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UNCOVERING A TWO-PHASE DYNAMICS FROM A DOLLAR
EXCHANGE MODEL WITH BANK AND DEBT*

FEI CAO' AND SEBASTIEN MOTSCH?

Abstract. We investigate the unbiased model for money exchanges with collective debt limit:
agents give at random time a dollar to one another as long as they have at least one dollar or they can
borrow a dollar from a central bank if the bank is not empty. Surprisingly, this dynamic eventually
leads to an asymmetric Laplace distribution of wealth (conjectured in [N. Xi, N. Ding, and Y. Wang,
Phys. A, 357 (2005), pp. 543-555] and shown formally in a recent work [N. Lanchier and S. Reed,
J. Stat. Phys., 176 (2019), pp. 1115-1137]). In this manuscript, we carry out a formal mean-field
limit as the number of agents goes to infinity where we uncover a two-phase ODE dynamic. Con-
vergence towards the unique equilibrium (two-sided geometric) distribution in the large time limit is
also shown and the role played by the bank and debt (in terms of Gini index or wealth inequality)
will be explored numerically as well.
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1. Introduction. Econophysics is a subfield of statistical physics that apply
concepts and techniques from traditional physics to economics or finance [15]. One
of the primary goals of this area of research is to explain how various economical
phenomena could be derived from universal laws in statistical physics under certain
model assumptions, and we refer to [20, 28] for a general review.

There are several motivations for the study of econophysics models: from the
perspective of a policy maker, how to influence/control the emerging wealth inequality
(measured by Gini index) in order to mitigate the alarming gap between rich and poor
is a central issue to be dealt with. From a mathematical viewpoint, the fundamental
mechanisms behind the formation of macroscopic phenomena, for instance various
possible wealth distributions from different agent-based money exchange models, must
be thoroughly understood. For a given (stochastic) agent-based model, we aim at
identifying a limit (deterministic) dynamic when we send the number of individuals to
infinity, and then the deterministic system will be further analyzed with the intention
of proving its convergence to equilibrium (if there is one) for large time. This paradigm
has been implemented in a vast amount of works across different fields of applied
mathematics; see, for instance, [1, 3, 8, 27].

In this work, we consider a simple mechanism for money exchange involving a
bank, meaning that there are a fixed number of agents (denoted by N) and one bank.
We denote by S;(t) the amount of dollars the agent 7 has at time ¢ and we suppose
that vazl S;(0) = N u for some fixed u € Ry so that Ny € Ni. Thus, each agent
in this closed economic system has p dollars on average. Moreover, we denote by
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B, := B. + By the initial amount of dollars in the bank, where B. and By represent
the amount of dollars owned by the bank in the form of “cash” and in the form of
“debt” (borrowed by agents), respectively. Also, we introduce another parameter
v € Ry (which measures the ratio of the bank’s initial wealth to the initial combined
wealth of all the agents) so that N uv € N; and set B, = N pv. We emphasize here
that the parameters p, v € R4 are both dimensionless constants.

The model investigated in this work was proposed in [32] and revisited by [23]:
at random time (generated by an exponential law), an agent ¢ (the “giver”) and an
agent j (the “receiver”) are picked uniformly at random. If either the “giver” i has at
least one dollar (i.e., S; > 1) or if the central bank has “cash” (i.e., B, > 1), then the
receiver j receives a dollar. Otherwise, when the giver ¢ has no dollar and the bank
has no cash, then nothing happens. To further clarify the model, we emphasize that
dollars in the central bank are untouched when the “giver” i has at least one dollar,
and the “giver” i will borrow a dollar from the bank (as long as the bank has money)
if he/she has no dollar to give. We illustrate the dynamics in Figure 1 explaining the
three cases when agent ¢ is picked to give one dollar to agent j. From now on, we will
call this model the unbiased exchange model with collective debt limit and it can be
represented by (1.1):

(1.1) (S, 55) Ay (S; —1,8; +1) if S;>1or B. > 1,

where A>0 is the rate at which a pair of agents are selected to engage in the binary
exchange (1.1). Notice that when the bank gives a dollar to agent j, there is still one
dollar withdrew from the giver ¢, i.e., the debt of agent i increases (represented in red
in Figure 1). The debt of agent i could be reduced once it will become a “receiver”.
It is also important to notice that in this model the bank never loses money, it just
transforms its “cash” B, into “debt”. Without the bank, agents can only give a dollar
when they have at least one dollar (hence no debt is allowed). In this case, the model
is termed as the one-coin model in [21], the unbiased exchange model in [4, 7], and
the mean-field zero range process in [26].

