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Identifying potential pathways for enhancing the energy efficiency of our building stock is a clear and compelling 
pathway to decarbonization. However, doing so requires resource-intensive building energy audits that often 
require an engineer to make on-site inspections and analyses. In this study, we propose E-Audit, a “no touch” 
energy audit that combines physics-based simulation methods with data-driven classification methods to identify 
potential sources of inefficiencies in a building using only hourly electricity data. E-Audit first utilizes a reference 
building model to create a synthetic library of potential efficient and inefficient hypothetical buildings across 
15 building features each with an associated hourly energy usage signature. Next, E-Audit utilizes classification 
methods to match a given building to the closest time series and therefore identify efficiency opportunities. 
We tested E-Audit on a data set of 1,323 school buildings of which 325 received retrofits. Results indicate that 
our E-Audit accurately identifies inefficiencies 91 to 99 percent of the time for plug load, equipment schedules, 
and non-geometric characteristics such as window construction and insulation. The E-Audit underperforms on 
boiler efficiency identification as this feature is highly dependent on boiler fuel type and predictions are solely 
based on electricity data; however, the algorithm effectively distinguishes between electricity and natural gas 
as fuel sources and therefore was able to predict boiler retrofits with 97 percent accuracy. The method does 
not predict control system retrofits well, with prediction accuracy below 40 percent for these features across all 
classification algorithms. We find that a machine learning-based classification method outperformed Euclidean 
distance matching, with kNN balancing accuracy and efficiency. When applying cost data, we also find that 
our E-Audit overestimates recommendations for high capital cost retrofits and underestimates inexpensive ones 
pointing to the need for future work that encompasses cost efficacy into the method. Overall, our E-Audit 
demonstrates the potential to streamline building decarbonization by improving accessibility, cost-effectiveness, 
and scalability of building energy efficiency evaluations.

1. Introduction

The built environment is at a transformative moment, where ad-

vanced data-driven methods are reshaping energy efficiency analysis. 
Traditionally, evaluating the energy performance of buildings neces-

sitated meticulous physical inspections such as audits, often resource-

intensive and time-consuming [1]. In order to address energy inefficien-

cies at scale, it is vital to create accessible, rapid methods for scoping 
energy retrofit projects for cases where there are limited resources, ex-

pertise, and time.

To gather information on the constructions of a building, archi-

tecture, engineering, and construction (AEC) professionals rely on 
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blueprints or construction plans, which may be misplaced over time or 
not updated after retrofits or renovations. Architectural site analysis or 
energy audits are necessary to confirm information or deduce missing 
information about the constructions and systems in a building before 
conducting retrofit analysis [2]. Additionally, some governments have 
energy audit mandates that require on-site evaluations of energy per-

formance to promote energy efficiency measures [3]. This information 
is necessary when modeling the energy performance of the building, 
forecasting electricity load, and identifying which retrofits may be nec-

essary to bring the building up to current code standards. While a site 
visit may not be an unmanageable task for a single building, performing 
this analysis at scale would require several months of labor.
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Deciding which retrofits to install in a given building has tradition-

ally been an expensive process that requires an onsite energy audit 
by an energy expert, costing up to 10% of the annual utility bill per 
building and taking months to complete [4,5,3]. An energy audit is per-

formed onsite by a consultant, who then recommends which retrofits 
would be necessary. In a commercial building, a facility manager might 
do a cost-benefit analysis to make the final decision [1]. In an effort to 
expedite and automate this process, new methods have been developed 
to identify which buildings require retrofit, suggest which retrofits to 
perform, and quantify the energy savings from these retrofits. Bench-

marking methods can be used to identify the worst-performing build-

ings in a portfolio, which would be most in need of retrofits. This 
method requires building information such as floor area, year built, 
number of occupants, operational schedules, and annual energy use 
data by fuel type [6]. While this simplifies the process of identifying 
which buildings need retrofits, it does not eliminate the need for an en-

ergy audit – decision makers would then need to decide which retrofit 
to install [7]. For decision-makers with limited resources and build-

ings with limited available data, it can be prohibitively expensive to 
collect the information required to recommend retrofits. To streamline 
this task, we propose a simulation-based machine learning approach to 
classifying building feature information using limited data inputs.

This research defines and tests a methodology for identifying inef-

ficient performance. It also proposes retrofit solutions using a minimal 
amount of information about the physical characteristics of a building. 
We propose E-Audit, a “no touch” energy audit methodology that lever-

ages a synthetic library of potential efficient and inefficient building 
energy models (BEMs) alongside data-driven classification methods to 
identify inefficiencies of building characteristics. By combining para-

metric BEM simulation, data-driven electricity load classification, and 
machine learning, we present a method capable of discerning the energy 
performance of a building’s physical characteristics using data inputs 
comprising of electricity load profiles, climate zone, square footage, and 
building use types. The approximated physical characteristics indicate 
where the building is inefficient and what retrofits might be neces-

sary. Under this methodology, only the building use type, climate zone, 
square footage, and electricity meter readings would be required to esti-

mate physical building characteristics using a parametrically-generated 
database of building energy simulations, as explored by similar methods 
discussed in Section 2.3. This would allow for faster retrofit recom-

mendations and expedited building archetyping. We demonstrate this 
methodology using a case study on a data set of primary and secondary 
school buildings.

This method is useful for applications such as retrofit recommen-

dation, policy analysis, energy auditing, and energy modeling. Under-

standing the performance of physical features of their buildings allows 
building managers to focus on the most impactful features to target for 
retrofits. Similarly, this knowledge can be useful for energy auditors to 
know which features to focus their efforts on when auditing a building. 
Energy modelers could use the information from these classifications 
to set building parameters in urban-scale energy models. Policymakers 
could use this method to gain insights into a selection of buildings to 
improve future building energy codes. In particular, this method is use-

ful for identifying inefficiencies in building features, which can be used 
to recommend retrofits with limited data inputs.

2. Background

In this section, we overview existing methods for evaluating the en-

ergy performance of buildings and current tools for analyzing energy 
efficiency retrofits, demonstrating why the method in this paper is be-

ing proposed. We then review previous studies that have pioneered the 
use of load matching methods to predict information about buildings, 
which are used as the foundation for the method proposed in this paper.

