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We propose a nonlinear hybrid dual quaternion feedback control law for multibody spacecraft-mounted robotic
systems (SMRSs) pose control. Indeed, screw theory expressed via a unit dual quaternion representation and its
associated algebra can be used to compactly formulate both the forward (position and velocity) kinematics and pose
control of N-degree-of-freedom robot manipulators. Recent works have also established the necessary theory for
expressing the rigid multibody dynamics of an SMRS in dual quaternion algebra. Given the established framework for
expressing both kinematics and dynamics of general N-body SMRSs via dual quaternions, this paper proposes a dual
quaternion control law that achieves simultaneous global asymptotically stable pose tracking for the end effector and the
spacecraft base of an SMRS. The proposed hybrid control law is robust to chattering caused by noisy feedback and
avoids the unwinding phenomenon innate to continuous-based (dual) quaternion controllers. Additionally, an actuator
allocation technique is proposed in the neighborhood of system singularities to ensure bounded control inputs, with
minimum deviation from the specified spacecraft base and end-effector trajectories during controller execution.
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(-)® = swap the dual and real quaternions compo-
nents of dual quaternions
(-,°) = shorthand for ordered pair representing a

quaternion, i.e., R X R3 — H

bijective mapping between the set of dual
quaternions and R?

skew-symmetric matrix operator

[]
L]

[l [k left and right quaternion multiplication,
respectively

U-Des 0Nk = left and right dual quaternion multiplication,
respectively

Subscripts and superscripts

B;,J; = ith body and jth joint
B, J; G ith body, jth joint, and end-effector frames
E S reference frames

I. Introduction

N-SPACE assembly and manufacturing (ISAM) holds the prom-

ise to refuel, maintain, upgrade, and repair existing spacecraft;
enable space construction; and actively remove orbital debris [1-3].
During an ISAM mission, involving close-proximity operations with
other space objects, the servicing spacecraft must adapt to a changing
environment and simultaneously achieve the primary mission objec-
tive(s). Although some ISAM missions may only need spacecraft-
mounted robotic systems (SMRSs) to stabilize the relative kinematics
between the servicer spacecraft and the target satellite, future mis-
sions may require multi-objective, multibody maneuvering such as
requiring a single point of contact between two satellites at the end
effector, while also controlling the spacecraft base to maintain line of
sight with Earth for communication purposes. In such cases, simul-
taneous precise end-effector control of the maneuvering satellite and
the spacecraft base is required.

Unlike the traditional, fully decoupled, 6-degree-of-freedom
(6-DOF) relative pose control problem of spacecraft [4], SMRSs have
manipulators that add an additional N-DOF to the system. This (6+N)-
DOF control problem is challenging to solve using existing conven-
tional control methods [5]. Typical approaches to solve this multi-DOF
SMRS control problem are roughly divided into two categories:
internal control and coordinated control. The first approach disables
the attitude control system of the spacecraft base, leaving the SMRS in
a free-floating state [6]. Thus, end-effector control must be planned
such that the system’s manipulator(s) achieves control objective(s)
while also compensating for the reactive motion of the spacecraft base.

Although the internal control approach saves fuel during a maneu-
ver, the approach requires significantly more complicated control
strategies and is highly dependent on the SMRS topology [7]. Addi-
tionally, due to the nonstationary base, the velocity of the end effector
is affected not only by kinematic singularities but also by dynamic
singularities [8], which are singularities due to the mass and inertia
properties of the entire system. Dynamic singularities can occur if the
generalized Jacobian matrix becomes singular [9]. As such, internal
spacecraft control strategies have been proposed to mitigate both
singularities [10].

Coordinated control, also referred to as free-flying spacecraft [6],
consists of actuating the spacecraft base and manipulator simultane-
ously. This approach allows for planning of the joint trajectories
independently from the motion of the base and is most applicable when
there are pose constraints on the spacecraft base, such as antenna
orientation for communication, or camera pointing for observation.
Free-flying approaches, however, consume valuable resources, such
as fuel.

Prior contributions to the field of coordinated control of SMRSs
are numerous and worth expanding upon. In particular, the works of
Carignan and Akin [11] present a generalizable set of equations of
motion, along with a control strategy to stabilize a satellite base
during manipulator tasks. However, that work did not address several
complications, such as self-colliding base-manipulator configura-
tions or translational constraints that may exist for both the spacecraft

base and manipulator(s). A coordinated control method that exhibits
robustness with respect to the mass properties, as well as external
disturbances, was proposed by Jayakody et al. [12], although this
algorithm necessitated that all SMRS inertial maneuvers be manually
planned and computed in advance.

In early studies, coordinated control for the SMRS was established
for the spacecraft base and manipulator independently [6,9], neces-
sitating inverse-kinematics/dynamics of the joint-space for control of
the manipulator [8,10]. However, due to the dynamic coupling
between the spacecraft base and the manipulator(s) resulting in
undesired control interactions between the respective independent
control systems [13,14], there has been a trend to move towards a
more coordinated control approach to address the system as a whole
[15]. Specifically, a control strategy for approaching and grasping a
target spacecraft by considering the servicing SMRS spacecraft base
and manipulator as a single multibody system was given in [16].
Similarly, a coordinated control procedure for end-effector tracking
and base regulation, focusing on the effects of different sampling
rates of the spacecraft base and manipulator, was presented in [17].
Moreover, Mishra et al. [18] developed a holistic coordinated control
method for a fully actuated free-flying SMRS during the approach
phase to a tumbling target that utilized a cascading interconnection of
a geometric extended Kalman filter and a geometric controller.

Similarly to the previous approaches we also propose a coordi-
nated control design for the whole SMRS, i.e., planning for both
the spacecraft base and manipulator simultaneously. Contrary to the
earlier results in this area, we use dual quaternions to model the whole
SMRS system. Dual quaternions describe both rotational motion and
translational motion of rigid bodies, and offer a comprehensive
solution to 6-DOF spacecraft dynamic modeling [19,20], estimation
[21], and controller design [22] problems. In particular, this paper
uses recent advances in dual quaternion (6+N)-DOF multibody
spacecraft modeling [23-26] to formulate a new single system coor-
dinated control framework for SMRSs.

