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Scale-free correlations and potential criticality in weakly
ordered populations of brain cancer cells

Kevin B. Wood1,2*, Andrea Comba3,4, Sebastien Motsch5, Tomás S. Grigera6,7,8,9,10,

Pedro R. Lowenstein3,4,11,12*

Collective behavior spans several orders of magnitude of biological organization, from cell colonies to flocks of
birds. We used time-resolved tracking of individual glioblastoma cells to investigate collective motion in an ex
vivo model of glioblastoma. At the population level, glioblastoma cells display weakly polarized motion in the
(directional) velocities of single cells. Unexpectedly, fluctuations in velocities are correlated over distances many
times the size of a cell. Correlation lengths scale linearly with the maximum end-to-end length of the population,
indicating that they are scale-free and lack a characteristic decay scale other than the size of the system. Last, a
data-driven maximum entropy model captures statistical features of the experimental data with only two free
parameters: the effective length scale (nc) and strength (J ) of local pairwise interactions between tumor cells.
These results show that glioblastoma assemblies exhibit scale-free correlations in the absence of polarization,
suggesting that they may be poised near a critical point.
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INTRODUCTION

Glioblastoma is the most aggressive brain cancer and remains the
cancer with worst prognosis and shortest life expectancy. The stan-
dard of care treatment consists of resective surgery, radiotherapy,
and chemotherapy. Long-term survival, nevertheless, has remained
stagnant over the past 30 years despite major research efforts and
multiple clinical trials (1, 2). Even when the glioblastoma tumor
is resected, it always recurs, usually within a 1- to 2-cm margin of
the original resection cavity. The tumor only rarely metastasizes to
distant organs but invades the surrounding normal brain, destroy-
ing normal brain areas and disrupting brain function (3). Glioblas-
toma is the sole cancer that kills by direct invasion of surrounding
normal brain tissue rather than through metastasis of distant
organs. Understanding the mechanisms of glioblastoma growth
and invasion are thus paramount to any future successful treatment
of this disease.

Collective motion in brain tumors has been studied in vitro and
in vivo. However, our understanding of the mesoscale organization
of brain tumor collective motion has not been studied in sufficient
detail. In particular, collective motility requires close behavioral co-
ordination between individual cells (4–7). Such coordination could
be implemented either by direct cell-to-cell contact, by close but in-
direct contact, or through long-range information exchange
between cells (8, 9). The potential existence of such long-range

communication might allow tumor cells to respond quickly to a
number of insults and thus provide robustness to tumor growth
and progression. However, it is not clear whether such long-range
correlations exist in brain tumors, and if so, whether these large-
scale patterns actually arise from local interactions between
nearby cells.

Collective motion arises in a large range of biological systems,
from flocks of birds (10–14) to schools of fish (15, 16), from
single cells (17, 18) and insects (19–23) to populations of
mammals (24, 25), and has been intensely studied for decades in
both natural systems (26–28) and robotics (29). Centralized, top-
down mechanisms, for example, the presence of one or more
“leaders” that dictate the behavior of the others (30, 31), could
drive large-scale order, leading to synchronized motion between
different cells or organisms. On the other hand, populations may
exhibit emergent self-organization driven by local interactions
between cells (26–28), leading to signatures of collective behavior
even when motion appears only weakly polarized. Despite the ap-
parent lack of order, self-organized systems can respond coherently
to external perturbations, for example, the presence of a predator in
animal flocks, because local interactions facilitate an exquisite sen-
sitivity to the changing environment, effectively propagating infor-
mation from one region of the flock to another in a manner unseen
in top-down organizational schemes (10, 32, 33).

One clear signature of collective behavior is the presence of scale-
free correlations, which have been observed in a number of biolog-
ical systems (32, 34), including many exhibiting collective motion
(10, 13). Correlations are considered scale-free when they lack a
characteristic decay scale other than the size of the system. For
example, in starlings, scale-free correlations in directional velocity
occur in highly polarized flocks, where the distribution of velocity
angles is extremely narrow (10, 12). Similar scale-free correlations
arise in physical systems with a continuous symmetry, in this case,
the rotational invariance of the velocity angle, where low-energy
fluctuations give rise to Goldstone modes such as long-wavelength
spin waves (35). By contrast, long-range correlations can also arise
in the absence of order, for example, swarming midges exhibit scale-
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free correlations despite showing only weak levels of directional po-
larization (21). In physics, similar phenomena can occur when
system parameters are tuned to a so-called critical point, where fluc-
tuations become correlated across length scales and the system
becomes exquisitely sensitive to small perturbations (35). Out of
equilibrium, scale-free correlations can also appear as a conse-
quence of a conservation law (36) or through a feedback mechanism
(34, 37, 38). Recent work has argued for the existence of criticality in
a wide range of biological systems (32, 39), including synchroniza-
tion in neural ensembles (40, 41), brain activity (42), long-range
speed correlations in starling flocks (13), the dynamics of biochem-
ical networks (43) and protein folding (44), and the scale-free cor-
relations in swarming midges (21). Independently of their origin,
long-range correlations could potentially serve different biological
functions. For example, in flocks of birds, collective behavior may
have evolved to promote lossless information flow throughout the
group as they move through space, while swarms of midges might
use collective behavior to stabilize their behavior against environ-
mental perturbations, such as a predator.

In this work, we quantitatively characterize collective motion in
an ex vivo experimental model of glioblastoma using time-resolved
tracking of individual glioma cells. We found that populations of
glioma cells exhibit collective motion characterized by weak polar-
ization in the (directional) velocities of single cells, suggesting, on
the surface, that glioma cells may be moving largely independently.
However, by examining populations of different sizes, we observed
correlated fluctuations on scales many times the size of a single cell,
with characteristic (correlation) lengths that increase linearly with
the total system size, showing that they are scale-free. Last, we
show that statistical features of the populations are well captured
with a simple maximum entropy model, which reduces to the clas-
sicalXYmodel with nonlocal coupling, which describes the shape of
the directional velocity distributions and the existence of long-range
correlations. Our results indicate that beneath a weakly ordered
facade, brain tumor assemblies exhibit scale-free features of collec-
tive behavior on scales of millimeters or more.

