Cell nucleus elastography with the adjoint-based inverse solver
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Abstract

The mechanics of the nucleus depends on cellular structures and architecture, and impact a
number of diseases. Nuclear mechanics is yet rather complex due to heterogeneous distribution
of dense heterochromatin and loose euchromatin domains, giving rise to spatially variable
stiffness properties. In this work, we propose to use the adjoint-based inverse solver to identify
for the first time the nonhomogeneous elastic property distribution of the nucleus. Inputs of the
inverse solver are deformation fields measured with microscopic imaging in contracting
cardiomyocytes. The feasibility of the proposed method is first demonstrated using simulated
data. Results indicate accurate identification of the assumed heterochromatin region, with a
maximum relative error of less than 5%. We also investigate the influence of unknown Poisson’s
ratio on the reconstruction and find that variations of the Poisson’s ratio in the range [0.3-0.5]
result in uncertainties of less than 15% in the identified stiffness. Finally, we apply the inverse
solver on actual deformation fields acquired within the nuclei of two cardiomyocytes. The
obtained results are in good agreement with the density maps obtained from microscopy images.
Overall, the proposed approach shows great potential for nuclear elastography, with promising
value for emerging fields of mechanobiology and mechanogenetics.
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Introduction

The study of cellular and nuclear mechanics has gained increasing attention in recent years due
to its essential role in the regulation of gene expressions [1] affecting cellular function such as
cell migration [2-4], proliferation or differentiation [5-6]. A number of diseases have been
associated to altered cellular mechanics, as for instance, atherosclerosis and other cardiovascular
diseases [7]. To name another example, osteoarthritis [8], which is a common joint disorder
affecting millions of individuals worldwide, it is now well understood that changes in the
extracellular matrix, cell and nuclear mechanics are associated with the cartilage degeneration
[9]. Many other pathological conditions can be attributed to compromised mechanobiological
pathways that are triggered by or result into compromised cell and nuclear mechanics.

To investigate cell mechanics, a variety of methods have been developed to measure their elastic
and viscoelastic properties [10]. Among these methods, atomic force microscopy (AFM) is
commonly used to estimate the nano-indentation response of cells and relate it to their
viscoelastic properties [11-12]. However, the indentation response combines mechanical
contributions of subcellular structures including the cell membrane and nucleus which are
difficult to separate [10]. To better measure the separate mechanical contributions of each
cellular compartment, particle tracking microrheology (PTM) was also developed [13-14],
although applications to identify local elastic properties are rare.

A recent progress in the field is the introduction of optical elastography to measure full-field
deformation fields induced by subjecting the cell to adapted mechanical loading [15]. By
leveraging the theory of elastic waves [16] and assuming local homogeneity [17-18], the spatial
variation of cell elasticity could be obtained. However, these elastic maps did not resolve spatial

heterogeneities within the nucleus, whereas internal architecture of the cell nucleus show



heterogeneous distribution of dense heterochromatin and loose euchromatin domains [19-21],
normally giving rise to spatially variable stiffness properties [22]. Therefore, continued efforts to
refine these techniques and develop new ones to measure the nonhomogeneous nucleus elasticity
are essential.

Recent research has focused on characterizing the mechanical properties of euchromatin and
heterochromatin due to their significant role in gene expressions [23]. Deformation microscopy,
a non-invasive method based on high-resolution optical microscopy, has been proposed to obtain
mechanical properties of the cell nucleus. This technique overcomes the challenges of AFM
indentation as it does not require to invasively probe inside the cell nucleus [24]. While
displacement and strain fields could be acquired successfully by this method, attempts to solve
the inverse problem for relating them to local elastic properties has been limited by technical
challenges. Only a recent study used an optimization scheme to estimate the effective elastic
moduli of the heterochromatin and euchromatin regions based on pixel grayscale intensity [22],
but this method reduced the inverse problem to the identification of only two stiffness parameters
and neglected the possible heterogeneity within heterochromatin domains. There still remains a
need to develop a complete description of intranuclear mechanics, including detailed spatial
distributions of material properties, that may give insights into cellular structure, architecture,
and biological processes.

