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We propose a nonlinear hybrid dual quaternion feedback control law for multibody spacecraft-mounted robotic

systems (SMRSs) pose control. Indeed, screw theory expressed via a unit dual quaternion representation and its

associated algebra can be used to compactly formulate both the forward (position and velocity) kinematics and pose

control of N-degree-of-freedom robot manipulators. Recent works have also established the necessary theory for

expressing the rigidmultibody dynamics of an SMRS in dual quaternion algebra. Given the established framework for

expressing both kinematics and dynamics of generalN-body SMRSs via dual quaternions, this paper proposes a dual

quaternioncontrol law that achieves simultaneousglobal asymptotically stable pose tracking for the end effectorand the

spacecraft base of an SMRS. The proposed hybrid control law is robust to chattering caused by noisy feedback and

avoids the unwinding phenomenon innate to continuous-based (dual) quaternion controllers. Additionally, an actuator

allocation technique is proposed in the neighborhood of system singularities to ensure bounded control inputs, with

minimum deviation from the specified spacecraft base and end-effector trajectories during controller execution.

Nomenclature

blkdiag�⋅� = creates a matrix whose diagonal contains
blocks of smaller matrices

Cij = connectivity adjacency matrix of the bodies
and joints

H = set of quaternions
Hd = set of dual quaternions
Hr

d = set of dual scalar quaternions with zero dual
part

Hu = set of unit quaternions
Hu

d = set of unit dual quaternions

Hv = set of vector quaternions
Hv

d = set of dual vector quaternions

KB1
, KG = controller gain matrices

�l = error incurred in tracking

MB = dual inertia matrix of body B
pB1

, pG, kB1
, kG = controller scalar gains

QL�⋅�, QR�⋅� = shorthand for left and right dual quaternion
multiplication, respectively

qB∕I = unit quaternion that represent orientation of
frame B with respect to frame I

qB∕I = unit dual quaternion that represent pose of
frame B with respect to frame I

Rm×n = set ofm × n-dimensional real-valuedmatrices
Rn = set of n-dimensional real-valued column

vectors
S�⋅� = swap components of a matrix

rBB∕O = position quaternion given as �0; �rBB∕O�
�rBB∕O = position vector of point B with respect to

point O as expressed in frame B
S11 = blkdiag�MB1

· · · MBi
· · · MBN

�
S12, S21 = matrices of coordinate transformations
T = collection of all dual reaction wrenches
u = collection of dual actuation wrenches

�u = output singular vector
vec�⋅� = set scalar component of (real and dual) qua-

ternion to zero

WB
B�OB� = dual wrench applied to body B at pointOB as

expressed in frame B
�x = spacecraft-mounted robotic system state

vector
= �0; �03×1�

0 = � ϵ
�03×1 = �0; 0; 0�⊤
1 = �1; �03×1�
1 = 1� ϵ
α = scalar dynamic memory state function

Γ, _Γ, �Γ = collection of generalized joint coordinates,
rates, and accelerations of manipulators

γ = maximum permissible norm control value
Δ = size of singular region
δ = hysteresis half-width
ϵ = dual unit
η = right-hand side of the proposed control law
κ = matrix condition number
λ, β = allocation dampening factors
�μ = collection of reduced real-valued actuation

wrenches

�vBB∕O = linear velocity vector of point B with respect
to point O as expressed in frame B

Ξ = blkdiag�ΠB1
;Π1; : : : ;Πj; : : : ;ΠN−1�

Πj = projection matrix mapping dual velocity
joint rates to generalized joint rates

σ = matrix singular value
υ = collection of all dual body velocities
Φ� �x�, Ψ� �x� = dynamics vector and matrices of spacecraft-

mounted robotic systems, respectively

ωB
B∕I = dual velocity of body B with respect to

frame I
�ωB
B∕I = angular velocity vector of frame B with

respect to frame I as expressed in frame B
⊛ = projection operators mapping joint dual

velocities to generalized rates
�⋅ = denotes a real-valued column vector or

removes the zeros from a vector dual qua-
ternion

⋆ = multiplication of dual quaternions with an
8-by-8 matrix

∘ = dual quaternion circle product
� = (dual) quaternion conjugation
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�⋅�s = swap the dual and real quaternions compo-
nents of dual quaternions

�⋅; ⋅� = shorthand for ordered pair representing a
quaternion, i.e., R × R3 → H

�⋅� = bijective mapping between the set of dual
quaternions and R8

�⋅�× = skew-symmetric matrix operator
�⋅�L, �⋅�R = left and right quaternion multiplication,

respectively
⟦ ⋅ ⟧L, ⟦ ⋅ ⟧R = left and right dual quaternion multiplication,

respectively

Subscripts and superscripts

Bi, Jj = ith body and jth joint

Bi, J j, G = ith body, jth joint, and end-effector frames

E, S = reference frames

I. Introduction

I N-SPACE assembly and manufacturing (ISAM) holds the prom-
ise to refuel, maintain, upgrade, and repair existing spacecraft;

enable space construction; and actively remove orbital debris [1–3].
During an ISAMmission, involving close-proximity operations with
other space objects, the servicing spacecraft must adapt to a changing
environment and simultaneously achieve the primary mission objec-
tive(s). Although some ISAM missions may only need spacecraft-
mounted robotic systems (SMRSs) to stabilize the relative kinematics
between the servicer spacecraft and the target satellite, future mis-
sions may require multi-objective, multibody maneuvering such as
requiring a single point of contact between two satellites at the end
effector, while also controlling the spacecraft base to maintain line of
sight with Earth for communication purposes. In such cases, simul-
taneous precise end-effector control of the maneuvering satellite and
the spacecraft base is required.
Unlike the traditional, fully decoupled, 6-degree-of-freedom

(6-DOF) relative pose control problem of spacecraft [4], SMRSs have
manipulators that add an additionalN-DOF to the system. This (6+N)-
DOF control problem is challenging to solve using existing conven-
tional controlmethods [5]. Typical approaches to solve thismulti-DOF
SMRS control problem are roughly divided into two categories:
internal control and coordinated control. The first approach disables
the attitude control system of the spacecraft base, leaving the SMRS in
a free-floating state [6]. Thus, end-effector control must be planned
such that the system’s manipulator(s) achieves control objective(s)
while also compensating for the reactivemotion of the spacecraft base.
Although the internal control approach saves fuel during a maneu-

ver, the approach requires significantly more complicated control
strategies and is highly dependent on the SMRS topology [7]. Addi-
tionally, due to the nonstationary base, the velocity of the end effector
is affected not only by kinematic singularities but also by dynamic
singularities [8], which are singularities due to the mass and inertia
properties of the entire system. Dynamic singularities can occur if the
generalized Jacobian matrix becomes singular [9]. As such, internal
spacecraft control strategies have been proposed to mitigate both
singularities [10].
Coordinated control, also referred to as free-flying spacecraft [6],

consists of actuating the spacecraft base and manipulator simultane-
ously. This approach allows for planning of the joint trajectories
independently from themotion of the base and ismost applicablewhen
there are pose constraints on the spacecraft base, such as antenna
orientation for communication, or camera pointing for observation.
Free-flying approaches, however, consume valuable resources, such
as fuel.
Prior contributions to the field of coordinated control of SMRSs

are numerous and worth expanding upon. In particular, the works of
Carignan and Akin [11] present a generalizable set of equations of
motion, along with a control strategy to stabilize a satellite base
duringmanipulator tasks. However, that work did not address several
complications, such as self-colliding base-manipulator configura-
tions or translational constraints that may exist for both the spacecraft