We argue that the compact representation of the dual quaternion
formalism leads to a transparent and easy-to-derive control design.
Specifically, the dual quaternion algebra can be readily formulated
for coordinated control of SMRSs treated as a single multibody
system via a compact Lyapunov analysis. We propose a hybrid non-
linear feedback controller for coordinated control of SMRSs using
dual quaternion that achieves the following:

1) globally asymptotically stable pose tracking of both the space-
craft base and end effector(s) simultaneously,

2) robustness to chattering from feedback noise via a hybrid logic
function [27,28], and

3) mitigating the unwinding phenomenon innate to continuous-
based quaternion and consequentially dual quaternion controllers
[29,30].

The proposed dual quaternion control law does not necessitate the
inverse of joint kinematics during control design and additionally can
be formulated to passively mitigate system singularities via actuator
allocation, which may occur during the tracking maneuver, ensuring
bounded control inputs, with minimum spacecraft base and end-
effector deviation from the specified trajectories.

The rest of this paper is structured as follows: In Sec. II, we present
how to use dual quaternions to represent and model multibody space-
craft systems. Section III proves the global asymptotic stability of the
simultaneous spacecraft base and end-effector dual quaternion pose-
tracking controller, while Sec. IV compliments the proposed con-
troller with an actuator allocation technique for guaranteeing execu-
tion of the proposed control when there are no system singularities
and minimizes tracking error in the neighborhood of singularities.
Finally, Sec. V presents simulation results that verify the proposed
controller and allocation performance and efficacy, and Sec. VI
summarizes our concluding observations and future works.

II. Dual Quaternion Modeling of Multibody
Spacecraft-Mounted Robotic Systems

This section establishes both the inertial and relative dual
quaternion kinematic and dynamic modeling for SMRSs. The dual
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a) A two-arm spacecraft-mounted robotic system

Joint Jo Joint J;_1

Joint Jj 11— Joint Jn_

b) Two-arm SMRS as a rooted tree with vertices and edges

Fig. 1 N-body spacecraft-mounted robotic system description. Figure adapted from [26].

quaternion multibody kinematics and dynamics framework neces-
sary to describe SMRSs is based on [23-25]. For a review of
quaternion and dual quaternion algebras, as they pertain to rigid-
body motion, the interested reader is referred to [26].

A. Multibody Kinematics

Consider the unit dual quaternion, describing both position and
attitude or pose, of the rigid-body B given by

451 = q8/7 T GQB/zrg/o € Hy (D

where e is the dual unit defined by €* = 0 and e, the quaternion
rg /0= (0, fg /o) € H", with position vector fg /0 € R3? and the
unit attitude quaternion, represented as the ordered pair, g7 =
(¢°, ) € H*, where § = [q,,¢2.q3]" € R? is the vector part of
the quaternion and ¢° € R is the scalar part of the quaternion. Note
that the dual quaternion given in Eq. (1) is unit dual quaternion, i.e.,
qpzr =4: teqa€Hy={q€H,:q-¢=9q9" =q"q=1}, as Eq. ()
satisfies the two algebraic constraints* ¢, - ¢, = 1 and ¢, - g4 = 0,
where ¢,, gq € H are the real part and the dual part of the
dual quaternion, respectively. The accompanying dual velocity is
given by

0 = (0.9 ) +¢(0.5,0) € Hy @

where c?)g 10 f)g /0 € IR? are the angular and linear velocity vectors of
body B, respectively, expressed in frame B [20].

When we consider N-body SMRSs, like the one shown in Fig. 1,
the kinematics of the system is described by the satellite base and
the generalized joint coordinates, " £ [I'; --- I'; --- I'y_;]" € RP,
of the manipulator(s), where D = Zi":‘} d;, with d; being the DOF of
joint J I and, as such, determines the form of r;.

The joint dual velocity expressed in joint coordinates can be
determined from

Jj _ Bii * * B;
@y 15, = 95,./7,98,,/195,,,/7, ~ 97,598,197,/ (3

while the relationship between generalized speeds and dual velocities
is given by

. ‘7]
[=1®@0y (C)

where @ :R4>® x HY — R% maps a)? /5, Via the projection matrix
I1; depending on the type of joint J;, the ‘exact expression of which is
given in [23].

Therefore, given Egs. (1), (2), and (4), the minimum state-space
representation for N-body SMRSs is given by the pose of the

#For more details, refer to Lemma 58 in [20].

spacecraft base, g, /7, the rates of that base, a)g: /T the generalized

joint coordinates, I', and their rates, I, as shown below*:

i=[las " 1T (a5)" 7] € R XRPxROXRP
)

B. Multibody Dynamics

Differentiating Eq. (1) results in the kinematic equations of motion
for a unit dual quaternion as

. 1
95/ = 543/1012/1 (6)

Taking the time derivative of wg /7 in Eq. (2) yields the compact
representation of the Newton—Euler equations of motion for the rigid
body in 6-DOF motion as [26]

My % ofy + 0, x (M * 0f)1) = WE 1n(O5) ()

where the operator * denotes the multiplication of a dual quaternion
with an 8-by-8 matrix, W5 _ (O) = 7 + e7? is the sum total dual
wrench, i.e., the total force and torque applied about the center of
mass of body B, given that /% = (0, %) and 78 = (0, 78), where f5,
78 € R3 are the applied forces and torques in frame B, respectively,
and My is dual inertia matrix comprising both the mass my and the
inertia matrix I of body B.

Applying Eq. (7) to the B,;th body of SMRSs and denoting T as the
collection of all dual reaction wrenches from physical constraints
between respective bodies, as

j| *7/' jN—I
T= (WBZ/BI(OJI) WBH»I/Bi(OJf) WBN/BN—I(OJN’1)>

®)
and letting v be the collection of all dual body velocities be
B B; B
v= (wB:/I gy me/I> 9)

then we can obtain a compact form for the Newton—Euler equations
of motion of SMRSs as

Su S v Qi
R S = (10)
§[]:H, — R3 is the bijective mapping between the set of dual quaternions

and R®, and ~:HY — RS removes the zeros from a vector dual quaternion (for
details see [19]).
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where Sy; = blkdiag(Mg, -+ My, -+ Mp) consists of the dual
inertia matrix for each of the bodies, and where the matrices S, and
S, contain the coordinate transformations of the unknown reaction
wrenches that appear in the Newton—Euler equations and of the dual
accelerations of each body from the joint constraint equations,
respectively.”