In this paper, we address this technically challenging problem with an adjoint-based inverse
solver without any a priori assumption about the distribution of stiffness properties within the
nucleus. The paper is structured as follows: In the Methods Section, we describe the
experimental setup of deformation microscopy and the inverse solver algorithm. In the

Numerical Example Section, we demonstrate the feasibility of the proposed method using



simulated datasets generated by finite-element simulations. In the Experimental Example
Section, we 1dentify the nonhomogeneous distribution of nuclear stiffness using the full-field
displacement fields measured by deformation microscopy in beating cardiomyocytes. Then we
discuss and analyze the numerical and experimental results in the Discussion Section. Finally,

we conclude the paper with a summary of our findings and suggestions for future work.

Methods

Deformation microscopy within the cell nucleus

To characterize the nonhomogeneous elastic property distribution of the nucleus, the first step is
to measure the displacement field inside a deforming nucleus using deformation microscopy. As
depicted in Fig.1, cardiomyocytes were cultured on a PDMS substrate with two different
stiffness values resembling a normal (soft, E~12kPa) vs fibrotic (stiff, E~434kPa) heart. High-
resolution images of the beating cardiomyocyte nucleus at the medial plane was captured using a
epifluorescence microscope. The two-dimensional displacement fields in the imaging plane was
quantified by deformation microscopy, a technique based upon digital image correlation and
hyperelastic warping, that utilizes the undeformed and deformed images. Further details

regarding the experimental arrangements and displacement calculation can be found in [24].
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Fig.1: Schematic representation of the deformation microscopy setup to measure the

displacement fields within the cell nucleus
Inverse problem solution algorithm

As the image of the cell nucleus is two-dimensional, the cell nucleus is assumed to be in a state
of plane stress in its medial plane. It i1s also assumed that the nucleus behaves like an

incompressible [25-26] and neo-Hookean material such as:
S=u(1-C")+ pJC (1)

where S i1s the second Piola-Kirchhoff stress tensor, x i1s the shear modulus, p denotes the
hydrostatic pressure, C=F'F, J =det (F) , Where F i1s the deformation gradient. F derives from
the displacement field u such as: F =1+ Grad u. For a compressible and neo-Hookean material,

the constitutive equation is given by:

2uv
1-2v

S=pu(1-Cc*)+ In(J)C™ @)

Where v is the Poisson’s ratio.

The inverse problem is stated as: with the measured displacement field u™ obtained by
deformation microscopy, we seek the spatial distribution of shear modulus x(x) within the

nucleus that minimizes the following objective function:

Jr(u_,,u):%L(u—u’")zdﬂ+ajg1/(v;x)2+cde (3)

where Q represents the entire domain of the nucleus and u is the displacement field satisfying

quasi-static equilibrium such as div(FS)=0 in Q and u=g in I', I being the boundary of Q. The



second term in the objective function (regularization term) is used to avoid overfitting; « is the
regularization factor that is used to control the significance of the regularization. For a very small

a , the elasticity map of the nucleus has strong oscillations and distortions, whereas it is very

smooth if o is very large.

We utilize the finite-element method to solve quasi-static equilibrium and compute u. The weak

form is defined as: Find [u, p]€M xP such that:
A (wWou,q,p)=0, VY[w,q]el/xP )
where
A (wWyu,q,p)= jﬂ Vw: PdQ+jQ q(J -1)}dQ (5)

The function spaces M and / are defined as:

wweHl(Q);w,:Oonl"u} (6)
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The domain of interest is discretized with quadrilateral elements and the corresponding

discretized formulation is stated as:

Find [uh,p}’] eM”xP " such that

A (wh,uh,qh,ph)ZO, V[W“’,q”]ef'h xP" @)



where M”, /" and P " are the finite-element subspaces of M ./ and P |, respectively. Here, we

use the standard Galerkin finite-element method. To address volumetric locking induced by the

incompressibility assumption, a stabilization term is introduced into the weak form (7) such as:

M
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where NE is the total number of finite elements across the discretized nucleus. Moreover,

2

T= represents the stabilization factor, where 7 1s the characteristic element length. a is set

2u
to 1.0. More details on the stabilization method can be found in [27].