base and manipulator(s). A coordinated control method that exhibits
robustness with respect to the mass properties, as well as external
disturbances, was proposed by Jayakody et al. [12], although this
algorithm necessitated that all SMRS inertial maneuvers bemanually
planned and computed in advance.
In early studies, coordinated control for the SMRSwas established

for the spacecraft base and manipulator independently [6,9], neces-
sitating inverse-kinematics/dynamics of the joint-space for control of
the manipulator [8,10]. However, due to the dynamic coupling
between the spacecraft base and the manipulator(s) resulting in
undesired control interactions between the respective independent
control systems [13,14], there has been a trend to move towards a
more coordinated control approach to address the system as a whole
[15]. Specifically, a control strategy for approaching and grasping a
target spacecraft by considering the servicing SMRS spacecraft base
and manipulator as a single multibody system was given in [16].
Similarly, a coordinated control procedure for end-effector tracking
and base regulation, focusing on the effects of different sampling
rates of the spacecraft base and manipulator, was presented in [17].
Moreover, Mishra et al. [18] developed a holistic coordinated control
method for a fully actuated free-flying SMRS during the approach
phase to a tumbling target that utilized a cascading interconnection of
a geometric extended Kalman filter and a geometric controller.
Similarly to the previous approaches we also propose a coordi-

nated control design for the whole SMRS, i.e., planning for both
the spacecraft base and manipulator simultaneously. Contrary to the
earlier results in this area, we use dual quaternions tomodel thewhole
SMRS system. Dual quaternions describe both rotational motion and
translational motion of rigid bodies, and offer a comprehensive
solution to 6-DOF spacecraft dynamic modeling [19,20], estimation
[21], and controller design [22] problems. In particular, this paper
uses recent advances in dual quaternion (6+N)-DOF multibody
spacecraft modeling [23–26] to formulate a new single system coor-
dinated control framework for SMRSs.
We argue that the compact representation of the dual quaternion

formalism leads to a transparent and easy-to-derive control design.
Specifically, the dual quaternion algebra can be readily formulated
for coordinated control of SMRSs treated as a single multibody
system via a compact Lyapunov analysis. We propose a hybrid non-
linear feedback controller for coordinated control of SMRSs using
dual quaternion that achieves the following:
1) globally asymptotically stable pose tracking of both the space-

craft base and end effector(s) simultaneously,
2) robustness to chattering from feedback noise via a hybrid logic

function [27,28], and
3) mitigating the unwinding phenomenon innate to continuous-

based quaternion and consequentially dual quaternion controllers
[29,30].
The proposed dual quaternion control law does not necessitate the

inverse of joint kinematics during control design and additionally can
be formulated to passively mitigate system singularities via actuator
allocation, which may occur during the tracking maneuver, ensuring
bounded control inputs, with minimum spacecraft base and end-
effector deviation from the specified trajectories.
The rest of this paper is structured as follows: In Sec. II, we present

how to use dual quaternions to represent andmodel multibody space-
craft systems. Section III proves the global asymptotic stability of the
simultaneous spacecraft base and end-effector dual quaternion pose-
tracking controller, while Sec. IV compliments the proposed con-
troller with an actuator allocation technique for guaranteeing execu-
tion of the proposed control when there are no system singularities
and minimizes tracking error in the neighborhood of singularities.
Finally, Sec. V presents simulation results that verify the proposed
controller and allocation performance and efficacy, and Sec. VI
summarizes our concluding observations and future works.

II. Dual Quaternion Modeling of Multibody
Spacecraft-Mounted Robotic Systems

This section establishes both the inertial and relative dual
quaternion kinematic and dynamic modeling for SMRSs. The dual
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quaternion multibody kinematics and dynamics framework neces-
sary to describe SMRSs is based on [23–25]. For a review of
quaternion and dual quaternion algebras, as they pertain to rigid-
body motion, the interested reader is referred to [26].

A. Multibody Kinematics

Consider the unit dual quaternion, describing both position and
attitude or pose, of the rigid-body B given by

qB∕I � qB∕I � ϵqB∕Ir
B
B∕O ∈ Hu

d (1)

where ϵ is the dual unit defined by ϵ2 � 0 and ϵ=0, the quaternion

rBB∕O � �0; �rBB∕O� ∈ Hv, with position vector �rBB∕O ∈ R3 and the

unit attitude quaternion, represented as the ordered pair, qB∕I �
�q0; �q� ∈ Hu, where �q � �q1; q2; q3�⊤ ∈ R3 is the vector part of

the quaternion and q0 ∈ R is the scalar part of the quaternion. Note
that the dual quaternion given in Eq. (1) is unit dual quaternion, i.e.,
qB∕I � qr� ϵqd ∈Hu

d �fq∈Hd∶q ⋅q� qq� � q�q� 1g, as Eq. (1)
satisfies the two algebraic constraints‡ qr ⋅ qr � 1 and qr ⋅ qd � ,
where qr, qd ∈ H are the real part and the dual part of the
dual quaternion, respectively. The accompanying dual velocity is
given by

ωB
B∕I � 0; �ωB

B∕I � ϵ 0; �vBB∕O ∈ Hv
d (2)

where �ωB
B∕I , �v

B
B∕O ∈ R3 are the angular and linear velocity vectors of

body B, respectively, expressed in frame B [20].
When we consider N-body SMRSs, like the one shown in Fig. 1,

the kinematics of the system is described by the satellite base and

the generalized joint coordinates, Γ ≜ �Γ1 · · · Γj · · · ΓN−1�⊤ ∈ RD,

of themanipulator(s), whereD � N−1
j�1 dj, withdj being theDOFof

joint Jj and, as such, determines the form of Γj.

The joint dual velocity expressed in joint coordinates can be
determined from

ω
J j

J j∕Bi
� qBi�1∕J j

ωBi�1

Bi�1∕I
q�Bi�1∕J j

− q�J j∕Bi
ωBi

Bi∕I
qJ j∕Bi

(3)

while the relationship between generalized speeds and dual velocities
is given by

_Γj � Πj ⊛ ω
J j

J j∕Bi
(4)

where ⊛∶Rdj×8 ×Hv
d → Rdj maps ω

J j

J j∕Bi
via the projection matrix

Πj depending on the type of joint Jj, the exact expression of which is

given in [23].
Therefore, given Eqs. (1), (2), and (4), the minimum state-space

representation for N-body SMRSs is given by the pose of the

spacecraft base, qB1∕I , the rates of that base, ω
B1

B1∕I , the generalized

joint coordinates, Γ, and their rates, _Γ, as shown below§:

�x � qB1∕I
⊤ Γ⊤ �ωB1

B1∕I
⊤ _Γ⊤ ⊤

∈ R8 × RD × R6 × RD

(5)

B. Multibody Dynamics

Differentiating Eq. (1) results in the kinematic equations ofmotion

for a unit dual quaternion as

_qB∕I � 1

2
qB∕Iω

B
B∕I (6)

Taking the time derivative of ωB
B∕I in Eq. (2) yields the compact

representation of the Newton–Euler equations of motion for the rigid

body in 6-DOF motion as [26]

MB ⋆ _ωB
B∕I � ωB

B∕I × MB ⋆ ωB
B∕I � WB

B;sum�OB� (7)

where the operator ⋆ denotes the multiplication of a dual quaternion

with an 8-by-8matrix,WB
B;sum�OB� � fB � ϵτB is the sum total dual

wrench, i.e., the total force and torque applied about the center of

mass of body B, given that fB � �0; �fB� and τB � �0; �τB�, where �fB,
�τB ∈ R3 are the applied forces and torques in frame B, respectively,
and MB is dual inertia matrix comprising both the mass mB and the

inertia matrix �IB of body B.
Applying Eq. (7) to theBith body of SMRSs and denoting T as the

collection of all dual reaction wrenches from physical constraints

between respective bodies, as

T � WJ 1

B2∕B1
�OJ 1

� · · · W
J j

Bi�1∕Bi
�OJ j

� · · · WJ N−1
BN∕BN−1

�OJ N−1
�
(8)

and letting υ be the collection of all dual body velocities be

υ � ωB1

B1∕I · · · ωBi

Bi∕I · · · ωBN

BN∕I (9)

then we can obtain a compact form for the Newton–Euler equations

of motion of SMRSs as

S11 S12

S21
�0

⋆
_υ

T
� Q1

Q2

(10)

Fig. 1 N-body spacecraft-mounted robotic system description. Figure adapted from [26].