RESULTS

We analyzed glioma cell dynamics in a previously developed ex
vivo, explant model derived from the orthotopic implantation of ge-
netically engineered NPA–green fluorescent protein–positive
(NPA-GFP+) cells, in which we can track the location and velocity
of fluorescently labeled individual glioma cells for up to 2 or 3 days
(Materials and Methods). Briefly, this experimental model enables
de novo the induction of glioma tumors through the injection of
different plasmids encoding (i) driver genes found in human
gliomas and (ii) genes encoding for luminescent and fluorescent
markers in postnatal day 1 (P01) wild-type C57BL/6 mice. When
animals became symptomatic, tumors were removed, and neuro-
sphere cell cultures were established as described earlier (45–47).
Cells from these neurosphere cultures can then be implanted into
adult C57BL/6 mice to reliably generate tumors (see Materials
and Methods for details on the establishment of NPA tumors). Spe-
cifically, we implanted NPA cells into the brains of adult C57BL/6
mice (4, 45, 46). Animals were euthanized at day 19 after tumor im-
plantation to generate explant brain tumor slices for time-lapse
imaging on a laser scanning confocal microscope equipped with a
tissue culture incubation chamber. We studied a collection of 12

different glioblastoma populations drawn from eight different ex-
plants: four from the inner tumor and four from the outer tumor
region bordering the normal surrounding brain. We subdivided
each explant into regions based on a previously developed classifi-
cation scheme for glioblastoma cells (4). While this scheme was
originally developed to classify subpopulations of cells based on his-
tological and statistical properties of the cell orientations, in the
present context, the subdivision scheme can be viewed as a box-
like approximation for estimating finite-size scaling in the experi-
mental system.

Weakly ordered directional motion in glioblastoma
populations
To quantify the population-level motion in the tumor, we estimated
the position and velocity of each cell using semiautomated image
analysis (Fig. 1; Materials and Methods). At each time point, the
population is described by a set of normalized (unit) velocity
vectors {si(t)} and a corresponding set of position vectors {xi(t)},
one for each cell i = 1,2…N. To quantify the degree of global order-
ing in the population, we calculated the polarization S(t), which is
defined as the magnitude of the population’s mean velocity; S = 1
when all cells move in the same direction, while S = 0 if the velocities
are uniformly distributed in all directions. We found that glioblas-
toma populations areweakly polarized, often exhibiting levels of po-
larization comparable to, or only slightly exceeding, those in size-
matched populations with velocities randomly drawn from a
uniform distribution (compare black and red curves; Fig. 2 and
fig. S1). This weak polarization corresponds to broad but typically
unimodal distributions of directional velocity (Fig. 2 and fig. S2). In
contrast to starling flocks, which are highly polarized (10, 12), glio-
blastoma populations show minimal levels of polarization and
therefore appear disordered at the population level. Such weak po-
larization could be evidence that cells move largely independently,
with little functional coupling between cells; on the other hand,
weak polarization, alone, is insufficient to rule out collective behav-
ior. Populations weakly ordered on the global scale have been shown
to exhibit features of long-range collective behavior in a number of
biological contexts, including swarming behavior of midges (48)
and synchronous firing activity in neural populations (49, 50). In
these cases, fluctuations can be correlated over long spatial distanc-
es, even when ordering (i.e., polarization) is weak.

Glioblastoma populations exhibit scale-free correlations in
velocity fluctuations
To determine whether glioma populations exhibit correlated spatial
fluctuations, we calculated correlations between directional velocity
for cells separated by a given distance (r; in micrometers) for pop-
ulations with different (time-averaged) spatial sizes (L), where the
size of the system is defined as the largest linear dimension of the
population, that is, the maximum separation between any pair of
cells. Correlation functions are defined by C(r) = 〈δsi · δsj〉r, where
δsi ≡ si − 〈s〉 is the velocity of cell i in the moving reference frame
where the population average velocity (〈s〉) has been subtracted out.
Angle brackets 〈〉r indicate an average taken over all cells separated
by distance r.

We found that all populations exhibit weak local correlations
over tens of micrometers (Fig. 3). To characterize the decay of
these correlations over space, we computed r0 [i.e., the point at
which C(r) first crosses 0] for populations of different sizes. We
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Fig. 1. Tracking cell velocities in glioblastoma. (A) Representative image of a 5-μmhematoxylin and eosin–stained sections from an NPAmouse glioma tumor. The left

image has been taken at lower power, and the black box is shown at higher power on the right. Oblong yellow outlines indicate elongated cells within an oncostream,

which refers to a bundle of spindle-like cells that move throughout brain tumors (4, 7). Round yellow outlines indicate round cells located outside the oncostream. (B)

Example of path obtained with ImageJ (blue dashed line) and the filtered path (red) obtained after filtering. The smooth path allows us to estimate the velocity of the cell

at each time step. (C) Snapshot of unit velocity vectors in 12 different populations of different sizes.

SC I ENCE ADVANCES | R E S EARCH ART I C L E

Wood et al., Sci. Adv. 9, eadf7170 (2023) 28 June 2023 3 of 15

D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://w
w

w
.scien

ce.o
rg

 o
n
 S

ep
tem

b
er 1

8
, 2

0
2
4



Fig. 2. Cell velocities exhibit weak directional order. (A) Snapshot of unit velocity vectors (blue) and average velocity vector (red) at different time points. The black

arrow is a reference vector indicating full alignment (polarization = 1); length of red vector relative to black vector indicates polarization. (B) Distribution of velocity

directions over time (dark blue, early times; yellow, late times). (C) Polarization over time for glioblastoma populations (black) and for 25 simulated datasets (size-

matched to actual data) but with velocity directions drawn from a uniform distribution (light red; mean over all datasets in dark red). Polarization is defined by S =

∣〈s〉∣ ≡ ∣(1/N )∑i si∣, where ∣x∣ is the length of vector x and angle brackets indicate an average over all cells. (D to F) Identical to (A to C) but for a second dataset. See

the Supplementary Materials for all datasets.
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Fig. 3. Velocity fluctuations are correlated over a length scale that depends on system size. (A) Correlations between directional velocity for cells separated by a

given distance (r; in micrometers) for populations with different (average) spatial sizes (L). Correlation functions are defined by C(r) = 〈δsi · δsj〉r, where δsi ≡ si − 〈s〉 is the
velocity of cell i in the moving reference frame where the population average velocity (〈s〉) has been subtracted out. Angle brackets 〈〉r indicate an average taken over all
cells separated by distance r. Black curves: time-averaged correlations in a given population; red dashed line: estimated correlation length r0, which corresponds to the

crossover point C(r0) = 0. (B) Main panel: Correlation length (r0) for subpopulations of different sizes (black circles; error bars represent uncertainty in estimate of crossover

point). The solid line is best-fit line (for visualization). Right: Correlation length versus polarization (top) and nematic (bottom) order parameters for the populations in (A).