2.1. Data-driven methods for energy performance prediction

Data-driven methods have been used to predict building types and 
energy performance using visual data, such as satellite imagery, Google 
Streetview, OpenStreetMap, and Microsoft Footprints. Atwal et al. use a 
supervised learning algorithm on OpenStreetMap to classify buildings as 
residential or non-residential archetypes, which can help approximate 
building information when unknown [8]. Remote sensing data has been 
used to predict building energy consumption using computer vision [9]; 
similarly, remote sensing data and street view data have been used to 
estimate building energy efficiency using a deep learning model and k-

means clustering [10]. These methods help provide fast, non-intrusive 
estimates of building energy consumption, but the black-box nature of 
these machine learning methods makes it difficult to identify the physi-

cal building characteristics that are driving energy consumption. Purely 
data-driven approaches neglect the underlying physics of building sys-

tems and focus solely on the statistical relationship between inputs 
and outputs. Therefore, there are limits to the applications for data-

driven approaches that neglect building physics. Additionally, these 
data-driven methods require robust training data to model changes to 
building systems, which is often infeasible to collect.

2.1.1. Analysis of electricity load data

Increasingly widespread adoption of smart meter technology has 
increased the availability of electricity meter readings at hourly time 
intervals. Data at this fine temporal scale allows for load shape pattern 
identification using machine learning methods, which can be useful for 
understanding the performance of a building, how it interacts with the 
grid, and detecting performance anomalies [11]. Current methods that 
analyze electricity loads focus on predicting or forecasting building en-

ergy consumption, predicting building type for archetype assignment, 
or clustering buildings by performance to either glean customer infor-

mation, assign building archetypes for energy modeling, or as a first 
step in retrofit analysis. These methods use load shape analysis, clus-

tering algorithms, and machine learning to provide insights into the 
building without requiring large amounts of data about the building’s 
non-geometric characteristics. Some of these methods can predict which 
appliances are being used within a building based on the electricity load 
signature of that appliance [12]. Electricity data has also been used 
to provide insight into occupant behavior, circumventing the need for 
time-intensive and costly surveys [13].

Load profiling methods can be used to detect performance anomalies 
throughout the year and help with the ongoing commissioning of build-

ing systems. Detecting anomalous energy consumption helps building 
managers detect issues in building systems and can be an effective on-

going commissioning strategy when used in combination with energy 
management systems [14] Disaggregating the load data allows for the 
separation of typical demand and intermittent fluctuations, which can 
also be used to support power grid planning [11,15]. Li et al. 2021 have 
used time and frequency domain load profile analysis to enhance energy 
modeling inputs and calibration, contributing to a positive feedback 
loop whereby load profiling leads to more accurate retrofit modeling 
analysis [16].

Load shape analysis can be used to identify electrical appliances 
present in buildings. Non-intrusive load monitoring can be used to ex-

tract features and shapes from the electricity load to match with the 
electrical appliance’s load [17]. This can be helpful for identifying in-

formation about plug loads, but is limited in its application to building 
features that directly consume electricity. Similarly, electricity data dis-

aggregation can be used to determine the performance of specific home 
appliances [18]. This can be useful for scheduling loads in a building to 
optimize energy usage. However, many of the building characteristics 
that influence energy performance are not direct consumers of energy 
in the way that plug loads and home appliances are. Therefore, load 
matching methods need to identify patterns on different time scales 
to identify the energy performance of physical characteristics. Weekly, 
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monthly, and yearly time scales exhibit different seasonal patterns that 
can demonstrate the efficiency of characteristics such as building enve-

lope, equipment, and lighting systems.

Clustering methods can identify groups of customers with similar 
characteristics, thereby identifying groups of buildings that should be 
audited for energy efficiency measures [19–24]. These clustering meth-

ods are good at identifying whole-building inefficiencies and energy 
performance, but they do not determine specific characteristics of build-

ing systems. An energy audit would still be needed to determine which 
building systems require retrofits.

These methods are limited to aspects of the building that directly af-

fect the electricity load, such as plug loads and equipment or occupant 
schedules. While this is helpful for identifying potential changes that 
can be made to a building to save or shift electricity consumption, this 
does not cover the full range of potential retrofits. There are building 
features that do not directly affect the electricity load that need to be 
included in energy audits and retrofit decision-making because of the 
high impact that they can have on energy consumption, such as insula-

tion and infiltration.

2.2. Retrofit analysis tools

Several tools have been created to recommend retrofits, or energy 
efficiency measures (EEMs), to buildings; however, these often require 
extensive data inputs [25]. Retrofit analysis tools have been created 
in the public sector, by utilities, and in the private sector, and span 
from detailed energy models to statistical analysis using regression to 
user-friendly softwares built on a database of simulations [26]. Using 
reference buildings, retrofit designs can be modeled on an entire build-

ing stock to assess the savings potential [27]. Energy modeling is the 
standard method of evaluating changes to a building using software 
such as EnergyPlus, however this method requires expert knowledge 
to input data and run the simulation. Benchmarking using statistical 
methods is a more user-friendly approach that does not require expert 
knowledge to understand the model inputs. The statistical method esti-

mates energy performance using a regression model where variables are 
the design, operation, and climate of a building. For example, bench-

marking with EnergyStar Portfolio Manager uses a regression model to 
classify energy efficiency amongst peer groups of buildings [6]. Sta-

tistical methods have also been created to assess the energy savings 
potential of large building stocks using multiple linear regression on 
aggregate data such as building type, year built, floor area, and num-

ber of occupants [28,29]. These methods help identify which buildings 
should be prioritized for retrofits, but the lack of training data limits 
their ability to estimate savings from specific retrofit types. These mod-

els have high potential for impact in data-rich environments, however 
they cannot easily be generalized to other geographies because they 
lack the physics-based relationships between building systems inherent 
in energy models.

In response to the need for an easily accessible retrofit assessment 
tool, Hong et al. created the Commercial Building Energy Saver (CBES) 
[30]. CBES is an energy retrofit analysis tool for identifying which 
retrofits should be installed in a building. This tool is helpful for per-

forming benchmarking, load shape analysis, and retrofit analysis on a 
building; however, the data inputs for this tool can be extensive, and re-

quire knowledge of the building geometry, construction, internal loads, 
HVAC, schedules, lighting, and equipment. The Building Efficiency Tar-

geting Tool for Energy Retrofits (BETTER) tool was also created to 
improve public access to energy efficiency strategies by analyzing elec-

tricity load data to suggest changes to building operations [25]. Simi-

lar softwares have been created for retrofit analysis such as AutoBEM 
[31], Excel/MATLAB tools [32,33], and machine learning optimization 
[34–36]. These data-driven approaches face the same limitations due to 
extensive data inputs. In cases where a building owner does not know 
this information and does not have a building manager or energy au-

ditor that can aid in collecting this information, it can be very time 

intensive, difficult, and error prone to input this data [37]. Therefore, 
a tool that can propose potential retrofits with minimal building infor-

mation and data inputs can help building owners to get a preliminary 
estimate of which building systems require a retrofit.

