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Organisms living on the seafloor are subject to encrustations by a wide
variety of animals, plants and microbes. Sea urchins, however, thwart this
covering. Despite having a sophisticated immune system, there is no clear
molecular mechanism that allows sea urchins to remain free of epibiotic
microorganisms. Here, we test the hypothesis that pigmentation biosyn-
thesis in sea urchin spines influences their interactions with microbes
in vivo using CRISPR/Cas9. We report three primary findings. First, the
microbiome of sea urchin spines is species-specific and much of this commu-
nity is lost in captivity. Second, different colour morphs associate with
bacterial communities that are similar in taxonomic composition, diversity
and evenness. Lastly, loss of the pigmentation biosynthesis genes polyketide
synthase and flavin-dependent monooxygenase induces a shift in which
bacterial taxa colonize sea urchin spines. Therefore, our results are consistent
with the hypothesis that host pigmentation biosynthesis can, but may not
always, influence the microbiome in sea urchin spines.

1. Introduction

The shallows of most temperate and tropical seas contain diverse encrustation of
invertebrates, macroalgae and biofilms. Sea urchins, on the other hand, are free of
this biofouling: their calcium carbonate spines are stiff and capable of supporting
epibiotic organisms, yet they do not. A closer look at their surface reveals tri-jawed
claspers—pedicellaria—that can capture prey and remove parasites, detritus and
other large eukaryotes (e.g. algae) [1], but these appendages do not appear to
remove epibiotic microorganisms. Like many other animals, sea urchins have a
sophisticated innate immune system that contains a variety of cell types involved
in immune surveillance [2—4]. However, it is not clear that these cells are
embedded within the calcium carbonate spines nor are responsible for preventing
other organisms from colonizing their surface.

What is also striking about these animals is their coloration; spines of the
approximately 950 extant sea urchin species contain polyketide-based echino-
chromes and spinochromes that produce a wide range of colours. Sea urchins
do not use their echinochromes or spinochromes for recognition, dimorphic sig-
nalling or camouflage [5]. Instead, in vitro evidence suggest that echinochromes
and spinochromes that were isolated from adult spines and tests have a number
of biological activities, including antimicrobial properties (e.g. degranulation in
the presence of bacterial pathogens) [6-9]. Antimicrobial compounds generally
serve a dual role in host-microbe interactions: they protect the host against
pathogenic invasions while also influencing which microbes colonize and
become part of the host-associated microbial community [10,11]. This raises
the question as to whether the molecules involved in pigmentation biosynthesis
also play a role in host-microbe interactions.

Sea urchin pigments are genetically determined and are made of a base
polyketide with side-chain hydroxyls that can either be substituted for modifi-
cations and/or be used in free radical scavenging [12,13]. This base polyketide
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is made by the enzyme polyketide synthase (PKS) with
modifications derived by members of the flavin-dependent
monooxygenase (Fmo3) family (electronic supplementary
material, figure S1) [14,15]. To test whether sea urchin
spines have bioactive pigments that is involved in host-
microbe interactions, we performed three sets of field-based
collections and experiments [16-18]. First, we collected the
spines of several sea urchin species as well as three colour
morphs of Lytechinus variegatus. Second, we transferred
L. variegatus into captivity to compare to field specimens.
Lastly, we used genome editing by CRISPR/Cas9 to
remove PKS and Fmo3 from the sea urchin Hemicentrotus
pulcherrimus to test whether pigment biosynthesis influences
the microbiota of sea urchin spines in vivo [15,19-21].

2. Methods

(a) Sample collection

To establish a baseline for the spine-associate bacterial commu-
nity, we tested whether the bacterial communities associated
with sea urchin spines are species-specific and of the stability
of this community when urchins are transferred to captivity.
These comparisons were performed through two separate collec-
tions. First, we collected Asthenosoma ijimai (n = 3), Diadema clarki
(n=11), H. pulcherrimus (n=11) and Pseudocentrotus depressus
(n=5) from the coastal waters of Tateyama, Japan (34°59'10.9”
N, 139°48'54.4" E). Second, we collected L. variegatus (n=57)
from Florida, USA (Biscayne Bay; 25°39'17.0” N, 80°10'28.7" W)
and compared these to individuals held in captivity (1 =18) at
Brown University (RI, USA). Moreover, unlike the species in
our first collection, L. variegatus has several colour morphs and,
thus, our second collection included individuals that were predo-
minantly green (1 =7), red (n =9) or white (1 = 6). Spines from all
individuals were collected using sterile scissors and forceps, and
tissues were placed in sterile 2 ml microfuge tubes filled with
ethanol and stored at —20°C. All tools were cleaned with 70%
alcohol between individuals.

