
Prediction Privacy in Distributed Multi-Exit Neural Networks:
Vulnerabilities and Solutions

Tejas Kannan
tkannan@uchicago.edu
University of Chicago

Chicago, Illinois, United States

Nick Feamster
feamster@uchicago.edu
University of Chicago

Chicago, Illinois, United States

Henry Ho�mann
hankho�mann@cs.uchicago.edu

University of Chicago
Chicago, Illinois, United States

ABSTRACT

Distributed Multi-exit Neural Networks (MeNNs) use partition-
ing and early exits to reduce the cost of neural network infer-
ence on low-power sensing systems. Existing MeNNs exhibit high
inference accuracy using policies that select when to exit based
on data-dependent prediction con�dence. This paper presents a
side-channel attack against distributed MeNNs employing data-
dependent early exit policies. We �nd that an adversary can observe
when a distributed MeNN exits early using encrypted communi-
cation patterns. An adversary can then use these observations to
discover the MeNN’s predictions with over 1.85× the accuracy of
random guessing. In some cases, the side-channel leaks over 80% of
the model’s predictions. This leakage occurs because prior policies
make decisions using a single threshold on varying prediction con�-
dence distributions. We address this problem through two new exit
policies. The �rst method, Per-Class Exiting (PCE), uses multiple
thresholds to balance exit rates across predicted classes. This policy
retains high accuracy and lowers prediction leakage, but we prove
it has no privacy guarantees. We obtain these guarantees with a
second policy, Con�dence-Guided Randomness (CGR), which ran-
domly selects when to exit using probabilities biased toward PCE’s
decisions. CGR provides statistically equivalent privacy with con-
sistently higher inference accuracy than exiting early uniformly
at random. Both PCE and CGR have low overhead, making them
viable security solutions in resource-constrained settings.

CCS CONCEPTS

• Computing methodologies→ Neural networks; • Computer

systems organization→ Sensor networks; • Security and privacy

→ Distributed systems security.

KEYWORDS

Neural Networks, Side Channels, Sensor Network Security

ACM Reference Format:

Tejas Kannan, Nick Feamster, and Henry Ho�mann. 2023. Prediction Privacy
in Distributed Multi-Exit Neural Networks: Vulnerabilities and Solutions. In

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’23, November 26–30, 2023, Copenhagen, Denmark

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0050-7/23/11. . . $15.00
https://doi.org/10.1145/3576915.3623069

Layer 0 Layer 1

Exit 0 Exit 1

~̂ (0) ~̂ (1)

x

Sensor Server

z (0)

Send
if not
exiting
early

Figure 1: A distributed Multi-exit Neural Network (MeNN)

[87] with two total exits.

Proceedings of the 2023 ACM SIGSAC Conference on Computer and Commu-

nications Security (CCS ’23), November 26–30, 2023, Copenhagen, Denmark.

ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3576915.3623069

1 INTRODUCTION

Battery-powered sensors are common in applications for areas
such as agriculture [91] and healthcare [32]. Sensor devices collect
measurements from their environment, process these values, and
communicate results to a server. For reliable performance, devices
must meet energy [25, 43] and latency [46, 102] constraints. Thus,
sensors seek ways to improve their e�ciency, and a common tech-
nique for doing so is to push data processing onto the sensor device
[20]. This method is bene�cial because local processing allows the
device to transmit smaller aggregate results [25].

Modern sensor processing uses deep neural networks (DNNs)
due to their high-quality results [25, 63]. However, DNNs have
high resource costs, making them challenging to deploy on low-
power devices [63, 101]. Prior systems address this challenge by
partitioning DNNs between sensor and server [7, 46, 61]. The sensor
device holds a subset of the DNN, and the system performs inference
as follows:

(1) Process measurements on the sensor with the DNN subset.
(2) Transmit the intermediate DNN activations to the server.
(3) Complete inference with the remaining DNN layers.

In this process, the sensor always transmits the intermediate state
(Step 2), and this step requires expensive wireless communica-
tion [25, 46]. Sensing systems address this problem by augmenting
DNNs with early exits (Figure 1). These inference models, called
Multi-exit Neural Networks (MeNNs), contain early exit points
which create predictions using a subset of the entire DNN [87].
Distributed MeNNs [56, 88] form an initial prediction on the sensor,
alleviating the need to communicate with the server.

MeNNs face a key decision when reaching an exit point: whether
to terminate inference. This exit decision, which represents where
the MeNN stops inference, comes with a tradeo�. Exiting earlier
leads to lower inference costs by skipping subsequent layers. Early

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Tejas Kannan, Nick Feamster, and Henry Ho�mann

exits, however, generally reduce accuracy [87, 93]. Data-dependent
adaptive behavior is an emerging method to balance this tradeo�
[35, 37, 49, 78, 87, 93, 95, 105]. These methods determine when
to terminate inference by comparing the neural network’s predic-
tion con�dence (e.g., the maximum classi�cation probability) to a
single threshold [95]. Inference terminates when the con�dence
exceeds the threshold. This strategy is data-dependent because
the prediction con�dence is a function of the given input. These
data-dependent methods yield high accuracy under cost constraints
because not all inputs are equally di�cult to classify [49, 95].

In this work, we study MeNN early exiting from a new perspec-
tive: privacy. We demonstrate how previous data-dependent exit
policies [87, 95] show asymmetric behavior on di�erent predicted
classes. That is, the MeNN exits early for some classes more fre-
quently than others. This behavior occurs because MeNNs produce
di�erent distributions of prediction con�dence for di�erent classes
(§2.3). Standard data-dependent methods, however, apply a single
threshold to all prediction con�dence values. This single threshold
thus causes di�erent average exit behavior across predictions.

This asymmetry means an adversary can learn about a dis-
tributed MeNN’s predictions by observing its exit decisions, creat-
ing a privacy issue in sensing systems for two reasons:

(1) Sensors leak when the distributed MeNN exits early through
side-channels derived from encrypted communication pat-
terns (§3.2, §6.8).

(2) Sensors collect values with temporal correlations [21, 23],
so an adversary who extracts when the MeNN exits early
observes consecutive elements with similar predictions.

With these properties, we discover that an adversary can use com-
munication side-channels to observe a distributed MeNN’s pattern
of exit decisions. The adversary can then use this pattern to infer
the model’s most frequent prediction over short timescales. For
example, on the task of activity recognition [55], we show that
this side-channel allows a white box attacker (§3.2) to uncover
52.00% of the MeNN’s predictions (§6.8). This leakage extends to
ten tasks; on average, we demonstrate how data-dependent policies
enable a white box attacker to infer MeNN predictions 1.85× more
frequently than random guessing (§6.2). Further, we build a black
box attacker (§3.2) which can still infer MeNN predictions at 1.56×
the rate of random guessing (§6.7). Thus, privacy-conscious sensor
systems [32, 91, 99] cannot gain the bene�ts of MeNNs.

There are two common approaches to closing side-channels
based on asymmetric behavior. The �rst method standardizes re-
source use [12, 22, 51]. For MeNNs, this principle forces all inputs to
exit at the same point. This design negates the bene�ts of MeNNs,
resulting in either suboptimal accuracy (§6.4) or prohibitive over-
head (§6.9). The second approach randomizes behavior [5, 51]. This
method leads to an MeNN policy that exits early uniformly at ran-
dom. Unfortunately, random exiting imposes a high accuracy cost
(§6.4). We instead want exit policies with the following properties:

(P1) Achieve perfect privacy by having no observable relation
between exit decisions and MeNN predictions.

(P2) Exhibit minimal energy overhead compared to previous data-
dependent methods.

(P3) Display greater inference accuracy than Random exiting.
(P4) Do not require retraining or redesign of existing MeNNs.

This last property is important because neural network training is
expensive. Solutions requiring new architectures or retraining are
not compatible with existing MeNNs.

We develop two new exit policies to meet (P1)–(P4). Our �rst
approach, Per-Class Exiting (PCE), augments prior data-dependent
methods by using di�erent con�dence thresholds for each class
(§4). PCE tunes these thresholds to exhibit symmetric exit rates for
better privacy (§6.2). The policy retains high inference accuracy
because it still makes decisions using prediction con�dence (§6.4).

Despite improved empirical privacy, we prove that PCE has no
privacy guarantees (P1). To achieve these guarantees, we augment
PCE with randomization through a new policy called Con�dence-

Guided Randomness (CGR) (§5). CGR randomly selects an exit us-
ing probabilities biased toward PCE’s con�dence-based decisions.
Further, CGR optimizes the MeNN’s accuracy while maintaining
privacy by adapting the bias magnitude using trends in the MeNN’s
predictions. By using both prediction con�dence and randomization,
CGR has higher accuracy than exiting early uniformly at random
(§6.4) with statistically equivalent privacy (§6.2). CGR also incurs
negligible overhead (§6.9) and works with already-trained MeNNs,
allowing the policy to successfully satisfy (P1)–(P4).

To the best of our knowledge, this is the �rst work to study
the prediction privacy of data-dependent early exiting for MeNNs.
Overall, we make the following contributions1:

(1) We show that previous data-dependent MeNN exit policies
leak information about model predictions. For two-exit dis-
tributed MeNNs, an adversary can infer the model’s predic-
tions under both white box and black box assumptions.

(2) We create a policy called Per-Class Exiting (PCE) that uses
di�erent thresholds for inputs of each class. This method
reduces the leakage of prior data-dependent policies and
preserves accuracy to within 0.4 percentage points.

(3) We construct a policy, Con�dence-Guided Randomness (CGR),
which integrates randomization into PCE. CGR has theo-
retical privacy bene�ts. Compared to exiting uniformly at
random, CGR displays statistically equivalent privacy with
higher accuracy on over 90% of target exit rates.

Our work demonstrates the privacy implications of performing
data-dependent distributed MeNN inference on sensing systems.
With our proposed methods, privacy-conscious applications can
safely achieve the performance bene�ts of MeNNs.

2 BACKGROUND AND MOTIVATION

This section provides background on multi-exit neural networks
(§2.1) before discussing policies for early exiting (§2.2). We then
provide an example of information leakage (§2.3) and state the goal
of privacy-preserving exit policies (§2.4).

2.1 Multi-Exit Neural Networks (MeNNs)

Deep neural networks (DNNs) are statistical inference models
with layers of linear and nonlinear transformations [57]. Under
supervised learning, DNNs 5) �t their parameters) by minimiz-
ing a loss function (e.g., cross-entropy) on a labelled dataset � =

{(x (C) , ~ (C))}#−1C=0 [77]2. We consider DNNs on classi�cation tasks

1The code is available at https://github.com/tejaskannan/privacy-dnn-early-exit
2We denote vectors in boldface and scalars in plain text.

Prediction Privacy in Distributed Multi-Exit Neural Networks: Vulnerabilities and Solutions CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Algorithm 1 MeNN inference routine

procedure MeNNInference(x , 5 (ć)
)

, c)

z (−1) ← x

for : ∈ [− 1] do

~̂ (ġ) , z (ġ) ← 5
(ġ)
)ġ
(z (ġ−1))

if c (~̂ (ġ) , :) = 0 then

return ~̂ (ġ)

~̂ (ć−1) , z (ć−1) ← 5
(ć−1)
)ġ

(z (ć−2))

return ~̂ (ć−1)

where ~̂ = 5) (x) ∈ R
! has the predicted probabilities for each class

in [!] = {0, 1, . . . , ! − 1}. The predicted class is ~̂ = argmaxℓ∈[!]~̂ℓ .
Standard DNNs process inputs x with all parameters) . However,

this design is unnecessary to achieve high accuracy, as not all
inputs are equally di�cult to classify [49, 95]. DNNs can preserve
accuracy with reduced execution costs using early exits; each exit
is an intermediate classi�er that creates a prediction with a subset
of model parameters [87, 93, 95]. We describe this approach, called
a Multi-exit Neural Network (MeNN), as a collection of classi�ers

5
()
)

= [5
(0)
)0

, 5
(1)
)1

, . . . , 5
(−1)
)ć−1

] where 5 (:)
)ġ

is a DNN that takes

an input or output of 5 (:−1)
)ġ−1

, z (:−1) , and creates the predicted

probabilities ~̂ (:) ∈ R! . At time C , the output of 5 (:)
)ġ

is ~̂ (:,C) .