The vector Q; is composed of a collection of subvectors, one for
each B;th body:

B B 53
©1); = —ff 7 x (My, * @ ) + W5 (05)
N-1
+Y Cigr Wi (07)q" (11)
ij97;/B;: " 1 a0\ T qjj/B,
j=1
where W}i’acl O J,) is the actuation wrench about the DOF of joint J ;;

ng (Op,) arises due to other environmental external sources, such as
solar pressure, or gravity gradients; and the components of adjacency
matrix C;;, describing the connectivity of the bodies and joints of
SMRSs, are used to appropriately assign the correct signs to the
respective actuation wrenches per body. The vector Q, corresponds
to the right-hand side of the kinematic constraint equations for each of
the J; joints, such that

Q) = 4 /5,08 /147,15 X @ 15, (12)
Given Eq. (10), it follows that
»=57(Q =S *T) and T=(SyS7S1) " (S21S71Q1 — Q)
13)
The derivative of I from Eq. (4) leads to

. . 7 . T
F=Mewy;+10o, , (14)

where by differentiating w?’_ /B, from Eq. (3), given the solution of
i/B;
dual accelerations, 0, from Eq. (13), yields

d)‘y] — dJBi+| *
Ji/Bi — 95.,1/7, BHI/IqBHl/Jj
—_g* - B; + B; % B; 15)
97,/8\@5,/1 + @1 X P75 )97,/5,

Finally, given Eqgs. (4), (6), (13), and (14), we can express the time
derivative of the system state x in Eq. (5) as

f=lasa]” 7 (0F,)" 7] (16)

C. End-Effector Kinematics and Dynamics of Spacecraft Manipulators

To determine the inertial pose, rates, and accelerations of the end
effector during control design, we proceed as follows. Given Eq. (5),
the pose of the end effector(s) of SMRSs is given by the following
kinematic relationship:

I3y _QR (q‘*yj/gl) (_)8><8

08><8 08><8 08><8

08><8 08><8 08><8

For the details on the construction of S,; and S, in Eq. (10), refer to [24].

Ogxg QL (qZ;M/jj) _QR(q},H/B,-H)

96/7 = 45,/197,/8,95.1/; " 9Ix1/Bxr 9B/ Tna 9078 (1T

where gg,7 is the inertial end-effector pose and where ¢ /5, are
state-dependent dual quaternions constructed from I'; [24]. Note that
because the end effector frame G is rigidly attached to body By, the
time derivative of Eq. (17) simplifies to the following:

¢ _ 3
Ofr = 453,95, /799/8x (18)

The time derivative of Eq. (18) yields the end-effector dual accel-
eration, d)g 7 € HY,

. g _ . B
D41 = 45/5,P 5y /796/ B (19)

D. Expressing the Control of SMRSs

For reasons that will become evident during controller design, we
rearrange the form of o from Eq. (10) such that the SMRS collection
of dual actuation wrenches is expressed as

Bl JI \7Nf|
u= (WB|,acl(031) WJl,acl(OJ1) WJ |,3Cl(0u7N—]))

N—

€ HY x HYx -+ xHy (20)

where Wg: act(Op, ) is the actuation wrench applied on the spacecraft
base (obtained from firing thrusters and actuating momentum
exchange devices) and WﬁfaC[(O 7,) is the actuation wrench of the

J; joint of the manipulator(s).
Re-arranging Eq. (10), © can be expressed as

v = sy (18><8 - 512(52151_11512)_152151_11)Q1

+ S71S12(S21571S12) 7' Qs 2n

To explicitly express the control vector u in Eq. (21), we decompose
Q; sothat Q = Qj non—act + Q1 act» Where Qy on_ac( contains the non-
linear terms and external forces applied to each body given by

(Ql,non—act),‘ = _wg;/z X (MB,- * mg:/z) + ng (OB,-) (22)

and Q; , contains all of the control dual wrenches of the system and
is given by

N-1
B T
Q1ac)i = biWE e (05) + Y Ciiz, 5, W3 o 07 )5 15,
Jj=1

(23)
where b; = {1,0, - --, 0} selects the actuation wrench for the space-
craft base on only the first body. Furthermore, we express Q; 4o =
Qu * u, where Q, € R¥N jg given by

(_)8><8 (_)8><8

(_)8x8 (_)8><8
(24
Q (q;;N-l /JN-Z) —Qr (q‘*71\'-1 /Bx-1 )

Ogs oL (qu/JNq )
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where, given dual quaternion ¢ = ¢, + €qq, the matrices Qp (¢*) =
Qr(9) = [4*]Llgllg are shorthand for the multiplication of the
left and right dual quaternion multiplication operators [ -],
[-x:H,; — R¥8 defined as [25]

Au Ou R Oux
lal. = |:[q o 44i| lalx = |:[q Ir 44i| ©25)
lgale g g4k la/)r

given that for quaternion ¢ = (¢°, 7), the left and right quaternion
multiplication operators [-], [-]g :H — R** are given as

q° -7 } [61" -7 }

gl = | _ - and [qlg = | _ .
- [q ¢ Iy + [G1* N G 4L —[qI*
(26)

where [[[<:R? — RS is the skew-symmetric matrix operator of the
vector part of the quaternion, i.e.,

0 —q3 92
Gr=| a 0 -q 27
-q2 4 0

Decomposing Q; allows for Eq. (21) to be expressed as
0 =®() + V() xu (28)
where ®(x) € R® is given by
D(x) = Sj <[8><8 - SIZ(SZISH812)7182151711)Q1,n0n—act
+ 571 S12(SuST{S12) ' 29

and where ¥(x) € R33N ig given by

¥(x) = sy} (18><8 = 512(S2157!'812) !9y Sﬂl)Qu (30)

E. Relative Dual Quaternion Equations of Motion

Given two desired time-varying reference frames, one for the end
effector denoted by £ and one for the base of the spacecraft denoted

From the transport theorem, it follows that d’g/p and (bg‘ﬂ are
given by

G _ - & & <
0¢r = 4qg)e (“’g/z —Wge Xwg/z)‘lg/f and

. B .
Og)r =4qp, /s (“’g/z - ‘”‘g]/s X wg/z)ql?./s (34

Given the dynamics of each rigid body and the end effector of an
SMRS in Egs. (19) and (28), respectively, we express the spacecraft
base dynamics as

g 7 = ®(X) + ¥ (%) * up, (35)
and the end-effector dynamics as
®F; = g%, (Pn(F) + N (@) * 1y, )05, (36)

where u = (ug,,uy, ), where ug and uj,  are the wrenches gen-
erated from the base and manipulator, respectively.