‡For more details, refer to Lemma 58 in [20].

§�⋅�∶Hd → R8 is the bijective mapping between the set of dual quaternions

andR8, and �⋅∶Hv
d → R6 removes the zeros from a vector dual quaternion (for

details see [19]).
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where S11 � blkdiag�MB1
· · · MBi

· · · MBN
� consists of the dual

inertia matrix for each of the bodies, and where the matrices S12 and
S21 contain the coordinate transformations of the unknown reaction
wrenches that appear in the Newton–Euler equations and of the dual
accelerations of each body from the joint constraint equations,
respectively.¶

The vector Q1 is composed of a collection of subvectors, one for
each Bith body:

�Q1�i � −ωBi

Bi∕I × MBi
⋆ ωBi

Bi∕I �WBi
Bi

OBi

�
N−1

j�1

CijqJ j∕Bi
W

J j

Jj;act
OJ j

q�J j∕Bi
(11)

whereW
J j

Jj;act
�OJ j

� is the actuation wrench about the DOF of joint Jj;
WBi

Bi
�OBi

� arises due to other environmental external sources, such as

solar pressure, or gravity gradients; and the components of adjacency
matrix Cij, describing the connectivity of the bodies and joints of

SMRSs, are used to appropriately assign the correct signs to the
respective actuation wrenches per body. The vector Q2 corresponds
to the right-hand side of the kinematic constraint equations for each of
the Jj joints, such that

�Q2�i � q�J j∕Bi
ωBi

B1∕IqJ j∕Bi
× ω

J j

J j∕Bi
(12)

Given Eq. (10), it follows that

_υ� S−1
11 �Q1 − S12 ⋆ T� and T� S21S

−1
11S12

−1 S21S
−1
11Q1 − Q2

(13)

The derivative of _Γ from Eq. (4) leads to

�Γj � _Πj ⊛ ω
J j

J j∕Bi
� Πj ⊛ _ω

J j

J j∕Bi
(14)

where by differentiating ω
J j

J j∕Bi
from Eq. (3), given the solution of

dual accelerations, _υ, from Eq. (13), yields

_ω
J j

J j∕Bi
� qBi�1∕J j

_ωBi�1

Bi�1∕Iq
�
Bi�1∕J j

− q�J j∕Bi
_ωBi

Bi∕I � ωBi

B1∕I × ωBi

J j∕Bi
qJ j∕Bi

(15)

Finally, given Eqs. (4), (6), (13), and (14), we can express the time
derivative of the system state �x in Eq. (5) as

_�x � _qB1∕I
⊤ _Γ⊤ _�ωB1

B1∕I
⊤ �Γ⊤ ⊤

(16)

C. End-Effector Kinematics and Dynamics of Spacecraft Manipulators

To determine the inertial pose, rates, and accelerations of the end
effector during control design, we proceed as follows. Given Eq. (5),
the pose of the end effector(s) of SMRSs is given by the following
kinematic relationship:

qG∕I � qB1∕IqJ j∕Bi
qBi�1∕J j

· · · qJ N−1∕BN−1
qBN∕J N−1

qG∕BN
(17)

where qG∕I is the inertial end-effector pose and where qJ j∕Bi
are

state-dependent dual quaternions constructed from Γj [24]. Note that

because the end effector frame G is rigidly attached to body BN, the

time derivative of Eq. (17) simplifies to the following:

ωG
G∕I � q�G∕BN

ωBN

BN∕I
qG∕BN

(18)

The time derivative of Eq. (18) yields the end-effector dual accel-

eration, _ωG
G∕I ∈ Hv

d,

_ωG
G∕I � q�G∕BN

_ωBN

BN∕I
qG∕BN

(19)

D. Expressing the Control of SMRSs

For reasons that will become evident during controller design, we

rearrange the form of _υ from Eq. (10) such that the SMRS collection

of dual actuation wrenches is expressed as

u � WB1

B1;act
�OB1

� WJ 1

J1;act
�OJ 1

� · · · WJ N−1
JN−1 ;act

�OJ N−1
�

∈ Hv
d ×Hv

d× · · · ×Hv
d (20)

whereWB1

B1;act
�OB1

� is the actuation wrench applied on the spacecraft
base (obtained from firing thrusters and actuating momentum

exchange devices) and W
J j

Jj;act
�OJ j

� is the actuation wrench of the

Jj joint of the manipulator(s).

Re-arranging Eq. (10), _υ can be expressed as

_υ � S−1
11 I8×8 − S12 S21S

−1
11S12

−1S21S
−1
11 Q1

� S−1
11S12 S21S

−1
11S12

−1Q2 (21)

To explicitly express the control vector u in Eq. (21), we decompose

Q1 so that Q1 � Q1;non−act � Q1;act, where Q1;non−act contains the non-

linear terms and external forces applied to each body given by

�Q1;non−act�i � −ωBi

Bi∕I
× MBi

⋆ ωBi

Bi∕I
�WBi

Bi
�OBi

� (22)

and Q1;act contains all of the control dual wrenches of the system and

is given by

�Q1;act�i � biW
B1

B1;act
�OB1

� �
N−1

j�1

CijqJ j∕Bi
W

J j

Jj;act
�OJ j

�q�J j∕Bi

(23)

where bi � f1; 0; · · · ; 0g selects the actuation wrench for the space-
craft base on only the first body. Furthermore, we express Q1;act �
Qu ⋆ u, where Qu ∈ R8N×8N is given by

Qu �

I8×8 −QR q�J j∕Bi

�08×8 · · · �08×8 �08×8

�08×8 QL q�Bi�1∕J j
−QR q�J j�1∕Bi�1

· · · �08×8 �08×8

..

. ..
. ..

. . .
. ..

. ..
.

�08×8 �08×8 �08×8 · · · QL q�BN−1∕J N−2
−QR q�J N−1∕BN−1

�08×8 �08×8 �08×8 · · · �08×8 QL q�BN∕J N−1

(24)

¶For the details on the construction of S21 and S12 in Eq. (10), refer to [24].
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where, given dual quaternion q � qr � ϵqd, the matrices QL�q�� �
QR�q� � ⟦q�⟧L⟦q⟧R are shorthand for the multiplication of the
left and right dual quaternion multiplication operators ⟦ ⋅ ⟧L,
⟦ ⋅ ⟧R∶Hd → R8×8 defined as [25]

⟦q⟧L � �qr�L �04×4

�qd�L �qr�L
and ⟦q⟧R � �qr�R �04×4

�qd�R �qr�R
(25)

given that for quaternion q � �q0; �q�, the left and right quaternion

multiplication operators �⋅�L, �⋅�R∶H → R4×4 are given as

�q�L � q0 − �q⊤

�q q0I3×3 � � �q�×
and �q�R � q0 − �q⊤

�q q0I3×3 − � �q�×
(26)

where �⋅�×∶R3 → R3×3 is the skew-symmetric matrix operator of the
vector part of the quaternion, i.e.,

� �q�× �
0 −q3 q2

q3 0 −q1
−q2 q1 0

(27)

