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Abstract CCS Concepts: - Mathematics of computing — Solvers; «
We study the binomial, trinomial, and Black-Scholes-Merton Theory of computation — Shared memory algorithms.

models of option pricing. We present fast parallel discrete-
time finite-difference algorithms for American call option
pricing under the binomial and trinomial models and Amer-
ican put option pricing under the Black-Scholes-Merton
model. For T-step finite differences, each algorithm runs
in O ((Tlog® T)/p + T) time under a greedy scheduler on p
processing cores, which is a significant improvement over
the © (T?/p) + Q (T log T) time taken by the corresponding
state-of-the-art parallel algorithm. Even when run on a sin-
gle core, the O (T log? T) time taken by our algorithms is
asymptotically much smaller than the © (T?) running time
of the fastest known serial algorithms. Implementations of
our algorithms significantly outperform the fastest imple-
mentations of existing algorithms in practice, e.g., when run
for T ~ 1000 steps on a 48-core machine, our algorithm for
the binomial model runs at least 15X faster than the fastest
existing parallel program for the same model with the speed-
up factor gradually reaching beyond 500x for T = 0.5 x 10°,
It saves more than 80% energy when T = 4000, and more
than 99% energy for T > 60, 000.

Our algorithms can be viewed as solving a class of nonlin-
ear 1D stencil (i.e., finite-difference) computation problems
efficiently using the Fast Fourier Transform (FFT). To our
knowledge, ours are the first algorithms to handle such sten-
cils in o (T?) time. These contributions are of independent
interest as stencil computations have a wide range of appli-
cations beyond quantitative finance.
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1 Introduction

Option pricing or computing the value of a contract giving
one the right to buy/sell an asset under some given con-
straints is one of the most important computational prob-
lems in quantitative finance [6]. Rapid changes in financial
markets often lead to rapid changes in asset prices which
makes the ability to quickly estimate option prices essential
in avoiding potential financial losses [51].

An option is a two-party financial contract that gives one
party (called the holder) the right (but not an obligation) to
buy/sell (i.e., exercise) an asset from/to the other party (called
the writer) at a fixed price (called the strike/exercise price)
on or before an expiration date (called the exercise/maturity
date). A call option gives the right to buy whereas a put
option gives the right to sell. Also, based on the expiration
date and the settlement rule, there are two major styles of
options: European and American. A European option can
only be exercised at the expiration date while an American
option can be exercised at any time before that.

The option pricing problem asks for assigning a value
or price to an options contract based on the calculated prob-
ability that the contract will be exercised at expiration. The
theoretical value of an option [16, 18, 42, 62, 75, 101] is de-
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Table 1. Notations

Symbol Meaning Symbol Meaning
S stock price K strike price
R risk-free rate of return Vv volatility
Y dividend yield E time to expire
T number of time steps (in days)

BOPM-AMERICAN-CALL( S, K, R, V, Y, E, T)

1 At — E[T,u— e’V d e 1/u,p — (e® VA _ gy /(u - d)
m— e RAM g0 — mp, s; « m(1-p)
2. for j < 0to T do Grj « max (o, Su?-T - K)
3. fori « T — 1 downto 0 do
parallel for j « 0 to i do
Gij — max (s0Gis1,j + 51Gis1, j41, SU
4. return Gy

2j=i _ )

Figure 1. Standard looping code for pricing American Call
options under the Binomial Option Pricing Model.

Analytical solutions to the option pricing problem are
sometimes available, particularly for European options [52,
86, 99, 100]. But they are not available for American options
except for a limited number of cases with significant con-
straints (e.g., American call options with zero or one dividend
[100] and perpetual American put options [69, 100]). This
difficulty in finding closed-form analytical solutions for most
option pricing problems makes computational approaches
the only path forward. The main computational approaches
to solving the option pricing problem include the binomial
tree method [58], the finite difference method [6, 50, 64, 97,
104, 110], and the Monte Carlo method [37, 66, 111].

The binomial tree method works by tracing the option’s
value at discrete time steps over the life of the option. For
a given number of time steps T between the valuation and
expiration dates of the option, a binomial tree of height T
is created with the leaves storing the potential prices of the
asset at the time of expiration. Then one works backward
to compute for each t € [0, T — 1] the value of the nodes at
depth t of the tree (each giving a possible price at time step
t) from the values of the nodes at depth t + 1 using a simple
formula. The value computed for the root node is the required
option value. Straightforward iterative implementation of
this method runs in © (T?) time on a single processing core
and © (T?/p + TlogT) time on p cores (see Figure 1 and
Table 2). It provides a discrete-time approximation of the
continuous-time option pricing in the Black—Scholes model
and is widely used by professional option traders.

The trinomial tree method extends the binomial method
by accounting for the possibility that an asset value remains
the same after a time step [21]. With only a constant factor
increase in run-time it provides more precise predictions
than the binomial model.

The finite-difference method approximates the continuous-
time differential equations describing the evolution of an
option price over time by a set of discrete-time difference
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Table 2. Parallel Algorithms for American Option Pricing:
The bounds hold for call option pricing under the bi-
nomial and trinomial option pricing models, and put
option pricing under the Black-Scholes-Merton model.
Here, T = number of time steps, p = number of processing
cores, and M = cache size. Also, 7, = running time on p
cores, and thus 77 (Work) and 7, (Span) represent run-times
on one core and an unbounded number of cores, respec-
tively. Under a greedy scheduler, 7, = © (71/p + 7), which
is asymptotically optimal.

. Work Span Parallel Running Time
H Algorithm ‘ 7(T) ‘ To(T) ‘ 7,(1)
Nested Loop (standard, 72
see Figure 1) O (TlogT) e (7 +Tlog T)
Tiled Loop T T 72 T I
(cache-aware) [23] o (1?%) O (TM+ ;log37)| © (7 +TM + 3; log M)
Recursive Tiling
(cache-oblivious) O (Th&:3) Ie) (LZ + Tlog, 3)
[23, 40, 41, 107] ’
H Our Algorithms ‘ O (Tlog? T)‘ e (T) ‘ <) (L’f T T) H

equations and then solves them iteratively under appropriate
boundary conditions. The explicit finite difference method
divides the lifetime of the option into T discrete time steps
and then uses the potential values of the asset at time step T
(the time of expiration) to compute the asset values at each
time step ¢t € [0, T —1] from the asset values at time step ¢ +1
based on the difference equations (i.e., update equations or
stencils). The final option value is found at time ¢ = 0. Similar
to the binomial tree method, the iterative implementation of
this method runs in © (T?) time on a single processing core
and © (T?/p + Tlog T) time on p cores. Other finite differ-
ence methods used for option pricing include implicit finite
difference and the Crank-Nicolson method [32].

