. This means that the climate conditions in 0.1 % of a 
climate zone are assumed to have changed significantly and are no 
longer considered part of its current climate zone. While the low 
contamination parameter value increased the computational load, it 
reduced the likelihood of excessive outlier detection (Fujisawa and 
Eguchi, 2008), resulting in the identification of more cells as outliers. 

2.3. Forest matrix 

This study assessed the impact of climate zone shifts on various as
pects of forest ecosystems, including forest type, age, structure, and 
aboveground biomass (AGB). We first analyzed the relationship between 
climate zones and forest types across our study area, using forest type 
data from the National Land Cover Database (NLCD) (Yang et al., 2018). 
We then examined the influence of climate on forest age by comparing 
forest age data (Besnard et al., 2021) with the climate zones. This 
analysis helped us understand the role of climate in shaping forest age 
distribution. Furthermore, we investigated how climate zones affect 
forest structure by analyzing their correlation with canopy height data 
(Potapov et al., 2021). Finally, we explored the impact of climate zone 
shifts on the carbon storage capacity of forests by comparing the climate 
zones with AGB data provided by Spawn and Gibbs (2020). Further
more, recognizing that human activities such as harvesting and refor
estation can significantly impact forest ecosystems (Danneyrolles et al., 
2019), we incorporated US Forest Service, Forest Inventory and Analysis 
(FIA) data into our study. To minimize the influence of human activities 
on our findings, we specifically selected forest plots with stand ages 
exceeding 100 years. This selection ensures that the observed changes 
and patterns in forest ecosystems are predominantly attributable to 
climatic factors, rather than recent human interventions. 

3. Results 

3.1. Current climate zones 

Our proposed approach was used to delineate the climate zones in 
the northeastern United States and maritime Canada, resulting in the 
delineation of four orders of climate zones with increasing subzone 
resolutions of 3, 9, 15, and 21. For the first-order of climate zones, the 
climate zone CZ0 covers 40 % of the region and dominates southern New 
England, New York, and coastal Maine (Fig. 3a). CZ0 is characterized by 
its high average annual temperature (Fig. 4a) and has the largest number 
of frost-free days compared to the other two climate zones (Fig. 4c). 
Climate zone CZ1 is 46 % of the study area and encompasses the Adi
rondack Mountains, Vermont, northern New Hampshire, northern 
Maine, New Brunswick, and southern Quebec (Fig. 3a), and it exhibits 
the lowest mean annual temperature (Fig. 4a) and the fewest frost-free 
days (Fig. 4c) among the climate zones. However, CZ0 and CZ1 have 
similar mean annual precipitation and mean annual relative humidity 
(Fig. 4b and 4d). On the other hand, climate zone CZ2, which covers the 
least area of 14 %, includes Nova Scotia, and Prince Edward Island 

Fig. 3. The silhouette score for each of 50 random sample scenarios when the number of climate zones for the study area was set at 3, 5, 7, 9, 12, 15, 20, and 23 (a), 
and the average silhouette score, along with its one standard deviation (from the 50 sampling methods), as the number of climate zones increased incrementally from 
2 to 23 (b). 
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(Fig. 3a). CZ2 is characterized by the highest precipitation and mean 
annual relative humidity (Fig. 4b and 4d). In addition, it has moderate 
levels of mean annual temperature (Fig. 4a) and the fewest frost-free 
days (Fig. 4c), is distinct from the other two climate zones. 

To explore second-order zones, we defined 9 climate zones and 
segmented CZ0 into three, CZ1 into four, and CZ2 into two subzones 
(Fig. 5b). When we increased the resolution to 15 climate zones to 
examine third-order zones, CZ0 was divided into six third-order zones, 
CZ1 into six, and CZ2 into three (Fig. 5c). To achieve even higher res
olution, we defined 21 climate zones to generate fourth-order zones, 
resulting in CZ0 being divided into eight, CZ1 into ten, and CZ2 into 
three subzones (Fig. 5d). By increasing the level of classification, our 
approach was able to provide more detailed information about the 
climate zones and their boundaries. 