Decomposing Q1 allows for Eq. (21) to be expressed as

_υ � Φ� �x� � Ψ� �x� ⋆ u (28)

where Φ� �x� ∈ R8N is given by

Φ� �x� � S−1
11 I8×8 − S12 S21S

−1
11 S12

−1S21S
−1
11 Q1;non−act

� S−1
11S12 S21S

−1
11S12

−1Q2 (29)

and where Ψ� �x� ∈ R8N×8N is given by

Ψ� �x� � S−1
11 I8×8 − S12 S21S

−1
11S12

−1S21S
−1
11 Qu (30)

E. Relative Dual Quaternion Equations of Motion

Given two desired time-varying reference frames, one for the end
effector denoted by E and one for the base of the spacecraft denoted

by S, we can express the corresponding relative error poses as

qG∕E � q�E∕IqG∕I and qB1∕S � q�S∕IqB1∕I (31)

Thus, the derivative of Eq. (31) determines the relative kinematics
between the desired frames of the spacecraft base and end effector,
respectively, as

_qG∕E � 1

2
qG∕Eω

G
G∕E and _qB1∕S � 1

2
qB1∕Sω

B1

B1∕S (32)

where the relative dual velocities are ωG
G∕E � ωG

G∕I − ωG
E∕I , and

ωB1

B1∕S � ωB1

B1∕I − ωB1

S∕I .

Additionally, we express the relative dual acceleration of the end
effector and the satellite base with respect to the desired reference
frames E and S as

_ωG
G∕E � _ωG

G∕I − _ωG
E∕I and _ωB1

B1∕S � _ωB1

B1∕I − _ωB1

S∕I (33)

From the transport theorem, it follows that _ωG
E∕I , and _ωB1

S∕I are

given by

_ωG
E∕I � q�G∕E _ωE

E∕I − ωE
G∕E × ωE

E∕I qG∕E and

_ωB1

S∕I � q�B1∕S
_ωS
S∕I − ωS

B1∕S × ωS
S∕I qB1∕S (34)

Given the dynamics of each rigid body and the end effector of an

SMRS in Eqs. (19) and (28), respectively, we express the spacecraft

base dynamics as

_ωB1

B1∕I � Φ1� �x� � Ψ1� �x� ⋆ uB1
(35)

and the end-effector dynamics as

_ωG
G∕I � q�G∕BN

ΦN� �x� � ΨN� �x� ⋆ uJ1∶N qG∕BN
(36)

where u � �uB1
; uJ1∶N�, where uB1

and uJ1∶N are the wrenches gen-

erated from the base and manipulator, respectively.

III. Simultaneous Multibody Spacecraft
Manipulator Control Law

In this section, we derive a robust to feedback-noise-induced

chattering hybrid globally asymptotically stable feedback controller

for simultaneous pose tracking of the spacecraft base and end effector

of nonredundant and redundant multibody SMRSs. Note that, for

simplicity, we derive the control law considering an SMRS with a

single manipulator, but the resulting controller is easily extendable to

systems with more than one manipulator.
When the relative linear and angular velocities of the spacecraft

base and the end effector with respect to the desired velocities are

known, a globally asymptotically stable, time-varying, pose-tracking

nonlinear control law for both the spacecraft base and the end effector

of SRMSs that is robust-to-chattering because of process noise can be

constructed as follows.
Let matrices KB1

, KG > 0, and scalars pB1
, pG, kB1

, kG > 0, and
consider the following feedback control law:

Ψ1;N� �x� ⋆ u �
−Φ1� �x� � _ωB1

S∕I � S K−1
B1

⋆ −kB1
ωB1

B1∕S − pB1
vec q�B1∕S qB1∕S − α q0B1∕S;r 1

s s

−ΦN� �x� � qG∕BN
_ωG
E∕I � S K−1

G ⋆ −kGωG
G∕E − pGvec q�G∕E qG∕E − α q0G∕E;r 1

s s
q�G∕BN

(37)

where we define S�⋅�∶R8×8 → R8×8, such that, if a ∈ Hd and

T ∈ R8×8, then �S�T� ⋆ a�s � T ⋆ �a�s, and where vec�a� �
vec�ar� � ϵvec�ad�, given vec�a� � �0; �a� ∈ Hv and the matrix

Ψ1;N� �x� � �Ψ1� �x�;ΨN� �x��⊤ is determined from Eqs. (35) and (36).

Fig. 2 Hysteretic regulation of a unit dual quaternion q � qr � ϵqd to
the set f�1g. The state space for the real quaternion qr of the dual

quaternions is represented by the semicircle. The value of α determines
if q should be regulated to 1 or −1. The parameter δ determines the
hysteresis half-width [28].
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Let alsoα�⋅� ∈ f−1; 1g be a scalar dynamicmemory state function that

selects which pole of Hu
d to regulate in a hysteretic fashion, inspired

from the work from [28,31,32], as illustrated in Fig. 2. Specifically,

letting δ ∈ �0; 1� denote the hysteresis half-width,wedefine sgn∶R ⇉
f−1; 1g as the outer semicontinuous set-valued map:

sgn�s� �
sgn�s�; ksk > 0

f−1; 1g; s � 0;
given sgn�s� �

−1 s < 0

1 s ≥ 0

(38)

then the dynamics of α are governed by

_α � 0 when q0r α ≥ −δ

α� ∈ sgn q0r when q0r α ≤ −δ (39)

where α� denotes the value of the scalar logic function after being

updated and q0r is the scalar component of the real quaternion compo-

nent of the dual quaternion q � qr � ϵqd.
Theorem 1: Consider the rigid-body relative kinematic and

dynamic equations given by Eqs. (32) and (33), respectively. Assum-

ing that qS∕I , ω
S
S∕I , _ω

S
S∕I , qE∕I , ω

E
E∕I , _ω

E
E∕I ∈ L∞

**, and assuming

that the dynamics matrix Ψ� �x�1;N can be allocated such that,

Φ1� �x�, ΦN� �x� ∈ L∞, then the control law in Eq. (37) results in

qB1∕S�t� → 	1, qG∕E�t� → 	1, ωB1

B1∕S�t� → 0, and ωG
G∕E�t� → 0 as

t → ∞ for any initial conditions.
Proof: Consider the following candidate Lyapunov function for

the equilibrium point qG∕E � 1, ωG
G∕E � 0, qB1∕S � 1, and ωB1

B1∕S
�

0 of the closed-loop system formed by Eqs. (32), (33), and (37):

V qB1∕S ;ω
B1

B1∕S
;qG∕E;ω

G
G∕E

� 1

2
ωB1

B1∕S
s ∘ KB1

⋆ ωB1

B1∕S
s �pB1

�qB1∕S − 1� ∘ �qB1∕S − 1�

� 1

2
ωG

G∕E
s ∘ KG ⋆ ωG

G∕E
s �pG�qG∕E − 1� ∘ �qG∕E − 1� (40)

where ∘ denotes the circle product given by [33,34]

a ∘ b � ar ⋅ br � ad ⋅ bd ∈ Hr
d (41)

where a, b ∈ Hd. Note that V in Eq. (40) is a valid candidate

Lyapunov function since

V qB1∕S � 1;ωB1

B1∕S � 0; qG∕E � 1;ωG
G∕E � 0 � 0 and

V qB1∕S ;ω
B1

B1∕S; qG∕E;ω
G
G∕E > 0 (42)

for all �qB1∕S;ω
B1

B1∕S;qG∕E ;ω
G
G∕E�∈Hu

d×Hv
d×Hu

d×Hv
d \ f�1.0;1.0�g.