The Monte Carlo method works by generating random
backward paths the asset price may follow starting from
the time of expiration and ending at the time of valuation.
Each of these paths leads to a payoff value for the option
and the average of these payoff values can be viewed as
an expected value of the option. This method is used for
pricing options with complicated features and/or multiple
sources of uncertainty that other methods (analytical, tree-
based, finite difference) cannot handle [37], but is usually not
competitive when those methods apply as the convergence
rate of Monte Carlo method is sublinear [55, 77]. They are
hard to develop for some options, such as Black-Scholes
Model for the American put option, but still many results
exist on Monte Carlo methods [22, 53, 66, 111].

Our Contributions. We present three shared-memory par-
allel algorithms for American option pricing — call option
under the binomial and trinomial option pricing models
and put option under the Black-Scholes-Merton model. All
three algorithms run in © ((T log?T) /p + T) time on p pro-
cessing cores which is a significant improvement over the
Q (T?/p + T log T) time taken by the state-of-the-art parallel
algorithms, where T is the number of time steps. When run
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on a single processing core they run in © (T log” T) time
compared to the © (T?) time taken by the fastest existing
serial algorithms. We use the Fast Fourier Transform (FFT)
to speed up the computation. Table 2 summarizes the results.

We use the work-span model [30] to analyze the perfor-
mance of parallel programs. Let 7, be the running time on
a p-processor machine under a greedy scheduler. Then 77
and 7 are called work and span, respectively. The parallel
running time 7, = © (71/p + 7).

The following proposition, which follows easily from the
complexities given in Table 2, notes that each of our parallel
algorithms runs asymptotically faster than the correspond-
ing fastest existing parallel algorithm for every value of p.

Proposition 1.1. Let 7;,(0101) (T) be the running time of any

existing algorithm from Table 2 on p cores, and let ‘7;("6“’) (T)
denote the same for our algorithm. Then for every (positive)

value of p under a greedy scheduler: 7;,("”’) (T)=o (7;,(old) (T)).

We have implemented our algorithms and compared their
running times, energy consumption, and cache performance
with those of the option pricing implementations available in
the PAR-BIN-0Ps framework [23] developed recently in 2022.
Implementations of our algorithms run orders of magnitude
faster, consume significantly less energy, and usually incur
far fewer L1 cache misses than those implementations.

How Our Algorithms Differ from Existing FFT-based
Option Pricing Algorithms. FFTs have been used for Eu-
ropean option pricing before. European option pricing is
simpler than American option pricing, e.g., the European
version of the American option pricing algorithm shown
in Figure 1 can be obtained by replacing the assignment
G;j « max (soGis1,j + $1Gis1 j+1, Su® ™" = K) in Step 3 with
the simpler assignment G; j < $0Gi11,j + 51Gi41,j+1. The ab-
sence of the ‘max’ operator in this assignment makes an
efficient evaluation of the doubly-nested loop in Step 3 easier.
Black, Scholes, and Merton [18, 75] showed that the Euro-
pean option can be calculated using a Parabolic PDE with
infinite domain constraint. By using the Fourier transform,
one gets an integral form for European options. To obtain the
numerical value from the integral form, one uses numerical
integration [24, 47] which can be sped up using FFTs.
There are also approximation results [25, 68, 80, 129] based
on repeated Richardson extrapolation [90, 91] and FFT for
numerical integration in American options. However, even
if the extrapolation is repeated only for a constant number
of times for an option that expires in E days, the approxima-
tion takes Q ((E/At) Nlog N) time when N grid points are
used to discretize the price of the underlying asset and E/At
exercise points are placed with every pair of consecutive ex-
ercise points being At days apart. Observing that T = E/At
corresponds to the number of discrete time steps in the fi-
nite difference formulation of the problem, we can rewrite
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the complexity as Q (TN log N). Usually, N > T is used in
practice [80], which reduces the complexity to Q (T?logT).

A major weakness of the existing FFT-based numerical
integration approach above is that a closed-form expression
for the characteristic function of the log-price must be known
for the technique to work. However, our approach does not
need to know such a closed-form expression as we apply
FFT to speed up stencil/finite-difference computations and
not numerical integration. Thus, our approach will work on
a larger set of option pricing problems. We are not restricted
to infinite-domain problems either [28].

Implications for Nonlinear Stencil Computations. Our
option pricing algorithms can be viewed as solving a class
of nonlinear 1D stencil computation problems asking to
evolve a grid of size © (T) for T time steps, in © (T log” T)
work (i.e., serial time) or © ((T log” T)/p + T) parallel time
on p processing cores. As stencil algorithms, they are of
independent interest.

A stencil is a pattern (equation) used to update the values
of cells in a spatial grid and evolve the grid over a given
number of time steps. The process of evolving cell values
in the spatial grid according to a stencil is called a stencil
computation [40]. The finite-difference method performs a
stencil computation with an update equation derived from
the differential equations used as a stencil. Stencils are widely
used in various fields, including mechanical engineering
(83, 87, 89, 105, 126], meteorology [10, 56, 57, 78, 92, 93],
stochastic and fractional differential equations [67, 123, 124],
chemistry [9, 45, 65, 79, 102], electromagnetics [8, 59, 106,
113], finance [27], and physics [15, 33, 43, 48, 73, 82, 109, 115,
116], image processing [85, 114, 118].

Standard stencil algorithms perform ® (NT) work to evolve
a grid of size N for T time steps, they include looping al-
gorithms, tiled looping algorithms [7, 14, 19, 20, 49, 71, 72,
119-122, 125], and recursive divide-and-conquer algorithms
[40, 41, 61, 81, 96, 107, 108].

A stencil is called linear if it computes the value of a cell
at time step t as a fixed linear combination of cell values
at time steps before ¢, otherwise it is called nonlinear. For
1D linear stencils Ahmad et al. [2] provide FFT-based al-
gorithms that take O (T log T) serial time for periodic grids
and O (T log? T) serial time for aperiodic grids, assuming
that the input grid is of size © (T).

The stencils we encounter in our current work are
nonlinear because they do not use a linear combination of
cell values from prior time steps for updating a target cell,
provided that the resulting value is smaller than the value of
a function computed solely based on the spatial coordinates
of the target cell and other option pricing parameters (e.g.,
see Step 3 of Figure 1). Such a stencil divides the space-time
grid into two disjoint regions — in one region only the linear
combination applies, while in the other only the function
value applies. However, the problem is that the boundary
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(b)

Figure 2. (a) A 3 time-step binomial tree. (b) A binomial tree of 7 time steps embedded in an 8 x 8 grid. An upward arrow
has a price change factor of 1/u while a rightward arrow has a price change factor of u.

between these two regions is not known ahead of time and
the location of the boundary may move as the time step ¢
progresses. As aresult, Ahmad et al’s [ 2] results for linear
stencils do not apply. To the best of our knowledge, ours
are the first algorithms for handling such stencils running
in time subquadratic in T.

Organization of the Paper. The rest of the article is orga-
nized as follows. In Sections 2, 3, and 4 we describe our re-
sults for the binomial, trinomial, and Black-Scholes-Merton
option pricing models, respectively. Experimental results
comparing implementations of our algorithms with the state
of the art are given in Section 5. In Section 6, we list a couple
of example applications of our techniques in areas beyond
quantitative finance. Finally, Section 7 concludes our paper.