The dashed line is best-fit line. Nematic order parameter is defined as Nematic OP=2⟨cos2θ⟩ − 1, where θ defines the orientation of the mean spin. Insets show Pearson

correlation coefficient (ρ) and corresponding P value.
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found that r0 depends approximately linearly on the spatial size (L)
of each population. This linear relation is expected to hold when the
correlation length is much larger than the size of the system [i.e.,
when the correlated fluctuations are scale-free (51)], and r0 can be
interpreted as a correlation length scale; in contrast, when the cor-
relation length is less than the system size, r0 grows as logL. We note
that similar scaling is observed when system size is defined using
other metrics (fig. S4) and for different levels of smoothing (fig.
S3). By contrast, order parameters, including both polarization
and an order parameter for nematic ordering in 2D, are not corre-
lated with the size of the system (Fig. 3).

While the scaling analysis above suggests that correlations in ve-
locity fluctuations are scale-free, it is limited to the relatively small
number of sample populations, whose sizes span approximately a
factor of two, and correlation lengths (strictly, r0) estimated from
these samples are inherently noisy. To complement this analysis,
we performed a “box scaling” analysis (see Materials and
Methods), a powerful approach to finite-size scaling built on sub-
sampling data in randomly chosen spatial boxes of different sizes
(52). To do so, we randomly selected many subpopulations of
cells from all datasets using square boxes of a fixed width W
placed randomly (with uniform distribution) within the field of
view. Data from boxes of a given width were then combined and
used to estimate correlation functions and crossover points r0 for
these different-sized subsystems. This approach is advantageous
because (i) repeated subsampling allows us to estimate C(r) and r0
more precisely by dividing data into a large number of smaller
samples, (ii) the analysis does not depend on a priori division of
datasets into subpopulations based on histological or other charac-
teristics, and (iii) it allows us to explore scaling behavior over awider
range of system sizes. Previous studies have shown that the approach
provides an excellent approximation to a full scaling analysis in both
classical statistical physics models and real datasets, even when a
wide range of system sizes is not available (52).

The box scaling analysis reveals a clear dependence ofC(r) on the
box size chosen for sampling (Fig. 4, top), and the characteristic
length r0 depends linearly on the system size (Fig. 4, left). For com-
parison, we also show the plot on a log-linear scale (Fig. 4, right),
which allows us to rule out logarithmic scaling with system size (r0 ∼
log L) that would indicate a correlation length smaller than the
system size (52). The results are similar if we use alternative mea-
sures of system size such as the linear length of the boxes used for
scaling (fig. S6). As with the original datasets, the box scaling data
exhibits only weak ordering as measured by polarization or nematic
order parameters (fig. S6). Together, these findings indicate that
glioma populations exhibit collective behavior, specifically, scale-
free correlations, in the absence of strong ordering.

A data-driven maximum entropy model captures statistical
features of glioma migration
To develop a minimal effective model of glioma collective motion,
we used the experimental velocity data to parameterize a simple
maximum entropy model (Fig. 5A). Maximum entropy methods
have been widely applied to model biological phenomena (32,
53), including the collective firing activity of neurons (49, 50); the
flocking behavior of birds (12, 13); and correlations in antibody di-
versity (12), drug interactions (54), or sequence motifs in biological
polymers (55). Maximum entropy approaches are closely connected
to classical “inverse problems” in statistical physics, which involve

estimating (often unobservable) microscopic parameters from a set
of macroscopic observables (56–59). The maximum entropy ap-
proach allows one to incorporate a specific set of experimental ob-
servables into a model but, in a strict statistical sense, does not
introduce additional structure. At its core, a maximum entropy
model is consistent with a defined set of measurements but is oth-
erwise as “unbiased” as possible. In the case of tumor cell popula-
tions, we would like to determine whether a minimal model that
incorporates pairwise interactions of a fixed length scale is sufficient
to reproduce the large-scale order observed in experiments. Follow-
ing (12), we developed a maximum entropy model consistent with
the local correlation structure measured in experiments, a quantity
that we refer to as Cint. Cint is a single number that describes the
average correlation of a cell’s velocity with that of its nc closest
neighbors; if cells tend to be directionally aligned with their neigh-
bors, then Cint approaches 1, while Cint is 0 if directional velocities
are random.

The maximum entropy model consistent with Cint is formally
identical to a nonlocally coupled version of the XY model, which
was originally developed in statistical physics to describe systems
such as superconductors characterized by a continuous (planar)
symmetry (35). The model contains two free parameters: the
length scale over which cells interact (nc) and the strength of
those interactions (J ). Our goal is to determine whether such a
minimal model, containing only two scalar parameters, can repro-
duce measured features of the cell ensembles.

The model itself is probabilistic, that is, it specifies the probabil-
ity of observing a particular set of velocities given any specific choice
of the parameters J and nc. In physics parlance, J and nc are “micro-
scopic parameters” that describe physical interactions between the
constituent parts of the system (e.g., a parameter analogous to J is
used to describe the interactions between individual magnetic
dipoles in a ferromagnet). Particular choices of these parameters
give rise to different types of “macroscopic” behavior, quantities,
like polarization, that reflect measurable properties of the system
as whole. The mapping from microscopic parameters (J, nc) to mac-
roscopic observables (polarization and correlation functions) is
often not straightforward, although statistical physics provides a
number of tools for calculating the latter from the former.

