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Climate zones play a significant role in shaping the forest ecosystems located within them by influencing multiple
ecological processes, including growth, disturbances, and species interactions. Therefore, delineation of current
and future climate zones is essential to establish a framework for understanding and predicting shifts in forest
ecosystems. In this study, we developed and applied an efficient approach to delineate regional climate zones in
the northeastern United States and maritime Canada, aiming to characterize potential shifts in climate zones and
discuss associated changes in forest ecosystems. The approach comprised five steps: climate data dimensionality
reduction, sampling scenario design, cluster generation, climate zone delineation, and zone shift prediction. The
climate zones in the study area were delineated into four different orders, with increasing subzone resolutions of
3, 9, 15, and 21. Furthermore, projected climate normals under Shared Socioeconomic Pathways 4.5 and 8.5
scenarios were used to predict the shifts in climate zones until 2100. Our findings indicate that climate zones
characterized by higher temperatures and lower precipitation are expected to become more prevalent, poten-
tially becoming the dominant climate condition across the entire region. Thes changes are likely to alter regional
forest composition, structure, and productivity. In short, such shifts in climate underscore the significant impact

of environmental change on forest ecosystem dynamics and carbon sequestration potential.

1. Introduction

The characteristics of forest ecosystems are largely determined by
their climate conditions, which strongly control the availability of en-
ergy and water (Gounand et al., 2020; Grimm et al., 2013). Climate
zones are geographical areas with similar prevailing weather conditions,
which are defined by a combination of variables such as temperature,
precipitation, atmospheric pressure, and humidity (Geletic et al., 2019;
Liu and Shi, 2020). Thus, identifying the unique characteristics of
different climate zones is essential for investigating how forest ecosys-
tems respond to climate change, how tree species distributions shift in
response to changing climate conditions, and what management stra-
tegies are needed to ensure the long-term sustainability of forest eco-
systems (Gilliam, 2016; Walther et al., 2002). For example, studying the
relationship between climate and forest ecosystem productivity is
crucial for comprehending how variations in temperature and
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precipitation affect forest production (Zhao et al., 2023a; Zhao et al.,
2023b) and carbon sequestration capabilities (Chapin et al., 2006; Wei
et al., 2024). Additionally, analyzing the distribution and abundance of
tree species across various climate zones is required to identify areas of
high biodiversity and prioritize management or conservation efforts
(Aratjo et al., 2011; Hoffmann et al., 2015). Therefore, delineating
climate zones is a crucial step in forest ecosystem research as it provides
a framework for understanding the interactions between ecosystems and
their environment (von Buttlar et al., 2018). Ultimately, this under-
standing informs management and conservation strategies that are
important for maintaining the health and resilience of ecosystems at
various scales, from regional to global.

The delineation of climate zones, ranging from regional to global
scales (Demuzere et al., 2019; Rosentreter et al., 2020), is necessary for
understanding and predicting forest ecosystems, including ecological
processes, structure diversity, and vegetation species shifts (Manes et al.,
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2021; Rahbek et al., 2019). At the regional scale, climate zones can help
identify the key environmental factors that shape tree species diversity,
reveal how different species are distributed across these zones, and
provide insight into how they might respond to climate change
(Freeman et al., 2021; Taheri et al., 2021). At the continental scale,
climate zones are useful in identifying forest regions of high conserva-
tion value and biodiversity hotspots (Habel et al., 2019; Trew and
Maclean, 2021) along with understanding and predicting how climate
affects the broad-scale distributions of different forest ecosystems
(Laganiere et al., 2010). At the global scale, climate zones are important
for understanding the distribution, diversity, and productivity of
different biomes across the world, as well as for developing effective
policies and strategies for maintaining and conserving global ecosystems
in the face of different environmental challenges (Gardner et al., 2020;
Zheng et al., 2016).