It is straightforward to show that the time derivative ofV in Eq. (40)

is given by

_V � ωB1

B1∕S
s ∘ KB1

⋆ _ωB1

B1∕S
s � 2pB1

�qB1∕S − 1� ∘ _qB1∕S

� ωG
G∕E

s ∘ KG ⋆ _ωG
G∕E

s � 2pG�qG∕E − 1� ∘ _qG∕E (43)

Given that if a; b; c ∈ Hd, then a ∘ �bc� � �b�s ∘ ��a�sc�� �
�c�s ∘ �b��a�s� [19], which implies that Eq. (43) can be expressed as

_V � ωB1

B1∕S
s ∘ KB1

⋆ _ωB1

B1∕I − _ωB1

S∕I
s �pB1

q�B1∕S�qB1∕S − 1�s

� ωG
G∕E

s ∘ KG ⋆ _ωG
G∕I − _ωG

E∕I
s�pGq

�
G∕E�qG∕E − 1�s

(44)

Given the relative dual quaternion equations of motion in Eqs. (32)

and (33), we can express Eq. (44) as

_V �
ωB1

B1∕S
s

ωG
G∕E

s

⊤

∘
pB1

q�B1∕S�qB1∕S − 1�s � KB1
⋆ Φ1� �x� � Ψ1� �x� ⋆ uB1

− _ωB1

S∕I
s

pGq
�
G∕E�qG∕E − 1�s � KG ⋆ q�G∕BN

ΦN� �x� � ΨN� �x� ⋆ uJ1∶N qG∕BN
− _ωG

E∕I
s

(45)

From the assumption that the dynamics matrix Ψ� �x�1;N can be

allocated such that, Φ1� �x�, ΦN� �x� ∈ L∞, and letting α�q0B1∕S;r� �
α�q0G∕E;r� � 1, then implementing the control law proposed in

Eq. (37) into Eq. (45), it follows that

_V � −kB1
ωB1

B1∕S
s ∘ ωB1

B1∕S
s
− kG ωG

G∕E
s ∘ ωG

G∕E
s
≤ 0

(46)

for all �qB1∕S;ω
B1

B1∕S
;qG∕E;ω

G
G∕E�∈Hu

d×Hv
d×Hu

d×Hv
d \ f�1.0;1.0�g,

guaranteeing that qB1∕S , ω
B1

B1∕S
, qG∕E , ω

G
G∕E are uniformly bounded,

i.e., qB1∕S , ω
B1

B1∕S
, qG∕E , ω

G
G∕E ∈ L∞.

Before continuing the analysis further, we note that in the case

when the dual quaternions qB1∕S , qG∕E switch sign due to the double
cover of pose representation, i.e., when the relative rotations

about the principle axes exceed a motion greater than 	180° (in an

axis-angle sense), the Lyapunov candidate function in Eq. (40)

becomes

V qB1∕S;ω
B1

B1∕S
;qG∕E;ω

G
G∕E

� 1

2
ωB1

B1∕S
s ∘ KB1

⋆ ωB1

B1∕S
s �pB1

�−qB1∕S−1�∘ �−qB1∕S−1�

�1

2
ωG

G∕E
s ∘ KG⋆�ωG

G∕E�s �pG�−qG∕E−1�∘ �−qG∕E−1�
(47)

where now the equilibrium point is qG∕E � −1, ωG
G∕E � 0, qB1∕S �

−1, and ωB1

B1∕S � 0 of the closed-loop system formed by Eqs. (32),

(33), and (37). Note that Eq. (47) establishes a valid candidate

Lyapunov function given that V�qB1∕S �−1;ωB1

B1∕S
� 0;qG∕E �−1;

ωG
G∕E � 0� � 0, and V�qB1∕S;ω

B1

B1∕S
; qG∕E;ω

G
G∕E� > 0 for all �qB1∕S;

ωB1

B1∕S
; qG∕E;ω

G
G∕E� ∈ Hu

d ×Hv
d ×Hu

d ×Hv
d \ f�−1;−0.1; 0�g. Hence,

depending on the sign of the dual quaternions qB1∕S , qG∕E , the iden-
tified equilibrium points of Lyapunov candidate functions given in

Eqs. (40) and (47) become either stable and unstable, or vice versa,

respectively.
A similar analysis to that given in Eqs. (43) and (44) determines

that the derivative of Eq. (47) results in
**The L∞-norm of a function u∶�0;∞� → Hd is defined as kuk∞ �

supt≥0ku�t�k. Moreover, the function u ∈ L∞ if and only if kuk∞ < ∞.
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_V �
ωB1

B1∕S
s

ωG
G∕E

s

⊤

∘
pB1

q�B1∕S�qB1∕S � 1�s � KB1
⋆ Φ1� �x� � Ψ1� �x� ⋆ uB1

− _ωB1

S∕I
s

pGq
�
G∕E�qG∕E � 1�s � KG ⋆ q�G∕BN

�ΦN� �x� � ΨN� �x� ⋆ uJ1∶N �qG∕BN
− _ωG

E∕I
s

(48)

Note that the only difference between Eqs. (45) and (48) is in the dual
quaternion terms, i.e., q��q − 1�s and q��q� 1�s, hence implement-
ing the control law proposed in Eq. (37) into Eq. (48) and noting that
the hybrid logic function α�⋅�will switch the dual quaternion signage
accordingly yields the same expression as in Eq. (46) for all

�qB1∕S;ω
B1

B1∕S; qG∕E ;ω
G
G∕E� ∈ Hu

d ×Hv
d ×Hu

d ×Hv
d \ f�−1.0;−1.0�g,

guaranteeing again that qB1∕S , ω
B1

B1∕S , qG∕E , ω
G
G∕E are uniformly

bounded, i.e., qB1∕S , ω
B1

B1∕S
, qG∕E , ω

G
G∕E ∈ L∞.

Now, since V ≥ 0 and _V ≤ 0, in either case of the dual quaternion
sign, the limit, limt→∞V�t�, exists and is finite. Integrating both sides
of Eq. (46), one obtains

lim
t→∞

t

0

− _V�τ�dτ� lim
t→∞

t

0

kB1
ωB1

B1∕S�τ�
s ∘ ωB1

B1∕S�τ�
s

� kG ωG
G∕E�τ�

s ∘ ωG
G∕E�τ�

s
dτ ≤ V�0� (49)

Since qB1∕S ,ω
B1

B1∕S , qG∕E ,ω
G
G∕E ∈ L∞ and by assumption qE∕I , _ω

E
E∕I ,

ωE
E∕I , qS∕I , _ωS

S∕I , ωS
S∕I ∈ L∞, then given Eq. (34), and that

ωE
G∕E � qG∕Eω

G
G∕Eq

�
G∕E and ωS

B1∕S � qB1∕Sω
B1

B1∕Sq
�
B1∕S , then

_ωB1

S∕I ;

_ωG
E∕I ∈ L∞.