For large-scale retrofit analysis on a portfolio of buildings, urban 
building energy models (UBEMs) have been used to assess the impact 
of retrofit strategies on groups of buildings. UBEM tools such as CESAR 
[38], UMI [39], CityBES [40], URBANopt [41], City Energy Analyst 
[42], and DUE-S [43] rely on building archetypes to determine the 
non-geometric information about a building, which is often unavail-

able at large scales. The energy performance of the actual building 
features is therefore not reflected in the simulation, which relies on 
assumed information about certain building types. Although electric-

ity data for individual buildings is not publicly available due to data 
privacy concerns, government agencies and utilities that do have ac-

cess to this data would be able to benefit from a method that improves 
building archetype definition through using electricity data to define 
non-geometric characteristics.

2.3. Load matching on large-scale simulations

Large simulation databases have been built before to make the ben-

efits of simulation more accessible in cases where expertise and expe-

rience with building energy modeling are unavailable. Roth et al. built 
the DEnCity database of prototype simulations to aid end users in creat-

ing an energy simulation for their building leveraging the expertise on 
inputs, parameters, and outcomes contained in the building database 
[44]. This simplifies the energy modeling process for users who are 
not familiar with input requirements and realistic outcomes. We pro-

pose leveraging a similar large-scale database to aid end users with 
identifying inefficiencies in their buildings based on their electricity 
consumption data.

To perform the matching of actual electricity loads to our simu-

lated building database, we build upon existing load matching methods. 
Load matching methods are used by utilities to assign consumers to 
building types by typical usage patterns, which helps predict energy de-

mand; in research, load matching has been proposed to assign building 
type, which helps identify archetypal physical characteristics needed 
for BEMs and UBEMs [45,46]. These methods typically require knowing 
some physical characteristics, however recent research has attempted to 
perform classification with only the electricity consumption time series. 
Bass et al. and Miller and Meggers both test load matching methods 
to classify utility data by use type (e.g., school building, office build-

ing, hospital) [45,46]. They take advantage of utility data for which use 
types are known and match the load of an “unknown” building to deter-

mine its use type. Garrison et al. use Energy Plus simulations of building 
archetypes and match these with square footage normalized utility data 
using Euclidean distance matching to assign a building archetype to the 
unknown building [47].

There are two types of load matching methods: direct load match-

ing, and time series features with a machine learning classifier. Direct 
load matching uses distance methods such as Euclidean distance and 
dynamic time warping (DTW) to capture similarities in load profiles. 
Euclidean distance matching computes the distance between each point 
in the time series at a given time. Dynamic time warping attempts to 
capture patterns in the time series and accounts for a lag between two 
time series, thus matching loads more on patterns than the magnitude 
of consumption. Dynamic time warping accounts for the trends in the 
data that may be occurring at different points in the time series, and at-

tempts to match points that have similar patterns, hence warping the 
time [48]. This added complexity makes the calculation of distances 
much more time intensive.

Machine learning methods for load matching require extracting tem-

poral features with statistics, regression models (e.g., time-of-the-week 
and temperature, change point model, seasonal and trend decomposi-

tion), or temporal patterns. These features can then be characterized 
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Fig. 1. Overview of the methodology for creating and matching empirical data to the BEM simulation library.

with a supervised machine learning classifier (i.e., random forest, k-

nearest neighbors, extreme boosting, etc.). Bass et al. found that Eu-

clidean distance was the fastest and most accurate among these meth-

ods, however their data skewed heavily toward one building use type, 
which was suited to Euclidean distance matching [45]. Miller and Meg-

gers found that, over the baseline model (random assignment of use 
type), random forest classification improved primary use type pre-

diction by 45.6%, operations type prediction by 63.6%, and building 
performance class prediction by 24.3%; they also found that pattern-

based temporal features were significant indicators of types of behaviors 
[46].

These studies have laid the groundwork for using machine learning 
methods to predict building characteristics based on energy consump-

tion time series. They have classified building use type, relative perfor-

mance, or operational use patterns using data from a utility for which 
building metadata is known. We further this research by identifying 
non-geometric physical characteristics (i.e., lighting power density, fuel 
type, constructions, etc.) of buildings where the use type is known.

The main research gap that this paper fills is identifying non-

geometric characteristics of a building using limited data inputs, and 
recommending retrofits for inefficient building systems without exten-

sive data gathering and input. Previous papers have either been able 
to identify building type [46,45] and appliance information [18,17,12]

using electricity load data or approximate energy efficiency using re-

mote sensing or street view data [9,10]. Our proposed method will 
be able to identify building characteristics that do not directly influ-

ence electricity load and provide insight into the efficiency of those 
building characteristics. Unlike other methods of retrofit analysis, this 
method does not require extensive knowledge of building systems or 
gathering extensive information about building systems and construc-

tions. Models that combine physics-based and data-driven approaches 
take advantage of the benefits of both models, accounting for the un-

derlying physics of changing building systems through simulation and 
improving computational speed with machine learning. Through para-

metric energy simulations, we address the issue of robust training data 
requirements by creating a comprehensive database of a building under 
manifold retrofit scenarios. By matching electricity data from an actual 
building to a building in our database, we can predict the physical char-

acteristics of that building.

3. Methodology

In this section, we overview the load matching methodology that 
was used to create a library of building energy simulations and match 
those electricity loads to real buildings to approximate physical char-

acteristics, as seen in Fig. 1. We then describe how this methodology 
was tested on a simulated data set of 73,728 primary and secondary 
school buildings, and then how this was validated using a case study of 
primary and secondary schools in California.

3.1. Load matching methodology

We propose a novel load matching methodology for recommending 
energy efficiency retrofits based on minimal information on physical 
aspects of the building. This methodology consists of two parts: sim-

ulating inefficiency scenarios for building use types (i.e., restaurant, 
office building, hospital, etc.), and matching the real building’s elec-

tricity load to the simulated load. Using parametric energy simulation, 
key building parameters affecting energy efficiency are varied and sim-

ulated to create a library of buildings of varying degrees of energy 
efficiency. This library is created using standard building energy model 
archetypes, such as the Department of Energy (DOE) reference build-

ings. Local weather data or typical meteorological year weather data 
are used for the relevant ASHRAE climate zone to approximate how a 
building will perform under the typical weather in a region. This library 
is then used as a reference for real buildings of the same use type and 
climate zone. Then, using a load matching method, the electricity use 
data from the real building is matched to the electricity use data from a 
building in the simulation library. This match identifies the most likely 
building features that exist in the real building without extensive en-

ergy auditing and data collection. The only data inputs required for this 
method are the building use type, climate zone, square footage, and 
electricity use data for a single year, which can be requested from the 
local utility.