We consider MeNNs distributed across devices in a sensing sys-
tem [56, 88]. The sensor device contains the initial layers of the
MeNN, and the server contains the remaining portion of the model
(Figure 1). When crossing between devices, the system must trans-
mit the required state (e.g., z (0) in Figure 1) to continue inference.

2.2 Early Exit Policies

MeNNs must determine the exit point at which to terminate in-
ference. This decision comes with a tradeo� [87, 93]. Later exits
apply more parameters and achieve higher accuracy. This bene�t
comes with higher execution costs, as the system must compute
more layers and communicate between devices.

Prior MeNNs manage this tradeo� in a data-dependent manner
using prediction con�dence [9, 87, 95]. Common con�dence func-
tions ℎ : R! → R include the maximum value [95] and entropy
[87] in the predicted distribution. When inference reaches the :Cℎ

exit, the system compares the con�dence ℎ(~̂ (:)) to a threshold
g (:) . If ℎ(~̂ (:)) g g (:) , the model is “con�dent enough” and stops
inference; otherwise, the system continues to the next exit. The
thresholds g (:) control how the MeNN balances the tradeo� be-
tween accuracy and execution cost. Larger thresholds yield more
accurate results, and smaller thresholds result in low-cost inference.
We emphasize that these existing methods make data-dependent
decisions because the con�dence is a deterministic function of the
:Cℎ prediction, ~̂ (:) . Thus, the MeNN’s exit decisions contain in-
formation about the model’s predictions, where the exit decision
for time C , :C ∈ [], is the exit at which the MeNN stops inference.

We represent early exit methods using a policy c : R! × N →

{0, 1}, which takes the prediction ~̂ (:) ∈ R! and the exit : ∈ [].
The function outputs 0 to terminate inference and 1 to continue.
Algorithm 1 shows this procedure. The equation below is a general

data-dependent policy for the con�dence ℎ where [·]1 is 1when the
condition holds and 0 otherwise. Concrete policies use a speci�c
implementation for ℎ such as ℎ"0G%A>1 (~̂) = max8∈[!] ~̂8 [95].

c�0C0�4? (~̂
(:) , :) = [ℎ(~̂ (:)) < g (:)]1 (1)

2.3 Example of Information Leakage

Data-dependent MeNN exit policies create a relationship between
their predictions and exit decisions. We �nd that this relation allows
an adversary to learn about the MeNN’s predictions by observing
its exit pattern. This ability is useful when the attacker cannot view
the model’s classi�cation directly due to a lack of physical device
access and encrypted wireless communication (§3).

We demonstrate this property on a speech detection task [96].
We use a BranchyNet [87] MeNN with two total exits and a data-
dependent policy (Equation 1) withℎ"0G%A>1 [95].When predicting
the word “on," the MeNN exits early 61.61% of the time; when
predicting “o�," the early exit rate is 33.44%. Thus, early exiting
means the MeNN is more likely to have predicted “on" than “o�."
An adversary observing these exit decisions can infer the presence
of either word from this di�erence, indicating that data-dependent
policies expose valuable information about the MeNN’s predictions.

This asymmetric behavior stems from the prediction con�dence
having di�erent distributions for di�erent classes. In this example,
the average con�dence is 0.8328 for "on" and 0.7623 for "o�." The
policy, however, uses the same threshold for all inputs (Equation
1). Thus, instances of "on" are more likely to exit early through
con�dence scores above the single threshold, causing asymmetric
behavior. This insight leads to a key novelty of our work: the use of
multiple thresholds to account for distribution di�erences (§4, §5).

As we show, this privacy problem occurs on multiple tasks,
MeNNs, and con�dence functions (§6.2). The breadth of this leakage
means the issue goes beyond a speci�c dataset, model architecture,
or prior data-dependent policy. Further, we emphasize that MeNNs
are not trained to exhibit this asymmetric behavior. Nevertheless,
we empirically observe this phenomenon on every considered task.

2.4 Goals of Private Exit Policies

We design MeNN exit policies c : R! × N → {0, 1} to meet four
criteria on ordered input streams �̃ = [x (C)])−1C=0 of length) . First,
c should not leak information about the MeNN’s predictions; there
should be no observable relationship between the policy’s decisions
and the MeNN’s classi�cations (P1). This quality should hold for all
possible ordered streams �̃ , as system designers cannot anticipate
the exact stream at design time. This consideration encompasses
datasets with temporal correlations and shifting input distributions.

Second, the policy must adhere to given exit rates {d: }
 −1
:=0

where
∑ −1
:=0

d: = 1. Under c , the MeNN should stop at exit :

on d: ·) of inputs in �̃ . This criterion is necessary to meet the
resource limits of low-power devices (P2).

A purely randomized policy meets these two criteria by stopping
at exit : with probability d: . However, this method reduces the
MeNN’s inference accuracy (§6.4). Thus, the third goal is to build
policies with better inference accuracy than random exiting (P3).

Finally, solutions must not require retraining or redesigning the
MeNN (P4). This property is necessary because DNN training is

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Tejas Kannan, Nick Feamster, and Henry Ho�mann

expensive, and security solutions should work for existing MeNNs.
Policies under the de�nition c operate only on the MeNN’s predic-
tions. Thus, these policies satisfy this property, as c is not tightly
coupled with the MeNN parameters. Indeed, Algorithm 1 shows
how c can change without altering the MeNN.

We emphasize that a priori, it is not guaranteed that there exist
MeNN exit policies that meet all four properties. A key contribution

of this work is demonstrating that such policies exist.

3 THREAT MODEL

We �rst state the target system and the adversary’s goal (§3.1). We
then discuss the attacker’s capabilities (§3.2) and present examples
of distributed MeNNs requiring prediction privacy (§3.3).

3.1 Target System and Attack Goal

We consider a sensing system composed of edge devices and a
centralized server [66]. Each device periodically captures measure-
ments and processes these values using a distributed MeNN [56, 88],
encrypting all communication. We call this MeNN the target model.

The adversary is a passive observer who uses the target MeNN’s
exit decisions to expose its predictions. Speci�cally, the attacker sees
blocks of� > 0 exit decisions and uses an attackmodel 65 : []� →

[!] to infer the MeNN’s most frequent prediction in this block.
Section 3.2 discusses how the attacker observes these exit decisions.
The attacker uses a training phase to �nd the parameters 5 below
where E (C) is the exit decision and ~̂ (:Ī ,C) is the MeNN’s prediction
at time C .">BC�A4@(·) returns the most common argument value.

~̂ (C) = ">BC�A4@ (~̂ (ġĪ ,Ī) , ~̂ (ġĪ+1,Ī+1) , .., ~̂ (ġĪ+þ−1,Ī+þ−1)) (2)

5 = argmax
5̃

+ Đþ ,−1
∑

ħ=0

[6
5̃
(E (ħþ) , E (ħþ+1) , .., E (ħþ+þ−1)) = ~̂ (@�)]1 (3)

We assume the stream �̃ contains temporal correlations. Such
correlations occur in sensor settings [21, 23]. On correlated streams,
each block contains related inputs with similar labels. Correlated
streams present a greater privacy challenge. Intuitively, correlated
inputs cause MeNNs to make similar predictions and related exit
decisions under data-dependent policies, allowing the adversary
to view blocks of nearby decisions under one class. Streams with
independent inputs prevent this temporal linkage. More precisely,
an exit decision from one input gives the adversary one of options
to recover a prediction ℓ ∈ [!]. For uncorrelated inputs, the attacker
must view each decision in isolation; when < !, this recovery
is underdetermined. For correlated inputs, the attacker can link
adjacent decisions under approximately the same prediction. With
this ability, the attacker can use one of � > possible inputs
to extract this block’s most frequent prediction ℓ ∈ [!]. Thus, the
attacker can use more features on correlated streams.We emphasize
that the adversary targets the MeNN’s predictions instead of the
true labels, as ground truth is unavailable at runtime. An adversary
who infers the MeNN’s results learns what the target system knows.

3.2 Adversary Capabilities

We assume the adversary targets a sensing system known to use a
distributed MeNN. The attacker has no physical device access but

Sensor Server

Adversary

Execute 0Cℎ exit Execute 1BC exit

Monitor encrypted com-
munication volume

x0

x1

x2

x3

Inferred exit deci-

sions: 1 1 0 1
65

Most freq MeNN

pred: 7

MeNN preds: 7 7 2 7 MeNN exits: 1 1 0 1

Send state if not exiting

Figure 2: The threat model against distributed MeNNs. An

exit decision of 0 means stopping on the sensor.

can sni� the communication between the sensor and the server
[5, 22]. These assumptions are realistic for wearable sensors [32, 55]
and devices in remote locations [20, 43, 99]. The adversary cannot
directly read the MeNN’s predictions due to encrypted communica-
tion. Further, without physical access, the attacker cannot deploy
their own sensor to derive equivalent insights. As we design exit
policies, we follow Kerckho�s’s Principle [79] and allow the adver-
sary to know the policy’s details. We assume the attacker knows
the sampling period and the target task’s label space.

The adversary exposes the MeNN’s predictions by inferring the
model’s exit decisions using communication side-channels. Below,
we describe two examples of how distributed MeNNs leak the deci-
sion to exit early through communication patterns. This general
pattern holds for all distributed MeNNs we are aware of.

DDNNs. Deep distributed neural networks (DDNNs) implement
distributed MeNNs across a hierarchy of devices [88]. The system
conserves resources by only transmitting information when con-
tinuing inference to the next device. An adversary can learn the
exit decision using the presence or absence of wireless tra�c.

SPINN. SPINN performs distributed MeNN inference under la-
tency constraints [56]. When the MeNN partition point occurs after
the �rst early exit, SPINN only communicates when not exiting
early. This behavior creates the same side-channel as that of DDNNs.
SPINN also supports partitions before the �rst exit. This setting
still leaks information because SPINN requires the sensor to always
compute a local prediction by continuing until the �rst early exit.
If this exit signals termination, the sensor sends a second message
to the server to stop computation. The attacker can infer an early
exit using the presence of this second message.

In both cases, the passive adversary can use communication
patterns to discover early exit behavior (Figure 2). This side-channel
exists evenwhen data is encrypted, as encryption does not obfuscate
communication volume. This adversary only knows whether the
system exits on the sensor or server. Thus, we focus onMeNNs with
 = 2 exits where the sensor holds the initial exit. Our methods
extend to MeNNs with > 2 (§6.10).

The adversary uses the attack model 65 to infer the target
MeNN’s predictions from the extracted exit decisions. We consider
two sets of assumptions for how the attacker �ts the parameters 5
(Equation 3) from examples of blocks of exit decisions and MeNN

Prediction Privacy in Distributed Multi-Exit Neural Networks: Vulnerabilities and Solutions CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Substitute
MeNN (ℎ ()7)

Attack
Model (65)

Target MeNN (5 ()
)

) Zero

Handwritten Digits [58]

Spoken Digits [41] Attacker

Target

TrainTrain

Infer target’s predictions from exposed exit decisions

Figure 3: An example of the black box attacker.

predictions. In both cases, the attacker applies 65 at runtime to the
target MeNN executing on an unseen testing dataset.

(1) White Box: The white box adversary has access to an o�ine
version of the targetMeNN and training dataset. The attacker
uses exit patterns and predictions from this MeNN on the
target task to �t the attack model 65 .

(2) Black Box: The black box adversary cannot access the target
MeNN or training dataset. Instead, this adversary trains a

substitute MeNN ℎ
()
7 on a related task and �ts 65 using

exit decisions and predictions from ℎ
()
7 (Figure 3).

We use the black box adversary to con�rm that the white box
assumptions are not too strong.

3.3 Example Settings

This section describes two examples [7, 104] of distributed DNNs
in applications requiring prediction privacy.

Sensitive facilities use DNNs to perform license plate recognition
for authorized access [7]. Huawei’s AutoSplit [7] framework applies
distributed DNNs in this context. Prediction privacy is necessary,
as the DNN’s predictions indicate which license plates have access.
The attacker could use leaked predictions to create fake credentials
which pass the authorization check. Further, the server may be
hosted o�-premise (e.g., in the cloud). Thus, when the adversary
cannot access the physical location without credentials, they can
still sni� the communication to the remote server. This property
means the system cannot leak information about authorization
decisions through communication patterns.