(b) Characterization of spine pigments

The diversity of echinochromes and spinochromes was charac-
terized for the three dominant colour morphs (green, red
and white) of L. variegatus as well as the purple sea urchin
Strongylocentrotus purpuratus. We used high-performance liquid
chromatography (LC-MS; 1260 series, Agilent Technologies)
coupled with a 6530 Accurate-Mass Q-TOF (Agilent Technol-
ogies) and operated in negative (ESI-) electrospray ionization
mode. Vials containing pigment were kept at —20 °C prior to
LC-MS. Reversed phase column Waters XTerra MS C18, 3.5 pm
2.1 x50 mm column was used at 40 °C with a sample volume
injected of 8 pl and flow rate of 0.3 pl min~". The HPLC mobile
phases consisted of: A =0.1% formic acid in water and B = aceto-
nitrile. Using an initial volume of 8 pl, the linear gradient elution
used the following time program: 0 min 5% B, linear to 95% B
at 9.5 min, hold at 95% for 2 min, back to 5% B at 14 min and
equilibrate for 8 min. The ESI source conditions were gas temp-
erature 300 °C, drying gas 11 I min~", nebulizer 35 psig, VCap
voltage 3500 V, fragmentor 175 V and skimmer 65 V. The instru-
ment was tuned using an Agilent calibration tuning mix for mass
calibration of the Q-TOF instrument. The reference solution pro-
vided (reference masses m/z 112.9856 and m/z 1033.9881 for ESI
(-)) was used to correct small mass drift during acquisition.
Data were collected in both centroid and profile formats. Data
were analysed with Agilent MassHunter Qualitative Analysis
(v. B.06.00).

(c) Pigment manipulation via CRISPR/Cas9 guide RNAs M

To determine whether the presence of echinochromes and spino-
chromes influence the microbiota in sea urchin spines, we
identified the coding sequences for the pigmentation genes
PKS and Fmo3 using the genomic database for H. pulcherrimus
(HpBase; http://cell-innovation.nig.ac.jp/Hpul/ [22]). We then
designed guide RNAs (gRNAs) for manipulating H. pulcherrimus
using CRISPRscan (www.crisprscan.org) and synthesized these
according to Moreno-Mateos et al. [23]. A mixture of two
gRNAs (200 ng pl™") and Cas9 mRNA (500 ng pl™") was injected
into freshly fertilized H. pulcherrimus eggs [19,21,24]. Albino
larvae were collected at 3 days post-fertilization and young
adults were biopsied after 1 year of culture at the Tateyama
Marine Laboratory (Tateyama, Japan) for genetic analysis [21].
Spines were then collected after 18 months using the same
protocol that is described above.

(d) DNA extraction and sequencing

Total DNA was extracted from sea urchin spines and DNA
kit blanks (1 =10) using a modified protocol for the DNeasy
Blood & Tissue Mini Kit (Qiagen). Specifically, spines were sub-
merged in an enzymatic lysis buffer (10 mM Tris (pH 8), 1 mM
EDTA and 1% TX-100 plus 10 mg of lysozyme) that was incu-
bated at 37°C for 20 min and then bead-beaten by vortex for
5 min. We then discarded the porous calcium carbonate structure
and followed the manufacture’s protocol thereafter [25]. DNA
was quantified using a Qubit (Life Technologies) and diluted
to 5 ng pl~! using RNase/DNase-free water. Bacterial sequences
were then amplified using primers for the V3/V4 regions of the
16S rRNA gene (electronic supplementary material, table S1)
[26]. Products were purified using the Axygen AxyPrep Mag
PCR Clean-up Kit (Axygen Scientific), indexed using the Nextera
XT Index Kit V2 (Illumina Inc.) and then purified again. At each
clean-up step, fluorometric quantitation was performed using a
Qubit, and libraries were validated using a Bioanalyzer High
Sensitivity DNA chip (Agilent Technologies). Illumina MiSeq
sequencing (v3, 2 x 300 bp paired-end reads) was performed at
the University of North Carolina at Charlotte (Charlotte, USA).