Through initial testing on a subset of the data to compare the time 
intensity of distance matching (DTW and Euclidean distance) and ma-

chine learning methods (kNN, decision trees, random forest), the DTW 
method proved to be prohibitively time intensive and inaccurate in 
comparison to other methods. The dynamic time warping distances be-
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tween the actual load and simulated load were larger than the Euclidean 
distance for all of the actual time series, indicating that the Euclidean 
distances are a closer match. Euclidean distances were computed much 
more quickly than DTW distances; therefore, we chose to focus on the 
Euclidean distance matching method for the remainder of the analysis. 
Additionally, random forests take longer to compute than decision trees; 
given that this method will be scaled to a large simulation database that 
will require longer training times, we chose to test the faster decision 
tree method. When scaling this methodology to many simulations, com-

putational time is an important factor.

In this paper, we compare Euclidean distance and two machine 
learning methods for accuracy and computational resources required. 
Euclidean distance is the most straightforward method for matching 
loads, as the distance between the time series can be directly calcu-

lated. Before calculating the Euclidean distance between time series, 
missing values were imputed using the median value of the time series.

For the machine learning methods, we analyze a k-nearest neigh-

bors approach, which has been used in prior research [46,45], and 
compare this to a proposed multiple decision trees approach where a 
tree is created for each physical building parameter rather than for the 
building as a whole. Under the multiple decision trees method, the op-

timal match for each parameter would be found, rather than the global 
optimal match between time series.

To perform the machine learning classification, we calculate time 
series features for each building. These time series features include 
the mean, minimum, maximum, median, and standard deviation of the 
hourly kWh per square foot readings for each year, month, and week in 
the time series. This allows us to capture monthly and weekly trends in 
load characteristics while reducing the features to be classified for one 
year from 8,760 to 325. Doing so helps to reduce the computational 
time required to perform the classification.

The k-nearest neighbors algorithm, also known as kNN, is a non-

parametric, supervised learning classifier, which uses proximity to make 
classifications or predictions about the grouping of an individual data 
point. The number of neighbors for the kNN algorithm was set to one, 
as we are looking for the closest matching simulation to identify the 
corresponding building parameters.

Decision Trees are a non-parametric supervised learning method 
used for classification and regression. The goal of decision trees is to 
create a model that learns simple decision rules inferred from input fea-

tures to predict the value of a target variable. Because a decision tree 
was created for each building parameter, hyperparameters were tuned 
for each individual tree using Grid Search cross validation. The tree pa-

rameters that were tuned in this study were maximum tree depth, node 
splitter criterion (i.e., random or best), minimum samples at the split, 
and minimum samples at the leaf.

3.2. Testing matching methods on simulated data

This section reviews the methodology for testing kNN, decision 
trees, and Euclidean distance methods on simulated electricity data 
for primary and secondary schools. The training-testing split of our 
simulated data was 80-20. To test this methodology, we have com-

pleted 73,728 BEM simulations for two building types using Department 
of Energy (DOE) reference buildings: primary schools and secondary 
schools. Each simulation produces one year of hourly electricity data, 
created through parametric analysis in jEPlus [49]. These simulations 
represent 15 building features that can take on either an efficient or 
inefficient value. These features represent inefficiency scenarios that 
might be present in school buildings. For example, parameters might 
represent inefficient light bulbs or an inefficient boiler. See Appendix 
Table A.2 for a list of all building parameters and possible values. Due to 
computational limitations, we simplified our parametric analysis to 15 
parameters that may take on two values. In practice, this methodology 
can be used to analyze more parameters with more values depending 
on the computational resources available.

To account for the varying sizes of buildings, we normalize the 
electricity readings by building area. This allows the matches to focus 
on how efficient the buildings are rather than the magnitude of con-

sumption. We then match electricity load data from the test set to the 
electricity data from the training set to predict the parameters in the test 
set of buildings. If the feature in the matching training building belongs 
to an inefficient scenario (takes on an inefficient value rather than an 
efficient one), then we predict that the feature is inefficient in the test 
building. Therefore, we also recommend that this inefficient building 
feature should be considered for an energy efficiency retrofit.

The algorithms are predicting on the exact parameters that exist 
in both the training and testing data sets. Whereas in real world ap-

plications, the buildings that we will be predicting on do not have 
information available on the exact parameters that the data is trained 
on.

For the validation of these methods, we will be approximating the 
building parameters based on the retrofits that were recommended. Es-

sentially, we will be able to predict whether a building feature was 
efficient or inefficient, rather than the specific value of a parameter.

3.3. Validation of methods using empirical retrofit data

This section describes the methods and metrics used to evaluate per-

formance on the validation data, and reviews the results of validation 
against recommended and installed retrofits. To validate this method-

ology, we collected metered hourly electricity data for primary and 
secondary schools in California from 2013-2017 through data requests 
to Pacific Gas and Electric (PG&E). Data on the physical building char-

acteristics (e.g. HVAC system, lighting power density, window U-factor, 
etc.) for these schools are not collected or readily available to use for 
validation. To circumvent this data limitation, we obtained information 
on energy efficiency measures installed in these schools through a state-

funded energy efficiency program. This retrofit information is available 
for schools that received funding through the California Proposition 39 
program (Prop 39) to install energy efficiency measures. The hourly 
electricity data set from PG&E contains 1,323 schools. Of these schools, 
retrofit information was available for 325 of them. The actual load read-

ings from these schools will be matched to the simulated scenarios to 
approximate the physical building characteristics of the schools and 
predict which retrofits were recommended and which were installed. 
We will then compare the predicted retrofits to those that were rec-

ommended and installed through the Prop 39 program. We predicted 
building features both “before” and “after” retrofit installation using 
2014 and 2017 data. A majority of the retrofits were installed in these 
schools in 2015.

The case study performance was evaluated using accuracy, preci-

sion, and recall. These metrics use true positives (TP), false positives 
(FP), true negatives (TN), and false negatives (FN) to assess the per-

formance of machine learning algorithms in classifying positive cases 
correctly. In this case, a positive case is one in which a retrofit is rec-

ommended and installed. A false positive indicates that the algorithm 
predicted a retrofit but the Prop 39 program did not recommend or in-

stall a retrofit. A false negative indicates that the algorithm did not pre-

dict a retrofit, but there was one recommended or installed. Accuracy is 
the proportion of correct predictions to the total number of predictions:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(1)

Precision answers the question, “what proportion of positive cases 
were correct?” and is calculated as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2)

Recall answers the question, “what proportion of actual positives 
were identified correctly?” and is calculated as follows:

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3)
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Table 1

Retrofit recommendations were determined by the value of the 
building features; if a building feature was predicted to be inef-

ficient, a retrofit was predicted.