Manufacturing plants apply DNNs to detect defective parts, and
Boomerang [104] leverages distributed DNNs for this application.
Prediction privacy is essential for two reasons. First, the defect
rate indicates the manufacturer’s e�ciency. This information is
valuable to competitors. Second, an adversary launching a supply-
chain attack can use exposed DNN predictions to know whether
their attack is successful. In both cases, an adversary may be unable
to physically access all the validation points without alerting the
building’s security. Instead, the attacker can more easily observe
the communication patterns to a single server, especially if the
server is remote. Further, when validating a supply chain attack,
the adversary wants to know if their inserted defect passes the
target’s inspection. Thus, rather than �nding the true defect rate, it
is more valuable to learn what the target system knows.

4 PER-CLASS EXITING (PCE)

Data-dependent MeNN policies using a single threshold can leak
information through their exit decisions (§2.3). Our �rst solution,
Per-Class Exiting (PCE), replaces the single con�dence threshold
with separate thresholds for each class (§4.1). With this design, PCE
stops a fraction d: of inputs for every class at exit : , thus preserving
resource usage and improving privacy compared to prior work.
Unfortunately, PCE has no theoretical privacy guarantees, and we
construct adversarial orderings with high prediction leakage (§4.2).

4.1 Policy Design

We formally describe PCE using an MeNN 5
()
)

with target exit
rates d: ∈ [0, 1] ∀: ∈ []. Consider the prediction con�dence
function ℎ : R! → R (§2.2). Focusing on the :Cℎ exit, PCE uses

thresholds g (:)ℓ for each class ℓ ∈ [!] that satisfy the probability

below. The terms _̂ (:) ∈ R! and . are random variables for the
:Cℎ exit’s prediction and the true label, respectively.

% (ℎ (_̂ (ġ)) g g
(ġ)
ℓ , ℎ (_̂ (Ĩ)) < g

(Ĩ)
ℓ ∀A ∈ [:] | . = ℓ) = dġ (4)

Equation 4 states that for each label, inputs should stop at exit :
with rate d: . In practice, we �t the thresholds using the empirical
con�dence distributions on the task’s validation set. PCE performs

inference using Algorithm 1 with c%�� below where ~̂ (:)8 the pre-
dicted probability for class 8 ∈ [!] at exit : . We omit the time
C ∈ [)], as the policy is stateless.

ℓ (:) = arg max
8∈[!]

~̂
(:)
8 (5)

c%�� (~̂
(:) , :) = [ℎ(~̂ (:)) < g

(:)

ℓ (:)
]1 (6)

This design augments previous data-dependent exit policies (Equa-

tion 1) with di�erent thresholds g (:)ℓ for each class. We emphasize
that the policy selects thresholds using the MeNN’s prediction
at each exit. To protect the overall classi�cation, PCE should in-

stead choose thresholds using the �nal result i.e., use g (:)ℓ where
ℓ = argmax8∈[!] ~̂8 and ~̂ is the MeNN’s �nal predicted probabili-
ties. At an early exit, however, we do not know the �nal prediction
~̂ when not terminating inference. PCE thus uses the current exit’s
prediction ~̂ (:) as an approximation.

4.2 Adversarial Data Orderings

PCE uses a data-dependent approach that �ts thresholds such that
the overall exit rates for each label are d: . This behavior means that
PCE delivers good privacy on uncorrelated input orders without
introducing randomization, as such streams only require long-term
balancing (§6.5.2). However, this long-term balancing makes no
guarantees about eliminating short-term patterns.

This insight suggests there exist input orders causing high leak-
age. We formalize this idea in Proposition 4.1 below. The proof
describes how to build the adversarial ordering �̃ and attack model
65 (§3.1). As con�rmation, we follow the proof and build an adver-
sarial ordering with inputs from Fashion MNIST [100]. We attack
a two-exit MeNN with PCE (d0 = 0.9). As expected, the adver-
sary infers 100% of the MeNN’s predictions. Thus, despite lower
empirical leakage than prior methods (§6.2), PCE delivers no pri-
vacy guarantees on correlated inputs. Instead, PCE better protects

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Tejas Kannan, Nick Feamster, and Henry Ho�mann

MeNNs processing unrelated inputs over time. We emphasize that
Proposition 4.1 applies to any deterministic policy, not just PCE.
We omit the exit index : ∈ [] from c below because we consider
a two-exit MeNN, which only applies c at exit : = 0 (Algorithm 1).

Proposition 4.1. Let c : R! → {0, 1} be a deterministic policy on

a two-exit MeNN 5
(2)
)

for a rational exit rate d0 =
<
" ∈ (0, 1). Let �

be the set of possible samples (x, ~), �G = {x : ∃ℓ ∈ [!], (x, ℓ) ∈ �}

be the inputs, and �ℓ = {x : (x, ℓ) ∈ �} be the inputs with label

ℓ . Assume ∀: ∈ {0, 1}, c−1 (:) ∩ �ℓ ≠ ∅ where c−1 (:) = {x ∈

�G : c (5
(0)
)0
(x)) = :}. Then, there exists an ordered dataset �̃ =

[(x (C) , ~ (C)) ∈ �])−1C=0 for) = = · !", = > 1 with the following.

(1) The policy c exhibits an early exit rate of d0 on �̃ .

(2) There exists a function 65 : {0, 1}!" → [!] such that

65 (c (~̂
(C)), . . . , c (~̂ (C+!"−1))) = MostFreq(~ (C) , . . . , ~ (C+!"−1))

where C = 9 · !" for any 9 ∈ [=].

(3) Not all non-overlapping blocks of !" exit decisions (in property

2) have the same most frequent label.

Proof. See this paper’s extended version [47]. □

5 CONFIDENCE-GUIDED RANDOMNESS (CGR)

PCE uses a modi�ed data-dependent method to balance the long-
term exit rates across classes. This method, however, does not
address temporal correlations. In fact, Proposition 4.1 indicates that
temporal dependencies can compromise any deterministic policy.
Thus, we must obfuscate temporal patterns through randomization.
Unfortunately, exiting early uniformly at random achieves poor
inference accuracy (§6.4).

We instead present a new policy, Con�dence-Guided Random-
ness (CGR), that is an interpolation between PCE and uniformly
randomized exiting, merging the bene�ts of both approaches. When
detecting uncorrelated inputs, CGR behaves like PCE to achieve
higher accuracy. On segments with high correlations, CGR applies
greater randomization to maintain privacy.

CGR has three features. First, the policy evaluates PCE and uses
its decision to create a con�dence-biased exit probability which
determines the exiting behavior (§5.1). Second, CGR adapts the
bias magnitude on highly-correlated streams (§5.2). Finally, CGR
enforces exit quotas over short windows to limit an adversary’s
ability to discover data-dependent information (§5.3). By employing
randomness, CGR achieves theoretical bene�ts over PCE (§5.4).

5.1 Con�dence-Biased Randomization

CGR uses PCE as an internal data-dependent method (Figure 4).
When reaching the :Cℎ exit, CGR builds an exit probability that is
biased toward c%�� (~̂

(:,C) , :) at step C ∈ [)]. CGR samples this
biased probability to make a random exit decision. Thus, CGR lever-
ages prediction con�dence through PCE, enabling higher inference
accuracy than pure randomization.

We formalize this design by considering the :Cℎ exit of an MeNN

5
()
)

with exit rate d: ∈ [0, 1]. CGR uses a bias U (:,C) ∈ [0, 1)
(discussed in §5.2) at step C to make randomized decisions with the
following probabilities. The rates for c��' (~̂

(:,C) , :) = 1 are one

~̂ (:,C) PCE (c%��)

Exit with probability
U (:,C) + d: (1 − U

(:,C))

Exit with probability
d: (1 − U

(:,C))

If c%�� (~̂
(:,C) , :) = 0

If c%�� (~̂
(:,C) , :) = 1

Figure 4: CGR’s decision process at the :Cℎ exit point.

minus those below. We omit the exit indices for brevity.

% (cÿăĎ (~̂
(ġ,Ī)) = 0 |cČÿā (~̂

(ġ,Ī)) = 0) = U (ġ,Ī) + dġ (1 − U
(ġ,Ī)) (7a)

% (cÿăĎ (~̂
(ġ,Ī)) = 0 |cČÿā (~̂

(ġ,Ī)) = 1) = dġ (1 − U
(ġ,Ī)) (7b)

These equations show how the exit probabilities are biased in the
direction of PCE. For example, when c%�� (~̂

(:,C) , :) = 0, CGR exits
with rate U (:,C) + d: (1 − U

(:,C)) = d: + U
(:,C) (1 − d:) g d: where

the inequality holds because 0 f d: , U
(:,C) f 1. Thus, CGR aligns

with the PCE’s decision and exits more frequently than the target
rate d: . Note that these probabilities maintain an overall exit rate of
d: when % (c%�� (_̂

(:,C) , :) = 0) = d: . This condition holds when
the test distribution matches that of the training set.

5.2 Adapting the Probability Bias Magnitude

The probability biases control a tradeo� between accuracy and
privacy. If U (:,C) ≈ 1, CGR skews toward PCE, yielding high infer-
ence accuracy with possible leakage (§4). If U (:,C) = 0, CGR is fully
randomized. CGR balances this tradeo� using the insight that PCE
provides good privacy on uncorrelated input streams. Thus, CGR
exploits periods of low correlation by leveraging PCE to achieve
high accuracy. On highly correlated segments, CGR applies more
randomness to ensure privacy. To protect the MeNN’s predictions
(§2.4), CGR measures correlations using the model’s results.

CGR implements this design by adaptively setting the bias U (:,C)

with the parameters W < 1 < V . The policy has a maximum bias of
U ∈ [0, 1). CGR sets U (:,C) at step C g 1 as follows where U (:,0) = U .

U (:,C) =

{

min(V · U (:,C−1) , U) if ~̂ (:,C) ≠ ~̂ (:,C−1)

W · U (:,C−1) if ~̂ (:,C) = ~̂ (:,C−1)
(8)

The parameters V and W control how the bias changes in response to
the MeNN’s predictions. For example, when V >> 1 andW ≈ 1, CGR
will quickly increase and slowly decrease the bias. This behavior
causes CGR to have a higher average bias, thereby aligning more
with PCE than pure randomization (see the appendix in this paper’s
extended version [47] for experimental evidence of this trend).
Based on our experiments, V = 2.0 and W = 0.9 provide favorable
results, and these settings are robust across multiple datasets and
data orders. Overall, CGR uses this procedure to adapt the bias to
o�set temporal trends in the MeNN’s predictions. We emphasize
that CGR still makes randomized decisions even when using a high
bias U (:,C) < 1.

5.3 Short-Term Exit Quotas

CGR may leak predictions if the attacker infers the policy’s bi-
ased probabilities, as these probabilities encode PCE’s decisions
(Equation 7). CGR protects against this leakage by enforcing exit

Prediction Privacy in Distributed Multi-Exit Neural Networks: Vulnerabilities and Solutions CCS ’23, November 26–30, 2023, Copenhagen, Denmark

quotas over short windows. The quotas ensure the MeNN stops a
set number of times at each exit point, balancing the exit counts and
reducing the adversary’s analysis to smaller sample sizes. For each
window, the attacker can only extract the bias direction before an
exit quota becomes saturated; afterward, the policy never stops at
this exit and uses no information from PCE. Exposing small samples
bene�ts privacy because it limits the adversary’s ability to derive
meaningful statistical signi�cance on biased exit rates.

CGR implements exit quotas using a window, ∈ N. The pol-
icy enforces that l: = +d: ·, , + [: inputs stop at exit : where
[: ∈ {0, 1} are random such that

∑ −1
:=0

l: = , . The system
no longer exits at output : upon meeting its quota. After each
window, the policy resets the quotas and randomly selects a new
, ∼ [,<8=,,<0G] where the bounds are parameters. This ran-
domization limits the adversary’s ability to locate each window.

Randomizing the window size, however, does not fully prevent
the attacker from discovering when CGR uses biased probabilities.
For example, the adversary can use a run of exits at a single output
to infer a window’s end. The theoretical privacy of this attack is not
well-established. However, we believe this attack does not present
a problem for three reasons. First, the adversary’s recovery of each
window is only approximate due to randomization. Second, CGR
already protects against periods of high potential leakage by adapt-
ing its bias parameter (§5.2). Finally, CGR’s empirical information
leakage is statistically equivalent to random exiting (§6.2, §6.5).