We estimated parameters (J, nc) for each population at each time
point using a spin-wave approximation to calculate the partition
function Z (see Materials and Methods). We note that while the
spin-wave approximation is strictly valid only in highly polarized
systems, we found that the model with these parameter estimates
qualitatively captures many features of our data. Different popula-
tions are characterized by widely variable (time-averaged) values of
nc, with length scales ranging from tens of cells, in some cases, to
hundreds of cells in others, nearly the size of the entire population
(Fig. 5B). To compare the model with experimental data, we used
Monte Carlo simulations to estimate the distribution of velocity
angles (Fig. 5C) and correlation functions (Fig. 5D) for the model
with experimentally determined values of J and nc. Despite the sim-
plicity of the model, it captures qualitative features of both the
angular distribution and the correlation functions for nearly all
populations without additional tuning of free parameters (Fig. 5;
see also figs. S7 and S8).

Because the model suggests that cells are coupled over large
length scales, with nc sometimes approaching the size of the popu-
lation, we also consider a mean field (all-to-all coupled) version of
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the model. In this case, the model is characterized by a single param-
eter (J ), and estimating J from experimental data reduces to a classic
inverse problem in statistical physics. The advantage of this simpler
model is that parameter estimation no longer relies on the spin-
wave approximation, and instead, the maximum likelihood estimate
of J can be calculated analytically in terms of the experimental ob-
servable Cint (Material and Methods). Somewhat unexpectedly, the
mean field model captures the angular distribution of velocities
nearly as well as the full model (fig. S9). As a numerical control,
we confirmed that such agreement does not occur in randomly gen-
erated datasets of size-matched populations, confirming that the
qualitative agreement between the model and experimental data is
unlikely to arise from finite-size statistical effects (fig. S11).

Effective model of glioma dynamics is poised at a
critical point
Glioma cells exhibit scale-free correlations in the absence of polar-
ization. One explanation for this observation is that the system is
poised near a critical point. We therefore asked whether the effective
maximum entropy model is also poised near a critical point: that is,
whether the experimentally derived parameters (J, nc) correspond to
a critical point of a model. The absence of criticality in such a model
may point to alternative explanations for the experimental
observations.

To characterize the phase diagram for the maximum entropy
model (i.e., an XY model with nonlocal coupling determined by J
and nc), we used Monte Carlo simulations to generate representative
velocity distributions for different values of nc and J. For each pa-
rameter pair, we calculated the polarization order parameter (the
mean polarization across trials), the generalized susceptibility χ,
which corresponds (up to a proportionality constant) to the

Fig. 4. Box scaling indicates correlations in velocity fluctuations are scale-free. (A) Correlations between directional velocity for cells separated by a given distance (r;

in micrometers) for subsampled populations in boxes of different sizes [ranging from 200 μm by 200 μm (blue) to 800 μm by 800 μm (red)]. Filled circles: estimated

correlation length r0, which corresponds to the crossover point C(r0) = 0. (B) Correlation length (r0) for subsampled populations of different sizes (black circles) on linear-

linear (B) and log-linear (C) scales. Error bars represent uncertainty in estimate of crossover point. Solid line is best-fit line (for visualization).
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variance of the polarization, and the heat capacity, which measures
fluctuations in the effective energy. We then estimated the critical
surface in the (J, nc) plane to be the curve in parameter space that
corresponds to a peak in χ. We also verified that the system exhibits
sharply increasing polarization and a peak in the generalized heat
capacity at the critical surface. For all simulations, cell positions
(and, therefore, cell density) were taken from a representative exper-
imental dataset.

The phase diagram (Fig. 6A) is divided by the critical surface
into an ordered region (upper right) and disordered region (lower
left, gray). To investigate whether the experimental populations are
poised near the critical surface, we plotted the estimated parameter
values (J and nc) for each population (triangles, squares, and circles)
on the phase diagram. We find that all populations are characterized
by parameter pairs that lie close to the critical surface. Modulating
the parameters, for example, by simulating a system with a fixed (ex-
perimentally determined) value of nc but J values that differ from

Fig. 5. Maximum entropy model captures statistical features of glioblastoma populations. (A) Moving cells (ovals, with arrows representing velocity) interact pair-

wisewith the closest nc neighbors in their local community. Shaded region indicates range of interaction for a single focal cell (dark green) for an illustrative value of nc = 7.

A coupling parameter J indicates the strength of interaction between pairs of cells, with larger J favoring stronger directional alignment. (B) Likelihood (normalized) for

the interaction range (nc) for three different populations; light curves show individual time points, and dark curves are averages over time. (C) Histograms of velocity

direction (angle) for experiment (blue) and the maximum entropy model (red) for the same three populations as in (B). (D) Correlation functions calculated from exper-

imental data (black) and for the maximum entropy model (red) for the same three populations as in (B). See also figs. S7 and S8 for full results on all populations.
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subcritical to supercritical (as indicated by the dashed line connect-
ing points X and Y; Fig. 6A), indicates that the parameters estimated
from experiments occur near a critical point, where polarization
begins to rapidly increase and χ and the heat capacity peak (Fig. 6B).

We stress, however, that criticality in this model alone is insuf-
ficient to infer criticality in the glioma populations, both because of
technical limitations in distinguishing critical and subcritical
systems (see the Supplementary Materials) and, more importantly,
because this model may not correspond to the precise physical
mechanisms underlying the motion. Nevertheless, the maximum
entropy model accurately captures qualitative behavior of the
glioma populations and, in doing so, provides a parsimonious effec-
tive model for the data. While the overall data suggest that glioma
tumors exhibit scale-free correlations in the absence of ordering,
which is compatible with criticality, further experiments will be
needed to determine brain tumor criticality beyond doubt.

DISCUSSION

Our data suggest that the brain tumors exhibit features of large scale
collective behavior in the absence of strong order. One potential ex-
planation is that glioma populations are poised near a critical point,
that is, on the boundary between an ordered and disordered phase.
A growing number of studies suggest that biological systems may
operate at or near criticality (13, 32, 34, 40–44, 60–62). However,
scale-free correlations can also be found in some systems that are
noncritical. For example, scale-free correlations have been observed
in strongly ordered animal flocks (12, 26), and similar behavior is
expected in equilibrium systems with a continuous symmetry (63).
This explanation does not apply to glioblastoma cells, however,
because they are largely disordered (the order parameter of the sub-
systems is rather small; Fig. 2).