III. Simultaneous Multibody Spacecraft
Manipulator Control Law

In this section, we derive a robust to feedback-noise-induced
chattering hybrid globally asymptotically stable feedback controller
for simultaneous pose tracking of the spacecraft base and end effector
of nonredundant and redundant multibody SMRSs. Note that, for
simplicity, we derive the control law considering an SMRS with a
single manipulator, but the resulting controller is easily extendable to
systems with more than one manipulator.

When the relative linear and angular velocities of the spacecraft
base and the end effector with respect to the desired velocities are
known, a globally asymptotically stable, time-varying, pose-tracking
nonlinear control law for both the spacecraft base and the end effector
of SRMSs that is robust-to-chattering because of process noise can be
constructed as follows.

Let matrices K, Kg > 0, and scalars pg , pg, kg, , kg > 0, and
consider the following feedback control law:

_q>1(i) + (0?/1- =+ S(KBII) * [_kB| wg:/s - D5, VCC(qZ%]/S(qBI/S - a(q%|/5,r) 1)5)5]

\PI,N()E) *u =

by S, we can express the corresponding relative error poses as
9o/ = 4qz/79¢/1 and  qp /s = 45,798,1 31

Thus, the derivative of Eq. (31) determines the relative kinematics
between the desired frames of the spacecraft base and end effector,
respectively, as

.l . 1 s
dg/e = EQg/emg/g and ¢p, /s = 595, /@55 (32)

: i G _ .G g
where the relative dual velocities are WG, =057 —0F 7, and
B _ B B,
Wpg s =Wpg ;7 —WOg)7-
Additionally, we express the relative dual acceleration of the end
effector and the satellite base with respect to the desired reference

frames £ and S as

G _ G -G - B _ B - B
WG =057 — 07 and wB:/s—“’B:/z_ws]/z (33)

(37

_Q)N()_C) -+ q43G/By ((l)g/l— + S(Kgl) * [—kgwg/g - ng6C<qE/g(qg/g - a(qog/&r)l)s)s:l)qé/BN

where we define S(-):R®¥® — R®3  such that, if @ € H, and
T € R¥®, then (S(T) x a)® =T x (a)®, and where vec(a) =
vec(a,) + evec(ay), given vec(a) = (0,a) € H” and the matrix
Y, (X)) = [¥; (%), PN(X)]T is determined from Egs. (35) and (36).

T T
I/ iHysteresis}
/1 region
ja = —1

-1 =6 0 & 1 g

Fig. 2 Hysteretic regulation of a unit dual quaternion ¢ = ¢, + €g4 to
the set {£1}. The state space for the real quaternion ¢, of the dual
quaternions is represented by the semicircle. The value of @ determines
if g should be regulated to 1 or —1. The parameter 6 determines the
hysteresis half-width [28].
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Letalsoa(-) € {—1, 1} be ascalar dynamic memory state function that
selects which pole of HY to regulate in a hysteretic fashion, inspired
from the work from [28,31,32], as illustrated in Fig. 2. Specifically,
letting 6 € (0, 1) denote the hysteresis half-width, we definesgn: R =
{—1, 1} as the outer semicontinuous set-valued map:

Sg(s) sgn(s), s >0 ) -1 s<0
sgn(s) = given sgn(s) =
y =11}, s=0, £ 1 s>0
(33)
then the dynamics of « are governed by
a=0 when ¢la > -6
at esgn(q?) when gla < -5 (39)

B \s]"
. (“’B: /5)
V= [}

; B .B )
V= (a’sl/s)s ° (KB| * (wB:/S)S) +2pp,(g8,s =1 °q5,s
+ (“’g/s)s ° (Kg * (cbé/g)s) +2pg(gg/e = 1) © 4ge (43)

Given that if a,b,c € H,, then a © (bc) = (b)° © ((a)c*) =
(¢)® o (b*(a)®) [19], which implies that Eq. (43) can be expressed as

V= (“’gi/s)s ° (KBI x (“"g:/z —d’gl/z>s + P45, /545,15 = l)s)
S . . S
+ (wg/g) ° (Kg * (wgﬂ —wgﬂ) + P/ (dose — 1)s)
(44)

Given the relative dual quaternion equations of motion in Egs. (32)
and (33), we can express Eq. (44) as

P55 = D + K, % (9108 + V1 (5) % g, = 3);)°

(45)

(“’g/s)s Pg4ge(qgre — D + Kg * (‘IE/BN (O () + N () * uy,, )05, — “"g/z)s

where a™ denotes the value of the scalar logic function after being
updated and ¢? is the scalar component of the real quaternion compo-
nent of the dual quaternion ¢ = ¢, + €qyq.

Theorem 1: Consider the rigid-body relative kinematic and
dynamic equations given by Egs. (32) and (33), respectively. Assum-
ing that g7, wg/z, Cbg/z, qe/7 wg/z, ®%,; € L,,”, and assuming
that the dynamics matrix W(x);y can be allocated such that,
D, (x), Oy(¥) € L, then the control law in Eq. (37) results in
q5,/5(1) = 1, gg/e(1) — £1, w3 5(1) — 0, and T (1) > 0 as
t — oo for any initial conditions.

Proof: Consider the following candidate Lyapunov function for
the equilibrium point gg/c = 1, mg/g =0,¢93/s =1,and mg:/s =
0 of the closed-loop system formed by Egs. (32), (33), and (37):

B
V(q&/&wlsi/S’ ‘19/5""5/5)
Lo g
2 (“’Bi/s)s ° (KB, * ("’g:/s)s) +p5, (45,15 = 1) © (45,15 = 1)

1

T3 (“’g/s)s ° (KG * (“’g/g)s) + Pg(gg/e —1) © (gg/e — 1) (40)

where © denotes the circle product given by [33,34]
a°b=a, b, +aq by €H (C2))

where a, b € H,. Note that V in Eq. (40) is a valid candidate
Lyapunov function since
B
V(qu/S = 1,(08:/5 =0, qg/e = l,wg/g = 0) =0 and
V(qs./s,wii/qug/s,wg/g) >0 (42)
for all (‘IB./&G’S:/S’ qg/g,ﬂ)g/g) € Hj x HY) x HY x Hy\ {(1.0,1.0)}.
Itis straightforward to show that the time derivative of V in Eq. (40)

is given by

**The L -norm of a function u:[0, 00) - Hj, is defined as |ul|, =
supo||lu(?)||. Moreover, the function u € L, if and only if |u|,, < co.