(e) Bacterial community analysis

Raw reads and quality information were imported into QIIME 2
(v. 2021.2) [27], where forward and reverse reads were paired
using VSEARCH [28], filtered by quality score, and denoized
using Deblur [29]. QIIME 2-generated ‘features’ were analysed
as amplicon sequence variants (ASVs) [30] and were assigned
taxonomy using SILVA (v.138) [31]. Sequences matching Archaea
or present in the DNA kit blanks were discarded. The data table
was then subdivided for each set of samples and rarified for each
individual comparison: 2183 sequences for species (electronic
supplementary material, figure S2), 389 sequences for captivity
(electronic supplementary material, figure S3), 3582 sequences
for coloration (electronic supplementary material, figure S4)
and 3168 sequences for the gene knockouts (electronic sup-
plementary material, figure S5). Samples below each threshold
were discarded.

Unweighted and weighted UniFrac [32] values were calcula-
ted for each sample in QIIME 2 and compared using principal
coordinate analyses to test whether community membership
and composition differed between samples that were selected a
priori to test differences between host species, spine coloration,
environment and gene knockouts. Results from these analyses
were then visualized in Prism (v. 9.0.0) and stylized using
Adobe Illustrator (v. 24.0.1). Separate permutational multivariate
analysis of variances (PERMANOVA) were used to compare the
relatedness of these bacterial communities between host species,
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Figure 1. Specificity in the spine microbiome between sea urchin species. (@) Community similarity of the spine bacterial communities of seven sea urchin species,
as estimated by unweighted UniFrac for membership (left) and weighted UniFrac for composition (right). (b) The corresponding diversity estimates via phylogenetic
diversity (left) and dominance (right) as well as (¢) phylum-level profiles of the bacterial communities. (Online version in colour.)

spine coloration, environment and gene knockouts, and this was
followed by pairwise comparisons.

Multiple measures of o diversity (i.e. total ASVs, phyloge-
netic distance, McIntosh evenness and McIntosh dominance)
were then calculated for each sample in QIIME 2. We used an
analysis of variance (ANOVA) and a Tukey’s post hoc test to
compare community diversity between species, coloration and
gene knockout, and a t-test for the captivity comparison was
performed using Prism. The bacterial groups as well as the
number of shared and specific ASVs were summarized. Lastly,
we used an analysis of composition of microbiomes (ANCOM)
to identify differentially abundant ASVs based on the underlying
structure of the community [33].

Our bioinformatic pipeline used to convert raw reads to ASVs
for visualization is presented in detail in the supplemental code,
and raw sequence reads have been deposited in the Dryad Digital
Repository: https://doi.org/10.5061/dryad.v15dv41xk [34].

(f) Sequence alignment and phylogeny

We used the basic local alignment search tool (BLAST; [35])
to verify the taxonomy of a H. pulcherrimus ASV-of-interest,
which suggested that this was an ‘uncultured Arcobacter sp.
instead of an ‘uncultured Halarcobacter sp.” We then identified all
other Arcobacter species using the Prokaryotic names with

Standing in Nomenclature database (bacterio.net) and down-
loaded the full 165 rRNA sequences from the National Center
for Biotechnology Information (NCBI). These 32 sequences were
also compared with the five most closely related sequences from
BLAST, three Campylobacter spp., and Dissulfuribacter thermophilus
for an outgroup (see electronic supplementary material, table 52
for GenBank accession numbers). All 42 sequences were imported,
aligned and trimmed using the Molecular Evolutionary Genetics
Analysis software (v. 11.0.9) [36], and this relationship was inferred
using maximum likelihood with the optimized DNA substitution
model (K2 + G, as determined by BIC criteria) and 1000 bootstrap
replicates.