Climate zones are typically defined by grouping regions with similar
long-term weather conditions based on statistical clustering of long-term
weather data. The clustering approach simplifies the analysis of large
multivariate climate datasets into a smaller number of discrete values
(Iyigun et al., 2013). Numerous methods have been developed and
applied to delineate climate zones. For example, the Koppen climate
classification system is a prevalent method for delineating homogeneous
climate zones at regional to global scales, using temperature and pre-
cipitation as essential meteorological elements for categorization (Beck
et al., 2018; de Sa Junior et al., 2012; Demuzere et al., 2019). Briggs and
Lemin (1992) delineated climate zones in Maine, USA, by employing
historical observations from 63 weather stations and using a cluster
analysis methodology. Bunkers et al. (1996) used an objective modifi-
cation approach and long-term climate records obtained from 147
weather stations in the U.S. Northern Plains to improve the borders of
existing identified climate zones. Rhee et al. (2008) obtained weather
information from both in-situ observations and remote sensing, then
applied a consensus clustering method to delineate climate zones in the
Carolinas region of the USA. Nusrat et al. (2020) developed a machine
learning approach that used both remotely-sensed and model-estimated
weather data to delineate climate zones within river basins of Pakistan.
Mahmud et al. (2022) employed several clustering algorithms, such as
hierarchical clustering, partitioning around medoids, and K-means, to
identify climate zones in Bangladesh using weather station data. These
approaches differ in their selection of climate variables, input data
format (e.g., point data, surface data), methods of cluster generation,
and statistical grouping techniques. Consequently, identifying the most
suitable climate data and employing the optimal methodology for
delineating climate zones within a study region presents a challenge, as
the most effective approach is contingent upon the characteristics of
climate.

In the past three decades, climate monitoring systems and interpo-
lation methods have undergone significant advancements that enable
the recording of numerous climate variables at high frequencies and fine
spatial resolutions (Atzberger, 2013; Bramer et al., 2018). However,
selecting the appropriate climate variables and the approach to effec-
tively capture and represent all climate conditions across a given study
area remains a challenge. Climate is the primary driving factor for the
diversity of forest ecosystems in the northeastern United States and
maritime Canada, which covers numerous transitional forest ecosystems
(Evans and Brown, 2017). Therefore, delineating climate zones in this
region and projecting their plausible futures are required to study and
predict forest ecosystem shifts (Samal et al., 2017). In this study, we
developed an efficient approach for delineating regional climate zones
under projected climate change scenarios in this region and exploring
potential forest ecosystem changes.
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2. Materials and methods
2.1. Study area and climate data

The study area encompasses the northeastern United States and
adjacent maritime Canada (Fig. 1), covering an area exceeding 533,000
km? and including all or portions of seven U.S. states (New York, Con-
necticut, Rhode Island, Massachusetts, Vermont, New Hampshire, and
Maine) and four Canadian provinces (Quebec, New Brunswick, Nova
Scotia, and Prince Edward Island). The majority of this region is situated
at the polar front, which is a dynamic boundary zone between the moist
subtropical air masses of the lower latitudes and the cold sub-polar
maritime air masses to the north (Ricketts, 1999). Forest ecosystems
in this region experience a wide range of average annual temperatures,
varying from —4°C to 15 °C, and the average annual precipitation levels
ranging from 500 to 1500 mm (NCEI, 2023). The spatiotemporal dis-
tribution of precipitation in this region is highly variable, with the
summer months typically experiencing the highest levels while the
winter months tend to be drier (NCEL, 2023). This climate variability can
be attributed to several factors, including the complex topography,
proximity to the coast or the Great Lakes, and their interactions (Old-
father et al., 2020). In addition, recent climate observations indicate that
the region is experiencing a rapid warming trend and an increase in both
the frequency and intensity of extreme precipitation events (Fernandez
et al., 2020; Leduc et al., 2019).

The climate information provided by the ClimateNA database (Wang
et al., 2016) was used to delineate climate zones in the study area. Cli-
mateNA provides high spatial resolution and gridded climate informa-
tion (1 x 1 km) for the entire North American continent, and it includes
more than 200 climate variables such as the mean annual temperature,
mean annual precipitation, and annual heat-moisture index (Mahony
et al., 2022; Wang et al., 2016). ClimateNA uses a combination of
weather station observations, climate model output, remote sensing
images, and digital elevation models to calculate monthly, seasonal, and
annual climate variables for any specific location (Wang et al., 2016). In
addition, it provides projected climate predictions representing future
Shared Socioeconomic Pathways 4.5 (SSP2-4.5) and 8.5 (SSP5-8.5)
scenarios by using a 13-model ensemble and an 8-model subset from the
Coupled Model Intercomparison Project Phase 6 (CMIP6) archives
(Wang et al., 2016). Plausible shifts of current climate zones were pro-
jected using predicted climate information under scenarios SSP2-4.5 and
SSP5-8.5. Therefore, four sets of climate normals including historical
records and projected futures were used, spanning the time periods of
1961-1990, 2011-2040, 2041—2070, and 2071-2100. The gridded
climate data extracted from ClimateNA was comprised of 533,768 1 x 1
km cells for our study area.