5.4 Theoretical Bene�ts

This section demonstrates CGR’s theoretical bene�ts. The main re-
sult is Proposition 5.1 which establishes a bound on the probability
ratio of �nite exit patterns from inputs of di�erent classes. This
result improves upon PCE, which can leak an unbounded amount of
information over �nite time horizons (Proposition 4.1). A key prop-
erty of CGR is that its bounds apply to any data stream, including
those with temporal correlations and distributional shifts.

Proposition 5.1 further provides a guideline on how to set U from
a security perspective, as U determines the di�erence between the
upper and lower probability bounds. However, CGR will not be
tight with the established bounds because the policy uses biases
U (:,C) < U (§6.5) due to similar predictions over time (§5.2). Smaller
biases create narrower probability bounds, allowing CGR to provide
better empirical privacy than the proposition guarantees.

Before presenting the proposition, we introduce relevant nota-
tion. Let cA be the CGR policy without exit quotas and X, n : R→ R
be functions such that X (U) = (1 − U − d0 (1 − U))/d0 and n (U) =
(1 − d0 (1 − U))/d0 where d0 is the exit rate for = 2. We de�ne
these functions for notational convenience.

Proposition 5.1. Consider a two-exit MeNN with a target early

exit rate d0. Suppose we observe a sequence of) exit decisions c
(C)
A :=

cA (~̂
(0,C) , 0) = EC for EC ∈ {0, 1} and C ∈ [)]. Let these) inputs

belong to the same class and = =
∑)−1
C=0 EC . Then, cA displays the

following bounds for any labels ℓ0, ℓ1 ∈ [!].

(

X (U)

n (U)

)Ĥ (

1 − d0n (U)

1 − d0X (U)

)Đ −Ĥ

f
% (c

(Ī)
Ĩ = EĪ ∀C |. = ℓ0)

% (c
(Ī)
Ĩ = EĪ ∀C |. = ℓ1)

(

n (U)

X (U)

)Ĥ (

1 − d0X (U)

1 − d0n (U)

)Đ −Ĥ

g
% (c

(Ī)
Ĩ = EĪ ∀C |. = ℓ0)

% (c
(Ī)
Ĩ = EĪ ∀C |. = ℓ1)

Table 1: Dataset properties.

Dataset # Train # Val # Test # Classes

Activity [4] 36,790 13,629 20,441 6
Cifar10 [53] 39,796 10,204 10,000 10
Cifar100 [53] 39,796 10,204 10,000 100
EMNIST [17] 87,800 25,000 18,800 47
Fash. MNIST [100] 47,798 12,202 10,000 10
Food Quality [33] 2,945 196 198 2
GTSRB [84] 38,580 10,799 9,120 43
MNIST [58] 47,798 12,202 10,000 10
Speech Cmds [96] 28,532 3,457 4,482 11
WISDM [55] 32,005 5,858 21,769 3

Proof. See this paper’s extended version [47]. □

One consequence of Proposition 5.1 results from the bounds hav-
ing the form (@0)= (B0))−= and (@1)= (B1))−= where @0, B0 < 1 <

@1, B1. As) →∞, the bounds go to zero and in�nity, respectively.
Thus, the biased probabilities can cause unbounded exit rate di�er-
ences over an in�nite horizon. CGR prevents worst-case scenarios
by avoiding highly biased rates over long windows, con�rming the
bene�ts of the adaptive bias procedure and use of exit quotas.

6 EVALUATION

We evaluate the information leakage and inference accuracy of
distributed MeNNs using previous data-dependent policies and our
proposed methods. In summary, we �nd the following:

(1) Standard data-dependent policies leak information about
MeNN predictions through their exit patterns. This leakage
occurs from practical (§6.2) and theoretical (§6.3) perspec-
tives. PCE uses multiple thresholds to reduce this leakage,
and CGR obtains near-perfect privacy.

(2) PCE and CGR use prediction con�dence to display higher
inference accuracy than a fully randomized policy (§6.4).

(3) PCE has higher leakage on input streams with stronger cor-
relations (§6.5). CGR adapts itself to protect against these
trends, showing near-random leakage under temporal corre-
lations and distribution shifts (§6.6).

(4) Single-threshold data-dependent policies still leak valuable
information to a black box attacker who has no access to the
MeNN and training dataset (§6.7).

(5) On a realistic distributed MeNN setup, prior data-dependent
policies leak predictions to an attacker with access to en-
crypted communication patterns (§6.8). Ourmethods provide
protection in this end-to-end setting.

(6) PCE and CGR show negligible overhead on a low-power
microcontroller (MCU) (§6.9). Thus, our policies improve
privacy while retaining the e�ciency of MeNNs.

(7) Prior data-dependent policies leak more information on
MeNNs with more exits (§6.10). In contrast, CGR protects
MeNNs independent of the number of exit points.

6.1 Experimental Setup

6.1.1 Datasets and Neural Network Parameters. WeevaluateMeNNs
on ten standard tasks (Table 1) covering many input types and label
spaces. We use BranchyNet [87] MeNNs, focusing on models with

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Tejas Kannan, Nick Feamster, and Henry Ho�mann

two total exits. On Cifar [53], we use VGG models [82] with early
exiting after the �rst pooling layer. We use pre-trained versions of
each VGG model; we attach early exits and �ne-tune these output
layers [49]. We apply dense models on Activity [4], Food Quality
[33], and WISDM [55] and convolutional networks on the remain-
der. These MeNNs have four hidden layers, with early exiting after
the �rst. We execute at most ten training epochs using Adam (step
size of 10−3) [50], a batch size of 16, and a dropout [83] rate of 0.3.

For two-exit MeNNs, we run policies on 21 exit rates d0 =

0.0, 0.05, . . . , 1.0. We use a tighter range for MeNNs with more
exits (§6.10). The datasets are unordered, and we use two methods
to create the temporal correlations present in sensor settings.

(1) Same-Label builds blocks of size � by selecting (1 − Y) · �
random elements of a single label and Y · � inputs from
arbitrary classes. We set � = 10 and Y = 0.2. The appendix
in this paper’s extended version [47] considers alternate
settings.

(2) Nearest-Neighbor constructs �-sized blocks by choosing a
random anchor element and using the anchor’s �− 1 nearest
neighbors [10] in order.

We focus on Same-Label orders, as Nearest-Neighbor produces
weak correlations on inputs such as colored images.

6.1.2 Exit Policies. We use following baseline exit policies.

(1) Random selects the MeNN exit uniformly at random using
the rates d: . This policy has perfect privacy because it makes
data-independent decisions.

(2) Entropy is a data-dependent method (Equation 1) with con�-
dence ℎ�=CA>?~ (~̂) = (−

∑!−1
8=0 ~̂8 log(~̂8))

−1 [87].
(3) MaxProb is a data-dependent policy (Equation 1) with con�-

dence ℎ"0G%A>1 (~̂) = max8∈[!] ~̂8 [95].

We apply PCE and CGR to both con�dence functions. We use
CGR with a maximum bias of U = 0.5, adaptation factors of V = 2.0

and W = 0.9, and a window range of [5, 20] (§5). We set these
parameters using a grid search (see the appendix in this paper’s
extended version [47]) and �x them for all datasets.

We �t con�dence thresholds g for an exit rate d by setting g
to the (1 − d)Cℎ quantile of the MeNN’s con�dence values on the
task’s validation set. We execute both Random and CGR over �ve
trials as these policies have stochastic behavior.

6.1.3 Adversary Design. We design the attack model 65 using an
AdaBoost ensemble with 100 decision trees. The attack model uses
non-overlapping blocks of � adjacent exit decisions to infer the
MeNN’s most frequent prediction in this block. This block size
matches that of the dataset order. We create two variants with
di�erent input features. The �rst uses each exit point’s frequency,
and the second uses the exact exit pattern. We use the frequencies
against Same-Label orders and the patterns on Nearest-Neighbor
streams (§6.1.1). The exact pattern leads to over�tting on Same-
Label orders. We train 65 with two di�erent assumptions (§3.2).

(1) White box attackers use patterns from the target MeNN’s
on the original task’s validation set.

(2) Black box adversaries use patterns from a substitute MeNN
on a related task’s validation set.

We always evaluate 65 on the target MeNN processing the test fold.

Acti
vit

y

Cifa
r1

0

Cifa
r1

00

EMNIS
T

Fas
h.

MNIS
T

Foo
d Q

ua
lity

GTSRB

MNIS
T

Spe
ec

h

W
IS

DM
Avg

Dataset

0

20

40

60

80

100

A
tta

ck
 A

cc
ur

ac
y

(%
)

Maximum Attack Accuracy on Same Label Orders
Random
Entropy
Max Prob
PCE Entropy

PCE Max Prob
CGR Entropy
CGR Max Prob

Figure 5:Maximumattack accuracy across 21 exit rates (lower

is better).

6.1.4 Aggregate Metrics. We evaluate policies on many sets of
target exit rates. For inference accuracy, we compute the average
result across all targets. For privacy metrics, we compute show the
worst-case result by calculating the maximum over the targets, as
policies should not leak information for any target exit rates (P1).
This methodology aligns with prior work in measuring security
from a worst-case perspective [14]. We aggregate trials by taking
the average trial result for each target exit rate.

6.1.5 Hardware Setup. We conduct experiments in simulation and
on a low-power microcontroller (MCU). The simulator runs MeNNs
in Tensor�ow [1] and records the predictions and exit decisions
(§6.2-§6.7, §6.10). The adversary observes the exact exit decisions.

We perform an end-to-end side-channel attack on a two-exit
distributed MeNN [88] with the initial exit on a TI MSP430 FR5994
MCU [40] and the remaining model on a server (§6.8). The MCU
processes inputs every second and uses Bluetooth LowEnergy (BLE)
to transmit the intermediate state when not exiting early. This setup
follows DDNNs [88] and SPINN [56] on a two-device system. The
sensor applies AES-128 encryption [18]. We capture the encrypted
packets using Wireshark [72] and provide this log to the attacker.
We drop 5% of packets to simulate a lossy link. The attacker only
observes tra�c when the system does not exit early. The adversary
�nds the number of early exits between transmissions as follows,
where' is the sampling period and3= is the time of the=Cℎ message.

num_early_exits(=) = max(+(3= − 3=−1)/', − 1, 0) (9)

We emphasize that the side-channel attack applies to variants of
this system; e.g., if the sensor sends predictions when exiting early,
the attacker can infer early exits using di�erences in message sizes.

6.2 White Box Attack

We �rst measure the practical privacy of MeNN exit policies under
white box assumptions (§6.3 discusses theoretical leakage). We
use the white box methodology in §6.1.3 to infer predictions from
two-exit MeNNs with Same-Label orders (� = 10, Y = 0.2).

Figure 5 shows the maximum attack accuracy across all target
exit rates. The attack accuracy is the accuracy of the attackmodel65 ;
this metric measures the fraction of the adversary’s predictions that

Prediction Privacy in Distributed Multi-Exit Neural Networks: Vulnerabilities and Solutions CCS ’23, November 26–30, 2023, Copenhagen, Denmark

match the MeNN’s most common classi�cation in each temporal
block. These results display how standard data-dependent policies
consistently leak information about MeNN predictions. Across all
tasks, these policies show mean worst-case attack accuracy that is
1.87× (Entropy) and 1.85× (Max Prob) higher than Random. On the
Food Quality task, the attacker infers up to 100% of the MeNN’s
most frequent predictions in each block. Further, both methods
display worse privacy than Random on all tasks. Thus, this leakage
does not result from a single dataset or con�dence function; instead,
it comes from the data-dependent approach of previous methods.

Both PCE and CGR display better privacy. PCE yields 1.16× (En-
tropy) and 1.12× (Max Prob) higher worst-case attack accuracy than
Random. These values are lower than that of prior data-dependent
policies (Figure 5), showing the bene�t of multiple thresholds. CGR
performs even better, displaying 1.02× higher worst-case attack ac-
curacy averaged across all tasks. We further compare these policies
to Random using Welch’s t-test. The null hypothesis is the attack
accuracy normalized to the most frequent MeNN prediction is no
di�erent than that of Random. With this methodology, Random and
CGR have an insigni�cant di�erence at the 0.05 level with ?-values
of 0.21 (CGR Entropy) and 0.09 (CGR Max Prob). Thus, CGR ob-
tains near-random privacy independent of the con�dence function.
Entropy, Max Prob, and PCE show signi�cant di�erences.