3. Results

(a) Specificity in the spine microbiome

The membership (unweighted UniFrac) and composition
(weighted UniFrac) of the spine microbiome differed between
the four sea urchin species from Japan (PERMANOVA,
p <0.001 for both; figure 1; electronic supplementary material,
table S3). This trend was consistently observed in each pairwise
comparison between these species (p <0.01 for all; figure 1;
electronic supplementary material, table S3). The structure
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Figure 2. Colour morphs and their pigmentation chemistry. Aboral photographs (left) and high-performance liquid chromatography profiles of spine pigments from
green (first row), red (second row) and white (third row) colour morphs of Lytechinus variegatus, as well as from Strongylocentrotus purpuratus (fourth row) (Sp,

spinochrome; Ech, echinochromes). (Online version in colour.)

(a combined assessment of taxonomic richness (total ASVs
and phylogenetic diversity) and taxonomic evenness (domi-
nance and evenness)) of these communities also differed
between sea urchin species (ANOVA; observed ASVs:
p=0.002, phylogenetic diversity: p=0.013, dominance: p <
0.0001, evenness: p < 0.0001; figure 1; electronic supplementary
material, figure 52 and tables S4, S5). This difference was
largely due to P. depressus, which harboured a community
that was dominated by relatively few bacteria taxa (figure 1;
electronic supplementary material, figure S2 and tables S4,
S5). Despite compositional and structural variation in the
spine microbiome, these communities were largely represented
by a-proteobacteria (42.1% on average; from 16.7% to 76.8%),
y-proteobacteria (28.1% on average; from 5.5% to 52.3%) and
Spirochaetia (10.6%; from 0% to 42.4%) (figure 1; electronic
supplementary material, table S6).

(b) Captivity restructures the spine microbiome

The membership and composition of the spine microbiome of
L. variegatus differed significantly between individuals in the
field and in the laboratory (PERMANOVA, p <0.001 for both;
electronic supplementary material, figure S3 and table S3).
The structure of these bacterial communities also differed,
whereby the bacterial community of laboratory individuals
was more diverse and taxonomically dominant (t-test for

observed ASVs, phylogenetic diversity, dominance, evenness:
all p<0.0001; electronic supplementary material, figure S3
and table S3). Only 9.6% of all ASVs found in the spines of
wild L. variegatus were retained when cultured in the
laboratory (electronic supplementary material, figure S3).
Individuals from the field were primarily composed of
y-proteobacteria (70.6% on average; from 12.6% to 99.5%)
and Spirochaetia (17.8% on average; from 0% to 65.3%),
while laboratory individuals associated with a-proteobacteria
(16.9% on average; from 2.1% to 37.8%) and y-proteobacteria
(43.4% on average; from 25.7% to 79.9%) (electronic
supplementary material, figure S3 and table S7).

(c) Consistency in the spine microbiome between colour

morphs
Spines of L. variegatus include spinochromes A, B and C and the
combination of these produced the different colour morph
(figure 2). All three spinochromes were present in the green
colour morph, while only spinochrome A and C were present
in the red colour morph. No spinochromes were detectable in
the white colour morph (figure 2). For comparison between
species, spines of the purple urchin S. purpuratus had
spinochromes A, D and E as well as echinochrome A (figure 2).

The bacterial communities associated with spines of the
green, red and white colour morphs for L. variegatus were
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Figure 3. Consistency in the spine microbiome between colour morphs of Lytechinus variegatus. (a) Similarity in the membership (unweighted UniFrac) and com-
position (weighted UniFrac) of the bacterial communities associated with the spines of each colour morph. (b) Estimates of o diversity for each colour morph, as
measured by Faith’s phylogenetic diversity (left) and McIntosh dominance (right). (c) Genus-level profiles of these bacterial communities. (d) ASV similarity between

the green, red and white colour morphs. (Online version in colour.)