2 American Call Option under the
Binomial Option Pricing Model

2.1 Binomial Option Pricing Model (BOPM)

BOPM [31, 88, 98] is a simple discrete-time option pricing

model without using advanced mathematical tools. It is a

paradigm of practice.

BOPM encodes the various sequences of prices the asset
might take as paths in a binomial tree. Each node in the tree
represents a possible price at a certain time and the nodes
at two successive layers in the tree represent prices at times
that are apart by some fixed time step At. The prices increase
or decrease by some factor after every At time. Figure 2(a)
gives an example of a 3-time-step binomial price tree that is
produced by moving from the valuation day to the expiration
day. Denote the initial price by S. The price in the next time
step (i.e., after At time) can go up to f, =S - u or go down
to f; = S - d, where the up factor u = " VAt and the down
factor d = 1/u are determined by At and volatility V.

Denote the node value as Xpoge = S X uN¢~Na where N,
and Ny are the numbers of ticks up and down, respectively.
The final nodes of the tree represent the prices on the expira-
tion date. Given the strike price of K, the price one can call
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or put before the contract expires, i.e., the exercise value
of each node will be max(Xpo4. — K, 0) for a call option and
max(K — Xpode, 0) for a put option.

The risk-neutral valuation of the binomial value is per-
formed iteratively backward. Under the assumption of risk
neutrality, the value of the option today is its expected fu-
ture payoff discounted at the risk-free rate of R. Let us num-
ber the nodes in each layer of Figure 2(a) from top to bot-
tom by successive integers starting from 1. Then the node
values X, ; and X, j.; of a layer representing some time
t can be used to compute the binomial value of the j-
th node in the layer representing time t — At as follows:
e R (p-X; j+ (1= p) - X; j1), where, p = (eRA —d) /(u - d)
[52]. Denote m = e RA 55 = m(1 — p), and s; = mp. Then
the binomial value of that node is: s - Xy ; + s1 - Xy j4+1. For
options on stocks paying a continuous dividend yield Y,
p= (B —d)/(u-d).

The value at each node will be equal to its binomial value
for European options and the larger of its binomial value
and exercise value for American options.

The binomial tree of T time steps can be embedded in a
(T +1) x (T + 1) grid. Figure 2(b) shows an example.

Definition 2.1. Let G;; be the grid value in row i € [0,T]
and column j € [0,T] of the (T +1) X (T + 1) grid G. Let
Gz-r;een =S uzf‘i — K, and let Gl-rjd = S()Gi+1,j + slGi+1,j+1 if
i € [0,T), and 0 otherwise. Then

red i red green
{Gi’ “d ifGred > G
green
G/,
Lj

otherwise.

We say that cell (i, j) of G is red provided G;; = Gl.rj.d,
and green otherwise. We show in Section 2.2 that all red
cells in G form a single contiguous region and all green cells
form another. A single boundary divides the two regions. We
analyze the properties of this red-green divider in Section
2.1 which we will exploit to design an efficient algorithm for
American call options in Section 2.3.

Gij=
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2.2 Properties of the Red-Green Divider

As shown in the example in Figure 2(b), we assume that a
binomial tree for T time steps is embedded ina (T+1) X (T+1)
grid G with the root at the bottom-left corner G[0, 0] and
the leaves in the top row G[T,0..T].For 0 < j <i < T, the
two children of the binomial tree node at G[i, j] are stored
at G[i+1,j] and G[i + 1, j + 1]. The arrow from G[i, j] to
G[i+1,j+1] represents a price change factor of u while the
one from G[i, j] to G[i+1, j] represents a price change factor
of d = 1/u. So, the entire tree occupies only the upper-left
triangular part of the grid.

Lemma 2.2 shows that within the upper-left triangle of G,
if a cell is green then the cell to its right is also green.

Lemma 2.2. (ci,j+1 =G-;{;‘;§") — (G,.,j =Gg;“”), for

i€[0,T] andje [0,i—1].
Proof. Observe that 2 + s;u = mp (u- %) + 7

Let 5i,j = Girj-d - GZ;-een, A,”j = 5i,j+1 - 5i,j> 51"1' = Gi,]' -
Gg;een and Ai,j = 5i,j+1 — 5i,j~

We will use mathematical induction to show that A; ; < 0
forall0 <i<Tandj<i.

As 87 j =K — Su®~T and thus A7 j = Su¥ T (1-u?) <0,
the claim holds for i = T.

Now suppose that the claim holds for some given i+1 < T,
ie, Ay <0for0<j<i+1<T. Since Ajyqj <0, there
exists a ji;1 such that Gy = G?:fj." when j > jij;; and
Git1,j = Gl.’ffj when j < j;, where ji;; is the largest j such
that §;41,; > 0. Then,

— VAL

— for j > ji, Ai+1,j = §i+l,j+1 - §i+l,j =0-0=0;
= for j = jit1, Ai+1,j = Oit1,j41 — Oi+1,j = —0is1,j < 0;and
— for j < jist, Ai1j = Aiprj < 0.

Thus, A4y < 0 forall j € [0,i+1).

Hence, A,‘,j = (Si,j+1 - (Si,j

_ green green
= Sk \ | Gist, k1 — Gi+1,j+k+1) - (Gi+l,j+k - Gi+1!j+k))
ke{0,1}
green _ green green _ ~green
+ Sk (Gi+1,j+k+1 Gi+1,j+k) + Gi,j GiJ+1
ke{0,1}

= SOAiH,j + slAi+1,j+1 + Syt (eiYAt - 1) (uz - 1) <0

Therefore, A;; < 0Oforall0 <i<Tandj <i.

Because A;; < 0, there exists a j; such that when j > jj,
Gy = Gz;een and when j < j;, G;; = Gi’jd, where j; is the
largest j such that §; ; > 0. Now if G; ; = G?;een, we have j >

_ Ggreen D

Ji-and thus j+1 > j;, which implies that G; j.1 = g

Lemma 2.3. ( ij“") = (WIS (1-e M) > K
(1 - e Ra))
Proof. By G; j = Gz;ee" and Def. 2.1, we know S - u* " - K >

2j- (i+1
50Gis1j +$1Gis1 ja1> Gisrj = S+ u? =) — K and Giyy jug >
S . 20D -(G+1) _ g

Gi’j =
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Denote z = S - u*~ and use above inequalities:
z—K > so(S - ™) _K) 4 5,(S - 20D+ _ )
= m(S - w2~ Ky 4 mp((S - w206 _ gy
_ (S ¥ _gy)

(1/u) (mz — mKu +mp (u* - 1) 2)

1 m(e®-V)At _ 1
=- (mz - mKu + —1“(1,12 -1)z
u u—1
u
1
=- (—mKu +u- eiYAtz) = —¢ RMK 4 g7V
u

Then we have z(1—e Y2 > K(1-e RM) — 42/7i5(1 -

e YA > K(1 - e KA Thus, (Gi,j = Ggree") —

ij
(u¥71S(1 - e YAl > K(1 - e RAY)) o

Lemma 2.4 shows that within the upper-left triangular
area of G if a cell is green then the cell below it must also be
green, and Lemma 2.6 shows that if a cell is red then the cell
diagonally left below it must also be red.