Entropy and Max Prob show low attack accuracy on Cifar100, as
this dataset has a large label space (Table 1). However, we observe
leakage through the attacker’s average rank (AR) of the correct
class [6]. On Cifar100, Entropy and Max Prob have a worst-case
AR of 33.60 and 35.77, respectively. These values are far lower than
Random (48.20); thus, attackers still learn valuable information on
tasks with many labels. Across all datasets, CGR has an AR of 0.99×
Random, further demonstrating its near-random privacy.

6.3 Theoretical Information Leakage

We supplement the practical attack with an analysis agnostic of the
attack model. We quantify privacy using the empirical normalized
mutual information (NMI) [54] between the MeNN’s exit decisions
and predictions. A high NMI means observing the exit decisions
reduces the adversary’s uncertainty about the model’s predictions.
A policy with no leakage should exhibit an NMI close to Random.
We use the de�nition #"� (-,.) = (2 · � (-,.))/(� (-) + � (.))
where � (·) is the mutual information and � (·) is the Shannon en-
tropy. We measure the NMI by comparing individual exit decisions
(-) and MeNN predictions (.). This metric does not depend on
temporal correlations. We reduce the empirical NMI’s bias with
Miller-Madow correction [74]. We use the same setup as §6.2.

Table 2 shows the maximum NMI, con�rming the trends in §6.2.
Standard data-dependent policies show high NMI with values up
to 0.1725 points higher than Random on average. Further, both
policies eclipse Random on all tasks, indicating that this leakage is
consistent and independent of the con�dence function.

PCE improves privacy, showing an NMI of up to 0.0203 points
higher than Random; this rate is over 8.4× lower than previous data-
dependent methods (Table 2). On average, CGR has a maximum
NMI of only 0.0009 points above Random. This �gure is over 191×
lower than prior data-dependent policies. These results provide
additional evidence that CGR has near-perfect privacy.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Inputs using the Full Model

84

86

88

90

In
fe

re
nc

e
A

cc
ur

ac
y

(%
)

Inference Accuracy for Target Exit Rates

Random
Entropy
PCE Entropy
CGR Entropy
Max Prob
PCE Max Prob
CGR Max Prob

Figure 6: Inference accuracy (%) on the Activity dataset. Error

bars show the standard deviation over �ve trials.

6.4 Inference Accuracy

The second tradeo� dimension we investigate is inference accuracy,
as accuracy represents the MeNN’s answer quality. We use two-exit
MeNNs under the setup in §6.2.

Table 3 shows the average MeNN accuracy across all exit rates,
and Figure 6 displays the results on the Activity task. We have three
takeaways. First, Random has a high accuracy penalty; existing
policies achieve an average accuracy of 2.03 (Entropy) and 2.30
(Max Prob) points above Random. Second, PCE retains high MeNN
accuracy, showing values within 0.5 points of its standard data-
dependent variant on seven of ten datasets. Random achieves this
mark only twice. Finally, CGR consistently outperforms Random on
all tasks with an overall average accuracy of 0.51 (Entropy) and 0.57
(Max Prob) points higher. For d0 ∈ (0, 1), CGR eclipses Random on
90% (171 / 190) of target rates under both con�dence functions.

We note two additional results. First, an alternate method to elim-
inate leakage is to use a �xed policy that always exits at the same
point. This baseline must use the early exit to meet resource limits
(§6.9), resulting in low accuracy. From Figure 6, the early exit has an
accuracy of about 83%; all other policies reach an average accuracy
above 87% (Table 3). Thus, PCE and CGR show better accuracy
under resource limits than a �xed policy. Second, Entropy and Max
Prob perform poorly on WISDM. This result comes from subopti-
mal exit decisions due to MeNN overcon�dence. PCE corrects this
problem by setting higher thresholds for the overcon�dent classes,
highlighting an alternative bene�t of using multiple thresholds.

6.5 Alternate Dataset Orders

6.5.1 Nearest Neighbor. We further evaluate privacy using the
white box adversary (§3.2) on Nearest-Neighbor orders (§6.1.1) with
� = 10 (Figure 7). CGR maintains its near-random privacy, showing
0.99× higher attack accuracy than Random on average. Using the
methodology of §6.2, CGR’s attack accuracy is not signi�cantly
greater than Random. In contrast, PCE shows higher leakage on
Nearest-Neighbor orders, displaying an average worst-case attack
accuracy that is 1.24× (Entropy) and 1.28× (Max Prob) higher than
Random. These values exceed the 1.12× (Entropy) and 1.18× (Max
Prob) marks from the Same-Label order on these four tasks. This
greater leakage comes from the Nearest-Neighbor order’s high
correlations. Nevertheless, PCE still displays better privacy than
single-threshold techniques.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Tejas Kannan, Nick Feamster, and Henry Ho�mann

Table 2: Maximum empirical normalized mutual information (NMI) (all values ×10−2) between exit decisions and MeNN

predictions across 21 target rates (lower is better). The �nal row shows the average (std dev) di�erence compared to Random.

Dataset Rand
Entropy Max Prob

Stnd PCE CGR Stnd PCE CGR

Activity 0.25 33.99 2.33 0.35 34.22 2.11 0.40
Cifar10 0.25 5.43 0.66 0.31 5.24 0.76 0.29
Cifar100 0.45 4.79 1.21 0.50 4.10 1.25 0.52
EMNIST 0.07 7.19 0.31 0.09 7.29 0.30 0.09
Fash. MNIST 0.04 19.84 0.28 0.04 19.83 0.25 0.04
Food Quality 0.24 49.62 3.73 0.11 49.62 5.73 0.33
GTSRB 1.26 8.92 5.26 1.59 9.23 4.45 1.46
MNIST 0.06 6.30 0.85 0.05 6.29 2.44 0.15
Speech Cmds 0.33 16.15 3.17 0.50 16.29 3.22 0.48
WISDM 0.42 23.61 3.32 0.58 18.77 3.14 0.55

Avg Di� v Rand 0.00 (0.00) 17.25 (14.06) 1.78 (1.38) 0.08 (0.12) 16.75 (14.01) 2.03 (1.58) 0.09 (0.06)

Table 3: Average (std dev) inference accuracy across 21 target exit rates for each policy and task (higher is better). The standard

deviation shows the variation in the average accuracy across �ve independent trials.

Dataset Rand
Entropy Max Prob

Stnd PCE CGR Stnd PCE CGR

Activity 87.22 (0.02) 89.24 88.46 87.57 (0.01) 89.69 88.85 87.70 (0.02)
Cifar10 80.35 (0.04) 85.18 84.83 81.69 (0.03) 85.50 85.17 81.78 (0.01)
Cifar100 61.68 (0.05) 64.47 64.43 62.40 (0.04) 64.81 64.79 62.52 (0.02)
EMNIST 85.92 (0.02) 87.28 87.35 86.37 (0.01) 87.31 87.37 86.39 (0.01)
Fash. MNIST 90.37 (0.03) 91.59 91.38 90.69 (0.03) 91.66 91.46 90.72 (0.01)
Food Quality 97.01 (0.02) 97.34 97.34 97.09 (0.01) 97.34 97.34 97.09 (0.01)
GTSRB 80.45 (0.04) 84.85 83.21 81.21 (0.04) 85.37 83.74 81.39 (0.05)
MNIST 98.64 (0.01) 99.19 99.19 98.83 (0.01) 99.19 99.19 98.83 (0.01)
Speech Cmds 85.94 (0.04) 88.58 87.76 86.43 (0.02) 88.78 87.92 86.40 (0.01)
WISDM 86.31 (0.02) 86.48 87.81 86.68 (0.01) 87.24 87.93 86.77 (0.02)

Avg Di� v Rand 0.00 (0.00) 2.03 (1.55) 1.79 (1.18) 0.51 (0.34) 2.30 (1.63) 1.99 (1.31) 0.57 (0.38)

Table 4: Average (std dev) inference accuracy across 21 exit

rates for Nearest-Neighbor blocks (higher is better).

Dataset Rand
MaxProb

Stnd PCE CGR

Activity 87.46 (0.02) 89.99 89.17 87.51 (0.01)
EMNIST 87.10 (0.01) 88.04 88.10 87.38 (0.02)
Fash. MNIST 91.11 (0.03) 92.36 92.09 91.34 (0.01)
MNIST 99.44 (0.01) 99.67 99.68 99.48 (0.01)

Avg Di� v Rand 0.00 (0.00) 1.06 (0.57) 0.95 (0.48) 0.17 (0.09)

CGR continues to show improved inference accuracy (Table
4), eclipsing Random on 80% (61 / 76) of target exit rates under
the Max Prob metric. These results are similar with the Entropy
function. However, the gap between CGR and Random is smaller
than on Same-Label streams (Table 3). This di�erence results from
CGR’s adaptive bias. The Nearest-Neighbor order contains stronger
correlations, often having blocks with over 90% of elements in the
same class. In turn, CGR acts more randomly. For example, on the
Activity task with d0 = 0.5, CGR has an average bias of 0.1507
on Nearest-Neighbor and 0.4446 on Same-Label. CGR properly
responds to greater correlations by reducing its bias magnitude.

Activity EMNIST Fash. MNIST MNIST Avg
Dataset

0

10

20

30

40

A
tta

ck
 A

cc
ur

ac
y

(%
)

Maximum Attack Accuracy on Nearest Neighbor Orders
Random
Entropy
Max Prob
PCE Entropy

PCE Max Prob
CGR Entropy
CGR Max Prob

Figure 7: Maximum attack accuracy on Nearest-Neighbor

dataset orders (lower is better).

6.5.2 Uncorrelated. We further evaluate the attack on data streams
with randomly-ordered inputs. In this setting, the adversary uses
each exit decision to infer the MeNN’s individual predictions. Table
5 compares the average inference accuracy and maximum attack ac-
curacy on the Activity task for Uncorrelated and Nearest-Neighbor
streams. The latter order exhibits the strongest temporal relations.
The adversary still learns information about MeNN’s results in
uncorrelated settings, though the attack e�cacy is lower. We hy-
pothesize this result occurs because the adversary has less context

Prediction Privacy in Distributed Multi-Exit Neural Networks: Vulnerabilities and Solutions CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Table 5: Mean inference accuracy (Infr. Acc.) and maximum

attack accuracy (Att. Acc.) on the Activity task for Uncorre-

lated and Nearest-Neighbor orders.

Policy
Uncorrelated Nearest-Neighbor

Infr. Acc. Att. Acc. Infr. Acc. Att. Acc.

Random 86.86 18.12 87.46 19.86
Max Prob 89.44 36.59 89.99 41.63
PCE Max Prob 88.57 21.14 89.17 26.47
CGR Max Prob 87.36 18.88 87.51 18.35

on uncorrelated orders (§3.1). This comparison further shows the
bene�ts of PCE in isolation. On uncorrelated streams, PCE displays
an attack accuracy within 3 points of Random. This �gure is over
2× smaller than PCE’s gap to Random on the Nearest-Neighbor
order. Thus, for uncorrelated streams, PCE delivers an inference
accuracy of 1.7 points above Random for a small cost in privacy.
We note that PCE does not achieve an attack accuracy equivalent
to either Random or CGR because PCE uses static thresholds �t on
a training set, and the testing set contains empirical di�erences.

6.6 Distribution Shifts

Sensing systems often face distribution shifts where the data ob-
served at runtime di�ers from that used during training [52]. We
evaluate the privacy impact of distribution shifts by constructing
an alternate testing set for MNIST [58] using the �rst 10,000 digits
from the Extended MNIST dataset [17]. This alternate dataset has a
higher mean (` = 0.172) and standard deviation (f = 0.331) pixel
value than that of MNIST (` = 0.131, f = 0.308) due to di�erences
in image preprocessing. We use the same MeNN trained on MNIST
as in §6.2 and evaluate the MeNN on this alternate testing set.

Table 6 shows the white box attack accuracy with the Same-
Label order. Under distributional shifts, PCE has privacy similar to
standard data-dependent exiting. This phenomenon occurs because
the shifted distribution changes the MeNN’s prediction con�dence,
breaking the balancing e�ect of PCE’s multiple thresholds. For
example, when d = 0.75, PCE exits early on 96.88% of the digit 1 and
55.08% of the digit 7 in the shifted test set; on standard MNIST, these
exit rates are 73.03% and 72.49%, respectively. Thus, under shifted
distributions, PCE shows the same asymmetric exit behavior seen
in previous data-dependent methods. In contrast, CGR protects
against this issue by leveraging randomness. With the Entropy
metric, CGR displays a worst-case attack accuracy less than that
of Random. Along with this privacy bene�t, CGR shows higher
mean inference accuracy on the shifted test set. CGR has an average
accuracy of 88.33% (Entropy) and 88.30% (Max Prob), compared to
87.07% for Random. Note that the shifted distribution causes lower
MeNN inference accuracy overall (Table 3). This �nding aligns with
prior work on neural networks facing distributional shifts [52].