To solve the inverse problem, we use the adjoint-based optimization method. In this case, the

Lagrangian is:

L&V ' q" p"sp) =7 (0", p)+4 " (W'u",q", p") )
where w” and ¢" can be interpreted as Lagrange multipliers. Note that if 4 * (w" u'q" ph) =0,
we obtain the following equality: L=r.

The variation of L with respect to Su”,5p",6w", 5¢" and Su may be written such as

SL=D,L su” +Dp,,L Sp” +D_,L sw” +Dq,,L 5q" +D L du (10)
where D is the directional derivative operator. Setting D _,L sw” +Dg,, L 5¢" =0 yields the state
equation:

A7 (ow'u",5¢", p")=0, V[ow".5q" |el" <P’ (11)



Eq. 11 is the forward problem, whose resolution yields u” and p” .

Subsequentially, if we set D ,L ou” +Dp,,L Sp" =0, the adjoint equation can be obtained:
h h h h.  h hy _ h h m h h h h
B (w »q sou’,6piia’, p )——(511 ,u' —u )Q . V[éu ,0p ]eIVI xP (12)

1s the linearization

=0
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&
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Eq. (12) is the adjoint equation and w” can be obtained accordingly. With the acquired state
variables u” , p" and the dual variables w" , ¢", the gradient of the objective function with

respect to the shear modulus is deduced such as:

SL=D,L u=a| M+C(W}',qh,5y;uh,ph,y) (13)

Q\/(V’,u)2+c2

where C(W"’,qh,&:;u”,p“,y) :%A ) (wh,q"’,u"’,p”,ergé'y)

=0

With the objective function and spatial variation of the objective function with respect to the
shear modulus, we can update the shear modulus distribution using the L-BFGS method [28].
This process is repeated until the objective function, or the L2 norm of gradients of the objective

function with respect to nodal shear moduli, become lower than the machine precision.

In summary, the algorithm of the inverse solver is shown in Fig.2.



Inverse algorithm

Give 1nitial distribution of material propertics
do
Solve the forward problem to obtain the computed displacement field
Calculate the objective function and its gradients with respect to shear moduli
if the objective function or the gradients are minimized

Output reconstruction results

Break
else

Update material property distribution

end

Fig.2: Inverse algorithm diagram

Numerical Examples

The proposed inverse approach for the identification of nonhomogeneous shear modulus
distribution in the cell nucleus was first tested with several simulated cases of deformation
generated by finite element method (forward problem), as shown in Fig.3. We built a finite-
element model of cell nucleus with regions of heterochromatin (H) and euchromatin (E)
following the wvalidation example introduced in [24], shown in Fig.3(b). Each domain was
assigned a different stiffness, the A and B regions having the same stiffness because they belong
to the same chromatin domain. Subsequently, the uniform tension of 500kPa along the outward
normal of the boundary was applied to the boundary of the cell nucleus, and finite-element
simulations were performed with the commercial FE software ABAQUS, while assuming an
incompressible behavior. The resulting simulated full-field displacement fields were used as

mputs for testing the inverse solver (then using simulated data instead of actual data). To account



for the unknown force information in actual nuclear deformation microscopy. we have to apply
the displacements on the entire boundary in the inverse problem. Furthermore, various levels of
Gaussian noise were added to the simulated displacement fields to simulate measurement errors.

The noise level was defined such as:

noise level = x100% (14)

where NN is the total number of nodes in the meshed nucleus, i, and u" are the exact nodal

displacement and the “noisy” nodal displacement at the /-th node, respectively.

+ Heterochromatin

- Euchromatin

(a) Image of the nucleus (b) Shear modulus distribution

Fig.3: (a) Microscopy image of the nucleus in the medial plane; (b) Finite-element mesh and

nonhomogeneous shear modulus distribution in the modeled nucleus.