3.2. Elevation-based comparison of climate zones 

Elevation plays a pivotal role in shaping the spatial patterns of 
climate zones due to its profound influence on temperature, precipita
tion, and atmospheric pressure (Beniston et al., 1997; Lloyd, 2005; 
Rangwala and Miller, 2012). To compare our climate zone delineation, 
we examined the correlation between the first-order of climate zones 
and the elevation within our study area. The three first-order climate 
zones exhibit significant variations in their average elevations, under
scoring their distinctness. CZ1 has the highest average elevation at 317 
± 190 m, while CZ2 features the lowest at 104 ± 89 m, and CZ0 displays 
an average elevation of 227 ± 169 m (Fig. 6). This disparity in elevation 
is a crucial factor in determining the spatial pattern of these climate 
zones, as higher elevations generally exhibit cooler temperatures and 
distinct weather patterns such as the Adirondack Mountains and Ap
palachian Mountains. 

3.3. Climate zone shifts 

Using the cluster parameters established for delineating the historic 
climate data from 1960 to 1990, we characterized the shift of each first- 
order climate zone under both SSP2-4.5 and SSP5-8.5 climate change 
scenarios (Fig. 7). Our findings indicate that CZ0 is anticipated to 
experience a consistent increase, expanding from 40 % coverage of the 
study region during the period of 1961–1990 to 89 % coverage between 
2071 and 2100 under the SSP2-4.5 scenario (Fig. 7). Meanwhile, CZ1 
and CZ2 are projected to decline from 46 % and 14 % coverage, 
respectively, to 8 % and 3 % coverage during the same time frame 
(Fig. 7). In contrast, under the more extreme SSP5-8.5 scenario, CZ0 is 
expected to almost dominate the entire region, leaving CZ1 to vanish 
completely and CZ2 to be conserved by a few isolated hotspots at the 
peaks of mountains (Fig. 7). 

3.4. Forest ecosystem changes 

CZ0, CZ1, and CZ2 represent distinct climate zones (CZs), each 
characterized by unique forest types (Fig. 8). CZ0 is predominantly 
composed of temperate broadleaf forests (Fig. 8a), with a moderate 
forest age of 87 ± 9 years (Fig. 8b and 9) and the highest canopy height 
in the study, measuring 16 ± 15 m (Fig. 8c and 9). Conversely, CZ2 is 
marked by greater complexity, encompassing both temperate broadleaf 
and mixed forests. This zone is characterized by the youngest forests, 
with an average age of 78 ± 9 years, and the lowest canopy height at 13 
± 10 m. CZ1, primarily consisting of mixed forests and temperate nee
dleleaf forests, acts as an ecotone, bridging temperate broadleaf and 
needleleaf forests. It features an average canopy height of 14 ± 11 m and 
contains the oldest forests in the study, with an average age of 103 ± 11 
years. 

Fig. 4. The climate zones in the northeastern United States and maritime Canada are delineated into four orders based on the climate normals from 1961 to 1990, 
featuring increasing subzone resolutions of 3 (a), 9 (b), 15 (c), and 21 (d). 
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In terms of Aboveground Biomass (AGB) density (Fig. 8d and 9), CZ1 
exhibits an average of 480 ± 240 MgC/ha, a reflection of its complex 
forest structure and age. CZ0 has an AGB density averaging 453 ± 315 
MgC/ha. In contrast, CZ2 presents the lowest average AGB density at 
351 ± 203 MgC/ha. At the forth level of delineated climate zones, forest 
matrix including the forest age, canopy height, and AGB are significantly 
different across these climate zones (Fig. 9), which indicates that the 
climate zone can significantly shape the forest ecosystems. At the fourth 
level of delineated climate zones, significant differences are observed in 
forest matrix such as forest age, canopy height, and AGB across these 
zones (Fig. 9). This suggests that the climate zone significantly in
fluences the characteristics of forest ecosystems. 