Retrofit Building feature Value

Boiler Fuel type

OR

Boiler efficiency

Natural gas

——

0.6

Envelope Roof insulation 
conductivity

OR

Infiltration rate

0.07 𝑊 ∕𝑚 − 𝑘

——

0.0015 𝑚3∕𝑠 −𝑚2

HVAC Fuel type Natural gas

HVAC Controls HVAC Schedule Always on

HVAC set points Cooling set point

OR

Heating set point

Too low

——

Too high

Lighting Lighting power 
density

Based on room size: 
higher of 2 values

Lighting controls Lighting schedule On overnight

Plug loads Heat gains from 
technology

20 𝑊 ∕𝑚2

Equipment schedule Equipment 
schedule

Always on

Window U-factor

OR

Solar heat gain 
coefficient

2 𝑊 ∕𝑚2 −𝐾

——

0.6

3.3.1. Retrofit recommendations

Using the 2014 validation data, we predict which retrofits are 
needed to improve energy efficiency, which we refer to as retrofit rec-

ommendations. These predictions are compared to the retrofits that 
were approved for installation. This allows us to determine the correct 
classification rate for our retrofit recommendations. We recommend a 
retrofit based on our predictions of the building features. See Table 1

for how the building features were used to determine which retrofits 
were installed. A binary value is given for a retrofit based on whether 
it is recommended (1) or not (0). A retrofit recommendation is consid-

ered a positive case for the purposes of calculating accuracy, precision, 
and recall.

3.3.2. Retrofit installations

We take the difference between our “before” and “after” retrofit pre-

dictions to determine what we predict was installed in the building. 
This is then validated against what retrofits were installed in the build-

ing. The difference between the “before” and “after” predictions takes 
three possible values. If the value is 0, then we predict that no retrofit 
was installed. If the value is 1, then we predict that a retrofit was in-

stalled, because energy performance improved over time. If the value is 
-1, then the building got more inefficient over time, and we predict that 
a retrofit was not installed. We then calculate accuracy, precision, and 
recall using this predicted value and the actual installations.

To account for how costs affect retrofit decision making, we inte-

grate a cost heuristic to compare validation cases. The Prop 39 program 
used the savings-to-investment ratio (SIR) to determine whether the 
project was profitable and should be invested in. Using the cost data 
from the approved projects of the Prop 39 program, we determine the 
median costs and median net present value for each energy efficiency 
measure (EEM) category. Net present value (NPV) and cost are used to 
calculate the SIR. A predicted SIR for each school is calculated based on 
the retrofits that we would recommend.

𝑆𝐼𝑅𝑠𝑐ℎ𝑜𝑜𝑙 =
∑

𝑁𝑃𝑉𝐸𝐸𝑀
∑

𝐶𝑜𝑠𝑡𝐸𝐸𝑀

(4)

This predicted SIR is used to determine whether the project would 
be profitable or non-profitable. Profitable projects have an SIR ≥ 1.01; 
non-profitable projects have an SIR < 1.01. The predicted SIR is then 
compared with the actual SIR of the school site from the Prop 39 data 
to determine whether our predicted SIR is in agreement or not in agree-

ment with the actual SIR. These four metrics (profitable, non-profitable, 
in agreement, and not in agreement) are used to segment the validation 
data to gain further insights on the algorithm’s predictive abilities. We 
refer to the five scenarios created using these metrics by using the let-

ters A, B, C, D, and E. Scenario A represents all schools, B represents 
profitable schools, C represents non-profitable schools, D represents in 
agreement schools, and E represent not in agreement schools. The deci-

sion to install retrofits is complex and often accounts for more than the 
energy efficiency of the building feature. Because cost is a major fac-

tor in decision-making, we account for the influence of cost using these 
four metrics.

4. Results and discussion

4.1. Performance on test data

For all three classification algorithms tested, the test classification 
rates for 13 out of 15 building features are over 0.75, with 6 or more 
of these being very close to one for all three algorithms. The test clas-

sification rates for each classification algorithm, separated by building 
type, can be seen in Fig. 2. The decision trees algorithm performed the 
best across all building features, with 14 out of 15 features having a cor-

rect classification rate of 0.90 or above. The boiler efficiency test rate 
using decision trees was 0.703 for secondary schools and 0.706 for pri-

mary schools, performing 20% better than kNN and Euclidean distance 
for these features. The kNN algorithm had a test classification rate over 
0.90 for 11 features in primary schools and 8 features in secondary 
schools. The lowest test classification rates using the kNN algorithm 
were for boiler efficiency, lighting in small areas, infiltration rate, and 
equipment schedules, as seen in Fig. 2. In secondary schools, the kNN 
algorithm also had lower test correct classification rates for window 
U-factor (0.77), classroom lighting (0.87), and roof insulation (0.87). 
The Euclidean distance algorithm had a test classification rate of over 
0.90 for 12 features in primary schools and 9 features in secondary 
schools. The lowest test classification rates using Euclidean distance 
matching were for boiler efficiency, lighting in small areas, and infil-

tration rate (see Fig. 2). Similarly to kNN, in secondary schools, the 
Euclidean distance algorithm also had lower test classification rates 
for window U-factor (0.83), roof insulation (0.86), and classroom and 
small area lighting (0.89). In a similar study, Michalakopoulos et al. 
use a physics-informed DNN to predict envelope performance based on 
general building information and monthly heating energy consumption 
data [50]. Their model struggles to predict roof and window U-factors, 
with R-squared values of 0.05-0.09. The thermodynamics of heat gains 
and heat losses through the building envelope are complex and depen-

dent on outdoor weather such as air temperature and wind speed, there-

fore making them difficult to predict without ground-truth weather data 
inputs.

All three algorithms are able to correctly classify most of the build-

ing features that were specified. This is because we are predicting on 
a very large test data set and these algorithms are able to be trained 
on nearly all possible combinations of building features of interest. No-

tably, all algorithms performed relatively poorly on predicting boiler 
efficiency compared to other metrics. This may be due to the fact that 
boiler efficiency is tied to the type of fuel consumed by the boiler. Nat-

ural gas boilers have more heat loss than electric boilers or air source 
heat pumps; conventional natural gas boilers have thermal efficiencies 
around 75% whereas electric boilers have thermal efficiencies around 
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Fig. 2. Test performance of matching methods on primary schools and secondary schools. (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

99% [51]. Predicting the efficiency of a natural gas boiler using the elec-

tricity data is difficult because we are not using natural gas consumption 
data to predict performance. Westermann et al. used clustering algo-

rithms to predict the heating system type (i.e. heat pump, gas furnace) 
and found that each cluster has around 75% of buildings with the same 
heating system type [12]. In our case study, predicting the boiler ef-

ficiency is akin to predicting the heating system type, given that the 
boiler efficiencies vary depending on the heating system type. There-

fore, the predictive performance for heating systems in Westermann et 
al. is similar to our boiler efficiency prediction rates of around 70%.