The ratio between the shear modulus of the H (heterochromatin) region and the shear modulus of

the E (euchromatin) region is denoted as the H:E ratio. This ratio is assigned in the finite-element



model to simulate the nuclear displacement fields and the goal of the inverse solver is to recover

the correct ratio, namely the target H:E ratio.

When the H:E ratio is 2:1, as depicted in Fig.4, the inverse solver is able to correctly recover the
target shear modulus distribution even when the noise level 1s at 10%. However, as the noise
level increases, errors increase at the boundaries of the H domain. A similar trend can be
observed in Fig.S, where the target H:E ratio is 10:1. However, the shape of the H domain
deteriorates when the noise level exceeds 4%. As shown in Table 1, the average shear moduli in
the two regions (A and B) of the H domain are very close to the target values. The maximum
error 1s less than 5%, indicating a strong reliability of the inverse solver. These results
demonstrate the feasibility and robustness of the inversion method for characterizing
nonhomogeneous shear modulus distributions of the cell nucleus in the presence of a Gaussian

noise.
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Fig.4: The reconstructed shear modulus distribution of the nucleus for varying noise levels when

the target H:E ratio 1s 2:1
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Fig.5: The reconstructed shear modulus distribution of the nucleus for varying noise levels when

the target H:E ratio is 10:1

Table 1: Identified H:E ratios in regions A and B for the reconstruction shown in Figs.4 and 5

Noise H:E=2:1 H:E=10:1
level/% A B A B
0 2.03 2.05 10.06 10.29
2 2.02 2.00 10.06 9.99
4 2.00 1.98 9.99 10.03
6 2.01 1.90 10.13 10.08
8 2.04 1.94 0.84 9.92

10 2.09 2.00 10.34 9.81




Since the cell nucleus might be compressible [29], the influence of Poisson’s ratio on the
reconstructed results was considered. To this end, we simulated nuclear displacement fields with
Poisson’s ratio v=0.3 and checked what would be the impact on the inverse solver if we assume
that the cell nucleus is incompressible in the mverse problem (fix the Poisson’s ratio v=0.5 in
solving the inverse problem). The obtained results demonstrate that the regions of the H domain
could still be well recovered even when a wrong Poisson’s ratio is assumed (see Figs.6 and 7).
Although relative error for H:E ratio 1s larger as shown from the calculated values, the maximum
relative error in this case remains below 15% even in the presence of 10% noise (see Table 2).
This demonstrates that the sensitivity of stiffness reconstruction to the Poisson’s ratio is

relatively small.
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Fig.6: Reconstructed shear modulus distribution of the nucleus for varying noise levels when the
target H:E ratio is 2:1 and when data are simulated with a finite-element model assuming the

nucleus as compressible (v=0.3)
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Fig.7: Reconstructed shear modulus distribution of the nucleus for varying noise levels when the
target H:E ratio 1s 10:1 and when data are simulated with a finite-element model assuming the

nucleus as compressible (v=0.3)

Table 2: Identified H:E ratios in regions A and B for the reconstruction shown in Figs.6 and 7

Noise H:E=2:1 H:E=10:1
level/% A B A B
0 1.91 1.95 0.47 10.29
2 1.95 1.93 0.54 10.32
- 1.95 1.85 9.77 10.15
6 1.94 1.80 9.76 9.68
8 1.86 1.75 991 0.46

10 1.94 1.72 10.66 8.74




The reliability of the plane stress assumption necessitates validation. Therefore, we modeled a
homogeneous, incompressible 3D spherical nucleus subjected to a uniform tension of 500kPa
applied on its equatorial plane, as illustrated in Fig.8(a). The sphere was discretized into 62084
tetrahedral elements. Using the displacement fields in the equatorial plane, we identified the
elastic map with our inverse solver, as shown in Fig.8(b). We assumed that the plane was under
a state of plane stress. The reconstructed stiffness, as depicted in Figs.8(c) and 8(d), reveal that
the H:E distributions align closely with the target. The relative error for H:E ratios is kept under
1% in both scenarios. These findings suggest that the bias due to the plane stress assumption in

the identification process is not significant for a spherical nucleus.
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Fig. 8: (a) 3D spherical nucleus subjected to a uniform tension in its equatorial plane; (b) Target
stiffness map in the equatorial plane; (c) Identified stiffness distribution in the equatorial plane
when the target H:E ratio is 2:1; (d) Identified stiffness distribution in the midplane when the

target H:E ratio is 10:1.