Anticipated climate changes are expected to reduce the areas of CZ1 
and CZ2, currently comprising 46 % and 14 % of the study area, 
respectively. This will likely lead to an increased dominance of CZ0 in 
the region. Such a shift is projected to result in younger forest ages, 
higher canopies, and a decrease in carbon storage within the study area. 
Understanding these shifts in climate zones is crucial for predicting 
changes in forest ecosystems. In addition, the FIA plots with stand ages 
over 100 years indicate that CZ1 has an average AGB density of 1016 ±
291 MgC/ha. CZ0 has an average AGB density of 908 ± 297 MgC/ha. In 
contrast, CZ2 presents the lowest average AGB density at 859 ± 306 
MgC/ha. These forest plots, being over a century old, exhibit AGB 
densities significantly higher than those derived from remote sensing 
images. Nonetheless, both data sets suggest that higher temperatures 
and lower precipitation can reduce forest carbon storage. 

Fig. 5. The four major climate variables: forest-free period (a), mean annual precipitation (b), mean annual temperature (c), and mean annual relative humidity (d) 
for the three first-order climate zones delineated by using climate normals during the period of 1960–1990. 

Fig. 6. The elevation spatial patterns of the northeastern United States and 
maritime Canada and average elevation for each climate zone, overlaid with the 
first-order climate zone boundary. 
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4. Discussion 

This proposed approach efficiently delineates climate zones and 
projects their shifts in the northeastern United States and maritime 
Canada, and it has advantages in five key aspects. First, this approach 

uses finer resolution (1 × 1 km) climate data to delineate climate re
gions. The finer spatial resolution climate data leads to more precise 
climate zone delineation, and the abundant climate variables provide a 
more comprehensive description of climate conditions. Second, PCA is 
included in this approach to reduce climate data dimensionality, 

Fig. 7. Climate zones delineated by using predicted climate normals for the three periods of 2011–2040, 2041–2070, and 2071–2100 under SSP2-4.5 and SSP5- 
8.5 scenarios. 

Fig. 8. The forest type (a), forest age (b), canopy height (c), and the aboveground biomass (AGB) density (d) for the entire study area, overlaid with the first-order 
climate zones. 
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improve interpretation, and overcome overfitting issues. By identifying 
highly correlated climate variables, this approach can effectively cap
ture the dominant climate variables and thus make the delineation more 
efficient. Third, a group of samples is selected, clusters are generated 
initially using an agglomerative algorithm, and then a K-nearest 
neighbor classification algorithm is used to delineate each climate zone. 
This can considerably decrease computational time, enabling climate 
zone delineation for national, continental, and global regions. Fourth, 
the silhouette score is introduced to identify the optimal sampling 
strategy and the number of climate zones, reducing uncertainties asso
ciated with sample selection. Fifth, the local outlier factor algorithm is 
used to identify regions with significant climate change and regroup 
them. This approach clearly illustrates the changes and shifts within 
each climate zone under various future climate scenarios. 

However, this approach delineates future climate zones by clustering 
historical climate normals, inherently assuming that future climates will 
mirror those within the historical record. While this methodology 
effectively utilizes existing climate data to predict shifts, it may not fully 
capture the emergence of novel climate conditions without historical 
precedents in the region. This limitation may overlook non-climatic 
analogues of future climate characteristics, potentially leading to sig
nificant alterations in the spatial distribution and traits of climate zones. 
The reliance on historical climate data as the foundation for future 
projections can shape our predictions, suggesting a degree of caution in 
extrapolating these findings to future scenarios. Thus, integrating more 
dynamic models that can account for the possibility of unprecedented 
climate conditions would improve the robustness and relevance of our 
projections, thereby enhancing our understanding of and response to the 
impacts of climate change on forest ecosystems. 