According to the analysis of ClimateNA data, the northeastern United
States and adjacent maritime Canada are anticipated to experience
significant climatic alterations in the future (Table 1). During the
reference period of 1961-1990, the mean annual temperature was
recorded at 5.5 + 2.1 °C. However, projections under the SSP2-4.5 and
SSP5-8.5 scenarios indicate an escalation to 9.1 + 2.0°Cand 11.5 + 1.8
°C, respectively, by the 2071-2100 timeframe. In parallel, both the
mean warmest month and mean summer temperatures are predicted to
experience moderate increases. Winters are projected to become
warmer, as the mean winter temperature is anticipated to increase from
—-7.44+2.9°Cto —3.2 4+ 2.6 °C under the SSP2-4.5 scenario, and further
to —0.8 £+ 2.3 °C under the SSP5-8.5 scenario. Additionally, annual
precipitation is projected to increase, reaching 1206 + 145 mm and
1248 + 147 mm under the SSP2-4.5 and SSP5-8.5 scenarios, respec-
tively, within the 2071-2100 interval. Furthermore, an increase in frost-
free days is anticipated, accompanied by an increase in relative hu-
midity. The annual and summer heat moisture indices are projected to
exhibit an upward trajectory, signifying a transition towards warmer
and more humid conditions within the region.
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Fig. 1. The study region is the northeastern United States and adjacent maritime Canada.

Table 1

A summary of key climate variables (mean + one standard deviation) for the northeastern United States and adjacent maritime Canada using the ClimateNA data.
Climate variable 1961-1990 SSP2-4.5 SSP5-8.5

2011-2040 2041-2070 2071-2100 2011-2040 2041-2070 2071-2100

Annual temperature (°C) 55+21 7.3+21 84+20 9.1+20 7.5+2.0 9.4 +20 11.5+1.8
Warmest month temperature 189 +£1.7 20.7 £ 1.7 21.8 + 1.7 224+ 1.7 20.8 £ 1.7 22.7 £ 1.7 25.0 £1.7
Summer temperature 175+ 1.8 19.3+1.8 204+ 1.8 21.0+ 1.8 19.5+1.8 21.3+1.8 23.5+1.8
Winter temperature —-7.4+29 —-5.4+28 —4.0+ 27 -3.2+26 -52+27 -3.0+25 -0.8+23
Coldest month temperature —-8.6 +3.1 —6.6 + 3.0 -5.2+28 —4.3+27 —6.6 + 2.9 —4.2 +2.7 -1.8+24
Annual precipitation (mm) 1106 + 135 1168 + 139 1192 + 144 1206 + 145 1159 + 140 1208 + 143 1248 + 147
Summer precipitation 481 + 43 502 + 45 506 + 46 510 + 46 502 + 45 512 + 46 514 + 46
Winter precipitation 257 + 63 279 + 66 286 + 67 296 + 68 272 + 66 294 + 67 315+ 71
Number of frost free days 160 + 20 178 £ 21 189 £+ 21 197 + 22 179 £ 20.5 200 + 21 223 + 22
Relative humidity (%) 61.9 + 4.3 63.0 £ 4.3 63.8 + 4.3 64.2 + 4.3 63.2 + 4.3 64.5 + 4.4 66.0 + 4.3
Annual heat moisture index 14.2 + 2.7 15.0 + 2.7 15.7 + 2.8 16.1 + 2.8 15.3+ 2.7 16.3 + 2.8 17.5+ 29
Summer heat moisture index 39.6 + 5.4 41.6 + 5.6 43.5+5.9 44.4 £ 5.9 41.9 +£5.7 44.9 + 6.0 49.1 + 6.3