6.7 Black Box Attack

We con�rm the white box assumptions are not too strong by con-
sidering a weakened attacker with black box access (§3.2). This
adversary cannot access the target MeNN and only knows the num-
ber of MeNN exits and the target task’s label space (e.g., the
digits 0-9 for MNIST). The adversary uses this knowledge to select

Table 6: Worst-case attack accuracy for exit policies on an

MeNN trained on MNIST and tested on either a shifted dis-

tribution (EMNIST Digits) or the same distribution (MNIST).

Policy EMNIST Digits MNIST

Random 13.60 12.50
Entropy 21.80 27.40
Max Prob 20.10 27.40
PCE Entropy 19.30 13.30
PCE Max Prob 21.10 16.90
CGR Entropy 13.50 13.80
CGR Max Prob 14.20 12.50

a related dataset with the same label space. The attacker trains a

substitute MeNN ℎ ()7 on this related dataset (Figure 3). We assume
the attacker uses a reasonable MeNN architecture for their selected
dataset (e.g., ResNet [31] on Cifar-10). The adversary trains their
MeNN by optimizing the average individual classi�cation loss of
each exit point [87]. Finally, following black box adversarial DNN
attacks [75], the attacker �ts an attack model 65 on patterns from

the substitute ℎ ()7 and applies 65 to the target MeNN 5
()
)

on the
original dataset. We use the following attack settings.

(1) Cifar10 Blurred: The attacker has a version of Cifar10 [53]
corrupted with a Gaussian blur (A = 0.5). This version has
di�erent training and validation splits than the original. The
attacker generalizes to the standard Cifar10 task.

(2) Pen Digits: The adversary attacks an MNIST [58] convolu-
tionalMeNNwith a dense substitutemodel trained to classify
digits from sequences of (G,~) pen coordinates [3].

(3) Spoken Digits: The attacker targets an MNIST [58] MeNN
with a substitute trained on spoken digit audio [41].

(4) Speech Noisy: The adversary uses the Speech [96] dataset
perturbed with white noise ((#' = 50). The training and
validation splits di�er from those of the original. The attacker
targets an MeNN on the standard Speech task.

(5) WISDM Sim: The adversary uses theWISDM task’s simulated
version to target an MeNN trained on real-world data [55],
emulating an attacker collecting its own dataset.

Compared to the target MeNN, we use substitutes with di�erent ar-
chitectures and hyperparameters (e.g., batch sizes). For example, the
attacker’s substitute MeNN for Pen Digits uses �ve fully connected
layers with sizes (8, 12, 48, 48, 48), early exiting after the second,
and Leaky ReLU activations. The target MeNN processes theMNIST

dataset using four convolutional layers with (16, 32, 64, 32) �lters,
early exiting after the �rst, and ReLU activations. On Cifar-10, the
attacker uses ResNet-18 [31] with early exiting after the second
block. The target system uses a VGG architecture. These settings
thus consider di�erent neural networks which both achieve good
accuracy on their given tasks. We �t each substitute three times.

Table 7 shows the maximum attack accuracy. The weakened ad-
versary still achieves the best results against existing data-dependent
policies; MeNNs using Max Prob show a mean worst-case attack ac-
curacy of 1.56× Random. Although this e�cacy is lower than white

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Tejas Kannan, Nick Feamster, and Henry Ho�mann

0 1 2 3 4 5 6 7 8 9
Prediction

0.0

0.2

0.4

0.6

0.8

E
ar

ly
 E

xi
t R

at
e

Target Exit Rate

Early Exit Behavior Under Max Prob

Target Model (MNIST)
Substitute Model (Spoken Digit)

Figure 8: Early exit rates per prediction under the Max Prob

policy for the target MeNN trained on MNIST [58] and the

substitute trained on spoken digits [41].

Table 7: Worst-case attack accuracy (%) averaged (std dev)

across trainedMeNNs. In each group, the top row is the white

box setting. The remaining rows use the black box method.

Train Task Rand
MaxProb

Stnd CGR

Cifar10 13.20 23.30 12.80
Cifar10 Blurred 11.93 (0.52) 19.17 (1.51) 12.30 (0.37)

MNIST 12.30 27.40 12.50
Pen Digits 12.83 (0.45) 17.80 (0.72) 12.77 (0.12)
Spoken Digit 12.57 (0.21) 20.17 (1.41) 12.80 (0.16)

Speech Cmds 12.05 28.79 12.28
Speech Cmds Noisy 12.87 (0.42) 24.78 (4.90) 12.80 (0.28)

WISDM 45.96 74.08 46.14
WISDM Sim 45.82 (0.00) 59.30 (2.19) 45.88 (0.09)

box settings (§6.2), the black box attacker still learns valuable infor-
mation despite having no o�ine access to the target MeNN. CGR
continues to show a worst-case attack accuracy close to Random.

This attack works because the substitute ℎ ()7 and target 5 ()
)

MeNNs often contain similar exit behavior, even though the target
MeNN is unknown to the adversary. Figure 8 shows this phenome-
non. Predictions for zero and seven have similar exit rates across the
two MeNNs despite training the target on images and the substitute
on audio. However, these rates are not always consistent. When
predicting six, the target exits early more frequently, showing why
the black box accuracy does not reach that of white box settings.

6.8 White Box Attack on Low-Power MCUs

We launch an end-to-end side-channel attack against distributed
MeNNs [88] executing on a low-power MCU (§6.1.5). We execute
each policy for 500 inputs on the Activity [55] task with the Same-
Label order (� = 10), creating 50 temporal windows for the attacker.

Figure 9 shows inference and attack accuracy. In all cases, the
attacker discovers the correct exit decisions from the packet trace.
Using the white box attack model 65 , the Max Prob policy exhibits
the highest attack accuracy, while CGR reduces this leakage to
Random. Further, CGR outperforms Random in inference accuracy
on the MCU. These results match those from simulation (§6.2),
showing how the discovered privacy issue and proposed defenses
apply to real hardware.

Inference Accuracy Attack Accuracy
0

20

40

60

80

100

A
cc

ur
ac

y
(%

)

86.60

12.00

90.20

52.00

89.60

18.00

89.20

12.00

MCU Results for the Activity Dataset

Random
Max Prob
PCE Max Prob
CGR Max Prob

Figure 9: Inference accuracy and attack accuracy against dis-

tributed MeNNs executing on a low-power MCU.

Table 8: Average (std dev) energy consumption (mJ) on a TI

MSP430 MCU [40].

Policy Exit Early Continue

Fixed 0.047 (0.017) 30.813 (5.234)
Random 0.049 (0.018) 31.144 (6.262)
Max Prob 0.059 (0.020) 32.799 (6.114)
PCE Max Prob 0.057 (0.019) 31.249 (6.243)
CGR Max Prob 0.061 (0.020) 32.320 (6.646)

6.9 Energy Consumption

MeNNs reduce the average cost of inference [87]. We show how
CGR and PCE preserve this bene�t by measuring their energy on a
TI MSP430 [39, 40]. We run the distributed MeNN from §6.8 over 40
trials, recording the average energy to wake the CPU, execute the
�rst exit point, evaluate the policy, and encrypt the result. When
continuing inference, we include the energy to transmit the 128-
byte state over BLE. The Fixed policy always uses the same exit.

Table 8 shows the average energy for each con�guration. We
highlight two aspects of these results. First, using the full model in-
curs over two orders of magnitude of overhead. This phenomenon
comes from the high energy cost of communication, as early exiting
allows the system to keep the BLE module o�. This discrepancy
shows the prohibitive cost of a Fixed policy that always uses the
entire MeNN. Second, PCE and CGR incur some computation over-
head compared to Random when exiting early. However, this cost
is negligible compared to BLE when using the full MeNN, and for
exit rates d0 < 1, this BLE cost dominates the energy consumption.
Further, under Welch’s t-test, we observe an insigni�cant energy
di�erence between Random and either PCE or CGR when continu-
ing inference, with ?-values of 0.94 (PCE) and 0.39 (CGR). Note that
Max Prob has the highest average energy for the full MeNN. This
result occurs due to the variance in communication energy; Max
Prob also shows an insigni�cant di�erence compared to Random
when using the full model. Thus, both PCE and CGR incur minimal
overhead, allowing them to preserve the e�ciency of MeNNs.

6.10 Beyond Two Exits

Prior sections display the leakage present in two-exit MeNNs. How-
ever, MeNNs can have more than two exits [87, 93]. We thus mea-
sure how the number of MeNN exit points impacts its privacy in
simulation under Same-Label orders (� = 10). We emphasize that
this analysis does not yield a practical attack under our threat model;
the adversary can only observe a binary decision of whether the

Prediction Privacy in Distributed Multi-Exit Neural Networks: Vulnerabilities and Solutions CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Activity Cifar10 EMNIST Speech Cmds
Dataset

0

10

20

30

40

50

A
tta

ck
er

 A
cc

ur
ac

y
(%

)

Attack Accuracy for Varying Numbers of Exits
Random, 2 Exits
Random, 3 Exits
Random, 4 Exits
Max Prob, 2 Exits
Max Prob, 3 Exits
Max Prob, 4 Exits
PCE Max Prob, 2 Exits
PCE Max Prob, 3 Exits
PCE Max Prob, 4 Exits
CGR Max Prob, 2 Exits
CGR Max Prob, 3 Exits
CGR Max Prob, 4 Exits

Figure 10: Maximum attack accuracy for MeNNs with two,

three, and four exits (lower is better).

system exits on the sensor or server (§3.2). Instead, we include this
analysis to demonstrate (1) the potential for information leakage
and (2) the performance of our methods on MeNNs with > 2.

Figure 10 displays the maximum white box attack accuracy for
MeNNs with = 2, 3, and 4. Max Prob has higher leakage on
MeNNs with more exits; its average worst-case attack accuracy is
2.20× (two exits), 2.53× (three exits), and 2.79× (four exits) Random.
Both PCE and CGR have lower leakage compared to this single-
threshold policy. In particular, CGR displays near-random privacy
with an average worst-case attack accuracy of 1.01× (two), 1.01×
(three), and 0.98× (four) Random. These values have no trend with
the number of exits. Further, CGR still shows higher inference
accuracy than Random. On the Activity task, CGR has an average
accuracy of 88.72 (three exits) and 88.16 (four exits). These values
eclipse Random: 88.15 (three) and 87.56 (four). Overall, prior data-
dependent methods exhibit greater leakage on MeNNs with more
exits, and both PCE and CGR provide protection in all contexts.

7 RELATEDWORK

Multi-Exit Neural Networks (MeNNs). Prior work introduces early
exits into neural networks [9, 37, 49, 60, 87, 92, 93, 95]. To select an
exit point, existing systems use data-dependent exit policies with a
single threshold on prediction con�dence [9, 87, 95]. Other meth-
ods use bandit algorithms [42], runtime feedback [94], or decision
agreement [105]. We focus on policies using maximum probability
and entropy con�dence, as they are cheap and well-suited for low-
power sensors. We show how these policies leak information and
propose new methods to address this problem.

Distributed Neural Network Inference. Existing frameworks parti-
tion DNNs across multiple systems to reduce resource costs on edge
devices [7, 46, 61, 104]. Both DDNNs [88] and SPINN [56] intro-
duce early exit behavior to improve distributed inference, creating
distributed MeNNs. We develop a side-channel attack against the
communication patterns of these distributed MeNNs. We defend
against this attack through new early exit policies.

Attacks on Neural Networks. Common attacks against DNNs
force misbehavior through adversarial noise [11, 15, 26, 28, 38, 59,
65, 75, 81, 86]. Other work induces adversarial behavior using train-
ing set poisoning [27], attacker-speci�ed triggers [73], or batch
orderings [80]. Popular countermeasures against these attacks in-
clude defensive distillation [76] and adversarial training [26, 90].