Out of equilibrium, it is possible to build models that display
long-range, scale-free correlations without a tuning parameter, for
example, in systems with a conservation law (36) or in self-orga-
nized criticality (SOC) models (34, 37, 38), where a feedback mech-
anism keeps the system at the edge between a state with high but

Fig. 6. Experimental estimates of cell-cell coupling parameters are poised near critical point of nonlocally coupled XYmodel. (A) Phase diagram shows regions of

disorder (gray) and order (white) for different values of the coupling strength (J ) and interaction range (nc). Phase boundary was estimated fromMonte Carlo simulations

of the maximum entropymodel (Materials andMethods). Markers (squares, triangles, and circles) show estimates of J and nc from different glioblastoma populations. The

dashed black line shows an example trajectory through parameter space, in this case, from a point X in the disordered region to a point Y in the ordered region, that

crosses the critical surface by increasing J at a fixed value of nc. (B) Polarization (top), generalized susceptibility χ (middle), and generalized heat capacity (bottom)

calculated from Monte Carlo simulations of the model as parameters are varied along the dashed trajectory connecting points X and Y in (A). Gray circles represent

Monte Carlo simulations across a range of coupling strengths (J ) at fixed nc = 58 (corresponding to the estimated nc for one representative dataset); solid lines are

averages over a total of 100 simulations. The dashed red line indicates estimated value of coupling J for one particular dataset [(green triangle in (A)] that lies near

the critical surface. Susceptibility (χ) and heat capacity are defined as the variance of polarization and energy, respectively, across independent realizations.
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fluctuating local activity and an absorbing inactive state. In the case
of glioma cells, we cannot see such SOC-like mechanisms obviously
at work, although these or other mechanisms might ultimately un-
derlie the scale-free behavior that we observe.

What is the potential advantage of such “disordered” collective
behavior? Past work suggests that these properties confer a number
of potential biological advantages, including increased sensitivity to
environmental stimuli, a large dynamic range, and improved capac-
ity to store and process information (39). In the case of glioma cells,
these populations may be able to rapidly access a larger set of behav-
iors when faced with growth or chemotherapy insults. Strongly
ordered motion imposes a rigid structure that limits the sensitivity
of the population to new environmental insults, such as attacks from
the immune system. On the other hand, cells that move entirely in-
dependently and lack the ability to move collectively, might repre-
sent cells best situated to invade surrounding normal tissue and
could also facilitate immune escape. The ideal tumor state may
therefore be one that exhibits features of both order and disorder,
where tumors may be poised to modulate their capacity for motility,
as dictated by clues of the tumor microenvironment.

It is important to keep in mind several limitations of our study,
both technical and conceptual. First, the experiments are performed
in an ex vivo model, which allowed us to measure cell velocities and
track movement for up to 72 hours. As always, however, one should
use caution when extrapolating from laboratory results to in vivo
dynamics, although our recent data have demonstrated similar dy-
namics using multiphoton intravital imaging of glioma (4). In ad-
dition, our use of a maximum entropy approach comes with
important caveats. While the model captures many statistical prop-
erties of the underlying experimental data, it should be viewed as an
effective model, not necessarily a true physical representation of the
underlying system. For example, the model suggests that pairwise
interactions between cells are long-range, often extending across
tens of cells or more, but there is no guarantee that the true biolog-
ical interactions, whose mechanisms are, at this stage, largely
unknown, extend over this scale. Instead, long-range interactions
in the model represent effective interactions that appear artificially
long range because (for example) the local cell dynamics have not
reached equilibrium on the time scales of our measurements (64,
65), meaning that the effective interactions represent many fast
physical interactions between different pairs of cells. It is also
worth stressing that the finding of criticality in the data-driven
model is not, on its own, proof of criticality in the glioblastoma pop-
ulations [it is well known that quantitative maximum entropy pre-
dictions do not necessarily reflect similar features in the underlying
system (39, 66–71)]. In any case, our primary claim, that fluctua-
tions are scale-free, is based on direct the observation of correlations
of the experimental system not on any particular model. We stress
that these long-range correlations do not imply direct long-range
physical cell-cell interactions.

In our glioblastoma models, growth is not constrained by the
pattern of brain anatomy [i.e., white matter bundles and white
matter/brain matter borders (72)], as growing rodent tumors
replace brain tissue. Thus, in our model, the formation of onco-
streams does not depend on the underlying brain structure (73);
it is unclear whether they depend on the mechanics of surrounding
tissue (74, 75). The role of blood vessels in glioblastoma growth and
response to treatment, as well as their potential role in oncostream
dynamics, remains to be determined (76, 77).

There are also a number of technical limitations that bear
mention. We focused on a model with topological (rather than
metric) connections between cells. For these populations, where
the densities of cells are typically similar across populations, we
expect that both approaches would yield similar results, although
imposing a different coupling structure could improve the agree-
ment between model and experiment (10). In addition, we have
used free boundary conditions, partly because confining the boun-
dary cells (using fixed boundary conditions) would, in some cases,
reduce the number of cells for analysis. Previous work in starling
flocks showed that these boundary conditions can make a difference
in the inferred values of J and nc, although their product remains
largely constant (12). Correcting for these boundary conditions
might provide a more accurate fit to, for example, simulated
systems with known control parameters. In this case, however,
our goal was not to precisely estimate experimental parameters,
and because the model captures experimental results reasonably
well, we have not further investigated these issues.