2.2. Climate zones delineation and prediction

The approach comprised five steps: climate data dimensionality
reduction, sampling scenario design, cluster generation, climate zone
delineation, and zone shift prediction. Initially, Principal Component
Analysis (PCA) was applied to reduce the dimensionality of 75 climate
variables and address multicollinearity, identifying key components that
capture the majority of variance in climate data. In the sampling sce-
nario design, various sample sizes were tested against criteria such as
computational efficiency and representativeness to determine the
optimal strategy for effectively delineating climate zones. Cluster gen-
eration was realized through agglomerative hierarchical clustering,
using principal components to group similar samples and minimize
within-cluster variance based on Euclidean distance. Climate zone
delineation then categorized the remaining cells into distinct clusters
using the K-nearest neighbor algorithm, leveraging its non-parametric
nature for spatial data classification, informed by the clusters gener-
ated in the previous step. Finally, zone shift prediction employed

predictive models, utilizing historical and predicted climate normals
based on climate models and emission scenarios, to forecast future
climate zone shifts and identify regions likely to experience obvious
climate changes. This comprehensive methodology ensures a robust
analysis of climate zone dynamics and their potential shifts.

2.2.1. Climate dimensionality reduction

In this study, we selected monthly normals for 75 climate variables,
which describe temperature and precipitation from various perspec-
tives, such as monthly mean temperature and total precipitation, to
delineate the current climate zones (Table S1); however, numerous
variables are highly correlated and may result in the overfitting of our
delineation. Therefore, a PCA was performed to identify highly corre-
lated climate variables, investigate the relative contribution of each
variable in maximizing the variance in climate data among different
regions, and reduce the dimensionality of the data set (Daffertshofer
et al., 2004). Because these climate variables are in different units, a
correlation matrix was used in performing PCA. The PCA results suggest
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that loadings of multiple monthly climate variables are similarly
distributed, and they are correlated to seasonal patterns. Consequently,
we recalculated the mean, minimum, and maximum temperatures, as
well as total precipitation for each season, replacing their monthly
values. Eventually, 39 climate variables were used to delineate climate
zones for our study area (Table S2). In addition, 96 % of the total vari-
ance in the climate data can be accounted for by the first five principal
components (PCs). The cumulative explained variance by the first PC is
63.5 %, which is primarily influenced by temperature-related seasonal
and annual averages, frost-free periods, and degree-day variables
(Fig. 2). The second PC has higher magnitude loadings for non-summer
precipitation variables, relative humidity, moisture indices, and conti-
nental climate effects. It has a cumulative explained variance of 83.4 %.
The third PC has a cumulative explained variance of 91.6 %, which has
higher magnitude loadings for non-winter precipitation variables,
evaporation, and relative humidity. The fourth PC (cumulative
explained variance = 94.4 %) is characterized by higher magnitude
loadings for solar radiation, relative humidity, precipitation, and mois-
ture deficit, while the fifth PC (cumulative explained variance = 96.7 %)
is dominated by solar radiation with little contribution from other
variables.

2.2.2. Sampling scenario design

Given the computational challenges of directly delineating climate
zones from the large number of cells in our study area (533,768 1 x 1
km? grids), we input a sample of cells to an agglomerative algorithm to
generate clusters. Subsequently, we employed a K-nearest neighbor
classification method to categorize the remaining cells. Initially, various
sampling scenarios were tested to identify the optimal sampling strat-
egy. Instead of using a statistical index, such as maximum distance
thresholds, to discretize an arbitrary number of climate zones, a
maximum number of climate zones was predefined. The National Cen-
ters for Environmental Information (NCEI, 2023) identified 25 climate
divisions within the northeastern United States and Gullett and Skinner
(1992) characterized three distinct climate regions in maritime Canada.
As the climate divisions are also demarcated by state boundaries, we
integrated those with similar characteristics that spanned across multi-
ple states, ultimately identifying 20 climate regions within the north-
eastern United States. Consequently, the maximum number of climate
zones in the study area was determined to be 23.

Formann (1984) suggested that to obtain reliable cluster results, it
requires more than 5 x 2° samples across the study area, where § is the
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number of objective variables. In addition, Qiu and Joe (2009) deter-
mined that the required number of samples is no less than 10 x & x &,
where £ is the number of target clusters. In this study, the objective
variables are the five PCs, and the maximum number of clusters (climate
zones) is 23, making the minimum required sample size 160 or 1150
based on the two approaches. According to these requirements, we
designed eight sample scenarios, which increased the number of samples
from 3,000 to 10,000 with a 1,000 increment. For each sample size, the
sample cells’ locations were randomly generated on the landscape and
this step was repeated 50 times. So, 400 (8 sample size x 50 random
sample scenarios) tests were performed for each predefined number of
clusters (climate zones, ranging from 2 to 23 for increments of one).