Further, existing proposals observe that MeNNs reduce the impact
of adversarial examples [35, 49]. Previous attacks target MeNNs
by crafting adversarial examples to maximize the execution cost
[29, 34] and using exit decisions to improve membership inference
queries [62]. Similar to our work, these attacks exploit early-exit
behavior in neural networks. However, we evaluate how distributed
MeNNs leak predictions through communication patterns.

Neural Networks and Privacy. Previous systems address the pri-
vacy of DNNs through homomorphic encryption [24, 64] and secure
two-party computation [70]. Other methods protect DNNs using
trusted execution environments [30, 69] and di�erential privacy
[2, 85, 89, 97]. Our work also examines DNN privacy, but we create
a new attack that uses exit patterns to infer MeNN predictions.
Prior work leverages power [98], electromagnetic [8, 103], and
timing/memory [36] side-channels to �nd DNN architectures and
parameters. We instead use the communication patterns of dis-
tributed MeNNs as a side-channel to uncover model predictions.
We further create e�cient solutions for this new privacy concern.

Side-Channel Attacks. Many side-channel attacks exploit variable
behavior under di�erent inputs or operating conditions [16, 19, 67].
Previous work uses timing [12] and power discrepancies [51, 68]
to extract encryption keys. We also study side-channels against
varying behavior, but our work focuses on MeNNs, which is new.
Previous work closes side-channels through �xed resource usage
or randomized behavior. BuFLO [22] and its extensions [13, 44, 71]
standardize tra�c patterns to prevent website �ngerprinting. Other
systems obfuscate compromising communication patterns in sensor
networks [5, 45, 48]. Our work uses a new randomization technique
to retain the accuracy and resource bene�ts of MeNNs.

8 CONCLUSION

This work creates a side-channel attack that exploits the communi-
cation patterns of distributed Multi-exit Neural Networks (MeNNs)
with data-dependent early exiting. This side-channel allows an ad-
versary to discover the MeNN’s predictions with over 1.85× the
accuracy of random guessing. We address this attack through two
new exit policies: Per-Class Exiting (PCE) and Con�dence-Guided
Randomness (CGR). PCE uses multiple con�dence thresholds to
reduce information leakage with inference accuracy close to prior
methods. CGR augments PCE with randomization to achieve theo-
retical privacy guarantees and deliver consistently better inference
accuracy than exiting early uniformly at random. This attack high-
lights how modern inference systems must consider the privacy
implications of data-dependent behavior.

ACKNOWLEDGMENTS

We thank our reviewers for their constructive feedback. This work
was supported by the National Science Foundation (NSF) grants
CCF-1822949, CCF-2119184, CNS-1764039, and CISE-ANR-2124393.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Je�rey

Dean, Matthieu Devin, Sanjay Ghemawat, Geo�rey Irving, Michael Isard, et al.
2016. TensorFlow: A system for Large-Scale machine learning. In 12th USENIX
Symposium on Operating Systems Design and Implementation. 265–283.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Tejas Kannan, Nick Feamster, and Henry Ho�mann

[2] Martín Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,
Kunal Talwar, and Li Zhang. 2016. Deep learning with di�erential privacy. In
23rd ACM Conf. on Computer and Communications Security. 308–318.

[3] Fevzi Alimoglu and Ethem Alpaydin. 1996. Methods of combining multiple
classi�ers based on di�erent representations for pen-based handwritten digit
recognition. In 5th Turkish Arti�cial Intelligence and Arti�cial Neural Networks
Symposium. Citeseer.

[4] DavideAnguita, AlessandroGhio, LucaOneto, Xavier Parra Perez, and Jorge Luis
Reyes Ortiz. 2013. A public domain dataset for human activity recognition using
smartphones. In 21st International European Symposium on Arti�cial Neural
Networks, Computational Intelligence and Machine Learning. 437–442.

[5] Noah Apthorpe, Danny Yuxing Huang, Dillon Reisman, Arvind Narayanan, and
Nick Feamster. 2019. Keeping the smart home private with smart(er) IoT tra�c
shaping. Proceedings on Privacy Enhancing Technologies 2019, 3 (2019).

[6] Dmitri Asonov and Rakesh Agrawal. 2004. Keyboard acoustic emanations. In
IEEE Symposium on Security and Privacy. 3–11.

[7] Amin Banitalebi-Dehkordi, Naveen Vedula, Jian Pei, Fei Xia, Lanjun Wang, and
Yong Zhang. 2021. Auto-split: A general framework of collaborative edge-cloud
AI. In 27th ACM Conf. on Knowledge Discovery & Data Mining. 2543–2553.

[8] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan Picek. 2019. CSI NN:
Reverse engineering of neural network architectures through electromagnetic
side channel. In 28th USENIX Security Symposium. 515–532.

[9] Konstantin Berestizshevsky and Guy Even. 2019. Dynamically sacri�cing accu-
racy for reduced computation: Cascaded inference based on softmax con�dence.
In International Conf. on Arti�cial Neural Networks. Springer, 306–320.

[10] Erik Bernhardsson. 2023. Annoy. https://github.com/spotify/annoy.
[11] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić,

Pavel Laskov, Giorgio Giacinto, and Fabio Roli. 2013. Evasion attacks against
machine learning at test time. In Joint European Conf. on Machine Learning and
Knowledge Discovery in Databases. Springer, 387–402.

[12] David Brumley and Dan Boneh. 2005. Remote timing attacks are practical.
Computer Networks 48, 5 (2005), 701–716.

[13] Xiang Cai, Rishab Nithyanand, and Rob Johnson. 2014. Cs-BuFLO: A congestion
sensitive website �ngerprinting defense. In 13th Workshop on Privacy in the
Electronic Society. 121–130.

[14] Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and
Florian Tramer. 2022. Membership inference attacks from �rst principles. In
43rd IEEE Symposium on Security and Privacy. 1897–1914.

[15] Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness
of neural networks. In 38th IEEE Symposium on Security and Privacy. 39–57.

[16] Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan Zhang. 2010. Side-channel
leaks in web applications: A reality today, a challenge tomorrow. In 31st IEEE
Symposium on Security and Privacy. 191–206.

[17] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. 2017.
EMNIST: an extension of MNIST to handwritten letters. arXiv:1702.05373.

[18] Joan Daemen and Vincent Rijmen. 1999. AES proposal: Rijndael. (1999).
[19] Aveek K Das, Parth H Pathak, Chen-Nee Chuah, and Prasant Mohapatra. 2016.

Uncovering privacy leakage in BLE network tra�c of wearable �tness trackers.
In 17th Workshop on Mobile Computing Systems and Applications. 99–104.

[20] Bradley Denby and Brandon Lucia. 2020. Orbital edge computing: Nanosatellite
constellations as a new class of computer system. In 25th Conf. on Architectural
Support for Programming Languages and Operating Systems. 939–954.

[21] Amol Deshpande, Carlos Guestrin, Samuel R Madden, Joseph M Hellerstein,
and Wei Hong. 2004. Model-driven data acquisition in sensor networks. In 13th
Conf. on Very Large Databases. 588–599.

[22] Kevin P Dyer, Scott E Coull, Thomas Ristenpart, and Thomas Shrimpton. 2012.
Peek-a-boo, I still see you: Why e�cient tra�c analysis countermeasures fail.
In 33rd IEEE symposium on Security and Privacy. 332–346.

[23] Bugra Gedik, Ling Liu, and S Yu Philip. 2007. ASAP: An adaptive sampling
approach to data collection in sensor networks. IEEE Transactions on Parallel
and Distributed Systems 18, 12 (2007), 1766–1783.

[24] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. 2016. Cryptonets: Applying neural networks to encrypted
data with high throughput and accuracy. In International Conf. on Machine
Learning. PMLR, 201–210.

[25] Graham Gobieski, Brandon Lucia, and Nathan Beckmann. 2019. Intelligence
beyond the edge: Inference on intermittent embedded systems. In 24th Conf.
on Architectural Support for Programming Languages and Operating Systems.
199–213.

[26] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and
harnessing adversarial examples. In International Conf. on Learning Representa-
tions.

[27] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. 2017. BadNets:
Identifying vulnerabilities in the machine learning model supply chain.
arXiv:1708.06733.

[28] Amira Guesmi, Ihsen Alouani, Khaled N Khasawneh, Mouna Baklouti, Tarek
Frikha, Mohamed Abid, and Nael Abu-Ghazaleh. 2021. Defensive approximation:
Securing CNNs using approximate computing. In 26th Conf. on Architectural

Support for Programming Languages and Operating Systems. 990–1003.
[29] Mirazul Haque, Anki Chauhan, Cong Liu, andWei Yang. 2020. ILFO: Adversarial

attack on adaptive neural networks. In IEEE Conf. on Computer Vision and Pattern
Recognition. 14264–14273.

[30] Hanieh Hashemi, Yongqin Wang, and Murali Annavaram. 2021. DarKnight: An
accelerated framework for privacy and integrity preserving deep learning using
trusted hardware. In 54th IEEE/ACM International Symposium on Microarchitec-
ture. 212–224.

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In IEEE Conf. on Computer Vision and Pattern
Recognition. 770–778.

[32] Shivayogi Hiremath, Geng Yang, and Kunal Mankodiya. 2014. Wearable Internet
of Things: Concept, architectural components and promises for person-centered
healthcare. In 4th IEEE Conf. on Wireless Mobile Communication and Healthcare.
304–307.

[33] JK Holland, EK Kemsley, and RH Wilson. 1998. Use of Fourier transform in-
frared spectroscopy and partial least squares regression for the detection of
adulteration of strawberry purees. Journal of the Science of Food and Agriculture
76, 2 (1998), 263–269.

[34] Sanghyun Hong, Yiğitcan Kaya, Ionuţ-Vlad Modoranu, and Tudor Dumitraş.
2020. A panda? No, it’s a sloth: Slowdown attacks on adaptive multi-exit neural
network inference. arXiv:2010.02432.

[35] Ting-Kuei Hu, Tianlong Chen, Haotao Wang, and Zhangyang Wang. 2020.
Triple wins: Boosting accuracy, robustness and e�ciency together by enabling
input-adaptive inference. arXiv:2002.10025.

[36] Weizhe Hua, Zhiru Zhang, and G Edward Suh. 2018. Reverse engineering
convolutional neural networks through side-channel information leaks. In 55th
ACM/ESDA/IEEE Design Automation Conf. 1–6.

[37] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens Van Der Maaten, and
Kilian Q Weinberger. 2017. Multi-scale dense networks for resource e�cient
image classi�cation. arXiv:1703.09844.

[38] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon
Tran, and Aleksander Madry. 2019. Adversarial examples are not bugs, they are
features. Advances in Neural Information Processing Systems 32 (2019).

[39] Texas Instruments. 2020. TI MSP430 EnergyTrace Technology. https://www.ti.
com/lit/ug/slau157as/slau157as.pdf. Accessed: 04-2023.

[40] Texas Instruments. 2021. TI MSP430 FR5994 Datasheet. https://www.ti.com/lit/
ds/symlink/msp430fr5994.pdf. Accessed: 04-2023.

[41] Zohar Jackson. 2022. Free spoken digit dataset. https://github.com/Jakobovski/
free-spoken-digit-dataset. Accessed: 04-2023.

[42] Weiyu Ju, Wei Bao, Liming Ge, and Dong Yuan. 2021. Dynamic early exit
scheduling for deep neural network inference through contextual bandits. In
30th ACM International Conf. on Information & Knowledge Management. 823–
832.

[43] Philo Juang, Hidekazu Oki, Yong Wang, Margaret Martonosi, Li Shiuan Peh, and
Daniel Rubenstein. 2002. Energy-e�cient computing for wildlife tracking: De-
sign tradeo�s and early experiences with ZebraNet. In 10th Conf. on Architectural
Support for Programming Languages and Operating Systems. 96–107.

[44] Marc Juarez, Mohsen Imani, Mike Perry, Claudia Diaz, and Matthew Wright.
2016. Toward an e�cient website �ngerprinting defense. In 21st European
Symposium on Research in Computer Security. Springer, 27–46.

[45] Pandurang Kamat, Wenyuan Xu, Wade Trappe, and Yanyong Zhang. 2007.
Temporal privacy in wireless sensor networks. In 27th IEEE International Conf.
on Distributed Computing Systems. 23–23.

[46] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason
Mars, and Lingjia Tang. 2017. Neurosurgeon: Collaborative intelligence between
the cloud and mobile edge. ACM SIGARCH Computer Architecture News 45, 1
(2017), 615–629.