From the assumption that the dynamics matrix ¥(X), y can be
allocated such that, @, (x), Oy(¥) € L, and letting a(q%] /S.r) =
a(qg /S,r) =1, then implementing the control law proposed in
Eq. (37) into Eq. (45), it follows that

i ) () ()" (05) 20
(46)

for all (g, /5.0y 5-9g/c-®F¢) € Hi X HY X HY X HY\{(1.0,1.0)},
guaranteeing that g, /s, mg: /50 46/ a)g /¢ are uniformly bounded,
i€, qg /s a)g:/s, qg/¢> wg/g € L.

Before continuing the analysis further, we note that in the case
when the dual quaternions g, /s, 4g/¢ switch sign due to the double
cover of pose representation, i.e., when the relative rotations
about the principle axes exceed a motion greater than £180° (in an
axis-angle sense), the Lyapunov candidate function in Eq. (40)
becomes

5 g
V(‘IB./&‘”BI /Sv‘Ig/s’ﬂ’g/g)

1 B s B, s
= 5(‘”51/5) ° (KB. * (0’51/3) ) + s, (—45,/s=1 °(—4p,/5s—1)

1 s
) (“’g/s) ° (Kg * (‘”g/s)s) +pg(—qg/e—1) °(—qg/e—1)
47)

where now the equilibrium point is gg/¢ = —1, wg/g =0,95/s =
-1, and wg: /s = 0 of the closed-loop system formed by Egs. (32),
(33), and (37). Note that Eq. (47) establishes a valid candidate
Lyapunov function given that V(gp, /s = _1~“’gi/s =0,9g/e =1,

wg/g =0)=0, and V(qB]/S,wg:/S,qg/g,wg/g) > 0 for all (g3, s
®F /5455, 0F) € Hi X HY X HY x HY \ {(~1,-0.1,0)}. Hence,
depending on the sign of the dual quaternions ¢, /s, qg/¢, the iden-
tified equilibrium points of Lyapunov candidate functions given in
Eqgs. (40) and (47) become either stable and unstable, or vice versa,
respectively.

A similar analysis to that given in Eqs. (43) and (44) determines
that the derivative of Eq. (47) results in
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_ - . B
P 5, 1@, s + D + Ko, % (€1 + Wi () % up, =057 )°

(48)

(wg/g)s Pg45e(dg/e + 1 + Kg x (qE/BN (On(X) + PN(X) * uy, VG678, — Cbg/z)s

Note that the only difference between Eqs. (45) and (48) is in the dual
quaternion terms, i.e., ¢* (¢ — 1)® and ¢* (¢ + 1)°, hence implement-
ing the control law proposed in Eq. (37) into Eq. (48) and noting that
the hybrid logic function a(-) will switch the dual quaternion signage
accordingly yields the same expression as in Eq. (46) for all

B ,
45,15 @5 15> oy 0,) € HY x HY X HY X HY \ {(=1.0, =1.0)},
guaranteeing again that g, /s, mg:/s, qg/¢ (og/g are uniformly
. B
bounded, i.e., g5, /s, wBl/S’ qg/¢> mg/g € L.
Now, since V > 0 and V < 0, in either case of the dual quaternion

sign, the limit, lim,_,  V (¢), exists and is finite. Integrating both sides
of Eq. (46), one obtains

i [/ =Vrar=tim [, (050) " (0850)
n kg(wg/g(r))s 0 (mg/g(r))s) dr<V(0) (49)

. B . .
Since g3, /s, @, /55 g/ wg/g € L, and by assumption g¢ 7, (ug/z,
a)g/z, qs/1» d)g/z, wg/z € L, then given Eq. (34), and that

£ _ g s _ B . B
0 = 4g/e®0e9g/e ad O /s = 4B, 5@, /sqp, /s> then @7,
%, € Ly,

Given that g/, = 0 implies that gg/z, € L, then it follows

. . . . . B
from Eq. (37) thatu € L, Whlch,.glven Eq. (33), implies thata)B:/S,
wg /e € L. Since the integral of V is finite and exists then, according
to Barbalat’s lemma [35], it follows thatwg:/s(t) - Oandwg/g(t) -
0ast— oo.

Additionally, it can be similarly shown that d)g: /S(t) — 0 and
wg /g(t) —0 as r— oco. To see this, notice that the limit
limy . (@5 /5(7) + BF6(2) dr = =@ 5(0) = F < (0) exists
and is finite. Since the time derivative of Eq. (33) is

. . d
s =5 (K Ef) * (ksl g5+ ps g [Vec (‘IZ%. /545, /5= I)S)SD

Df)e= _S(KEI) * (kgd’g/s +P9%[Ve°(‘15/5(‘19/£ ‘1)S>S])
(50)

and given that g3, /s, 45, /s» (i)g:/s, qg/s-9g/¢> a')g/g € L, it follows
that ‘.‘.’g:/s’ c'[)g/g € L. Hence, by Barbalat’s lemma, d)g:/s(t) -0
and mg /g(t) — 0 as t — oo. Then calculating the limit as t —» oo
of both sides of Eq. (33) with the control law given in Eq. (37) results
i’ —pg, vee(qy, ;s(1(gs,5(1) — 1)*)° — 0, and —pgvec(qle ()
(gg/e(®) = 1)®)* — 0, as t — oo, which as shown in [22], is equiv-
alent to g, /() »=+ 1, and qg/¢(t) - *1. O

Remark 1: Theorem 1 states that g /s and gg/¢ converge to
either =1. Note that g5 /s = 1 and g, /s = —1 and ¢gg/¢ = 1 and
qg/¢ = —1represent the same spacecraft base and end-effector poses,

Remark 2: Despite the fact that Remark 1 implies that the proposed
control in Eq. (37) avoids potential unwinding during controller
execution, a hysteresis half-width & is necessary to establish robust-
ness to noise-induced chattering, which may occur in the existence of
an arbitrarily small piecewise-constant noise signal that, for initial
conditions arbitrarily close to the discontinuity of ¢? = 0, keeps the
state near the discontinuity, for all time [27]. Thus, global asymptotic
stability is guaranteed, although at the cost of a small region in the
state space where the hybrid control law pulls the rigid body in the
direction of longer rotation, determined from ¢ in the inequality in
Eq. (39). Hence, the desired direction of rotation changes only when
there is a significant benefit to switching, where “significant” is
precisely defined by &, which is selected to be commensurate with
the anticipated noise magnitude, as represented in Fig. 2.

Remark 3: If the reference poses are constant in time, i.e.,
wg = w‘Sg 7= 0, then the SMRS pose-tracking controller sug-

gested in Eq. (37) becomes a pose-stabilization controller.