2.2.3. Cluster generation

Ward’s method, an agglomerative hierarchical clustering algorithm
(Murtagh and Legendre, 2014; Szekely and Rizzo, 2005), was used to
group similar samples into clusters based on the five PCs. This method
groups similar sample cells together into clusters and minimizes the
within-cluster variance based on the Euclidean distance between cluster
centers and sample cells. Therefore, this approach produces compact
and spherical clusters of roughly equal size (Szekely and Rizzo, 2005).
After agglomerating these 5,000 samples to clusters, the silhouette score
was used to measure how similar a sample is to its own cluster (cohe-
sion) compared to other clusters (separation) (Shahapure and Nicholas,
2020). The silhouette score was calculated for each sample and ranges
between —1 and + 1. A higher score indicates that a sample is well-
matched to its own cluster and poorly matched to neighboring clus-
ters, while a lower score indicates the opposite. A score of 0 indicates
that the sample cell is on the boundary between two clusters.

For each sampling scenario, the Ward’s hierarchical clustering
method was applied to generate clusters, then the silhouette score was
calculated to assess its performance. The results indicate that the sam-
pling scenario of 5,000 samples is the optimal choice and increasing the
sample size did not provide significant improvement in the silhouette
score. The 50 random sampling scenarios indicate that the sample lo-
cations have no obvious influence on silhouette score (Fig. 3a). There-
fore, we found that a random selection of samples from the landscape
can reliably identify and delineate well-defined climate zones. This is
because adequate samples (5,000) ensure that the delineation of climate
zones is not influenced by the random positioning of sample cells
(Dalmaijer et al., 2022). Furthermore, we found that the silhouette score
significantly decreased when the number of climate zones increased
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from 2 to 10 before stabilizing (Fig. 3b). In this study, we decided to
delineate the study region into 3 (silhouette score = 0.377), 9 (0.247),
15 (0.255), and 21 (0.249) climate zones, which adequately represented
the various levels of silhouette scores.

2.2.4. Climate zone delineation

To categorize the remaining cells (excluding the 5,000 samples) into
distinct clusters (climate zones), the K-nearest neighbor classification
algorithm was used, with the PCs serving as objective variables. The K-
nearest neighbor algorithm is a non-parametric, supervised learning
classifier that relies on proximity to classify individual cells (Chomboon
et al., 2015). In addition, the clusters generated by the 5,000 samples
were used as target variables to train this algorithm. Furthermore, each
climate zone was identified in the northeastern United States and
maritime Canada. In this study, the delineating processes were repeated
for 3, 9, 15, and 21 climate zones. Because the same training data were
used, the four orders of climate zones have a nested structure. For
example, three primary climate zones were subdivided to produce nine
second order zones.

2.2.5. Zone shift prediction

We delineated climate zones for four time periods by using historical
climate normals in the period of 1961-1990 and predicted climate
normals for 2011-2040, 2041-2070, and 2071-2100. Because this
delineation approach could not generate new clusters (climate zones),
we therefore applied the local outlier factor algorithm (Mishra and
Chawla, 2019; Xu et al., 2022) to identify regions projected to undergo
significant climate change. The local outlier factor algorithm identifies
anomalous cells by measuring the local deviation of a cell with respect to
its neighbor cells using the same five PCs. When the predicted climate
normals for given cells are identified as outliers from their current
climate zone, and they exhibit similar predicted climate conditions,
these cells are reclassified into a new climate zone nested within the
previous one.

This approach is sensitive to automatically identifying cells with
projected changes in climate; however, the constraint to generate new
climate zones is a manipulated condition. In this study, we employed a
contamination parameter of 0.1 % to define the proportion of outliers in
each climate zone. This means that the climate conditions in 0.1 % of a
climate zone are assumed to have changed significantly and are no
longer considered part of its current climate zone. While the low
contamination parameter value increased the computational load, it
reduced the likelihood of excessive outlier detection (Fujisawa and
Eguchi, 2008), resulting in the identification of more cells as outliers.