Our results raise a number of open questions for future work.
From a physics perspective, more detailed physical models may
shed additional light on quantitative features of glioma migration
that are not captured by the simple model used here. For
example, we recently showed that a model of collective motion
that incorporates cell shape can produce a rich collection of phe-
nomena that includes nematic ordering and qualitatively distinct
types of disordered motion (7) similar to that seen in glioma pop-
ulations (4). Perhaps, our results imply the existence of (effective)
long-range communication within glioma tumors, even if the phys-
ical basis for this communication is not yet understood. Previous
work indicates that natural insect swarms exhibit long-range corre-
lations (21), but these correlations seem to appear in response to
different environmental perturbations in laboratory populations
(23, 78). Similarly, it may be possible to investigate these mecha-
nisms in glioma populations using controlled laboratory conditions
that strip away complexities of the ex vivo tumor environment.
From a biological perspective, several mechanisms exist that could
play a role in transmitting signals across large portions of glioma
(79). For example, cytokines or neurotransmitters could be released
by glioma cells, diffuse throughout the tumor tissue, and thus alter
the behavior of distantly located cells. Equally, networks of micro-
tubes connecting glioma cells have recently been described and
shown to provide signals to other cells via calcium ion transients
(80). So far, only shorter distance communication has been
shown, but if microtubes are truly functional across larger distances,
then they could be an anatomo-physiological substrate of long-
range communication described herein. Furthermore, criticality
could help understand and explore the recalcitrant robustness of
these tumors when exposed to therapeutic modalities such as x-
rays and chemotherapy. Criticality could play a role in glioma
cells responding to resective surgery; for example, no matter how
much tumor is resected, cells located within 1 to 2 cm from the re-
section cavity eventually reconstitute the tumor. Thus, it might be
possible that low-density cells might need to grow to a certain pop-
ulation size before long-range communication can be exploited to
support cell replication and especially cell invasion. Outcomes in
the response to chemo- and radiotherapy could be tested experi-
mentally by exposing brain slices to these treatments and then eval-
uating collective cell motility using ex vivo or in vivo imaging (4).
Last, a role for the recently discovered brain innervation of tumors
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(80) could be to directly connect distant parts of the tumor, i.e.,
tumor cells could signal to innervating neurons that, through
neural networks, would then signal back to distant tumor regions.
We believe that the physical and mathematical modeling of glioblas-
tomas has the potential to inspire further understandings of glio-
blastoma biology and potentially unique treatments aimed at
destabilizing collective behavior.

MATERIALS AND METHODS

Time-lapse confocal imaging in explant brain glioma slice
culture model
To analyze glioma cell dynamics, we used a brain tumor explant
model for ex vivo imaging. In vivo experimentation was performed
following the procedures approved by the Institutional Animal Care
and Use Committee (IACUC) at the University of Michigan.
Glioma tumor cells were obtained from a genetically engineered
mouse glioma model generated in our laboratory as previously de-
scribed (Sleeping Beauty Transposase System) (45–47). This model
enables de novo generation of glioma tumors trough the injection of
different plasmids encoding the genes of interest in postnatal day 1
(P01) wild-type C57BL/6 mice. The plasmid sequences used to gen-
erate these tumors were (i) the transposase and luciferase enzyme
expression (pT2C-LucPGK-SB100X), (ii) the NRAS gene expres-
sion (pT2CAG -NRAS-G12V), (iii) the short hairpin for down-reg-
ulation of p53 protein (pT2-shp53-GFP4), and (iv) the short hairpin
for ATRX (pT2-shATRx-GFP4). These glioma tumor cells named
NPA exhibit the overexpression of the NRAS protein, the knock-
down of p53, and the down-regulation of ATRX. shp53 and
shATRx plasmids also contain the gene for the expression of en-
hanced GFP (EGFP). These signaling pathways are altered in
human gliomas. Cells were generated from genetically engineered
glioma tumors and cultured in Dulbecco’s minimum essential
medium (DMEM)/F12 media supplemented with 2% B-27, 1%
N-2, 1% of penicillin-streptomycin, 0.2% of Normocin, and
growth factors human Fibroblast Growth Factor (hFGF) and
human Epidermal Growth Factor (hEGF at 20 ng/ml and main-
tained in a 37°C incubator supplied with 95% air and 5% CO2.
Tumors were induced by intracranial implantation of 3 × 104

NPA cells (NRAGV12, shp53, and shATRx) glioma tumor cells in
C57BL/6 mice. Mice were held in a pathogen-free, humidity- and
temperature-controlled vivarium on a 12-hour light/12-hour dark
cycles with free access to food and water following. Before implan-
tation, mice were anesthetized using an intraperitoneal injection of
the anesthetics ketamine (120 mg/kg) and dexmedetomidine (0.5
mg/kg). Following anesthesia, carprofen (5.0 mg/kg) was adminis-
tered subcutaneously for pain management. The skull of the mouse
was then immobilized in a stereotactic device. A burrhole was made
using a 0.45-mm drill bit at coordinates corresponding to the stri-
atum (0.5 mm anterior and 2 mm lateral from bregma). Cells were
injected with a Hamilton syringe at a dorsoventral position of 3.5
mm ventral into the striatum. After injection, the incision was
sutured and immediately following surgery, the animals were recov-
ered from anesthesia using atipamezole via intraperitoneal injection
(1.0 mg/kg) to reverse the effect of dexmedetomidine. A single sub-
cutaneous injection of buprenorphine (0.01 mg/kg, subcutaneous)
was administered as postoperative pain relief. Sutures were removed
10 days after surgery (4, 45).

Tumors were allowed to grow for 19 to 21 days. At 19 to 21 days
after implantation, animals were euthanized to generate the brain
tumor slice explants for imaging. To generate brain tumor explants,
brains were embedded in 4% low melting temperature agarose and
kept on ice until solidification. Embedded brains were then im-
mersed in ice-cold and oxygenated DMEM without phenol red
and then sectioned in a Leica VT100S vibratome (Leica, Buffalo
Grove, IL). Brain tumor sections (300 μm thick) were transferred
to laminin-coated cell culture insert (Millipore Sigma, USA)
placed into a 27-mm-diameter dish (Thermo Scientific) with
DMEM/F12 media supplemented with 25% fetal bovine serum
and penicillin-streptomycin. All steps were performed under
sterile conditions in a BSL2 laminar flow hood. Tumor slices were
then maintained in a cell culture incubator at 37°C with a 5% CO2

atmosphere. After 6 to 18 hours, medium was replaced with
DMEM/F12 media supplemented with 2% B-27, 1% N2, 0.2% Nor-
mocin, penicillin-streptomycin (10.000 U/ml), and growth factors
EGF and FGF (20 ng/ml). Tumor explants were then transferred
to the incubator chamber of a single-photon laser scanning confocal
microscope model LSM 880 (Carl Zeiss, Jena, Germany). For tumor
imaging, the incubation chamber of the microscopewas maintained
at 37°C and 5% CO2. Images were acquired in a time-lapse frame of
10 min for 100 to 300 cycles. Raw data from movies used to perform
the analysis described throughout this manuscript were originally
described in (4).