IV. Actuator Allocation for Control
of Multibody Systems

To simultaneously control the spacecraft base and the end effector
of an SRMS, the collection of control wrenches u in Eq. (20) must be
allocated throughout the maneuver. In Sec. III, we proved the global
asymptotic stability of the proposed control law shown in Eq. (37),
which necessitates a few key (strong) assumptions related to alloca-
tion. Specifically, although designing bounded reference trajectories
is a feasible, although nontrivial task, designing reference trajectories
such that, if exactly tracked by SMRSs, the matrix ¥; y(X) in Eq. (37)
would remain well-conditioned and @ (¥), ®x(X) € L, is insuffi-
cient to guarantee boundedness of the control, as system singularities
may occur during transients. Hence, in Secs. IV.A and IV.B, we detail
an allocation policy that can guarantee that ¥, x(x) remains well-
conditioned and @, (x), Py (x) € L, in Eq. (37) when void of system
singularities, and can effectively mitigate ill-conditioned dynamics
scenarios that lead to unbounded control, with minimum error during
pose tracking.

A. Dynamic System Singularities

Consider the mapping from dual actuation wrenches to real-valued
actuation wrenches given by

b =11, ®u; D
where the collection of real-valued actuation wrenches is given by
_ ~ B T (7, T = T T
H= [(WB:.act(Oﬁl)) (WJ“act(Ojl)) (WJNIL‘lacl(OJN_l)) j|

€R©+D) (52)

Denoting # as the right-hand side of the control law in Eq. (37),

_(Dl(,%) + a)?/z + S(KE}) * [—kg](l)gi/s - PBlVeC<q;§1/5(¢IBI/$ - a(q%l/&r)l)s)s]

n=

respectively. Such double cover representation of the pose can lead to
unwinding [29]. However, since the control law in Eq. (37) implements
the dynamic memory state function «, the control is guaranteed to
properly regulate the poles in the event of dual quaternion sign switch-
ing, thus avoiding the unwinding phenomenon altogether.

(53)

—Oy(X) + qg/8, (d)g/z + S(Kgl) * I:—kga)g/g - ngCC(qZ/g(qg/g - a(qg/‘g"')l)s)s])qé/BN

then we can express the real-valued equivalent expression of the
control law given in Eq. (37) for nonredundant and redundant space-
craft systems as

YNOE@u =Y N(E)i =i (54)
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where E = blkdiag(I1p, ,I1;,...,I1;,...,ITy_;), and given a slightly
abuse the notation such that - signifies the reduction of dimension-
ality of each row of 7. In order for realizable real-valued, bounded
control, u, to exist in Eq. (54), the matrix ‘i’LN()_c) must be well-
conditioned. Thus, we define a singularity for an SRMS as the states,
%,, such that rank (¥, y(%,)) <M = 6 + D.

B. Mitigating Singular Neighborhoods via Optimal Damped Least
Squares

One solution to mitigate singular neighborhoods where the matrix
‘i’l n(x) becomes ill-conditioned and the control inputs become
unbounded is to solve the following minimization problem [36-38]:

min [ #]3
subjectto 77 = ‘i‘LN()E)/} +¢,
|al5 <v (55)

where Z denotes the error incurred in tracking, and a control input
vector y is only feasible if its norm is less than or equal to a maximum
permissible value y. Using the first-order necessary conditions, the
solution to Eq. (55) is given as

i = V@ (PPN + 1) 7 (56)

where 4 > 0 and A(||zz;[|> = 7*) = 0. Thus, the solution to Eq. (55)
ensures the following:

a) If =0 and |jig|| <7, then i = puf = ‘I’1 ~&X)7, ie., the
pseudo-inverse, is the exact solution.

b)If A > 0and ||z} || = 7, then i} in Eq. (56) is the damped least-
squares solution.

Thus, whenever the pseudo-inverse solution yields a control norm
less than or equal to the allowable norm y, the solution to Eq. (55) is
equal to the pseudo-inverse and the optimal damping factoris A = 0.

The solution to Eq. (55) is related to solving the nonlinear equation
in A in order to compute the optimal damping factor

) =7 =| VN @ (PO +41) 7| -y =0 D)

where whenever ¢(0) > y, then the pseudo-inverse solution is infea-
sible. Using the singular value decomposition (SVD) of the matrix
¥, n(X), ie., SVD (W) n(X)) = UDVT, it follows

¢() = (58)

given that U7 = [v;,...,vy]". Differentiating ¢(1) from Eq. (58)
with respect to 1, we obtain

"(A 59
v = IIMIZ(U +z>3 o

where we see that ¢p’(1) < 0 for A > 0. As shown in [37], ¢'' (1) > 0
for A > 0; thus, ¢(2) is a continuous, strictly decreasing function for
A € [0, +00) and ¢(A) approaches —y as A tends to infinity. Hence, if
¢(0) > y,1i.e., the norm of the pseudo-inverse solution is greater than
7, it follows that there is aunique A* > 0 such that ¢(1*) = y. Finally,
the damping factor can be determined by applying Newton’s method
to the iteration [37]

¢(/1k)] |:¢(/1k) - J’] (60)

Aevr =4 - [ o' ()

1. Selective Control Dampening via Numerical Filtering

Note that the solution to the minimization in Eq. (55) is inherently
conservative in that all of the control inputs are uniformly penalized
by the same damping factor 4, even though the system singularity
may only be attributed to a single singular direction (in an SVD
sense). Hence, given a singularity in the dynamics matrix ¥ y(x)
when implementing the allocation given in Eq. (56), it may result
unnecessarily in a uniform pose-tracking error for both the spacecraft
base and end effector(s).

To this end, and without loss of generality, the damped least-
squares solution in Eq. (56) can be augmented for selective damping
of the control input by numerically filtering the control input that
corresponds to the smallest singular value o). Specifically, we aug-
ment the optimal damped least-squares allocation solution in Eq. (56)
such that [39,40]

iy = VIn@ (P @VIN@ + A+ pii) 7 (6D)

where iz is the output singular vector associated with singular value
oy of the matrix W, y(x) and S is given by [41]

0, when [|])3 <y

= 62
g (1 - (GKM)Z) Pmaxs Otherwise 62

where f,.« sets the maximum value of the  damping factor and A
defines the size of the singular region. Note that, after assigning /.«
and A, the optimal control damping factor 4 is still computed using
Eqgs. (58-60), given the updated selective damped least-squares
solution given in Eq. (61).