2.3. Forest matrix

This study assessed the impact of climate zone shifts on various as-
pects of forest ecosystems, including forest type, age, structure, and
aboveground biomass (AGB). We first analyzed the relationship between
climate zones and forest types across our study area, using forest type
data from the National Land Cover Database (NLCD) (Yang et al., 2018).
We then examined the influence of climate on forest age by comparing
forest age data (Besnard et al., 2021) with the climate zones. This
analysis helped us understand the role of climate in shaping forest age
distribution. Furthermore, we investigated how climate zones affect
forest structure by analyzing their correlation with canopy height data
(Potapov et al., 2021). Finally, we explored the impact of climate zone
shifts on the carbon storage capacity of forests by comparing the climate
zones with AGB data provided by Spawn and Gibbs (2020). Further-
more, recognizing that human activities such as harvesting and refor-
estation can significantly impact forest ecosystems (Danneyrolles et al.,
2019), we incorporated US Forest Service, Forest Inventory and Analysis
(FIA) data into our study. To minimize the influence of human activities
on our findings, we specifically selected forest plots with stand ages
exceeding 100 years. This selection ensures that the observed changes
and patterns in forest ecosystems are predominantly attributable to
climatic factors, rather than recent human interventions.

3. Results
3.1. Current climate zones

Our proposed approach was used to delineate the climate zones in
the northeastern United States and maritime Canada, resulting in the
delineation of four orders of climate zones with increasing subzone
resolutions of 3, 9, 15, and 21. For the first-order of climate zones, the
climate zone CZ0 covers 40 % of the region and dominates southern New
England, New York, and coastal Maine (Fig. 3a). CZ0 is characterized by
its high average annual temperature (Fig. 4a) and has the largest number
of frost-free days compared to the other two climate zones (Fig. 4c).
Climate zone CZ1 is 46 % of the study area and encompasses the Adi-
rondack Mountains, Vermont, northern New Hampshire, northern
Maine, New Brunswick, and southern Quebec (Fig. 3a), and it exhibits
the lowest mean annual temperature (Fig. 4a) and the fewest frost-free
days (Fig. 4c) among the climate zones. However, CZ0 and CZ1 have
similar mean annual precipitation and mean annual relative humidity
(Fig. 4b and 4d). On the other hand, climate zone CZ2, which covers the
least area of 14 %, includes Nova Scotia, and Prince Edward Island
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Fig. 4. The climate zones in the northeastern United States and maritime Canada are delineated into four orders based on the climate normals from 1961 to 1990,

featuring increasing subzone resolutions of 3 (a), 9 (b), 15 (c), and 21 (d).

(Fig. 3a). CZ2 is characterized by the highest precipitation and mean
annual relative humidity (Fig. 4b and 4d). In addition, it has moderate
levels of mean annual temperature (Fig. 4a) and the fewest frost-free
days (Fig. 4c), is distinct from the other two climate zones.

To explore second-order zones, we defined 9 climate zones and
segmented CZ0 into three, CZ1 into four, and CZ2 into two subzones
(Fig. 5b). When we increased the resolution to 15 climate zones to
examine third-order zones, CZ0 was divided into six third-order zones,
CZ1 into six, and CZ2 into three (Fig. 5¢). To achieve even higher res-
olution, we defined 21 climate zones to generate fourth-order zones,
resulting in CZ0 being divided into eight, CZ1 into ten, and CZ2 into
three subzones (Fig. 5d). By increasing the level of classification, our
approach was able to provide more detailed information about the
climate zones and their boundaries.

3.2. Elevation-based comparison of climate zones

Elevation plays a pivotal role in shaping the spatial patterns of
climate zones due to its profound influence on temperature, precipita-
tion, and atmospheric pressure (Beniston et al., 1997; Lloyd, 2005;
Rangwala and Miller, 2012). To compare our climate zone delineation,
we examined the correlation between the first-order of climate zones
and the elevation within our study area. The three first-order climate
zones exhibit significant variations in their average elevations, under-
scoring their distinctness. CZ1 has the highest average elevation at 317
+ 190 m, while CZ2 features the lowest at 104 4+ 89 m, and CZ0 displays
an average elevation of 227 + 169 m (Fig. 6). This disparity in elevation
is a crucial factor in determining the spatial pattern of these climate
zones, as higher elevations generally exhibit cooler temperatures and
distinct weather patterns such as the Adirondack Mountains and Ap-
palachian Mountains.