— Ggreen) N (Gi,j _ Gg;een) forie

Lemma 2.4. (GHU i)

[0,T —1] and j € [0,1].

Proof. (Gi+1,j - Ggreen) — (Gi+1,j+1 — Ggreen

i+1,j i+1,j+1
2.2.Letz = Su*~' then Giy1; = £ —K and Gy j41 = uz — K.

) by Lemma

re z
Gi’jd = 50Gis1,j + $1Gis1,j41 = m(1 — p) (; - K) +mp(uz — K)

— gy (1 _ e—YAt) + Sy _ ge—RA

<-K (1 - e’RAt) + Su¥ i — Ke RAL (by Lemma 2.3 at Gi4q,j)
_ 2j—i _ ~green
= Su®/ ’—K—Gi’j

Hence, the statement holds. O

Lemma 2.5. Foranyi € [0,T —2] and j < i:G;j > Giyp js1.

Proof. We use mathematical induction. For i = T —2, we have
our base case: G; ; > max(0, Su?~'—K) = Gr js1-

Suppose it holds true for all G4, j for some giveni > T -3
andj € [0, l] Then Gi,j = max(son,j + S1Gi+1,j+1, Suzj—i -
K) > max(soGiss j+1 + $1Gis3 juz, SUZ " = K) = Giggju1. O

m

= G{fii,jﬂ) = (Gi,j =
[0,T—1] and j € [0,i — 1].

Lemma 2.6. (Gi+1,j+1 Gi’j.d) fori

— d : . —

Proof. Giy1,js1 = Gl.rfl’ﬂ1 and Lemma 2.4 gives: Gizj+1 =
red green  _ o 2j—i _ .

Gl.Jrz’jJr1 > Gi+2’j+1 =Su K. Now, by Lemma 2.5, G; j >

Gi+2,j+1 > Syt K = Gig;een. So, Gi,j = Gir;d. O

The following corollary says that at every time step all red
cells appear to the left of all green cells, and the boundary
between the green and the red regions either remains the
same or moves by one cell towards the left every time step.
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Corollary 2.7. Foreveryi € [0,T — 1], there exists an index
Jji € [0,i] such that all cells G; ; with0 < j < j; are red and
all (possibly zero) cells G; j with j; < j < i are green. Also, for
i€[0,T—2], ji+1 = 1= ji < jin-

Proof. Follows from Lemmas 2.2, 2.4, and 2.6. O

2.3 Algorithm for American call option pricing
under BOPM

The solution space is a right-angle isosceles triangle with
base length T. We know the boundary between the red and
green cells in the first row of the triangle (solution space);
however, we do not know the locus of the boundary in the
subsequent rows of the triangle. We compute the boundary
in the following process.

We partition the triangle (solution space) into trapezoids
(see Figure 3a). We compute the first trapezoid with its first
row as the same first row of the triangle (the solution space)
and solve this newly created trapezoid (we explain how we
create a trapezoid and solve it later in this section). Then
we compute the second trapezoid with its first row as the
last row of the first trapezoid and solve the second trapezoid.
This process continues until we are left with a right-angle
isosceles triangle with base size at most VT. We solve this
triangle iteratively by doing quadratic work in time O (T).
We describe the process in detail below.

Partitioning the Triangle into Trapezoids. Let abc be
a right-angle isosceles triangle with base length T (see Fig-
ure 3a). Let #; be the number of red cells on the line segment
ab. They will appear consecutively from a to some point p.
Let d be the point in the line segment ac that is ¢ distance
from a. Draw a horizontal line from d; let the line intersect
bc at point e. Therefore, we get a trapezoid abed with height
£; with ¢ red cells in its first row.

We solve trapezoid abed, which means that we compute
the values of all red cells in its last row and thus find the
boundary point g between red and green cells in de. Let
|dg| = £. Let f be the point on dc that |df| = £,. We draw
a horizontal line fg, and get the second trapezoid degf of
height #,. The last row of the trapezoid abed becomes the
first row of degf.

We solve the trapezoid degf and all subsequent trapezoids

created following the approach described above until we are
left with a right-angle isosceles triangle xyc with base length
at most VT. We compute all cell values of xyc iteratively in
O (T) time.
Solving a Trapezoid. Solving a trapezoid means given all
red cell values in its first row computing all red cell values
in its last row. Let abcd be a trapezoid of height £ with ¢ red
cells from a to q in its first row (Figure 3b). Let r be the point
on ad such that |ar| = | £/2]. Draw a horizontal line from r
intersecting bc at v. To compute the values of red cells on
dc, we (1) compute all red cells on rv, and (2) using the cell
values on ro, compute all red cells on dc.
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(1) Computing all red cells on rv. Let ro and qd intersect t. We
compute the cell values on line segment r¢ using the FFT-
based stencil algorithm of [2] which are guaranteed to be red
because of Corollary 2.7. Note that |rt| = |pt| = [ £/2]. The
newly created trapezoid pbot has height [£/2], and there
are | £/2] red cells in its first row. We solve trapezoid pbot
recursively similar to trapezoid abcd, and thus compute all
red cell values on tv.

(2) Computing all red cells on dc using the red cells on rv. Let
point u be on the boundary between red and green cells on
rv. Draw a line from u parallel to gd intersecting dc at w.
Next, draw a line through w perpendicular to dc intersecting
rv at point s. We compute all red cells on dc in exactly the
same way we computed the red cells on ro above. We first
use the FFT-based stencil algorithm of [2] to find all cell
values on dw, and then recursively solve trapezoid svcw of
height [£/2] to find all red cell values on wc.

Solving trapezoids of height O (1) (base case). We solve trape-
zoids of height O (1) in O (1) work and span using the naive
looping code (e.g., see the pseudocode in Figure 1).

The following theorem gives the work and span of our
algorithm.

Theorem 2.8. Our algorithm solves the American call option
pricing problem under BOPM in O (T log® T) work and O (T)
span, where T is the number of time steps.

Proof. Let {1(¢f) and {»(¢) be the work and span, respec-
tively, for solving a trapezoid of height ¢ recursively. We call
the O (¢ log ¢)-work FFT-based periodic algorithm [2] twice
and solve two smaller trapezoids of height £/2 each recur-
sively. Hence, {1(£) = 21([¢/2]) + ©(£log¢) = O (t’log2 f).
Observe that although the two smaller trapezoids must be
solved one after the other (e.g., svcw after pbot in Figure 3b),
each of them can be solved in parallel with the FFT-based
algorithm (of span O (log £ loglog ¢) [2]) called to find the
red cells on its left (on line segments rt and dw, respectively).
Hence, {(¢) = 2{([£/2]) + O (logtloglog¢) = O (¢).
Suppose that we solve k trapezoids of heights ¢, &, . . ., &,
respectively, using the above process as shown in Figure
3a. Let ¥; and ¥, be the total work and span, respectively,
for solving those k trapezoids followed by the time needed

to solve the leftover triangle of height O (\/T ) Then ¥,
(Z1<i<k O (£log? &;)) + O (T) = O (Tlog?T). Since those

trapezoids and the triangle are solved in sequence, we have

¥oo = Ticisk O (6) + O (V) = 0 (D).