[47] Tejas Kannan, Nick Feamster, and Henry Ho�mann. 2023. Prediction pri-
vacy in distributed multi-exit neural networks: Vulnerabilities and solu-
tions. https://github.com/tejaskannan/privacy-dnn-early-exit/blob/master/
dnn_early_exit_privacy_extended.pdf.

[48] Tejas Kannan and Henry Ho�mann. 2022. Protecting adaptive sampling from
information leakage on low-power sensors. In 27th ACM Conf. on Architectural
Support for Programming Languages and Operating Systems. 240–254.

[49] Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras. 2019. Shallow-deep
networks: Understanding and mitigating network overthinking. In International
Conf. on Machine Learning. PMLR, 3301–3310.

[50] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv:1412.6980.

[51] Paul Kocher, Joshua Ja�e, and Benjamin Jun. 1999. Di�erential power analysis.
In Annual International Cryptology Conf. Springer, 388–397.

[52] Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin
Zhang, Akshay Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas
Phillips, Irena Gao, et al. 2021. Wilds: A benchmark of in-the-wild distribution
shifts. In International Conf. on Machine Learning. PMLR, 5637–5664.

[53] Alex Krizhevsky, Geo�rey Hinton, et al. 2009. Learning multiple layers of
features from tiny images.

Prediction Privacy in Distributed Multi-Exit Neural Networks: Vulnerabilities and Solutions CCS ’23, November 26–30, 2023, Copenhagen, Denmark

[54] Tarald O Kvålseth. 2017. On normalized mutual information: Measure deriva-
tions and properties. Entropy 19, 11 (2017), 631.

[55] Jennifer R Kwapisz, Gary M Weiss, and Samuel A Moore. 2011. Activity recog-
nition using cell phone accelerometers. ACM SigKDD Explorations Newsletter
12, 2 (2011), 74–82.

[56] Stefanos Laskaridis, Stylianos I Venieris, Mario Almeida, Ilias Leontiadis, and
Nicholas D Lane. 2020. SPINN: Synergistic progressive inference of neural
networks over device and cloud. In 26th International Conf. on Mobile Computing
and Networking. 1–15.

[57] Yann LeCun, Yoshua Bengio, and Geo�rey Hinton. 2015. Deep learning. Nature
521, 7553 (2015), 436–444.

[58] Yann LeCun, Corinna Cortes, and Chris Burges. 1998. The MNIST database of
handwritten digits. http://yann. lecun. com/exdb/mnist/ (1998).

[59] Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman
Jana. 2019. Certi�ed robustness to adversarial examples with di�erential privacy.
In 40th IEEE Symposium on Security and Privacy. 656–672.

[60] Hankook Lee and Jinwoo Shin. 2018. Anytime neural prediction via slicing
networks vertically. arXiv:1807.02609.

[61] En Li, Liekang Zeng, Zhi Zhou, and Xu Chen. 2019. Edge AI: On-demand accel-
erating deep neural network inference via edge computing. IEEE Transactions
on Wireless Communications 19, 1 (2019), 447–457.

[62] Zheng Li, Yiyong Liu, Xinlei He, Ning Yu, Michael Backes, and Yang Zhang.
2022. Auditing membership leakages of multi-exit networks. In ACM Conf. on
Computer and Communications Security. 1917–1931.

[63] Ji Lin, Wei-Ming Chen, Yujun Lin, Chuang Gan, Song Han, et al. 2020. MCUnet:
Tiny deep learning on IoT devices. Advances in Neural Information Processing
Systems 33 (2020), 11711–11722.

[64] Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. 2017. Oblivious neural
network predictions via MiniONN transformations. In ACM Conf. on Computer
and Communications Security. 619–631.

[65] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. 2017. Towards deep learning models resistant to adversarial
attacks. arXiv:1706.06083.

[66] Alan Mainwaring, David Culler, Joseph Polastre, Robert Szewczyk, and John
Anderson. 2002. Wireless sensor networks for habitat monitoring. In 1st ACM
Workshop on Wireless Sensor Networks and Applications. 88–97.

[67] Aastha Mehta, Mohamed Alzayat, Roberta De Viti, Björn B. Brandenburg, Peter
Druschel, and Deepak Garg. 2022. Pacer: Comprehensive Network Side-Channel
Mitigation in the Cloud. In 31st USENIX Security Symposium. USENIX Associa-
tion, Boston, MA, 2819–2838.

[68] Thomas S. Messerges and Ezzy A. Dabbish. 1999. Investigations of Power
Analysis Attacks on Smartcards. In USENIX Workshop on Smartcard Technology.
USENIX Association.

[69] Fan Mo, Ali Shahin Shamsabadi, Kleomenis Katevas, Soteris Demetriou, Ilias
Leontiadis, Andrea Cavallaro, and Hamed Haddadi. 2020. DarkneTZ: Towards
model privacy at the edge using trusted execution environments. In 18th Conf.
on Mobile Systems, Applications, and Services. 161–174.

[70] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A system for scalable
privacy-preserving machine learning. In 38th IEEE symposium on Security and
Privacy. 19–38.

[71] Rishab Nithyanand, Xiang Cai, and Rob Johnson. 2014. Glove: A bespoke website
�ngerprinting defense. In 13th Workshop on Privacy in the Electronic Society.
131–134.

[72] Angela Orebaugh, Gilbert Ramirez, and Jay Beale. 2006. Wireshark & Ethereal
network protocol analyzer toolkit. Elsevier.

[73] Xudong Pan, Mi Zhang, Beina Sheng, Jiaming Zhu, and Min Yang. 2022. Hidden
Trigger Backdoor Attack on NLP Models via Linguistic Style Manipulation. In
31st USENIX Security Symposium. 3611–3628.

[74] Liam Paninski. 2003. Estimation of entropy and mutual information. Neural
computation 15, 6 (2003), 1191–1253.

[75] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay
Celik, and Ananthram Swami. 2017. Practical black-box attacks against machine
learning. In 12th ACM Asia Conf. on Computer and Communications Security.
506–519.

[76] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami.
2016. Distillation as a defense to adversarial perturbations against deep neural
networks. In 37th IEEE symposium on Security and Privacy. 582–597.

[77] David E Rumelhart, Geo�rey E Hinton, and Ronald J Williams. 1986. Learning
representations by back-propagating errors. Nature 323, 6088 (1986), 533–536.

[78] Simone Scardapane, Michele Scarpiniti, Enzo Baccarelli, and Aurelio Uncini.
2020. Why should we add early exits to neural networks? Cognitive Computation
12, 5 (2020), 954–966.

[79] Claude E Shannon. 1949. Communication theory of secrecy systems. The Bell
system technical journal 28, 4 (1949), 656–715.

[80] Ilia Shumailov, Zakhar Shumaylov, Dmitry Kazhdan, Yiren Zhao, Nicolas Paper-
not, Murat A Erdogdu, and Ross J Anderson. 2021. Manipulating SGD with data
ordering attacks. Advances in Neural Information Processing Systems 34 (2021),
18021–18032.

[81] Ilia Shumailov, Yiren Zhao, Daniel Bates, Nicolas Papernot, Robert Mullins,
and Ross Anderson. 2021. Sponge examples: Energy-latency attacks on neural
networks. In 6th IEEE European Symposium on Security and Privacy. 212–231.

[82] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional net-
works for large-scale image recognition. arXiv:1409.1556.

[83] Nitish Srivastava, Geo�rey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: A simple way to prevent neural networks from
over�tting. Journal of Machine Learning Research 15, 1 (2014), 1929–1958.

[84] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. 2011.
The German Tra�c Sign Recognition Benchmark: A multi-class classi�cation
competition. In IEEE International Joint Conf. on Neural Networks. 1453–1460.

[85] Timothy Stevens, Christian Skalka, Christelle Vincent, John Ring, Samuel Clark,
and Joseph Near. 2022. E�cient Di�erentially Private Secure Aggregation
for Federated Learning via Hardness of Learning with Errors. In 31st USENIX
Security Symposium. 1379–1395.

[86] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural
networks. arXiv:1312.6199.

[87] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. 2016.
Branchynet: Fast inference via early exiting from deep neural networks. In
23rd IEEE International Conf. on Pattern Recognition. 2464–2469.

[88] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. 2017. Dis-
tributed deep neural networks over the cloud, the edge and end devices. In 37th
IEEE International Conf. on Distributed Computing Systems. 328–339.

[89] Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko Ludwig,
Rui Zhang, and Yi Zhou. 2019. A hybrid approach to privacy-preserving fed-
erated learning. In 12th ACM Workshop on Arti�cial Intelligence and Security.
1–11.

[90] Pratik Vaishnavi, Kevin Eykholt, and Amir Rahmati. 2022. Transferring Adver-
sarial Robustness Through Robust Representation Matching. In 31st USENIX
Security Symposium. 2083–2098.

[91] Deepak Vasisht, Zerina Kapetanovic, Jongho Won, Xinxin Jin, Ranveer Chandra,
Sudipta Sinha, Ashish Kapoor, Madhusudhan Sudarshan, and Sean Stratman.
2017. FarmBeats: An IoT platform for data-driven agriculture. In 14th USENIX
Symposium on Networked Systems Design and Implementation. 515–529.

[92] Andreas Veit and Serge Belongie. 2018. Convolutional networks with adaptive
inference graphs. In European Conf. on Computer Vision (ECCV). 3–18.

[93] Chengcheng Wan, Henry Ho�mann, Shan Lu, and Michael Maire. 2020. Or-
thogonalized SGD and nested architectures for anytime neural networks. In
International Conf. on Machine Learning. PMLR, 9807–9817.

[94] Chengcheng Wan, Muhammad Santriaji, Eri Rogers, Henry Ho�mann, Michael
Maire, and Shan Lu. 2020. ALERT: Accurate learning for energy and timeliness.
In USENIX Annual Technical Conf. 353–369.

[95] Xin Wang, Yujia Luo, Daniel Crankshaw, Alexey Tumanov, Fisher Yu, and
Joseph E Gonzalez. 2017. Idk cascades: Fast deep learning by learning not to
overthink. arXiv:1706.00885.

[96] Pete Warden. 2018. Speech commands: A dataset for limited-vocabulary speech
recognition. arXiv:1804.03209.

[97] Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H Yang, Farhad Farokhi,
Shi Jin, Tony QS Quek, and H Vincent Poor. 2020. Federated learning with
di�erential privacy: Algorithms and performance analysis. IEEE Transactions
on Information Forensics and Security 15 (2020), 3454–3469.

[98] Lingxiao Wei, Bo Luo, Yu Li, Yannan Liu, and Qiang Xu. 2018. I know what you
see: Power side-channel attack on convolutional neural network accelerators.
In 34th Annual Computer Security Applications Conf. 393–406.

[99] Michael Winkler, Klaus-Dieter Tuchs, Kester Hughes, and Graeme Barclay. 2008.
Theoretical and practical aspects of military wireless sensor networks. Journal
of Telecommunications and Information Technology (2008), 37–45.

[100] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-MNIST: A novel im-
age dataset for benchmarking machine learning algorithms. arXiv:1708.07747.

[101] Shuochao Yao, Yiran Zhao, Aston Zhang, Lu Su, and Tarek Abdelzaher. 2017.
DeepIoT: Compressing deep neural network structures for sensing systems with
a compressor-critic framework. In 15th ACM Conf. on Embedded Network Sensor
Systems. 1–14.

[102] Kasım Sinan Yıldırım, Amjad Yousef Majid, Dimitris Patoukas, Koen Schaper,
Przemyslaw Pawelczak, and Josiah Hester. 2018. Ink: Reactive kernel for tiny
batteryless sensors. In 16th ACM Conf. on Embedded Networked Sensor Systems.
41–53.

[103] Honggang Yu, Haocheng Ma, Kaichen Yang, Yiqiang Zhao, and Yier Jin. 2020.
DeepEM: Deep neural networks model recovery through EM side-channel
information leakage. In IEEE Symposium on Hardware Oriented Security and
Trust. 209–218.

[104] Liekang Zeng, En Li, Zhi Zhou, and Xu Chen. 2019. Boomerang: On-demand
cooperative deep neural network inference for edge intelligence on the industrial
Internet of Things. IEEE Network 33, 5 (2019), 96–103.

[105] Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu, and Furu Wei.
2020. Bert loses patience: Fast and robust inference with early exit. Advances in
Neural Information Processing Systems 33 (2020), 18330–18341.