Given that _qG∕BN
� 0 implies that qG∕BN

∈ L∞, then it follows

fromEq. (37) that u ∈ L∞, which, given Eq. (33), implies that _ωB1

B1∕S
,

_ωG
G∕E ∈ L∞. Since the integral of _V is finite and exists then, according

toBarbalat’s lemma [35], it follows thatωB1

B1∕S�t� → 0 andωG
G∕E�t� →

0 as t → ∞.
Additionally, it can be similarly shown that _ωB1

B1∕S�t� → 0 and

_ωG
G∕E�t� → 0 as t → ∞. To see this, notice that the limit

limt→∞∫ t
0� _ωB1

B1∕S
�τ� � _ωG

G∕E�τ�� dτ � − _ωB1

B1∕S
�0� − _ωG

G∕E�0� exists

and is finite. Since the time derivative of Eq. (33) is

�ωB1

B1∕S�−S K−1
B1

⋆ kB1
_ωB1

B1∕S�pB1

d

dt
vec q�B1∕S�qB1∕S−1�s

s

�ωG
G∕E�−S K−1

G ⋆ kG _ω
G
G∕E�pG

d

dt
vec q�G∕E�qG∕E−1�s

s

(50)

and given that qB1∕S , _qB1∕S , _ω
B1

B1∕S , qG∕E , _qG∕E , _ω
G
G∕E ∈ L∞, it follows

that �ωB1

B1∕S ,
�ωG
G∕E ∈ L∞. Hence, by Barbalat’s lemma, _ωB1

B1∕S�t� → 0

and _ωG
G∕E�t� → 0 as t → ∞. Then calculating the limit as t → ∞

of both sides of Eq. (33) with the control law given in Eq. (37) results
in −pB1

vec�q�B1∕S�t��qB1∕S�t� − 1�s�s → 0, and −pGvec�q�G∕E�t�
�qG∕E�t� − 1�s�s → 0, as t → ∞, which as shown in [22], is equiv-

alent to qB1∕S�t� →	 1, and qG∕E�t� → 	1. □

Remark 1: Theorem 1 states that qB1∕S and qG∕E converge to
either 	1. Note that qB1∕S � 1 and qB1∕S � −1 and qG∕E � 1 and

qG∕E � −1 represent the same spacecraft base and end-effector poses,

respectively. Such double cover representation of the pose can lead to
unwinding [29].However, since the control law inEq. (37) implements
the dynamic memory state function α, the control is guaranteed to

properly regulate the poles in the event of dual quaternion sign switch-
ing, thus avoiding the unwinding phenomenon altogether.

Remark 2:Despite the fact that Remark 1 implies that the proposed
control in Eq. (37) avoids potential unwinding during controller
execution, a hysteresis half-width δ is necessary to establish robust-
ness to noise-induced chattering, whichmay occur in the existence of
an arbitrarily small piecewise-constant noise signal that, for initial

conditions arbitrarily close to the discontinuity of q0r � 0, keeps the
state near the discontinuity, for all time [27]. Thus, global asymptotic
stability is guaranteed, although at the cost of a small region in the
state space where the hybrid control law pulls the rigid body in the
direction of longer rotation, determined from δ in the inequality in
Eq. (39). Hence, the desired direction of rotation changes only when
there is a significant benefit to switching, where “significant” is
precisely defined by δ, which is selected to be commensurate with
the anticipated noise magnitude, as represented in Fig. 2.
Remark 3: If the reference poses are constant in time, i.e.,

ωE
E∕I � ωS

S∕I � 0, then the SMRS pose-tracking controller sug-

gested in Eq. (37) becomes a pose-stabilization controller.

IV. Actuator Allocation for Control
of Multibody Systems

To simultaneously control the spacecraft base and the end effector
of an SRMS, the collection of control wrenches u in Eq. (20) must be
allocated throughout the maneuver. In Sec. III, we proved the global
asymptotic stability of the proposed control law shown in Eq. (37),
which necessitates a few key (strong) assumptions related to alloca-
tion. Specifically, although designing bounded reference trajectories
is a feasible, although nontrivial task, designing reference trajectories
such that, if exactly tracked by SMRSs, thematrixΨ1;N� �x� in Eq. (37)
would remain well-conditioned and Φ1� �x�, ΦN� �x� ∈ L∞ is insuffi-
cient to guarantee boundedness of the control, as system singularities
may occur during transients. Hence, in Secs. IV.A and IV.B, we detail
an allocation policy that can guarantee that Ψ1;N� �x� remains well-

conditioned andΦ1� �x�,ΦN� �x� ∈ L∞ in Eq. (37)whenvoid of system
singularities, and can effectively mitigate ill-conditioned dynamics
scenarios that lead to unbounded control, withminimum error during
pose tracking.

A. Dynamic System Singularities

Consider themapping from dual actuationwrenches to real-valued
actuation wrenches given by

�μj � Πj ⊛ uj (51)

where the collection of real-valued actuation wrenches is given by

�μ� ~WB1

B1;act
�OB1

� ⊤ ~WJ i
Ji ;act

�OJ i
� ⊤

··· ~WJ N−1
JN−1;act

�OJ N−1
� ⊤ ⊤

∈R�6�D� (52)

Denoting η as the right-hand side of the control law in Eq. (37),

η �
−Φ1� �x� � _ωB1

S∕I � S K−1
B1

⋆ −kB1
ωB1

B1∕S − pB1
vec q�B1∕S qB1∕S − α q0B1∕S;r 1

s s

−ΦN� �x� � qG∕BN
_ωG
E∕I � S K−1

G ⋆ −kGωG
G∕E − pGvec q�G∕E qG∕E − α q0G∕E;r 1

s s
q�G∕BN

(53)

then we can express the real-valued equivalent expression of the

control law given in Eq. (37) for nonredundant and redundant space-

craft systems as

Ψ1;N� �x�Ξ⊛ u � �Ψ1;N� �x��μ � �η (54)

KING-SMITH AND TSIOTRAS 11
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where Ξ� blkdiag�ΠB1
;Π1;: : : ;Πj;: : : ;ΠN−1�, and given a slightly

abuse the notation such that �⋅ signifies the reduction of dimension-

ality of each row of η. In order for realizable real-valued, bounded

control, �μ, to exist in Eq. (54), the matrix �Ψ1;N� �x� must be well-

conditioned. Thus, we define a singularity for an SRMS as the states,

�xs, such that rank � �Ψ1;N� �xs�� < M � 6� D.

B. Mitigating Singular Neighborhoods via Optimal Damped Least
Squares

One solution to mitigate singular neighborhoods where the matrix
�Ψ1;N�x� becomes ill-conditioned and the control inputs become

unbounded is to solve the following minimization problem [36–38]:

min �l 2
2

subject to �η � �Ψ1;N� �x��μ� �l;

�μ 2
2
≤ γ (55)

where �l denotes the error incurred in tracking, and a control input

vector �μ is only feasible if its norm is less than or equal to a maximum

permissible value γ. Using the first-order necessary conditions, the

solution to Eq. (55) is given as

�μ�λ � �Ψ⊤
1;N� �x� �Ψ1;N� �x� �Ψ⊤

1;N� �x� � λI
−1
�η (56)

where λ ≥ 0 and λ�k�μ�λk2 − γ2� � 0. Thus, the solution to Eq. (55)

ensures the following:
a) If λ � 0 and k�μ�0k ≤ γ, then �μ�0 � �μ�0 � �Ψ�

1;N� �x��η, i.e., the
pseudo-inverse, is the exact solution.
b) If λ > 0 and k�μ�λk � γ, then �μ�λ in Eq. (56) is the damped least-

squares solution.
Thus, whenever the pseudo-inverse solution yields a control norm

less than or equal to the allowable norm γ, the solution to Eq. (55) is
equal to the pseudo-inverse and the optimal damping factor is λ � 0.