Examples with experimental data

After validating the inverse solver using different simulated cases, we applied the technique on
displacement fields measured in the nuclei of two sample cardiomyocytes — one in physiological
and another in pathological condition. In solving the inverse problem, the bound of the shear
modulus ratio was set to [1, 30]. In Fig.9, the raw image, the displacement fields, and the strain
fields are shown. We observed that the resulting strain components can be higher than 10%. This
demonstrates that the cell nucleus undergoes a large deformation (see Fig.9(d)-(f)). Furthermore,
in Fig.9(h), the heterochromatin is primarily gathered on the left side of the cardiomyocyte
nucleus, consistently with the H domain shown through pixel grayscale intensity (see Fig.9(g)).
We also observed that the H:E distributions acquired by the pixel grayscale intensity or the
adjoint-based inverse solver are completely different from the strain fields. Thus, it is impossible
to determine the H:E distributions qualitatively based on the associated strain fields. Note that
our approach is not only able to recover the H domain as this can also be done based on pixel
grayscale intensity, but our approach can also identify stiffness heterogeneities within the H
domain itself. Table 3 reports the H:E values at three different regions. They remain within the
same range order of magnitude as the average H:E value obtained from the pixel grayscale

intensity.

For the other cardiomyocyte sample shown in Fig.10, the strain level i1s higher than what we
observed in Fig.9. Moreover, the H:E distribution identified by the adjoint-based inverse solver
(see Fig.10(h)) is different from the one acquired by the pixel grayscale intensity (see Fig.10(g)).
More specifically, there is a region of very low stiffness in the center of the nucleus in both H:E

distributions but its location and dimension are different in Figs.9(g) and 9(h). Nevertheless, the



H:E ratios were in the same range order as the average H:E ratio of [22] (see Table 3). The

difference between the H:E ratio in region A and the average H:E ratio of ref [22] is only 4%.

(b)

displacement field

strain field

image of the nucleus

elasticity map

H:E=5.03 reconstructed result

Fig.9: Spatial maps of stiffness were computed in the deforming nucleus using inverse methods.
(a) Microscopy image of the first nucleus of interest; (b) and (c) Displacement fields measured
across the nucleus; (d)-(f) Strain fields computed across the nucleus after differentiation of the
displacement fields; (g) H and E domains across the nucleus as shown by pixel grayscale

intensity [22]; (h) Stiffness map reconstructed with our inverse solver.
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Fig.10: Spatial maps of stiffness reveal heterogeneous material properties in the deforming
nucleus. (a) Microscopy image of the second nucleus of interest; (b) and (c) Displacement fields
measured across the nucleus; (d)-(f) Strain fields computed across the nucleus after
differentiation of the displacement fields; (g) H and E domains across the nucleus as shown by

pixel grayscale intensity [22]; (h) Stiffness map reconstructed with our inverse solver.