similar in membership and composition (PERMANOVA,
unweighted UniFrac, p=0471, PERMANOVA, weighted
UniFrac, p = 0.382; figure 3; electronic supplementary material,
table S3). Moreover, the structure of these bacterial communities
was also consistent between these colour morphs (ANOVA
for each, observed ASVs: p=0.283, phylogenetic diversity:
p=0.196, dominance: p =0.397, evenness: p =0.398; figure 3;
electronic supplementary material, figure S4, and tables S4
and S5). The bacterial communities associated with these
colour morphs primarily included Endozoicomonas (35.6%
on average; from 29.0% to 39.6%), SUP05 (37.1% on
average; from 24.9% to 46.1%) and an uncultured Spiro-
chaetaceae (14.7% on average; from 6.8% to 19.8%). The
green, red and white colour morphs shared 24.9% of their
ASVs while any two colour morphs shared between 5.4% and
11.6% of their ASVs. Moreover, 14.8%, 12.8% and 23.7% of
these ASVs were unique to the green, red and white colour
morph, respectively (figure 3; electronic supplementary
material, table S8).

(d) Pigmentation biosynthesis influences the spine
microbiome

To empirically test whether the presence of pigmentation
products influences which microbes reside in sea urchin

spines, we targeted two genes that synthesize the non-
variable pigmentation in H. pulcherrimus, a sea urchin species
that has a long history in developmental biology, a relatively
short generation time, and where genome editing using
CRISPR/Cas9 has been established [22,37]. Genes targeted
for this test were: PKS—that iteratively constructs the base
polyketide—and Fmo3—that appears to modify the pigment
base (electronic supplementary material, figure S1). As a
result of these targeted gene removal, the spines (and all
other pigmented structures) were albino for animals where
PKS was knocked out and a distinct shift in pigmentation
to a pastel purple occurred for animals where Fmo3 was
knocked out (figure 4) [21]. No other phenotypic differences
were observed.

The membership, but not the composition, of the spine
microbiome differed significantly between the wild-type, PKS
knockout and Fmo3 knockout animals (PERMANOVA,
unweighted UniFrac: p =0.004; weighted UniFrac: p =0.583;
figure 5; electronic supplementary material, table S3). More-
over, based on pairwise comparisons, the membership of the
PKS (p=0.011) and Fmo3 (p =0.035) knockouts was signifi-
cantly different from the wild-type while being statistically
indistinguishable from each other (p=0.395) (figure 5; elec-
tronic supplementary material, table S3). The structure of
these bacterial communities did not differ between treatments
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Figure 4. Pigmentation phenotypes. Phenotypes of (a) the wild-type, (b) polyketide synthase knockout (PKS) and (c) flavin-dependent monooxygenase knockout

(Fmo3) in the sea urchin Hemicentrotus pulcherrimus that were established by CRISPR/Cas9 mutagenesis. (Online version in colour.)
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(d) ASV similarity between treatments. (Online version in colour.)

(ANOVA for each, observed ASVs: p=0.263, phylogenetic
diversity: p=0.401, dominance: p=0.124, evenness: p=0.
125; figure 5; electronic supplementary material, figure S5
and table S3), and the taxonomic representation primarily
included Halocynthiibacter sp. (20.9%), Pseudophaeobacter arcti-
cus (28.0%) and Tenacibaculum sp. (21.2%) (figure 5; electronic
supplementary material, table 59).

At the ASV level, the wild-type, PKS knockout and
Fmo3 knockout shared 36.5% of their taxa, while any two

treatments shared between 6.4% and 19.0%. Moreover, 5.4%
and 2.5% of these ASVs were unique to the Fmo3 and PKS
knockouts, while 19.1% were unique to the wild-type
(figure 5). Interestingly, only one ASVs was differentially
abundant relative to the microbiome composition between
the wild-type and knockouts (ANCOM, p < 0.05). Compari-
son of the sequence for this ASV to the NCBI database, as
well as to similar sequences, suggest that it is an Arcobacter

(electronic supplementary material, figure S6). The relative
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abundance of this ASV increased 2.31x on average and to as
high as 93.0% in one animal where PKS was knocked out
(electronic supplementary material, table S9).

Sea urchin spines are free of epibionts despite being subjected
to diverse encrustations on the seafloor and having no clear
antimicrobial mechanism. A series of comparisons between
the bacterial communities associated with sea urchin spines
suggests three primary findings. First, the bacterial commu-
nities of the spines are species-specific and that much of
this community is lost upon being transferred into captivity.
Second, colour morphs of a single sea urchin species have
similar bacterial communities in composition and structure.
Third, by removing two pigmentation biosynthesis genes
from the host genome, we support the hypothesis that these
molecules can influence microbiome membership in vivo.
Thus, our results suggest that pigmentation biosynthesis
could be a factor that influences how sea urchins interact
with their microbial community.