The solution to Eq. (55) is related to solving the nonlinear equation

in λ in order to compute the optimal damping factor

ϕ�λ� − γ � �Ψ⊤
1;N� �x� �Ψ1;N� �x� �Ψ⊤

1;N� �x� � λI
−1
�η − γ � 0 (57)

where whenever ϕ�0� > γ, then the pseudo-inverse solution is infea-
sible. Using the singular value decomposition (SVD) of the matrix
�Ψ1;N� �x�, i.e., SVD � �Ψ1;N� �x�� � UDV⊤, it follows

ϕ�λ� �
M

i�1

σ2i ν
2
i

�σ2i � λ�2 (58)

given that U⊤ �η � �νi; : : : ; νM�⊤. Differentiating ϕ�λ� from Eq. (58)

with respect to λ, we obtain

ϕ 0�λ� � −
1

k�μ�λk
M

i�1

σ2i ν
2
i

�σ2i � λ�3 (59)

where we see that ϕ 0�λ� < 0 for λ ≥ 0. As shown in [37], ϕ 0 0�λ� > 0
for λ ≥ 0; thus, ϕ�λ� is a continuous, strictly decreasing function for
λ ∈ �0;�∞� and ϕ�λ� approaches −γ as λ tends to infinity. Hence, if
ϕ�0� > γ, i.e., the norm of the pseudo-inverse solution is greater than

γ, it follows that there is a unique λ� > 0 such thatϕ�λ�� � γ. Finally,
the damping factor can be determined by applying Newton’s method

to the iteration [37]

λk�1 � λk −
ϕ�λk�
γ

ϕ�λk� − γ

ϕ 0�λk�
(60)

1. Selective Control Dampening via Numerical Filtering

Note that the solution to the minimization in Eq. (55) is inherently
conservative in that all of the control inputs are uniformly penalized
by the same damping factor λ, even though the system singularity
may only be attributed to a single singular direction (in an SVD

sense). Hence, given a singularity in the dynamics matrix �Ψ1;N� �x�
when implementing the allocation given in Eq. (56), it may result
unnecessarily in a uniform pose-tracking error for both the spacecraft
base and end effector(s).
To this end, and without loss of generality, the damped least-

squares solution in Eq. (56) can be augmented for selective damping
of the control input by numerically filtering the control input that
corresponds to the smallest singular value σM. Specifically, we aug-
ment the optimal damped least-squares allocation solution in Eq. (56)
such that [39,40]

�μ�λ;β � �Ψ⊤
1;N� �x� �Ψ1;N� �x� �Ψ⊤

1;N� �x� � λI � β �uM �u⊤M
−1
�η (61)

where �uM is the output singular vector associated with singular value

σM of the matrix �Ψ1;N� �x� and β is given by [41]

β �
0; when k�μk22 ≤ γ

1 −
σM
Δ

2

βmax; otherwise
(62)

where βmax sets the maximum value of the β damping factor and Δ
defines the size of the singular region. Note that, after assigning βmax

and Δ, the optimal control damping factor λ is still computed using
Eqs. (58–60), given the updated selective damped least-squares
solution given in Eq. (61).
The advantage of using the numerical filtering technique outlined

in Eq. (61) is clear when we look at the norm of the solutions.
Specifically, it is clear that when no dampening is required (i.e.,
when k�μk22 ≤ γ), then the pseudo-inverse solution norm given by

�μ�0 � �Ψ�
1;N� �x��η �

M

i�1

ν2i
σ2i

(63)

yields the lowest possible value.
If the minimization in Eq. (55) does require dampening, and we

naïvely uniformly dampen the solution given the allocation policy in
Eq. (56), then the solution norm is given by

k�μ�λk �
M

i�1

σ2i ν
2
i

�σ2i � λ�2 (64)

However, if we implement the numerically filtered damped least-
squares solution given in Eq. (61), the solution norm is now given as

�μ�λ;β �
M−1

i�1

σ2i ν
2
i

�σ2i � λ�2 �
σ2Mν

2
M

�σ2M � λ� β�2 (65)

Fig. 3 Nonredundant multibody RRRS SRMS with generalized coor-
dinates Γ and end-effector frame G.
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where it is now evident that the last term on the right-hand side of

Eq. (65) is the term that induces the largest contribution to the control

input norm solution. Without the filter dampening gain β, the

damping factor λ is forced to increase uniformly, as shown in

Eq. (64), unnecessarily damping the well-behaved components in

the summation term and resulting in unnecessary tracking error.

Hence β dampens the solution along the singular direction associ-

ated with the smallest singular value of the control inputs while

simultaneously diminishing the amount of necessary dampening

from λ to well-behaved solution regions to satisfy the minimization

in Eq. (55).

In Sec. V, we implement the selective damped least-squares sol-

ution in Eq. (61) such that we guarantee the allocation of the dynam-

ics matrix Ψ1;N� �x� and that Φ1� �x�, ΦN� �x� ∈ L∞ while executing the

control lawgiven inEq. (37)when k�μk22 ≤ γ from theminimization in

Eq. (55), and when dampening is required, we determine the mini-

mum deviation from the desired reference trajectories via numerical

filtering.

0 5 10 15 20 25 30
-0.5

0

0.5

1

a) Spacecraft base relative dual quaternion

0 5 10 15 20 25 30
-10

0

10

b) Spacecraft base relative dual velocity

Fig. 4 Positive pole regulation, i.e., qB1∕S → 1 and ωB1
B1∕S → 0 as t → ∞, during pose tracking.

0 5 10 15 20 25 30

-1

0

1

a) Manipulator end-effector relative dual quaternion

0 5 10 15 20 25 30
-15

-10

-5

0

b) Manipulator end-effector relative dual velocity

Fig. 5 Positive pole regulation, i.e., qG∕E → 1 and ωG
G∕E → 0 as t → ∞, during pose tracking.

Table 1 RRRS SMRS parameters

Body Mass, kg Inertia �Ixx; Iyy; Izz�, kg=m2

B1 120 �14; 14; 14�
B2 10 �0.5; 2; 2�
B3 10 �0.5;2;2�
B4 10 �0.5;2;2�
B5 10 �1; 1; 1�
Index i, j �rBi

OJ j
∕OBi

� �rx; ry; rz�, [m] �r
J j

OBi�1
∕OJ j

� �rx; ry; rz�, [m]

1 �0; 0; 1.65� �0; 0; 0.25�
2 �0; 0.05; 0� �−1.1; 0; 0.4�
3 �−1.1; 0;−0.05� �−1.1;0;−0.2�
4 �−1.1; 0; 0� �0; 0; 0.1�

End-effector translational offset

�rB5

OG∕OB5
� �rx; ry; rz�, [m] �0; 0; 0.9�
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V. Numerical Simulations

In this section, we illustrate the global asymptotic stability of the

proposed dual quaternion control law given in Eq. (37) and selective

damped least-squares actuator allocation policy Eq. (61) on a non-

redundant RRRS†† SRMS, modeled from NASA’s Transition Exo-

planet Survey Satellite [42], as shown in Fig. 3.
The parameters of the RRRS SMRS are given in Table 1. We

denote κ� �x� as the condition number of the matrix �Ψ1;N� �x� (here

N � 5 bodies), such that κ� �x� is a measure of the RRRS SMRS

singularities. A small condition number of �Ψ1;N� �x� implies that
�Ψ1;N� �x� is well-conditioned and void of singularities.

For all of the numerical simulations given in Secs. V.A and V.B, we
choose to implement the controller inEq. (37),with the followinggains

KB1
� KG � I, pB1

� kB1
� 0.5, pG � 1, and kG � 1.5, given hys-

teresis half-half δ � 0.5 for the inequality inEq. (39), and letΔ � 0.5,
βmax � 10, and γ � 100 in the numerically filtered selective damped

least-squares allocator given in Eqs. (61) and (62) respectively.

A. Global Simultaneous SMRS Spacecraft Base and End-Effector

Pose Tracking

In this section, we illustrate pose tracking with both positive and

negative dual quaternion pole regularization to show the global

asymptotic stable behavior of the proposed control in Eq. (37). In

both cases, reference trajectories were designed for tracking such that

0 5 10 15 20 25 30

-50

0

50

a) Generalized control forces and torques applied to spacecraft base

0 5 10 15 20 25 30

-40
-20
0
20
40

b) Control torques applied to the manipulator

Fig. 6 Reduced real-value dual wrenches applied to the RRRS SMRS during pose tracking.