Table 3: Estimated H:E ratios at regions A, B and C for the two nuclei shown in Figs.8 and
9(Note that H:E ratio predicted in [22] was solved by an optimization scheme assuming H and E

domains are homogeneous)

H:E=5.03122] H:E=2.51122]
A B C A B C
H:E 5.41 4.71 3.33 2.60 2.32 2.67




Discussion

This paper presents a novel approach to identify the stiffness distribution within the cell nucleus
from high-resolution displacement map. The approach relies on an in-house adjoint-based
inverse solver. Since the cell nucleus undergoes deformations with strains larger than 5%, the
inverse solver is based on the finite deformation theory. The major achievement is to reconstruct
heterogeneous stiffness distributions without any a priori assumption about the distribution of
heterochromatin and euchromatin. Results show that the stiffness distribution in the
heterochromatin domain 1s not homogenous, which can be attributed to the variations in density
across the cell nucleus. Another important observation is that the boundaries of the
heterochromatin domain cannot be detected from the strain fields due to the amplification of the
noise level when computing strain by differentiating the measured displacement fields. The
inverse solver addresses these effects by the regularization term. Another important point is that
the shear modulus distribution can only be mapped up to a multiplicative factor as only
displacements are measured but no force value is available. To obtain quantitative information
on the shear moduli of the cell nucleus, tractions at the boundary would need to be measured, or
alternatively, if the density of the cell nucleus is known, its spatial variation of shear moduli

could be quantified by measuring dynamic deformations [30-31].

The stiffness map of the cell nucleus exhibits significant sensitivity to image quality, thereby
presenting an opportunity to enhance the resolution of the stiffness map through improvements
in deformation microscopy resolution. Figs 8-9 demonstrate that the adjoint-based inverse solver
effectively captures the topology of the heterochromatin region, akin to the information obtained

from pixel grayscale intensity. Consequently, employing the pixel grayscale intensity distribution



as the initial estimation in the optimization problem holds potential for enhancing both

convergence performance and accuracy.

Although the cell nucleus may typically be assumed to be incompressible or nearly
incompressible as most living matter [32], experiments using micropipette aspiration have shown
significant volumetric strain in the nucleus [29]. Therefore, it was important to investigate the
impact of the Poisson’s ratio on the identification of nucleus stiffness. Figs.6-7 show that the
identified stiffness maps are in agreement with the shape of the heterochromatin domain
independently of the Poisson’s ratio. Moreover, the estimated H:E stiffness ratio is only slightly
influenced by the Poisson’s ratio. This observation is consistent with a previous study at the

tissue scale [33].

In this study, we employ the assumption of plane stress. Given the typically spherical or oval
shape of the nucleus, as referenced in [34], the application of either 2D plane stress or plane
strain assumptions may be mappropriate. This could potentially induce a bias in the identification
process. While Fig.8 suggests that the error generated by the plane stress assumption is notably
minor, the identification bias could escalate with variations in shape or loadings. Consequently,
to overcome this limitation, the implementation of three-dimensional full-field measurements

becomes essential in the future.

Our future work will primarily focus on improving the resolution of deformation microscopy and
the accuracy of the inverse scheme to increase the robustness and reliability of the proposed
method. In this study, the nucleus was assumed to follow the simple neo-Hookean model, and
further research is needed to investigate whether the nonlinear elastic behavior of the cell nucleus
follows a more complex hyperelastic model under very large deformations. Furthermore,

understanding the relationship between the nuclear stiffness distribution and distribution of



epigenetic modifiers [35] 1s crucial because a denser chromatin region is most likely enriched
with gene repression specific epigenetic modification. More investigation i1s needed to relate
nuclear stiffness and gene expressions to potentially uncover new insights into the role of nuclear

mechanics in cellular biology.
Conclusion

In this paper, we combined deformation microscopy based displacement map and an adjoint-
based inverse solver to nondestructively identify the nonhomogeneous stiffness distribution of
the cell nucleus. The feasibility of the proposed method was successfully demonstrated using
simulated data generated by finite-element simulations. Our results indicate that the distribution
of the heterochromatin domain can be characterized by the inverse solver, with a maximum
relative error of less than 5% for the H:E ratio. We also found that the reconstructed
heterochromatin domain is not sensitive to the Poisson’s ratio. Finally, we obtained the nuclear
stiffness distribution in beating cardiomyocytes using deformation microscopy-based
displacement map and previously found two-domain elastography map. Overall, the proposed
approach shows great potential for nuclear elastography, with promising directions to investigate

mechano-genetics and mechano-epigenetics.
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