]

3 American Call Option under the
Trinomial Option Pricing Model

The trinomial options pricing model (TOPM) encodes the

possible sequences of prices for a given asset within the

structure of a trinomial tree (see Figure 2(c)). It expands on

BOPM by allowing the value of an asset to remain unchanged
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Figure 3. American call option pricing under BOPM

after a given time step. TOPM was introduced by Boyle [21],
and while it is less popular than the BOPM, it provides for the
possibility of more accurate predictions than BOPM at the
cost of only a constant factor blowup in runtime when using
naive O (T?) methods. Langat, Mwaniki, and Kiprop showed
that TOPM converges to the same solution as Black-Scholes
with half as many time steps [63]. TOPM is also equivalent
to the explicit finite difference method [52].

TOPM carries over many properties from BOPM, e.g.,
Xpode = S X uNe~Nd gince the number of “remain the same”
moves does not factor into the price. Here u = eV\/ZTt, and
d = 1/u. The exercise value in TOPM is max (X4 — K, 0).

The transition probabilities can be expressed as p, =

e(R=Y)At/2_\J7y | 2 - e(R-Y)At/2y\ 2
(o ) = (V) and e =1

pa, which are alternate forms of those given in [52].

Let m = e RM sy = mpy,,s1 = mpo, sz = mpga. Let G;
denote the grid value in the row i € [0,T] and column
Jj € [0,2i] of the (T + 1) x (2T + 1) grid G. Let G{*" =
S-u/7" — K, and let G;j.d = Ykeio12) SkGistjk if i € [0,T),
and 0 otherwise. Then similar to BOPM:

d . d green
Gy = G5 1fGl.’j. > G
J G'Z;een, otherwise.

In the full version of the paper [4], we show that the TOPM

grid shows properties similar to the BOPM grid, that is, in

every row all red cells appear first in contiguous locations
followed by all green cells, and with every time step the

red-green boundary moves by at most one cell to the left.

This allows us to use a similar algorithm to that given for
BOPM (Section 2.3) with the identical work and span.

4 American Put Option under the
Black-Scholes-Merton Model
4.1 Black-Scholes-Merton Pricing Model (BSM)

BSM is a mathematical method to calculate the theoretical
value of an option contract. The option pricing problem is
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transformed into a partial differential equation (PDE) with
variable coefficients. An explicit formula for the price can
be obtained assuming a log-normal distribution of the asset
price. Note that the limit of the discrete-time BOPM approxi-
mates the continuous-time BSM under the same assumption.
While BOPM utilizes simple statistical methods, BSM re-
quires a solution of a stochastic differential equation.
Denote stock price at time ¢ by S(#). BSM claims that

there is a deterministic relation between the option price
and the stock price and time. This means that there is a
deterministic function o(¢, x) for option price x and time
t such that: X(t) = v(t,S(t)), where X(t) represents the
value of the option at time t. Now BSM derives that v(t, x)
satisfies the following two-area classical form:

%(t, x) + rx%(t,x)
o(t,x) =4 7 +%02x2%(t, x)
K —x,

Lifx > L(T—1t) W
if0<x<L(T-t)

where L(0) = K, 22(t, L(T — t)*) = (¢, L(T - 1)”) = -1,
ando(t,L(T-t)") =o(t,L(T—t)")for0 <t < T.
It is equivalent to satisfying the following:

. %(t, x) + rx%(t, x)

= 2
+10%x* 25 (1, x)

Lif0 < x < L(T - 1)
o(t,x) =47 e
K —x,

(2)
ifx>L(T-t)

where, t € [0,T], Recall that at the maturity time T, the
option price (call option case) will be X (T) = max(S(T) —
K,0) = (K -S8(T))*.

It also means that v(T, x) = (K — x)* on the boundary.

Therefore, the goal becomes solving Equation (1) or In-
equality (2). For more details on how the BSM model is for-
mulated or why the complementary form is equivalent to the
classical form, see [26, 100, 112]. We show the two areas are
contiguous and find properties of their boundary in Section
4.2, which can be exploited by our algorithm in Section 4.3.
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4.2 Properties of the Two-Area Boundary

Note that Equation (1) includes dimensional variables. First,
we find nondimensionalized forms of Equations (1) and (2).
Lets =In%, 7 = 16%(T - 1), 9(z,s) = go(t,x), L(1) =

_ 9 _ x dv P _ x* dw
L(T —t)and 0w = Gz.Then. o T Ko ok = Ko
xd0 % _ _ 2 &
Kox’ ar =~ Ko? at*

Applying Equation (1), and 9(z, s) satisfes the following:
(- 1)9

5( +28(z,5) -

1-eé°,

(T s)

)), if s > L(7)

o(z,5) = ®)
if s < L(1)

It also satisfies the dimensionless complementary form
after plugging into Inequality (2):

1 (a)— 1)
o(r,s) =4 @ as2 2(t,s) —

1-—eé’,

2(z,5)

T(T, )), if s < L(1)

(4)
if s > L(7)

where, L(0) = 1 and 9(s,0) = max(1 — €°,0). Consider an
approximation ;' of 9(nAr, kAs) and use the following finite-
difference approximations (where, 0 denotes o(nAr, kAs)):

n+1
k 1

90 U U A0 Vg, T Uy 9% - 20
or At as 2As (As)2

T os?
Now plug it into Equation (3) to obtain these two regions:

5

(1—wAT Z(AAT)Z)U+ R
ifk>L
Z)n+l Z At + h(w 1) Ar) on > (5)
k he gy (97 2 k+h
1— ks, ifk <L
where, L = LUntDAT) opd 02 = max(1-ek3,0) for all integer

k. It also satisfies the following condition by discretizing
Equation (4):

(1 — wAT — (ZAA&) o+ kT

ot > 5 ( 4 =) A_T) n PUKS ©6)
k he{-11} (As)? 2 As ~
1— ekds, ifk>1L

Similar to the BOPM for American option, we define the
green zone and the red zone:

Definition 4.1. We call that v}’ is in the green zone when
kAs < L(nAt), otherwise it is in the red zone.

To apply Equations (5)-(6), we need to determine the form
of L((n+1)Ar) which has no analytical form, although it has
asymptotic results [5] or approximation results [127, 128].
Instead we can use the following theorem from [26]:

Theorem 4.2 ([26]). The early exercise boundary curve L(7)
is monotonically decreasing.
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Theorem4.3. Leta = (AAST)2+(w—1)%,b (As)l —(w-1 As,
¢=1—a—-b— wArt, and k;, be the largest integer such that
kn < %. Then0 < k, — kpy1 <1 whena,b,c > 0.