0 5 10 15 20 25 30

20
40
60
80
100
120

0 5 10 15 20 25 30
0

2

4

6
10-5

0 5 10 15 20 25 30

2000
4000
6000
8000
10000
12000

a) Norm of control input with damped least-squares permissible value

b) Optimal control dampening factor

c) Condition number        , of the dynamics matrix

Fig. 7 Optimal damped least-squares actuator allocation during RRRS SMRS pose tracking.

††R: revolute; S, spherical.
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the combinedmotion of the reference trajectories remainedwithin the
reachable workspace of the RRRS SMRS given in Fig. 3.

1. Positive Pole Regularization

Figures 4 and 5 illustrate the simultaneous asymptotic pose
tracking achieved by the SMRS spacecraft base and end effector of
the manipulator, respectively.
Figure 6 shows the real-valued generalized forces and torques

applied to the spacecraft base and manipulator of the system

throughout the tracking maneuver. Note that the selective damped

least-squares allocation necessitated tracking errors during the first

0 to 3.5 s of the maneuver, resulting in a nonzero value for λ, as
shown in Fig. 7b, and dampening of the numerically filtered control

u�λ;β to the permissible value γ, as shown in Fig. 7a, after which no

dampening is required, allowing for pose tracking, as shown in

Figs. 4 and 5.

Additionally, we see that the dampening of the control that occurs

in Fig. 7 allows the allocation technique to mitigate a large condition

Fig. 8 Animation of the tracking sequence of the SMRS-base and manipulator end effector. The end-effector frame G tracks reference frame E and the
spacecraft base tracks the green wire mesh (S frame).

0 5 10 15 20 25 30
-1

-0.5

0

0.5

0 5 10 15 20 25 30
-10

0

10

a) Spacecraft base relative dual quaternion

b) Spacecraft base relative dual velocity

Fig. 9 Negative pole regulation, i.e., qB1∕S → −1 and ωB1
B1∕S → 0 as t → ∞, during pose tracking.
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0 5 10 15 20 25 30
-1

0

1

0 5 10 15 20 25 30
-15

-10

-5

0

a) Manipulator end-effector relative dual quaternion

b) Manipulator end-effector relative dual velocity

Fig. 10 Negative pole regulation, i.e., qG∕E → −1 and ωG
G∕E → 0 as t → ∞, during pose tracking.

0 5 10 15 20 25 30
-1

0

1

a) Spacecraft base relative dual quaternion

0 5 10 15 20 25 30

0

20

40

b) Spacecraft base relative dual velocity

Fig. 11 Chatter-free positive pole regulation, i.e., qB1∕S → 1 and ωB1
B1∕S → 0 as t → ∞, during pose stabilization with noisy feedback.

0 5 10 15 20 25 30

-1

0

1

a) Manipulator end-effector relative dual quaternion

0 5 10 15 20 25 30
0

10

20

30

b) Manipulator end-effector relative dual velocity

Fig. 12 Chatter-free positive pole regulation, i.e., qG∕E → 1 and ωG
G∕E → 0 as t → ∞, during pose stabilization with noisy feedback.
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number of the dynamics matrix �Ψ1;N� �x�, shown in Fig. 7c, at the

beginning of the maneuver.

Finally, snapshots of an animationvisualization of the entire tracking

maneuver are shown in Fig. 8, where the complete animation can be

found online at https://www.youtube.com/watch?v=Y8Ct8N_TnWY.

2. Negative Pole Regularization

We adjust the reference trajectories for frames E and S to illustrate

pose tracking with negative pole regularization, by simply adding 2π
to the attitude references about the body-fixed z axis of each reference
frame such that we achieve an identical maneuver as during positive

pole regularization, but it now necessitates negative pole regulariza-

tion, as shown in Figs. 9 and 10. Note that because the reference

trajectories are only augmented about a single axis by 2π, the tracking

maneuver results in identical dual control wrenches, allocation, and
animation plots as shown in Figs. 6–8, respectively.

B. Pose Stabilization from Dual Quaternion Discontinuity q0r � 0

In addition to the pose tracking shown in Sec. V.A,we demonstrate
pose stabilization starting from a configuration where the spacecraft
base of the RRRS SMRS begins on the discontinuous boundary of

q0B1∕S � 0 such that we can illustrate the unwinding- and chatter-free

natureof theproposed control inEq. (37), as noted inRemarks 1–3.We
additionally inject zero-mean white Gaussian noise into the relative
dual quaternions, qB1∕S , qG∕E , to simulate the presence of noisy feed-

back and illustrate the robustness of the control to chattering.
Figures 11 and 12 illustrate how the hybrid memory state function

α robustly mitigates the noise feedback of the dual quaternions in the

0 5 10 15 20 25 30

-50

0

50

a) Generalized control forces and torques applied to spacecraft base

0 5 10 15 20 25 30
-40

-20

0

20

b) Control torques applied to the manipulator

Fig. 13 Reduced real-value dual wrenches applied to the RRRS SMRS during pose stabilization.

0 5 10 15 20 25 30

20
40
60
80

100
120

0 5 10 15 20 25 30
0

1

2

10-5

0 5 10 15 20 25 30

5000

10000

15000

a) Norm of control input with damped least-squares permissible value

b) Optimal control dampening factor

c) Condition number        , of the dynamics matrix

Fig. 14 Optimal damped least-squares actuator allocation during RRRS SMRS pose stabilization.
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case of the spacecraft base, and in particular, as shown in Fig. 11a,

escapes from q0B1∕S � 0 without noise-induced chattering.

We also see that the dual control wrenches tend to zero, chatter-
free, toward the end of the stabilization maneuver, as shown
in Fig. 13.
Finally, we note that selective optimal damped least-square allo-

cation in Eq. (61) did require some dampening of the solution near a
singular region near the beginning of the maneuver, but it was only
required during transients, as shown in Fig. 14.

VI. Conclusions

A hybrid robust to noise-induced chattering globally asymptoti-
cally stable SMRS spacecraft base and end-effector pose-tracking
control method has been proposed in this paper. By employing the
use of dual quaternions to describe the kinematics and dynamics of
SMRSs,we used Lyapunovanalysis to derive a global asymptotically
stable feedback control law, which allows for coordinated closed-
loop pose-tracking control of the system. When in the neighborhood
of SMRSs’ singularities, a damped least-squares allocation policy
computes the numerically filtered optimal damping control factor
such that it will ensure the feasibility of the solution, i.e., bounded
control, with the minimum tracking-solution deviation from the
specified trajectory. The effectiveness of the proposed method was
illustrated through numerical simulations, showing the controller’s
capability to 1) simultaneously achieve pose tracking of the space-
craft base and end effector of SMRSs, 2) mitigate singular configu-
rations during transients, 3) alleviate the unwinding phenomena via
both positive and negative pole regularization, and 4) provide robust-
ness to chattering from feedback subject to process noise.
The optimal damped least-squares control allocation policy given

in Sec. IV is but one allocation technique for passively mitigating
singularities. We chose to implement this allocation policy because
the algorithm is readily deployable for nonredundant multibody
systems, at the cost of admitting tracking error in the neighborhoods
of singular configurations. Additionally, such damped least-squares
allocation effectively can only guarantee that the norm of the collec-
tive control input does not exceed a threshold and also does not
consider self-colliding configurations into the minimization given in
Eq. (55). Hence, our future work will investigate alternative alloca-
tion techniques that can actively avoid singular configurations inher-
ent in multibody systems, guarantee individual control inputs respect
their respective limits, and simultaneously prevent self-colliding
configurations without admitting error during pose tracking.
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