The infiltration rate and the lighting power density in small rooms 
had a 10-20% lower test classification rate for the Euclidean distance 
and kNN algorithms than decision trees. The difficulty with predict-

ing the infiltration rate is likely due to the indirect effect of infiltration 
on electricity consumption. Infiltration rate affects the thermodynamic 
balance of a room, thus affecting the internal heat gain loads placed 
on the HVAC system. It’s possible that the effect of these parameters 
was masked or picked up on through the identification of related build-

ing parameters. The lighting power density in smaller rooms is likely 
masked in the overall electricity load profile of the building by the light-

ing consumption in medium and large rooms, therefore the algorithms 
likely struggle with disentangling the efficiency of those rooms from the 
others.

The algorithms are able to correctly identify the performance of plug 
loads (i.e., technology) and equipment schedules, which are also iden-

tifiable through previously established methods such as non-intrusive 
load monitoring. Therefore, this method of load matching using a simu-

lated building database is able to meet and surpass current capabilities 
of identifying building information available through previously estab-

lished methods.

4.2. Performance on validation case study

The performance on the validation data set is worse than the test 
set for most metrics (see Fig. 3), with exceptions for plug loads and 
equipment schedule predictions, which perform relatively similarly in 
testing and validation. A discrepancy in performance between test and 
validation is to be expected because the test and validation cases are 
based on different data sets. Test performance is based on whether the 
algorithms are able to classify the building features to agree with the 
building features data - the training and testing data are both subsets of 

the simulation database. In the validation case, the algorithms classify 
the building features as inefficient or efficient. An inefficient classifica-

tion is used to predict a retrofit, which is then compared to the retrofit 
data. This is not a direct comparison, which can result in error due to 
complex factors affecting retrofit decision making.

The algorithms all show poor performance when predicting most 
of the retrofits that were recommended by the Prop 39 program (see 
Fig. 3), except plug loads and equipment schedules. This suggests that 
other factors played into the Prop 39 retrofit decisions other than en-

ergy performance. Other studies that are designed to predict retrofit 
strategies use energy audit information as input features, such as the 
status of the HVAC system and status of the envelope, and are able to 
predict the retrofit strategy with up to 75% accuracy, because informa-

tion about these building features are inputs into the machine learning 
model [52]. Our machine learning algorithms do not take information 
about the performance status of the building features as an input but 
rather predict the performance of features based on electricity data 
alone and use the performance as a direct indicator for retrofit strategy. 
Fig. 3 shows the prediction accuracy of all three matching algorithms 
on the two school types. The algorithms were able to accurately predict 
whether equipment schedule and plug load retrofits would be recom-

mended, with all of the algorithms showing similar accuracy for plug 
loads and the machine learning algorithms showing 30% higher ac-

curacy for equipment schedules in secondary schools. The equipment 
schedule and plug load recommendation accuracy rates were over 0.90 
using the kNN algorithm for both building types. The Euclidean distance 
algorithm had an accuracy of over 0.91 for plug loads in primary and 
secondary schools, and an equipment schedule accuracy of 0.86 in pri-

mary schools. The decision trees algorithm also had high accuracy rates 
for equipment schedules and plug loads; the decision trees had an accu-

racy of over 0.94 for equipment schedules and plug loads in secondary 
schools and over 0.83 for primary schools.

Lighting and controls retrofit recommendations are consistently in-

accurately predicted by all classification algorithms. When considering 
precision (Fig. A.6 in the Appendix), kNN and Euclidean algorithms 
had high precision for lighting (≥ 0.99) and lighting controls (≥ 80) 
retrofit recommendations, meaning that the positive cases (in which a 
retrofit was recommended) were correctly identified. However, the re-

call for these two building features were relatively low (Fig. A.7 in the 
Appendix). For example, lighting recall was less than or equal to 0.62 
for both machine learning algorithms and less than 0.05 for Euclidean. 
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Fig. 3. Prediction accuracy of retrofit recommendations (top) and installation (bottom) for all primary schools and secondary schools. Retrofit installations demon-
8

strated improved performance over retrofit recommendation predictions.
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This means that there were not a high proportion of actual positives that 
were identified correctly, therefore the classification algorithms are not 
recommending these retrofit types as often as they were recommended 
in reality. These retrofit types are cheap and easy to install, and the 
decision to install them in projects is more likely to be influenced by 
external factors. For example, a lighting retrofit might be installed in a 
project regardless of whether the lighting is efficient because the fund-

ing is available to update the existing fixtures to the latest standard.

Similarly, boiler, envelope, and window retrofit recommendations 
are inaccurately predicted in most cases; however, kNN had 50-60% 
higher prediction accuracy for envelope retrofits and some boiler 
retrofits than both other algorithms, and Euclidean distance had 93% 
accuracy for window retrofits in secondary schools. Unlike lighting and 
lighting controls retrofits, the recall was high for boiler, envelope, and 
window retrofits across all algorithms, which means that a high pro-

portion of the actual positives were identified correctly. Because there 
was low precision for these features, we can conclude that there were a 
substantial number of false positive cases in which the algorithms pre-

dicted that a retrofit was necessary yet one was not recommended in 
the Prop 39 program. These retrofit types require a high capital invest-

ment, are difficult and time-intensive to install, and require expertise 
to select the correct system. These external factors may have prevented 
schools in the case study from installing these retrofits even in cases 
where that building feature was inefficient.

Despite the poor performance of predicting retrofit recommenda-

tions, the algorithms exhibited much higher accuracy for predicting 
which retrofits were installed. The installed retrofit prediction accuracy 
of equipment schedule and plug load predictions were very high, show-

ing little change between retrofit recommendations and installations. 
The equipment schedule and plug load installation accuracy rates were 
over 0.91 using both machine learning algorithms, in some cases as high 
as 0.96 (Fig. 3). These rates are only slightly less accurate than load 
monitoring approaches used for identifying plug loads from appliances, 
which can have precision and recall over 97% [17]. The Euclidean dis-

tance algorithm had accuracy over 0.96 for plug loads, and equipment 
schedule installation accuracy of 0.86 in primary schools and 0.67 in 
secondary schools.

For other building features, the classification algorithms are better 
able to identify what retrofits were installed rather than which retrofits 
were recommended, meaning that they are good at identifying changes 
in load patterns due to changes in building features. Although the algo-

rithms do not account for external factors that impact retrofit decision 
making, by accounting for the change in building performance over 
time, we can still see how well the algorithms identify building charac-

teristics. Fig. 3 demonstrates the effectiveness of the algorithms at iden-

tifying the performance of several building features that have a stronger 
signal in the energy consumption data: the boiler, envelope, windows, 
plug loads, and equipment schedule. The accuracy rates greatly im-

proved for boiler, envelope, and window retrofits when accounting for 
the change in electricity load over time, as can be seen by comparing 
the retrofit recommendations and installations in Fig. 3. The machine 
learning algorithms are particularly good at identifying the trends in 
energy performance of these features over time. For example, window 
retrofit installation predictions improved over recommendations, with 
accuracy rates of 0.99 using the kNN algorithm. The accuracy of boiler 
predictions using the decision trees algorithm on primary schools went 
from 0.07 for retrofit recommendations to 0.93 for retrofit installations 
(Fig. 3). Overall, the kNN algorithm performs the best for window, 
boiler, and envelope retrofits, in some cases having 20-30% higher ac-

curacy than decision trees and Euclidean distance across both building 
types. Changes to these building features have a large impact in how the 
electricity load changes over time, therefore the algorithms are better 
able to identify changes in the building parameters over time, thus im-

proving the accuracy rate. The algorithms don’t have the data on other 
factors that impact retrofit decisions such as age, costs, or subjective 

opinions of building managers, therefore their ability to predict retrofit 
recommendations is limited to energy performance.