Proof. We first prove that k, — k,+1 > 0. Suppose that this is
not true. Then we will have: I:((n +1DA7) 2 kpy 2 kp+1>
I:(nAr), which contradicts Theorem 4.2.

Now we prove that k, — k,+; < 1. Because k, is in the
green zone, we will have the following:

e > (1 - wAr—a— b)og~

ek"AS) +a (1
1) +b (e‘As - 1)) >0

(k,,fl)As)

n _ —
”k,,—l

2(1—@Ar—a—b)(l—

14 avy L+ boy” -
e(kn+1)As)

+b (1 —e
= wAT (1 - ek"As) + eknds (a (eAs -
1—ekn DA 5 (1 — wAT—a-1) (1 —e

a (1 - e(k")As) +b (1 —e

n+1

(kn—l)As)

=

(k,,-z)As)

Considering 0T, we first observe that:

1 = e(kms

_ 1 _ (kn72)As n
=1—-e 2V _

n _ (kn-1)As _n
Uk —2 1—e Vg,
Now we show that v"” is in the green zone. Suppose that

it is in the red zone. Then

ol = (1-wAt—a-b) (1 - e<kn—1>As) ta (1 e(kn)As)
+b (1 e(kn—Z)As) <1 - lkn=Ds
which leads to a contradiction because v"“ should be >

1—elkn=1DAs By the definition of k,,1, we must have k.1 >
kn, — 1, completing the proof of the theorem. O

In this theorem, we require a, b, ¢ > 0 which is necessary
for stability of the finite difference scheme. The notion of
stability in numerical differential equations is a crucial aspect
of numerical analysis. It is about ensuring that the numerical
solution of a differential equation behaves in a consistent
and predictable manner, especially over long time intervals
or fine spatial resolutions. The stability condition is related
to the CFL (Courant-Friedrichs-Lewy) condition [110] for
wave equations.

4.3 Algorithm for American put option pricing
under BSM

Our algorithm for the American put option under BSM is
similar to our algorithm for the American call option under
BOPM as described in Section 2.

Observe that we will have to perform a nonlinear stencil
computation based on the update equation (5). For T time
steps we use a Tx2T space-time grid with the time dimension
being T and spatial dimension 2T. According to Equation (5),
we compute a cell Z)ZH of that grid, where n+1 represents the

time coordinate and k the spatial coordinate, from cells vk 0
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Figure 4. American put option pricing under BSM

vy, and v | using a 3-point stencil provided k > W.
Otherwise, we set it to 1 — e¥25, In the first case, cell UZH will

be in the red zone, and in the second case it will be in the
green zone. As explained in Section 4.2, the entire boundary
between these two zones in not known ahead of time, but
it moves by at most one cell toward the green region with
every time step. The goal of the algorithm is to compute the
value of the central cell of the spatial dimension at time step
T (e.g., apex x of the isosceles triangle abx in Figure 4b).

We solve the problem by decomposing the isosceles trian-
gle abx into a sequence of the isosceles trapezoids of geomet-
rically decreasing heights (see Figure 4b) and solving (i.e.,
find the cell values of top base given those of the bottom base
of the trapezoid) them one by one from bottom to top until
we reach a leftover triangle of small constant size which we
solve naively to find the value of x. We solve an isosceles
trapezoid recursively by decomposing it into two smaller
trapezoids of smaller height and solving them recursively
and also using the FFT-based algorithm from [2] solve two
subtrapezoids that are entirely composed of red cells (see
Figure 4a). Details of this algorithm are given below.

We first show how to solve an isosceles trapezoid abdc
(as shown in Figure 4a) of height I, bottom/longer base (ab)
length 4¢, and Zcab = zdba = 45°. Thus, the top/shorter base
dc is of length 2¢. Solving trapezoid abdc means computing
the values of the cell at the top base cd given the values of
the cells at the bottom base ab.

If £ < 10, we naively solve abdc and identify the location
of the red-green boundary point p in ¢d in O (1) time. If
¢ > 10, we find the row hn at height g and calculate all the
cells in it. To do so, we recursively solve the trapezoid egl j
which is found as follows:

1. Let f be the point on ab that lies in the green region,
but f + 1 is in the red region. Identify the points e and j to
the left and right of f, respectively, such that |ef| = |fj| = ¢.

2. Construct an isosceles trapezoid with base eg, height g
and top jl such that /jeg = /lge = 45°. Thus, |jl| = ¢.
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After solving the trapezoid egl j, we have the cell values in
jl and the location of the red-green boundary point & in jI.
We can easily calculate the values of cells in hj since those
values are independent of time and depend only on spatial
coordinates. Finally, we use the FFT-based algorithm of [2]
to solve the trapezoid fbnl, where the point [ is found by
forcing fbnl to be an isosceles trapezoid.

Therefore, we can get the values of the cells in /n and thus
the values of all the cells in hAn. Then we can calculate the
values of the cells in dc given the values of the cells in hn
exactly the same way as we computed the cell values in hn
from those in ab.

Now, let us go back to Figure 4b to see how to compute the
value of the apex x. After solving abdc as above to calculate
the cells in cd, if |cd| < 10, we naively calculate the value of
x, which takes O (1) time. But if |cd| > 10, we recursively
apply our trapezoid algorithm to solve a smaller trapezoid
with the bottom base cd.

Theorem 4.4. Our algorithm solves the American put option
pricing problem under BSM in O (T log® T) work and O (T)
span, where T is the number of time steps.

Proof. The proof is very similar to that of Theorem 2.8. Let
{1(£) and {(¢) be the work and span, respectively, for solv-
ing a trapezoid of height ¢ (see Figure 4a). We recursively
solve two trapezoids of height £/2 each in sequence but use a
parallel FFT-based algorithm [2] on each half, both size © (¢).
Since the FFT-based algorithm performs O (flog¢) work
in O (log ¢loglog ) span, we can write: {1(f) = 2{; (£) +
O (tlogt) if £ > 10 and O (1) otherwise. Similarly, (. (¢) =
20 (g) + O (logtloglog¢) if £ > 10 and O (1) otherwise.
Solving, {;(£) = O (£log” ¢) and {w(£) = O (¢).

Now, let ¥;(T) and ¥ (T) be the work and the span,
respectively, of solving an isosceles triangle of base size
T (see Figure 4b). Then ¥;(T) = ¥; (1) + O (Tlog®T) if
T > 10 and O (1) otherwise. Also, ¥, (T) = ¥, (%) +0(T)
if T > 10 and O (1) otherwise. Solving, ¥;(T) = O (T log® T)
and ¥, = O (T). O
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Table 3. Experimental setup on a Stampede2 [1] SKX node.