These climate zone delineation findings highlight that the north
eastern United States and maritime Canada encompass a diverse array of 
climate zones (Fig. 4). However, with the ongoing rapid climate 
warming, the diversity of climate zones is anticipated to decrease 
(Fig. 7), leading to CZ0 emerging as the dominant zone across the entire 

region. The proposed approach delineates higher-order climate zones 
based on the characteristics of the first-order climate zones. As a result, 
enhancing the homogeneity of the first-order climate zones leads to a 
reduction in the overall number of higher-order climate zones. Climate 
zone CZ0, characterized by high temperatures and low precipitation 
(Fig. 5), can profoundly impact tree species (Seddon et al., 2016), forest 
disturbances (Chen et al., 2019; Wei et al., 2018), and forest ecosystem 
productivity (Zhao et al., 2022b) in the study region. Therefore, delin
eating climate zones within this region and projecting their shifts is 
essential to guide the development of effective management and con
servation strategies, ensuring long-term forest ecosystem sustainability. 

Current research underscores the impact of climate change on forest 
ecosystems such as composition, structure, and disturbances (Liang 
et al., 2018; Liang et al., 2023). For instance, climate warming not only 
introduces conditions that favor warm-adapted tree species but also 
leads to the homogenization of tree species diversity (Boulanger et al., 
2017). Our findings reveal that the climate zone characterized by 
warmer and drier conditions (CZ0) is expanding, poised to encompass 
the entire study region. This expansion is expected to modify the tree 
species composition in the other two zones, with temperate broadleaf 
forests becoming predominant. Forest inventory data from old-growth 
FIA plots within these zones indicate that temperate broadleaf forests 
in CZ0 exhibit a lower carbon storage capacity than those in CZ1. This 
suggests that shifts in climate zones may lead to a reduction in carbon 
storage within CZ1. Conversely, CZ2 currently has the lowest carbon 
storage capacity but may experience an increase due to these shifts, 
primarily driven by changes in tree species composition (Pérez-Cruzado 
et al., 2012). 

Furthermore, the shift in climate zones towards warmer and drier 
conditions is likely to increase the frequency of disturbances such as 
insect outbreaks, droughts, and fires, further impacting forest ecosys
tems (Seidl et al., 2017). Consistent with our observations, forests in CZ0 
tend to have younger trees, a factor that could diminish the carbon 
storage and timber productivity (Law et al., 2001; Zhao et al., 2022a). 

Fig. 9. The average forest age, canopy height, and aboveground biomass (AGB) for each forth-order climate zone. The climate zone number is a four-digit code 
where each digit represents a climate zone order: the first digit is for the first-order, the second for the second-order, the third for the third-order, and the fourth for 
the fourth-order. 
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This highlights the need for adaptive management and conservation 
strategies to mitigate the impacts of these disturbances (Zhao et al., 
2023a). Understanding the complex relationship between climate zones 
and forest ecosystems allows for the development of management 
practices that enhance forest resilience, promote species diversity, and 
ensure the sustainability of these essential natural resources in the face 
of climate change (Keenan, 2015). 

5. Conclusions 

The methodology introduced for delineating climate zones offers a 
robust framework for understanding existing climate patterns and 
forecasting their evolution under different future climate scenarios. 
Grasping these climate zone shifts is vital for anticipating alterations in 
forest ecosystems. In the northeastern United States and maritime 
Canada, the climate zones we have identified play a pivotal role in 
pinpointing forest ecosystems with significant conservation value and 
informing policy decisions. Moreover, our projections suggest a move
ment towards more homogeneous climate zones across the region. This 
trend is expected to result in forests with younger ages, taller canopies, 
and reduced carbon storage capabilities. Such insights underscore the 
necessity for adaptive management and conservation strategies to 
mitigate the impacts of climate change on forest ecosystems, ensuring 
their resilience and sustainability for the future. 
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