The advantage of using the numerical filtering technique outlined
in Eq. (61) is clear when we look at the norm of the solutions.
Specifically, it is clear that when no dampening is required (i.e.,
when ||j]|3 < 7), then the pseudo-inverse solution norm given by

lag] =¥ix@i| = (63)

yields the lowest possible value.

If the minimization in Eq. (55) does require dampening, and we
naively uniformly dampen the solution given the allocation policy in
Eq. (56), then the solution norm is given by

;1 = (64)

However, if we implement the numerically filtered damped least-
squares solution given in Eq. (61), the solution norm is now given as

|51 =

Fig. 3 Nonredundant multibody RRRS SRMS with generalized coor-
dinates I' and end-effector frame G.
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Table1l RRRS SMRS parameters

Body Mass, kg Inertia [1,,, Iy, 1], kg/m>
B, 120 (14, 14, 14]

B, 10 05.2.2]

B, 10 05.2.2]

B, 10 0.5.2.2]

Bs 10 [1,1,1]

i i B _

Index i, j rOIJ',/OB, =[ry, 1y, 1], [m] rgr:,“ /0, =[r,.r,, r.), [m]
1 (0,0, 1.65] [0,0,0.25]

2 [0,0.05,0] [~1.1,0,0.4]

3 [=1.1,0, =0.05] [~1.1,0,-02]

4 [=1.1,0,0] 0,0,0.1]

End-effector translational offset

where it is now evident that the last term on the right-hand side of
Eq. (65) is the term that induces the largest contribution to the control
input norm solution. Without the filter dampening gain f, the
damping factor A is forced to increase uniformly, as shown in
Eq. (64), unnecessarily damping the well-behaved components in
the summation term and resulting in unnecessary tracking error.
Hence f dampens the solution along the singular direction associ-
ated with the smallest singular value of the control inputs while
simultaneously diminishing the amount of necessary dampening
from 4 to well-behaved solution regions to satisfy the minimization
in Eq. (595).

In Sec. V, we implement the selective damped least-squares sol-
ution in Eq. (61) such that we guarantee the allocation of the dynam-
ics matrix ¥ n(X) and that @ (x), &y (X) € L, while executing the
control law givenin Eq. (37) when ||z||3 < y from the minimization in
Eq. (55), and when dampening is required, we determine the mini-
mum deviation from the desired reference trajectories via numerical

- [0,0,0.9]
F Fyo Ty, 1], [m ,0,0. '
03/05 = o v b 0] filtering.
1 I I I I I
% 0.5 «
)
S
- 0
-0.5 ! L L : !
0 5 10 15 20 25 30
Time 8]
a) Spacecraft base relative dual quaternion ¢ g, /s
! ! ——w, [deg/s] ——w, [deg/s] w; [deg/s]
10 v, [m/s] vy [m/s] v, [m/s]
%ﬁ 0 T — e ———
-10 \’\7 I I I I
0 5 10 15 20 25 30
Time [s]

B

b) Spacecraft base relative dual velocity w B/S

Fig. 4 Positive pole regulation, i.e., g5 ;s — 1 and wgi /s~ 0 as t > oo, during pose tracking.

Il Il Il

[fIg/s}
S —— {7

15 20 25 30

Time [s]

a) Manipulator end-effector relative dual quaternion g,/ g

Al T
0 =—

T T T

o il
13
-10 —— 0, [deg/s] ——w, [deg/s] ——w. [deg/s]
st 1 1 v [m/3] vy [m/3] v. [m/3]
0 5 10 15 20 25 30

Time [s]

b) Manipulator end-effector relative dual velocity w

G
G/é

Fig. 5 Positive pole regulation, i.e., g5/ — 1 and wg e ™ 0 as t - oo, during pose tracking.
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T
) 50 b
g5 0 —@Q%‘
]
-50 =
7y [Nm] 7 [Nm]
0 25 30

Time [s]

a) Generalized control forces and torques applied to spacecraft base

40 T T T T
§ ZOA M\
0 - /\é\ — 0‘
& 5200 \/‘\/ -
! T1 T2 T3
40 | | | | Ta.6 74,0 Tazp
0 5 10 15 20 25 30

b) Control torques applied to the manipulator

Time [s]

Fig. 6 Reduced real-value dual wrenches applied to the RRRS SMRS during pose tracking.

120 T T

=100 v
S 80
| 60
3 40
< 20f

Il

Il Il

0 5 10

15 20 25 30

Time [s]

a) Norm of control input with damped least-squares permissible value y

%107
T T T T T
6 - -
< 4T 7
2 -
0 | | | | |
0 5 10 15 20 25 30
Time [s]
b) Optimal control dampening factor A
12000 T T T T T T
10000 - §
= 8000 - §
g 6000 §
4000 [ §
2000 - B
| 1 ———— e 1 1
0 5 10 15 20 25 30
Time [s]

¢) Condition number (%), of the dynamics matrix ‘Pl’N(g‘c)

Fig. 7 Optimal damped least-squares actuator allocation during RRRS SMRS pose tracking.

V. Numerical Simulations

In this section, we illustrate the global asymptotic stability of the
proposed dual quaternion control law given in Eq. (37) and selective
damped least-squares actuator allocation policy Eq. (61) on a non-
redundant RRRS SRMS, modeled from NASA’s Transition Exo-
planet Survey Satellite [42], as shown in Fig. 3.

The parameters of the RRRS SMRS are given in Table 1. We
denote «(x) as the condition number of the matrix ¥, y(X) (here
N =5 bodies), such that x(x) is a measure of the RRRS SMRS
singularities. A small condition number of ¥ () implies that

‘i‘l,N (%) is well-conditioned and void of singularities.

R: revolute; S, spherical.

For all of the numerical simulations given in Secs. V.A and V.B, we
choose to implement the controller in Eq. (37), with the following gains
Kp, = Kg=1,pg = kg =05, pg=1,and kg = 1.5, given hys-
teresis half-half & = 0.5 for the inequality in Eq. (39), and let A = 0.5,
Pumax = 10, and y = 100 in the numerically filtered selective damped
least-squares allocator given in Egs. (61) and (62) respectively.

A. Global Simultaneous SMRS Spacecraft Base and End-Effector
Pose Tracking

In this section, we illustrate pose tracking with both positive and
negative dual quaternion pole regularization to show the global
asymptotic stable behavior of the proposed control in Eq. (37). In
both cases, reference trajectories were designed for tracking such that
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Time: 0s

Time: 18s

Time: 6.01s Time: 12s

Time: 24s Time: 30s

Fig.8 Animation of the tracking sequence of the SMRS-base and manipulator end effector. The end-effector frame G tracks reference frame £ and the

spacecraft base tracks the green wire mesh (S frame).