Processor Intel Xeon Platinum 8160 (Skylake / SKX)
Cores 24 cores per socket, 2 sockets (total: 48 cores)
Cache sizes L132KB/ core, L2 1 MB / core, L3 33 MB / socket
Memory 144GB /tmp partition on a 200GB SSD
Compiler Intel C++ Compiler (ICC) v18.0.2
Compiler flags | -03 -xhost -ansi-alias -ipo -AVX512
Parallelization | OpenMP 5.0
Thread affinity | GOMP_CPU_AFFINITY
Table 4. Legends used in plots and tables.
Legend Meaning
fft-bopm, our FFT-based implementations for BOPM, TOPM,

fft-topm, fft-bsm and BSM, respectively
BOPM implementations from PAR-BIN-OPs based
on QUANTLIB and Zubaer et al’s work,
respectively
our parallel looping implementations for TOPM

and BSM, respectively

gl-bopm, zb-bopm

vanilla-topm,
vanilla-bsm

5 Experimental Results

In this section, we present an experimental evaluation of
our algorithms and compare them with the fastest existing
solutions. Our experimental setup is shown in Table 3. The
legends used in our plots are listed in Table 4, which are
described in more detail in the next few paragraphs.

Benchmarks. For benchmarks, we use American call option
pricing under BOPM and TOPM, and American put option
under the BSM. For the BOPM call option benchmarks, our
baselines are the option call probability calculations from
QUuANTLIB [29] and Zubair et al’s parallel cache optimized
model [130]. We use the optimized implementations of these
two baselines available in PAR-BIN-0Ps [23]. These implemen-
tations are the fastest existing implementations of BOPM
call option pricing. For the TOPM call option and BSM put
option, our FFT-based implementations are compared with
our parallel looping-based vanilla implementations, as we
could not find any publicly available faster implementations.

We use the perf(version: 3.10.0-1160.53.1.el7.x86_64.debug)
tool [84] to analyze the system-wide energy consumption,
and the PAPI (version: 5.6.0) library [117] for cache miss
counts for our implementations and benchmarks.

PAR-BIN-0Ps. In 2022, Brunelle et al. [23] released an open-
source framework that can leverage parallel, cache-optimized
algorithms to compute a variety of binomial option types and
enables a simple interface for developers. We used the latest
version from Github. Experimental evaluations by Brunelle et
al. [23] has shown that PAR-BIN-0Ps achieves more than 139X
speedup over the QUANTLIB library when evaluating a Eu-
ropean call option using 200,000 steps. Therefore, we chose
the PAR-BIN-0Ps tool to benchmark our implementations of
our FFT-based algorithms. To have a valid comparison of
running times, we use PAR-BIN-0Ps for both QUANTLIB and
Zubaer et al’s [130] option probability calculation equations
and report the running times comparing with our FFT-based
implementations. We use the stencil-based cache-optimized
version of Zubaer et al’s algorithm from PAR-BIN-OPs.
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Parameter Values. As Table 2 shows, the only option pric-
ing parameter that influences the performance bounds of the
algorithms in our experiments is the number of time steps T.
Therefore, we keep all other option pricing parameters fixed
in all of our experiments. We use the following parameter
values: E = 252, K = 130, S = 127.62, R = 0.00163, V = 0.2,
Y = 0.0163 (notations are in Table 1).

5.1 Parallel Running Times

Figure 5(a) shows the parallel running time comparison of
American call option pricing calculations under BOPM. Our
FFT-based algorithm uses a recursive divide-and-conquer
approach. We have found empirically that a base case size of
8 steps yields the best running times. Experimental results
show that our FFT-based algorithm can outperform PAR-BIN-
ops for any number of step sizes for both serial and parallel
implementations. We achieve more than 16X speedup for
T ~ 1000 and more than 500 speedup for T = 0.5 million
w.r.t. PAR-BIN-OPs implementations.

Our TOPM algorithm runs more than 2.5X faster for T ~
2000 and more than 390X faster for T ~ 2.1 million w.r.t. the
parallel vanilla code. Figure 5(b) shows the comparisons.

Figure 5(c) shows the parallel running time comparisons
of the American put option pricing computations under BSM.
Our FFT-based implementation is compared with the looping-
based vanilla implementation. Our algorithm achieves more
than 8% speedup for T ~ 1000 and more than 14X speedup
for T ~ 0.13 million w.r.t. the vanilla implementation.

5.2 Energy Consumption

Figure 6 shows the comparison of system-wide energy con-
sumption while running our FFT-based implementation and
respective benchmarks. We collected the energy consump-
tion estimate of the entire package (pkg) and the main mem-
ory (RAM) through the RAPL (Running Average Power Limit)
interface of model-specific registers (MSR) using the perf
[84] profiling tool. Our FFT-based BOPM, TOPM, and BSM
implementations consume 99%, 99%, and 96% less energy, re-
spectively, compared to their benchmarks for large T values
used in our experiments. For T ~ 4000, the energy savings
are 80%, 50%, and 40%, respectively.

5.3 Cache Misses

Figure 7 shows L1 cache-miss (= L2 cache access) and L2
cache-miss results, respectively, for all implementations. Our
FFT-based implementation incurs far fewer L1 cache misses
than both PAR-BIN-0Ps implementations for BOPM. However,
while we incur far fewer L2 cache-misses than ql-bopm, the
other one (zb-bopm) incurs fewer L2 misses than ours. In case
of TOPM, while our FFT-based implementation incurs far
fewer L2 misses than our parallel looping implementation
(vanilla-topm), the trend is not clear for L1 misses. For
BSM, neither L1 nor L2 misses seem to have a clear winner.
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5.4 Scalability

As Table 2 shows, our algorithms reduce the span 75 of
solving the option pricing problems that we consider by a
factor of Q (log T), but they reduce the work 77 by a sub-
stantially larger factor of ® (T/log® T). While the reduction
in work leads to a significant reduction in energy consump-
tion (see Section 5.2), it also leads to a low parallelism of
71/7% = © (log? T). But it is still easy to see from the com-
plexities given in Table 2 that the parallel running time 7, of
our algorithms will be asymptotically lower than that of the
corresponding fastest existing parallel algorithms for every
value of p (stated in Proposition 1.1).

Table 5. Parallel run times (in ms) for T = 2'° as p varies.

p=1 p=2 p=4 p=8 p=16 p=32 p=48
fft-bopm 32 28 24 26 29 33 38
ql-bopm | 26552 12498 6785 3530 1950 1324 1191

Table 5 above shows how the parallel running times of
our FFT-based BOPM implementation (fft-bopm) and that
of the QuANTLIB-based implementation from PAR-BIN-0OPs
(ql-bopm) vary with p as T is kept fixed at 2!°. We see that
although the parallel running time of fft-bopm stops de-
creasing somewhere between p = 4 and p = 8, it remains
significantly faster than ql-bopm even when p = 48. Our
algorithm scales better as T increases, e.g., for T = 2%, it
scales toa p € [8,16), and compared to a subsecond running
time of fft-bopm for p = 1, ql-bopm takes ~ 2 hours to run.