Image analysis
To track the evolution of the cells, we use the software Fiji with the
plugin TrackMate. We use as parameters for the cell size (called
“blob”) 20 μm and a threshold of 1 together with the DoG
method (difference of Gaussian detectors). Each experiment gives
several paths denoted by xi(t) where i is an index for the cell and
t represents the time. The paths are however erratic; thus, we
apply a filter to smooth the trajectories over time (see Fig. 1). As
a filter, we use a Gaussian kernel with SD σ2 = 2 and a stencil of 9
points

xiðtÞ ¼
X

4

k¼�4

ϕkxiðt � kΔtÞ;ϕk ¼ C � e�k2=4 ð1Þ

where xi is the smooth trajectory, Δt = 10 mn is the time step

between successive image, and C is such that
P4

k¼�4ϕk ¼ 1. From
the smooth trajectories xiðtÞ, we then estimate the velocities of the
cells viðtÞ using a finite difference

viðtÞ ¼
xiðt þ ΔtÞ � xiðt � ΔtÞ

2Δt
ð2Þ

For each velocity vector vi(t), we estimate a corresponding veloc-
ity angle θi(t) ∈ [0,2π] (see Fig. 1). For subsequent analysis, all ve-
locity vectors are normalized and referred to as si.

Classification flock-stream-swarm
We subdivide glioma populations into connected subpopulations,
which we refer to as flocks, streams, or swarms [see fig. S14
(left)]. This empirical classification scheme was developed in a pre-
vious work (4) to segment populations into subgroups with similar
histological and statistical properties, as described briefly below. In
the present context, these classifications are not particularly impor-
tant, and instead, one may view this as a systematic way of
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subdividing populations for finite-size scaling, which is necessary
because the number of experimental populations is limited [see
(52) for further discussion of these issues in limited datasets].

To classify in which category an experiment is (i.e., flock, stream,
or swarm), we analyze the collection of velocity angles {θn}n = 1. . N

(where N is the sample size). We determine three densities for each
pattern [see fig. S14 (right)]

ρflock ¼ }Gaussiandistribution} ð3Þ

ρstream ¼ }symmetrizedGaussiandistribution} ð4Þ

ρswarm ¼ }Constant} ð5Þ

We then evaluate the likelihood of the velocity angles {θn}n = 1. . N

given each distribution, for instance

Lflock ¼
Y

N

n¼1

ρflockðθnÞ ð6Þ

Last, we compare the three likelihoods (i.e., Lflock, Lstream, and
Lswarm) and select the pattern with the highest likelihood.

Calculating correlation functions
The correlation function is given by C(r) = 〈δsi · δsj〉r, where δsi ≡ si
− 〈s〉 is the velocity of cell i in the moving reference frame where the
population average velocity (〈s〉) has been subtracted out. Angle
brackets 〈〉r indicate an average taken over all cells separated by dis-
tance r. In practice, we calculated correlation functions by first cal-
culating pairwise distances and dot products (δsi · δsj) for all pairs of
cells in an image at a given time. We repeated this process for all
images in a time series and combined the data from all time
points into a single pair of lists (distances and corresponding dot
products, ordered according to distance). The correlation functions
are then calculated by smoothing using a moving average filter with
a centered window of ±100 μm. Error bars/shading represent ±1
SEM within each window. Correlation functions (and the system-
size scaling of correlations length) are qualitatively similar (al-
though more or less noisy) for a range of window sizes from ±25
up to ±100 μm (fig. S3).

Estimating system size (L)
To estimate the size L of each population, we calculated the
maximum pairwise separation [L(t) ≡ dmax] between any two
cells at each time point. The distance L(t) will fluctuate over time
as the cells move. We define the size of the system as the mean
value of this separation distance over the entire time series [L ≡
〈L(t)〉t]. We found qualitatively similar results (i.e., scaling of corre-
lation length with system size) if we alternatively defined the system
size at each time point as L(t) = dcon, where dcon = A1/2 and A is the
area of the convex hull of all cell positions S5.

Box scaling analysis
To perform the box scaling analysis, we combined the data from all
samples into a single dataset consisting of approximately 400 single-
time snapshots of approximately 800 μm by 800 μm, each contain-
ing position and velocity information for hundreds of cells. For a
given box size W, we selected all cells within a randomly positioned

square box of length W from each snapshot. We then calculated the
separation distances and dot products (δsi · δsj) for all pairs of cells
within the box. The box sampling was repeated a total of 30 times
for each snapshot, each with a newly positioned box, and the pair-
wise distance and dot product data were then combined to estimate
a single correlation functionCW(r) for systems in boxes of lengthW.
We calculated these correlation functions for box sizes W ranging
from approximately 200 to 800 μm and then used them to estimate a
single characteristic length r0 for each box size, as described above in
the section “Calculating correlation functions” (this time using a
moving average filter with a centered window of ±50 μm).

Nonlocally coupled XY model as a data-constrained
maximum entropy model
To model collective motion in tumor cells, we used a maximum
entropy framework. Maximum entropy models are required to
match certain features of the data (in this case, the observed corre-
lation Cint, see below) but contain minimal additional statistical
structure. Similar models have been previously used to describe
firing patterns in neurons, immune system dynamics, interactions
between antibiotics, and collective motion in starlings. Following
(12), we constrain the model to match the scalar correlation over
local neighborhoods of size nc, which is given by

Cint ¼
1

N

X

N

i¼1

1

nc

X

j[nic

si � sj ð7Þ

whereN is the total number of cells, nc is the integer size of the local
neighborhood, and si is the unit velocity vector describing the
motion of cell i. The maximum entropy model consistent with
this constraint is then given by (12)

PðfsigÞ ¼
1

ZðJ; ncÞ
exp

J

2N

X

N

i¼1

X

j[nic

si � sj

0

@

1

A ð8Þ

where PðfsigÞ is the distribution over all configurations and Z(J, nc)
is the partition function (i.e., the normalization constant). To fully
specify the model, we must choose values of the parameters J and nc
such that the model reproduces the observed value of Cint, a process
that is equivalent to maximizing the likelihood that the model gen-
erates the configuration observed in a given snapshot of the flock.