3.3. Climate zone shifts

Using the cluster parameters established for delineating the historic
climate data from 1960 to 1990, we characterized the shift of each first-
order climate zone under both SSP2-4.5 and SSP5-8.5 climate change
scenarios (Fig. 7). Our findings indicate that CZ0 is anticipated to
experience a consistent increase, expanding from 40 % coverage of the
study region during the period of 1961-1990 to 89 % coverage between
2071 and 2100 under the SSP2-4.5 scenario (Fig. 7). Meanwhile, CZ1
and CZ2 are projected to decline from 46 % and 14 % coverage,
respectively, to 8 % and 3 % coverage during the same time frame
(Fig. 7). In contrast, under the more extreme SSP5-8.5 scenario, CZO0 is
expected to almost dominate the entire region, leaving CZ1 to vanish
completely and CZ2 to be conserved by a few isolated hotspots at the
peaks of mountains (Fig. 7).

3.4. Forest ecosystem changes

CZ0, CZ1, and CZ2 represent distinct climate zones (CZs), each
characterized by unique forest types (Fig. 8). CZ0 is predominantly
composed of temperate broadleaf forests (Fig. 8a), with a moderate
forest age of 87 + 9 years (Fig. 8b and 9) and the highest canopy height
in the study, measuring 16 + 15 m (Fig. 8c and 9). Conversely, CZ2 is
marked by greater complexity, encompassing both temperate broadleaf
and mixed forests. This zone is characterized by the youngest forests,
with an average age of 78 + 9 years, and the lowest canopy height at 13
+ 10 m. CZ1, primarily consisting of mixed forests and temperate nee-
dleleaf forests, acts as an ecotone, bridging temperate broadleaf and
needleleaf forests. It features an average canopy height of 14 + 11 m and
contains the oldest forests in the study, with an average age of 103 + 11
years.
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In terms of Aboveground Biomass (AGB) density (Fig. 8d and 9), CZ1
exhibits an average of 480 + 240 MgC/ha, a reflection of its complex
forest structure and age. CZ0 has an AGB density averaging 453 + 315
MgC/ha. In contrast, CZ2 presents the lowest average AGB density at
351 + 203 MgC/ha. At the forth level of delineated climate zones, forest
matrix including the forest age, canopy height, and AGB are significantly
different across these climate zones (Fig. 9), which indicates that the
climate zone can significantly shape the forest ecosystems. At the fourth
level of delineated climate zones, significant differences are observed in
forest matrix such as forest age, canopy height, and AGB across these
zones (Fig. 9). This suggests that the climate zone significantly in-
fluences the characteristics of forest ecosystems.

Anticipated climate changes are expected to reduce the areas of CZ1
and CZ2, currently comprising 46 % and 14 % of the study area,
respectively. This will likely lead to an increased dominance of CZ0 in
the region. Such a shift is projected to result in younger forest ages,
higher canopies, and a decrease in carbon storage within the study area.
Understanding these shifts in climate zones is crucial for predicting
changes in forest ecosystems. In addition, the FIA plots with stand ages
over 100 years indicate that CZ1 has an average AGB density of 1016 +
291 MgC/ha. CZ0 has an average AGB density of 908 + 297 MgC/ha. In
contrast, CZ2 presents the lowest average AGB density at 859 + 306
MgC/ha. These forest plots, being over a century old, exhibit AGB
densities significantly higher than those derived from remote sensing
images. Nonetheless, both data sets suggest that higher temperatures
and lower precipitation can reduce forest carbon storage.
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4. Discussion

This proposed approach efficiently delineates climate zones and
projects their shifts in the northeastern United States and maritime
Canada, and it has advantages in five key aspects. First, this approach

uses finer resolution (1 x 1 km) climate data to delineate climate re-

gions. The finer spatial resolution climate data leads to more precise
climate zone delineation, and the abundant climate variables provide a
more comprehensive description of climate conditions. Second, PCA is
included in this approach to reduce climate data dimensionality,
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improve interpretation, and overcome overfitting issues. By identifying
highly correlated climate variables, this approach can effectively cap-
ture the dominant climate variables and thus make the delineation more
efficient. Third, a group of samples is selected, clusters are generated
initially using an agglomerative algorithm, and then a K-nearest
neighbor classification algorithm is used to delineate each climate zone.
This can considerably decrease computational time, enabling climate
zone delineation for national, continental, and global regions. Fourth,
the silhouette score is introduced to identify the optimal sampling
strategy and the number of climate zones, reducing uncertainties asso-
ciated with sample selection. Fifth, the local outlier factor algorithm is
used to identify regions with significant climate change and regroup
them. This approach clearly illustrates the changes and shifts within
each climate zone under various future climate scenarios.