6 Applications to Other Problems

Our model can be extended to encompass general finance
problems, particularly those under the regime-switching
framework. Beyond the realm of finance, our algorithms
prove to be effective for physical models, like heat conduc-
tion in a rod with varying materials or the one-dimensional
wave equation in a rod composed of two distinct materials.
The crux of our model’s utility lies in its adaptability to sten-
cil computations, wherein different regions follow distinct
stencil update rules. Now we will present several examples
that our algorithm can apply to.

Example 6.1 (Heat equation with two medium). Let a;
and u;(x,y,t) be the thermal diffusivity and temperature
distribution, respectively, of the first medium. Let o, and
uy(x, y, t) be the same for the second medium. Then the heat
equations will be as follows:

6u1
— =uVu
By 1V
At the interface between the two media 9Q X [0, T], we
will have a continuity of temperature and heat flux when

(x,y,t) € 9Q x [0,T]:

du
and 22 = aVuy
ot

dui(x,y,t)  duz(x,y,t)
oh  oh

251 (x’ Y t) = uz(xa Y, t) and

5
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where 1 denotes normal to the 9Q pointing outward direc-
tion. Now the u on the whole region will be:

u(x,y,t) = {
The function u will also need to satisfy some initial condition
fatt=0:u(xy0) = f(x,y).

Example 6.2 (Heat equation with non uniform stencil com-
putation). Let us consider a simple linear heat equation

uy(x,y, t), if (x,y, t) is on the left of 9Q X [0, T]
uz(x, y, 1), otherwise

U = auyyx with initial condition u(x, 0) = 10005 anq
boundary condition u(0, ) = u(1,t) = 0.

Observe that the function y = e~ 100 05" will drop sharply
away from x = 0.5 in both directions and become very flat
when |x — 0.5] is large. As a result, it will be beneficial to
have a smaller step size near 0.5 and a larger step size when
x is far away from 0.5, which leads to multi-media updates.

7 Conclusion and Future Work

We have designed fast American option pricing algorithms
under the binomial, trinomial, and the Black-Scholes-Merton
models. We solve a type of nonlinear stencil problem that is
of independent interest with potential applications beyond
quantitative finance.

Future work may explore other models for American op-
tion pricing, such as the time dependent volatility model,
stochastic volatility model, and the jump diffusion model.
European and Asian options, Lookback options, Knock-out
Barrier options, and Bermudan options are also of interest.

How to extend Ahmad et al’s linear stencil algorithms
based on Gaussian approximations [3] for finding fast ap-
proximate solutions to American option pricing and other
classes of nonlinear stencil problems is also worth exploring.
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A Artifact description
A.1 Requirement

The experiments in this paper were carried out on Stampede2
[1] SKX nodes. Please follow the instructions below to set
up your own environment. Note that if the experiments
are performed on a machine with a system specification
different from the one used for our experiments in this paper,
the numbers may vary, but the trends should remain similar.

Getting the Artifact: The artifact is available on Zenodo:
https://zenodo.org/records/10531146

Benchmark Software

e BOPM: We compared our BOPM implementation with
the PAR-BIN-0Ps library. Note that this library requires
‘gec’ version 9+ for compilation. Manual download and
installation of ‘googletest’ and ‘parlaylib’ are needed
in the ‘external’ directory.

e BSM: Vanilla implementation is available inside the
corresponding source code.

e TOPM: A vanilla implementation of TOPM is inside
amer-call-TOPM-Vanilla. cpp and the input param-

eters are the same as the original amer-call-TOPM. cpp.

Software Requirement

o General dependency: Intel C++ compiler, Intel MKL,
OpenMP

o Cache miss measurement: PAPI Library

e Energy measurement: Perf Tool

Note: Installation of PAPI and Perf requires sudo access.
Source Package Files

e amer-call-BOPM.cpp: American call option pricing
under the binomial option pricing model
e amer-call-TOPM.cpp: American call option pricing
under the trinomial option pricing model
e amer-put-BSM. cpp: American put option pricing un-
der the Black-Scholes-Merton option pricing model
e run_experiments. sh: Script to reproduce the results
in the paper
Note: For each of the three files above [X.cpp] we have a
corresponding [X-papi.cpp] file used to count the number
of cache misses. We also provide a helper file papilib.h for
cache miss computation.

A.2 Execute Scripts

Runtime and Cache Misses
- BOPM and TOPM:

./test [T] [Tbase] [numThreads] [verify]

e test is the executable file name

e [T] - an integer (> 0), number of steps

e [Tbase] - an integer (> 4), is the base-case size where
recursion stops and iterative kernels are executed
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e [numThreads] - an integer (> 0), number of concurrent
threads

e [verify] - Boolean (0/1), if 1 is provided, the result from
the iterative implementation is computed to compare
with our recursive implementation

Example:
./test 40 4 1 0
- BSM:
./test [T] [Tbase] [w] [numThreads] [verify]
e [w] - a positive float; it is a non-dimensional scalar

calculated from risk-free rate and volatility; see Section
4.2 for details

Example:
./test 32 4 0.5 1 0
Setting Environment Variables
To set the number of concurrent threads:

export OMP_NUM_THREADS =
set MKL_NUM_THREADS =

[numThreads]
[numThreads]

Check Energy Consumption

perf stat -a -e cycles,instructions,cache-
misses,power/energy-cores/,msr/pperf/,power/
energy-ram/,power/energy-pkg/ ./test [T] [

Thase]l [numThreads] [verify]
Example:

perf stat -a -e cycles,instructions,cache-
misses,power/energy-cores/,msr/pperf/,power/

energy-ram/,power/energy-pkg/ ./test 10000 16

10
Reproduce the Results in the Paper
sh run_experiments.sh

The results will be saved under the . /results folder in
their respective . csv files.

Interpreting the Output

stencil: 0.50072 0.49928

rec result: 6.85587

T = 10000, T_BASE = 4, numThreads = 1, time =
0.009

On the first line, we print the stencil coefficient values.
On the second line, we print the result computed by our
algorithm. On the third line, we print the running time (in
seconds) along with the input parameters.

A.3 Checking Results

We provide three types of experimental results: parallel run-
ning time (Figure 5 in Section 5), energy consumption (Figure
6 in Section 5), and cache misses (Figure 7 in Section 5). For
each value of T, we report the best values after experiment-
ing with varying the number of threads and different base
case sizes. For simplicity, you can use the base case size of


https://zenodo.org/records/10531146
https://github.com/nyrret/par-bin-options/tree/main
https://bitbucket.org/icl/papi/wiki/PAPI-Releases.md#markdown-header-papi-701-release
https://perf.wiki.kernel.org/index.php/Main_Page

Fast American Option Pricing using Nonlinear Stencils

16, and set the number of threads to 1 for serial execution
and 16 for parallel execution. The reported values of T in the
plots are from 2'° to 2'° (i.e., 1024, 2048, 4096, 8192, .. ).
To compare the values against the benchmark:
e For BSM, vanilla implementations can be used by set-
ting the [verify] parameter to 1
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e For TOPM, the vanilla implementation is available in
amer-call-TOPM-Vanilla.cpp

e For BOPM, the Par-BIN-OPs library needs to be exe-
cuted
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