Although there were improved predictions for several high capital 
cost retrofits, the algorithms are still inaccurately predicting lighting 
and controls system retrofit installations, with accuracy ranging from 
0.01 using Euclidean distance to 0.30 using decision trees (Fig. 3). 
The precision and recall performance for lighting and lighting con-

trols retrofits were similar for retrofit installation and recommendation 
predictions; figures for the precision and recall of retrofit installation 
predictions can be found in the Appendix Figs. A.6 and A.7. The perfor-

mance of these retrofit types is dependent on the user’s behavior: the 
control systems must be programmed to reduce electricity consumption 
when the building is not in use, and the lights need to be turned off 
to save electricity. Electrical lighting performance is highly dependent 
on occupant behavior; new occupant behavior models are continuously 
being developed to predict better the effect of occupants on lighting 
end-use consumption [53]. If these retrofits were installed but not being 
used correctly, the impact on energy consumption would be minimal 
and the classification algorithms are not likely to pick up on the change.

The machine learning algorithms outperform Euclidean distance 
matching in identifying which retrofits were installed for over half of 
the retrofit types. The machine learning methods are intended to cap-

ture patterns at different time scales, and therefore may be better able 
to identify changes to the electricity load over time. Euclidean distance, 
because it is capturing the difference between the overall time series, 
may be sensitive to extreme peaks in the electricity load. Because the 
inputs into the machine learning models are time series features that de-

scribe more detail than the magnitude of the load, these models may be 
less sensitive to outlying data. The machine learning algorithms are bet-

ter at predicting retrofit types that have a substantial effect on energy 
efficiency, such as boiler, envelope, equipment schedule, plug loads, 
and windows retrofit installations. They perform more poorly when pre-

dicting controls system retrofits, which are more likely to shift when the 
electricity load is consumed. Adjustments to the machine learning algo-

rithms will need to be made in future work in order to identify the 
effect of controls systems. Being able to reliably predict the energy ef-

ficiency and demand shifting ability of building features will help to 
narrow the focus on which systems should be targeted for retrofits. This 
can help reduce the time needed for audits by eliminating the need for 
a full-scale energy audit.

4.2.1. Impact of cost metrics on predictive performance

Accounting for cost metrics shows improved predictive performance 
in some cases, depending on the cost metric. As seen in Figs. 4 and 5, 
profitable and in agreement cost scenarios tended to have worse accuracy 
compared to non-profitable and not in agreement; however, this trend 
is not consistent across retrofit types. In general, there was extremely 
varied accuracy among cost scenarios across all retrofit types and clas-

sification methods. Validation performance varies based on which cost 
metric is used to segment the schools in the case study. This calls 
into question how the validation performance should be evaluated, and 
whether costs should be taken into account in the prediction of retrofit 
recommendation and installation.

There is no consistent trend in profitability for improving accuracy, 
nor is there a clear relationship between accuracy and the predicted SIR 
being in agreement with the actual SIR. This shows the elaborate nature 
in which costs play into decision making; cost plays a factor in deci-

sion making, but it is not the deciding factor. Studies have found that 
many external factors play into retrofit investment decisions, includ-

ing policies and regulations, technological capabilities, building-specific 
information (size, age, occupancy, etc.), and human factors such as 
comfort requirements, maintenance, and occupancy schedules [2]. This 
creates an energy efficiency gap, where EEMs are not installed despite 
high potential returns on investment. A study on commercial buildings 
found that more frequent energy audits led to higher EEM adoption 
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Fig. 4. Validation accuracy of retrofit recommendations for primary schools (top) and secondary schools (bottom). Prediction accuracy varies depending on the 
profitability of the project, and accounting for cost estimates was not able to improve prediction accuracy.

rates [54]. Therefore being able to quickly audit the performance of 
certain building features over time may improve EEM adoption rates.

4.3. Time-accuracy trade-off

The Euclidean distance and kNN algorithms were able to perform 
the classification task on the entire dataset in 2-3 hours, whereas the 
decision trees algorithm took around 10 days to perform the classifica-

tion. Euclidean distance and kNN are the most efficient algorithms and 
exhibit comparable performance, with kNN outperforming Euclidean 
distance for several retrofit types (boiler, envelope, equipment sched-

ule, and window installations). These two methods capture different 
aspects of the load patterns; Euclidean distance is lower dimensional 

and compares the entirety of the time series, whereas kNN has more 
features and is better at clustering based on patterns in energy con-

sumption.

Despite only having inefficient and efficient scenarios in the para-

metric analysis, these methods are still fairly accurate at predicting 
building retrofits. With further parameterization, the model’s predic-

tions would only improve. Additional parameters were not included in 
this study due to the time and cost of including additional values for 
each parameter and additional parameters in the simulation.

These algorithms have all the benefit of a decreased time-cost com-

pared to traditional auditing methods. Conventional energy audits can 
take from six weeks to four months to complete and require an energy 
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Fig. 5. Validation accuracy of retrofit installations in primary schools (top) and secondary schools (bottom). Accounting for profitability and cost estimates had a 
varied effect on improving prediction accuracy.

auditor to be onsite to perform the task [4,3,5]. This process provides a 
very accurate analysis of the building performance with detailed infor-

mation about specific building systems. While the E-Audit method may 
not be able to replace an ASHRAE Level 3 energy audit, it can provide 
a streamlined approach to Level 1 or 2 audits when applied to a large 
portfolio of buildings. There is an upfront time-cost to run the Energy-

Plus models once to create the simulation library on the order of days 
to weeks; however, once the simulated building database is created, the 
E-Audit of the entire portfolio can take less than a day. In both the con-

ventional and proposed methods, expert knowledge of building science 
is required to perform the audit. This limits the accessibility of those 
from outside the field in applying this method, and this limitation can 

be addressed in future work by streamlining the building simulation 
process or by improved sharing of existing simulated building energy 
model databases.