Microbiome assembly depends on the host’s evolutionary
history and the environment [38—41]. One of these two factors
is often more influential [39,40], but which host gene(s)
or environmental parameter(s) influences these interactions
often remains elusive (but see [42,43]). Furthermore, recent
efforts have increased the availability of hologenomes
to enable the underlying genetic factors of these evolutio-
narily ancient partnerships to be determined [41,44-46].
Our multi-species and multi-environment comparisons is
consistent with this expectation and suggests that both factors
underly community assembly of the spine microbiome
in sea urchins. By editing the host genome and observing
taxonomically convergent shifts in the spine microbiome,
we have identified two such host factors in vivo that influence
which microbes associates with sea urchin spines. This is
the only instance that we are aware of where host genome
editing via CRISPR/Cas9 resulted in a change in the
microbiome [41].

The experimental removal of host genes involved in host-
microbe interactions can disrupt symbiotic homeostasis
and, as a result, can cause a microbe to shift from mutualism
or neutrality towards parasitism [47,48]. Disrupting pig-
mentation biosynthesis (by knocking out PKS or Fmo3) is
hypothesized to be one example of this, whereby a shift
in microbiome membership afforded an opportunistic
bacterium the ecological situation to alter its symbiotic
relationship with the host. This is consistent with the behav-
iour of Arcobacter, which are known to transition along the
mutualism-parasitism continuum and, specifically, towards
pathogenicity in albino organisms [48-51]. Anecdotally, in a
previous test, an entire batch of several month old PKS-null
individuals died within 2 weeks of each other while wild-
type siblings (that were in the same flow-through seawater
tanks) remained healthy [21]. Decreased survival has been
reported in another sea urchin species (Temnopleurus reevesi)
whose PKS gene had also been knocked out [20]. We
speculate that the significant increase in Arcobacter and
mortality in albino, but not wild-type, animals of two differ-
ent species with the same gene targeting that yielded the
same outcome is not a coincidence, suggesting a mechanism
for future experiments.

If pigmentation biosynthesis influences which bacterial

lineages that sea urchin associate with, then one expectation
would be that different colour morphs would also associate
with district bacterial communities [52]. This expectation
was not met by L. variegatus, despite a similar pattern
having been observed in S. intermedius [52]. We provide
four hypotheses for why this may be the case. First, pigmen-
tation biosynthesis could have a general—as opposed to a
fine-tune—effect on which bacterial lineages colonize the
spines and the regulation of their interactions. Therefore,
any disruption to the pigmentation biosynthesis pathway
would affect which bacterial lineages associate with the sea
urchin. Second, other bioactive molecules derived from
pigmentation biosynthesis may also influence host-microbe
interactions. This may explain why the white colour morph
that are devoid of spinochromes had a bacterial community
that was similar to the green and red colour morphs. One
may, thus, speculate that the white colour morph and
albino knockout may not be analogous. Third, the spectrum
of influence that pigmentation has in how sea urchins interact
with microbial symbionts may be wide-ranging between host
species. Lastly, pigmentation may play a minor role or no
role in shaping how sea urchins interact with microbial
symbionts, even if we observed significant shifts in the
microbiome like those in these experiments.

Taken together, the data presented here suggest that
pigmentation biosynthesis influences the microbiome of sea
urchin spines in vivo and that these pigments may be central
to interaction of hosts and their bacterial communities. Each of
the potential explanations described above will require refined
isolation of distinct populations and members of the micro-
biome, to define their growth conditions, and mechanisms of
interactions. Nevertheless, the genetic manipulation of the sea
urchin H. pulcherrimus provides a proof-of-concept for the utility
of CRISPR/Cas9 in studying host-microbe interactions and,
specifically, for determining which host genetic factors are
involved in partnerships with microbial symbionts [45].

Amplicon data, processed data tables and the code
used here are available on the Dryad Digital Repository: https://
doi.org/10.5061/dryad.v15dv41xk [34].

The data are provided in electronic supplementary material [53].
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