To estimate model parameters, we first calculate the experimen-
tal correlation C

exp
int (where the superscript “exp” indicates that this is

the value observed in the experiment) for a single snapshot of the
population. This experimental value must match the value of Cint

produced by the model, which provides an explicit data-dependent
constraint between the parameters J and nc

1

J
¼

nc
2N

ð1 � C
exp
int Þ ð9Þ

We then determine the remaining free parameter, nc, by numer-
ically maximizing the log likelihood of the data given the model,
which can be written as a function of the both C

exp
int (a measured

quantity) and Z(J, nc) (the partition function for the model).
Directly calculating the partition function Z(J, nc) is computa-

tionally expensive, even for this simple model. One option to sim-
plify the calculation is to use a spin-wave approximation, which
provides an analytical expression for Z(J, nc) in terms of eigenvalues
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of a matrix A that describes the neighborhood structure of the pop-
ulation (i.e., which cells are in the local neighborhood, of size nc, of
each cell). In the spin-wave approximation, the partition function
reduces to (12)

logZðJ; ncÞ ¼ �
X

k.1

log
Jλk
N

� �

þ
Jnc
2

ð10Þ

where λk are the eigenvalues of the matrix A = δij∑k nik − nij, where
nij is 1 if cell i is in the local neighborhood of cell j and vice versa, 1/2
if cell i is in the local neighborhood of cell j but j is not in the local
neighborhood of cell i (or vice versa), and 0 otherwise. Note that the
spin-wave approximation is strictly valid only in highly polarized
populations, as it relies on neglecting higher-order terms in an ex-
pansion velocity components perpendicular to the direction of po-
larization. In this work, we used the spin-wave approximation to
provide first-pass estimates of the parameters J and nc. While cell
motion is not typically highly polarized in our dataset and the
spin-wave approximation is therefore not strictly valid, we found
that the parameters estimated from this approach do lead to
strong agreement with the data.

Estimating parameters from simulated data
To probe the reliability of parameters estimated with this spin-wave
approximation, we used Monte Carlo simulations to produce arti-
ficial datasets, snapshots of velocity configurations for populations
of cells whose positions are identical to those in the experimental
data, drawn from the model with specified values of J and nc. We
then estimated the parameters directly from the simulated data
using either (i) the spin-wave approximation or (ii) a direct least
squares fitting to observed distribution P({θi}), where {θi} is the con-
figuration of velocity angles in the population.

Mean field XY model
The maximum entropy model has two free parameters, J and nc, that
are inferred from experimental data. In the limit nc → N − 1 ≈ N
(all-to-all coupling), this model reduces to a mean field version of
the 2D XY model with only a single free parameter, J. Estimating
this parameter from data reduces to a classic inverse problem in stat-
istical physics, with the log likelihood L(J ) of the observed config-
urations taking the form

LðJÞ ¼
1

2
JNC

exp
int � logZðJÞ ð11Þ

where C
exp
int is now the average pairwise correlation taken over the

entire population. Maximizing the likelihood is equivalent to

requiring that the correlations measured experimentally ðC
exp
int Þ

match those from the mean field model, which reduces to a classical
inverse problem. In this case, we can write down an explicit expres-
sion for J in terms of the experimental measurable

J ¼
2

ð1 � C
exp
int Þ

ð12Þ

Estimating critical parameters in systems with long-range
coupling
Equation 12 highlights an important caveat of our approach when
the range of coupling nc is comparable to the total size of the system
(N ). The mean field XY model undergoes a phase transition at a

critical value of Jc = 2. Equation 12 therefore indicates that observed
data characterized by C

exp
int � 0 would appear to be at a critical point

of the mean field model. In practice, C
exp
int � 0 would also be expect-

ed for completely disordered populations, that is, for populations
where the velocity direction is drawn from a uniform distribution.
As a result, maximum likelihood estimates that indicate J ≈ Jc are
not, alone, sufficient evidence of criticality, as they cannot distin-
guish systems in the disordered region (J < Jc) from those at critical-
ity. To quantitatively characterize these limitations for datasets
comparable in size to our experimental data, we used Monte
Carlo simulations to generate artificial datasets representing cell
populations globally coupled with different values of J. We then cal-
culated the maximum likelihood estimates of J from those in silico
datasets (just as we did with experimental data). As expected, we
found that estimates of J hover around the critical value Jc = 2 for
simulated systems at or below the critical point (fig. S11). On the
other hand, estimates of J are accurate for systems slightly above
the critical point.

Monte Carlo simulations and phase diagram
To characterize the phase diagram for the nonlocal XY model, we
used Monte Carlo simulations to generate representative velocity
distributions for different values of nc and J. For each parameter
pair, we calculated the mean polarization across trials and the gen-
eralized susceptibility χ, which corresponds (up to a proportionality
constant) to the variance of the polarization across trials. We then
estimated the critical surface to be the curve in parameter space that
corresponds to a peak in χ. We also verified that the system exhibits
sharply increasing polarization and a peak in the generalized heat
capacity at the critical surface. For all simulations, cell positions
(and, therefore, cell density) were taken from a representative exper-
imental dataset.

Comparing velocity angle distributions between the model
and data
To compare experimental results with results from the effective
model, we calculated histograms of velocity angle. The model is
symmetric under rotation and cannot provide information about
the specific velocity direction, that is, we can globally rotate all ve-
locities by an arbitrary angle. To compare histograms between the
model and the data or, for example, to combine data from multiple
independent simulations (model) or multiple time points (experi-
ment), we first calculated the two frequency histograms to be com-
pared. Then, we rotated all velocities in one population by an angle
θ, and we tuned θ to achieve maximal alignment between the dis-
tributions (i.e., minimal difference in a least squares sense). Because
the histograms themselves are noisy, this process could, in principle,
lead to apparent similarities between distributions with fundamen-
tally different shapes. Therefore, as a control, we simulated size-
matched populations where velocity angles were drawn from a
uniform distribution, and we then used this alignment process to
compare these (nominally) uniform histograms with the histograms
from the maximum entropy model. We confirmed that this align-
ment process does not yield substantial agreement between these
different distributions (fig. S11).
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Supplementary materials. S1 to S14

View/request a protocol for this paper from Bio-protocol.
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