5. Limitations and future work

The validation case study in this paper is limited by the availability 
of data on the fuel type, building use type, location, and retrofit instal-

lations for the buildings in our study area. We did not have access to 
natural gas consumption data for these buildings; if this method were 
applied to natural gas data, we predict that it would be able to correctly 
classify natural gas boiler efficiency. The validation of this methodology 
is limited to primary and secondary school buildings in Northern Cali-
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fornia, US (ASHRAE climate zone 3C). Future work aims to validate this 
methodology for additional building use types in various geographic re-

gions. Lastly, the validation data was for retrofits installed in buildings, 
which does not give direct information on the building features be-

sides that they are inefficient. Because we were trying to predict which 
retrofits were installed in a building, and the algorithms are trained 
to predict the performance of building features, we were not directly 
predicting retrofit recommendations, which can be impacted by myriad 
factors. While this study is limited due to the validation data available, 
this work is novel and lays the groundwork for future studies to validate 
this method on more extensive data.

Across the United States, there’s a notable uptick in requirements for 
large building audits, retuning, and retrocommissioning policies. Take, 
for instance, New York City’s Local Law 87 or Seattle’s Building Tune 
Ups. Local Law 87 mandates buildings larger than 50,000 square feet 
undergo audits once a decade. In 2023, 14,723 buildings were man-

dated to perform audits, incurring an estimated local cost of $0.15 per 
square foot [3]. While policy packages such as New York City’s Greener, 
Greater Buildings Plan and Urban Climate Mobilization Act have suc-

ceeded in curbing energy consumption in large buildings, Local Law 87 
has seen only marginal savings, primarily due to subpar audit quality 
coupled with inadequate economic incentives [3]. There’s an emerging 
consensus that algorithmic auditing policy design may begin to relieve 
some of these barriers [55]. Future work may use this as an opportunity 
to design a pilot program to assess the integration of E-Audit in auditing 
policies. Establishing an evaluation pilot has the potential to enhance 
auditing procedures and performance by standardizing reporting and 
recommendations, thereby facilitating a more efficient allocation of 
funds for Energy Conservation Measures.

6. Conclusions

The E-Audit methodology presented in this study can correctly iden-

tify several building features that both directly and indirectly impact 
electricity consumption. It performs as well as existing methods when 
predictive plug load and equipment schedule performance in a building, 
with prediction accuracy consistently above 91%. In addition, E-Audit 
can classify non-geometric characteristics of a building that do not 
directly consume electricity, such as window construction and insula-

tion/building envelope, showing up to 99% accuracy for these features. 
It struggled to predict boiler efficiency but was able to correctly iden-

tify whether the fuel type was electricity or natural gas, leading to 97% 
prediction accuracy for boiler retrofits. Controls retrofits were the most 
difficult to predict, as most accuracy rates for these features were below 
40%. For all features, prediction accuracy improved when accounting 
for changes in energy performance over time.

Among the three classification algorithms tested, the kNN classifica-

tion had the best performance when considering the trade-off between 
accuracy and time. The machine learning algorithms outperformed the 
Euclidean distance matching, yet the decision trees algorithm had the 
highest time cost, taking over 50 times longer than kNN or Euclidean 
distance to perform the classification.

Generally, this method overpredicted recommendations for expen-

sive retrofits, and underpredicted cheap retrofits, compared to the 
ground truth of what was recommended to be installed. This case study 
demonstrated that the decision to install retrofits is complex and im-

pacted by external factors such as cost, age, regulations, and human 
factors. Using this method, building managers and energy auditors can 
determine which building characteristics are performing inefficiently 
and prioritize energy efficiency retrofits. In research it can be used for 
building archetyping to identify non-geometric building features; in pol-

icy analysis, it can generate insights on how to design retrofits in future 
building codes. Overall, E-Audit facilitates the energy auditing process 
and has the potential to improve the accessibility of building energy 
modeling methods by scaling retrofit analysis for consolidated building 
archetypes.
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Data availability

Future work aims to validate this method on other building use types 
and climate zones. To improve the accessibility of this method, a Python 
repository has been developed that applies the algorithms to a user-

defined simulation database. This can be accessed at the following DOI:

E-Audit: A “no-touch” energy audit that integrates machine learning

and simulation (Original Data) (Zenodo)

https://doi .org /10 .5281 /zenodo .10651931.

The data used in the validation case study are subject to a Non-

Disclosure Agreement and must be requested directly via the California 
Public Utilities Commission (CPUC) to comply with privacy controls. 
Sample data for this method are available through the E-Audit Python 
repository. The included sample data can be used to verify that the func-

tions are working correctly before running them on a larger simulated 
database. Instructions for how to create a BEM simulation database like 
the one used in this paper are included in the README file. To recreate 
the simulated database from this paper, the parameters from Table A.2

can be used to modify the primary and secondary school models from 
the DOE commercial reference building dataset; alternatively, please 
contact the corresponding author to request access to this database.
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Appendix A

Fig. A.6. Precision of matching algorithms for predicting whether retrofits were recommended (top) or installed (bottom) for schools. *No True Positives or False 
Positives.
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Fig. A.7. Recall of matching algorithms for predicting whether retrofits were recommended (top) or installed (bottom) for schools. *No True Positives or False 
14

Negatives.
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Table A.2

Building feature inputs for parametric simulation represent 15 inefficiency sce-

narios. Combinations of these scenarios are represented in the building simula-

tion library.

Building feature Efficient value Inefficient value

Classroom lighting power density 15 𝑊 ∕𝑚2 21 𝑊 ∕𝑚2

Small area lighting power density 8 𝑊 ∕𝑚2 16 𝑊 ∕𝑚2

Large area lighting power density 12 𝑊 ∕𝑚2 23 𝑊 ∕𝑚2

Lighting schedule overnight 
(fraction of lights on)

0.17 0.9

Roof insulation conductivity 0.039 𝑊 ∕𝑚 −𝐾 0.07 𝑊 ∕𝑚 −𝐾

Window U-factor 2 𝑊 ∕𝑚2 −𝐾 6 𝑊 ∕𝑚2 −𝐾

Window Solar Heat Gain 
Coefficient

0.2 0.6

Infiltration (exterior walls) 0.001 𝑚3∕𝑠 −𝑚2 0.0015 𝑚3∕𝑠 −𝑚2

Boiler efficiency 0.9 0.6

Heat gains from classroom, 
library, and office technology

5 𝑊 ∕𝑚2 20 𝑊 ∕𝑚2

Fuel type for boiler Electricity Natural Gas

HVAC schedule Always off

On during the day

Always on

Cooling set point (low) 24 ◦C 22 ◦C

Heating set point (high) 17 ◦C 22 ◦C

Equipment schedule Reduce usage 
overnight

Reduce throughout 
summer

Leave equipment 
on overnight and 
throughout summer
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