However, this approach delineates future climate zones by clustering
historical climate normals, inherently assuming that future climates will
mirror those within the historical record. While this methodology
effectively utilizes existing climate data to predict shifts, it may not fully
capture the emergence of novel climate conditions without historical
precedents in the region. This limitation may overlook non-climatic
analogues of future climate characteristics, potentially leading to sig-
nificant alterations in the spatial distribution and traits of climate zones.
The reliance on historical climate data as the foundation for future
projections can shape our predictions, suggesting a degree of caution in
extrapolating these findings to future scenarios. Thus, integrating more
dynamic models that can account for the possibility of unprecedented
climate conditions would improve the robustness and relevance of our
projections, thereby enhancing our understanding of and response to the
impacts of climate change on forest ecosystems.

These climate zone delineation findings highlight that the north-
eastern United States and maritime Canada encompass a diverse array of
climate zones (Fig. 4). However, with the ongoing rapid climate
warming, the diversity of climate zones is anticipated to decrease
(Fig. 7), leading to CZ0 emerging as the dominant zone across the entire

region. The proposed approach delineates higher-order climate zones
based on the characteristics of the first-order climate zones. As a result,
enhancing the homogeneity of the first-order climate zones leads to a
reduction in the overall number of higher-order climate zones. Climate
zone CZ0, characterized by high temperatures and low precipitation
(Fig. 5), can profoundly impact tree species (Seddon et al., 2016), forest
disturbances (Chen et al., 2019; Wei et al., 2018), and forest ecosystem
productivity (Zhao et al., 2022b) in the study region. Therefore, delin-
eating climate zones within this region and projecting their shifts is
essential to guide the development of effective management and con-
servation strategies, ensuring long-term forest ecosystem sustainability.

Current research underscores the impact of climate change on forest
ecosystems such as composition, structure, and disturbances (Liang
et al., 2018; Liang et al., 2023). For instance, climate warming not only
introduces conditions that favor warm-adapted tree species but also
leads to the homogenization of tree species diversity (Boulanger et al.,
2017). Our findings reveal that the climate zone characterized by
warmer and drier conditions (CZ0) is expanding, poised to encompass
the entire study region. This expansion is expected to modify the tree
species composition in the other two zones, with temperate broadleaf
forests becoming predominant. Forest inventory data from old-growth
FIA plots within these zones indicate that temperate broadleaf forests
in CZO0 exhibit a lower carbon storage capacity than those in CZ1. This
suggests that shifts in climate zones may lead to a reduction in carbon
storage within CZ1. Conversely, CZ2 currently has the lowest carbon
storage capacity but may experience an increase due to these shifts,
primarily driven by changes in tree species composition (Pérez-Cruzado
et al., 2012).

Furthermore, the shift in climate zones towards warmer and drier
conditions is likely to increase the frequency of disturbances such as
insect outbreaks, droughts, and fires, further impacting forest ecosys-
tems (Seidl et al., 2017). Consistent with our observations, forests in CZ0
tend to have younger trees, a factor that could diminish the carbon
storage and timber productivity (Law et al., 2001; Zhao et al., 2022a).
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This highlights the need for adaptive management and conservation
strategies to mitigate the impacts of these disturbances (Zhao et al.,
2023a). Understanding the complex relationship between climate zones
and forest ecosystems allows for the development of management
practices that enhance forest resilience, promote species diversity, and
ensure the sustainability of these essential natural resources in the face
of climate change (Keenan, 2015).

5. Conclusions

The methodology introduced for delineating climate zones offers a
robust framework for understanding existing climate patterns and
forecasting their evolution under different future climate scenarios.
Grasping these climate zone shifts is vital for anticipating alterations in
forest ecosystems. In the northeastern United States and maritime
Canada, the climate zones we have identified play a pivotal role in
pinpointing forest ecosystems with significant conservation value and
informing policy decisions. Moreover, our projections suggest a move-
ment towards more homogeneous climate zones across the region. This
trend is expected to result in forests with younger ages, taller canopies,
and reduced carbon storage capabilities. Such insights underscore the
necessity for adaptive management and conservation strategies to
mitigate the impacts of climate change on forest ecosystems, ensuring
their resilience and sustainability for the future.
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