0.5 T T T T T
= 0
)
= -0.5 .
- 1 1 1 1 1 1
0 5 10 15 20 25 30
Time [s]
a) Spacecraft base relative dual quaternion ¢ 3, /s
‘ ‘ ——w; [deg/s] ——wy [deg/s] w; [deg/s]
10 v: [m/s] vy [m/s] v; [m/s]
“
Qg
13 0
-10 | | | | 1
0 5 10 15 20 25 30
Time [s]

b) Spacecraft base relative dual velocity a)g: /s

Fig. 9 Negative pole regulation, i.e., g5 /s — —1 and a)g: /s > 0ast — oo, during pose tracking.

the combined motion of the reference trajectories remained within the
reachable workspace of the RRRS SMRS given in Fig. 3.

1. Positive Pole Regularization

Figures 4 and 5 illustrate the simultaneous asymptotic pose
tracking achieved by the SMRS spacecraft base and end effector of
the manipulator, respectively.

Figure 6 shows the real-valued generalized forces and torques
applied to the spacecraft base and manipulator of the system

throughout the tracking maneuver. Note that the selective damped
least-squares allocation necessitated tracking errors during the first
0 to 3.5 s of the maneuver, resulting in a nonzero value for 4, as
shown in Fig. 7b, and dampening of the numerically filtered control
u; 5 to the permissible value y, as shown in Fig. 7a, after which no
dampening is required, allowing for pose tracking, as shown in
Figs. 4 and 5.

Additionally, we see that the dampening of the control that occurs
in Fig. 7 allows the allocation technique to mitigate a large condition
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'1 Il Il Il Il Il
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a) Manipulator end-effector relative dual quaternion g5, g
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0
w5 .
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Fig. 10 Negative pole regulation, i.e., g5/ — —1 and wg e ™ 0 as t —> oo, during pose tracking.

b) Manipulator end-effector relative dual velocity w
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Fig. 11  Chatter-free positive pole regulation, i.e., g /s — 1 and wg: /s = 0ast — oo, during pose stabilization with noisy feedback.
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number of the dynamics matrix ¥, x(%), shown in Fig. 7c, at the
beginning of the maneuver.

Finally, snapshots of an animation visualization of the entire tracking
maneuver are shown in Fig. 8, where the complete animation can be
found online at https://www.youtube.com/watch?v=Y8Ct8N_TnWY.

2. Negative Pole Regularization

We adjust the reference trajectories for frames £ and S to illustrate
pose tracking with negative pole regularization, by simply adding 2z
to the attitude references about the body-fixed z axis of each reference
frame such that we achieve an identical maneuver as during positive
pole regularization, but it now necessitates negative pole regulariza-
tion, as shown in Figs. 9 and 10. Note that because the reference
trajectories are only augmented about a single axis by 27, the tracking

maneuver results in identical dual control wrenches, allocation, and
animation plots as shown in Figs. 68, respectively.

B. Pose Stabilization from Dual Quaternion Discontinuity g2 = 0

In addition to the pose tracking shown in Sec. V.A, we demonstrate
pose stabilization starting from a configuration where the spacecraft
base of the RRRS SMRS begins on the discontinuous boundary of
q%l /s = 0 such that we can illustrate the unwinding- and chatter-free
nature of the proposed control in Eq. (37), as noted in Remarks 1-3. We
additionally inject zero-mean white Gaussian noise into the relative
dual quaternions, g, /s, qg/¢, to simulate the presence of noisy feed-
back and illustrate the robustness of the control to chattering.

Figures 11 and 12 illustrate how the hybrid memory state function
a robustly mitigates the noise feedback of the dual quaternions in the

501 ‘ ‘ ‘ _fz [N] _fy [N] fz [N]
. A 7, [Nm] 7y [Nm] 7, [Nm]
-50 1
1 1 1 1 1
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Fig. 13 Reduced real-value dual wrenches applied to the RRRS SMRS during pose stabilization.
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Fig. 14 Optimal damped least-squares actuator allocation during RRRS SMRS pose stabilization.
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case of the spacecraft base, and in particular, as shown in Fig. 11a,
escapes from q%l /s = 0 without noise-induced chattering.

‘We also see that the dual control wrenches tend to zero, chatter-
free, toward the end of the stabilization maneuver, as shown
in Fig. 13.

Finally, we note that selective optimal damped least-square allo-
cation in Eq. (61) did require some dampening of the solution near a
singular region near the beginning of the maneuver, but it was only
required during transients, as shown in Fig. 14.

VI. Conclusions

A hybrid robust to noise-induced chattering globally asymptoti-
cally stable SMRS spacecraft base and end-effector pose-tracking
control method has been proposed in this paper. By employing the
use of dual quaternions to describe the kinematics and dynamics of
SMRSs, we used Lyapunov analysis to derive a global asymptotically
stable feedback control law, which allows for coordinated closed-
loop pose-tracking control of the system. When in the neighborhood
of SMRSs’ singularities, a damped least-squares allocation policy
computes the numerically filtered optimal damping control factor
such that it will ensure the feasibility of the solution, i.e., bounded
control, with the minimum tracking-solution deviation from the
specified trajectory. The effectiveness of the proposed method was
illustrated through numerical simulations, showing the controller’s
capability to 1) simultaneously achieve pose tracking of the space-
craft base and end effector of SMRSs, 2) mitigate singular configu-
rations during transients, 3) alleviate the unwinding phenomena via
both positive and negative pole regularization, and 4) provide robust-
ness to chattering from feedback subject to process noise.

The optimal damped least-squares control allocation policy given
in Sec. IV is but one allocation technique for passively mitigating
singularities. We chose to implement this allocation policy because
the algorithm is readily deployable for nonredundant multibody
systems, at the cost of admitting tracking error in the neighborhoods
of singular configurations. Additionally, such damped least-squares
allocation effectively can only guarantee that the norm of the collec-
tive control input does not exceed a threshold and also does not
consider self-colliding configurations into the minimization given in
Eq. (55). Hence, our future work will investigate alternative alloca-
tion techniques that can actively avoid singular configurations inher-
ent in multibody systems, guarantee individual control inputs respect
their respective limits, and simultaneously prevent self-colliding
configurations without admitting error during pose tracking.
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