Remark 1.1. In order to have the correct asymptotic as the number of agents
goes to infinity N — 400, we need to adjust the rate A by normalizing by N (which
amounts to replacing A in (1.1) by A\NN) so that the rate of a typical agent giving a
dollar per unit time is of order 1. Here by saying “a typical agent” we mean an agent
picked (uniformly) at random from the crowd of N agents.

The fundamental question of interest is the exploration of the limiting money
distribution among the agents as the total number of agents N and time ¢ become
large. To foresee the behavior of the dynamics under these limits, we perform a
numerical simulation with N = 10,000 agents over 10,000,000 steps. In Figure 2-
left, we plot the evolution of the cash in the bank B. over time. We observe a first
phase where the cash B, is decaying linearly until it reaches zero (after roughly two
millions steps). After that, there is a second phase where B, remains close to zero. In
Figure 2-right, the distribution of the wealth distribution is plotted after 10 millions
steps. This distribution is well approximated by an asymmetric Laplace distribution
given in (1.4).

This numerical result will be explained by our derivation in section 2 and the
following asymptotic analysis in section 3. Our approach illustrated by Figure 3
consists of two steps. Our first step consists of deriving the limit dynamics as the
number of agents goes to infinity N — +oo (section 2). With this aim, we introduce
the probability distribution of wealth:
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Fic. 1. Illustration of the unbiased exchange model with collective debt limit: at random time,
a “giver” i has to give one dollar to a “receiver” j. Three cases are possible. Case 1: if the “giver”
i has at least a dollar (i.e., S; > 1), then it gives it to j. Case 2: if i does not have a dollar (S; <0)
and the central bank has cash (i.e., B > 1), then j receives one dollar from the bank and the debt
of i is increased by one. Case 3: the giver i and the bank do not have any money, nothing happens.
(Figure in color online.)
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Fic. 2. Left: The evolution of the amount of cash in the bank B. when running a simulation
with N = 10,000 agents with p = 10 dollars per agent. In a first phase, B decays linearly until
it reaches zero. After that, in the second phase B. remains close to zero. Right: The distribution
of wealth for the agent-based dynamics after 10,000,000 steps. Notice that this distribution is well
approzimated by an asymmetric Laplace distribution given by (1.4)—(3.5) with =10 and v = .4.
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Fic. 3. Schematic illustration of the strategy of the limiting procedures.

(1.2) p(t)=(,p—n(t),....p=1(t),po(t),p1(t),- ., Pn(t),...)

with p,(t) = {“probability that a typical agent has n dollars at time¢”}. The evolu-
tion of p(t) will be given by a system of (deterministic) nonlinear ordinary differential
equations. To fully justify this transition from a stochastic interacting systems into a
deterministic set of ODEs, one needs the so-called propagation of chaos [30]. Heuristi-
cally speaking, the propagation of chaos property in the specific context of our model
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says that the (random) agent ¢ and agent j picked to engage in the binary trading
activity (1.1) are statistically independent as N — co. We do not investigate the proof
in this manuscript, the derivation has been rigorously justified in various models aris-
ing from econophysics; see, for instance, [2, 4, 5, 7, 12, 13, 14, 18]. The additional
difficulty here is that the evolution of p(t) is split into two phases. Indeed, the evolu-
tion changes at the first time when there is no more cash in the bank. We will denote
by t. the time at which such event occur, i.e., at t, the bank is empty for the first
time. The evolution equation of p(t) takes the form of

Phasel: Op=2Q1[p] for 0<t<t,,

(1.3) PhaseIl:  Op=A\Qo[p] for >t

where the exact expressions for the operator () and @5 are given by (2.5) and (2.15),
respectively.

Our second step is to investigate the asymptotic behavior of the probability mass
function p(t) as t — +oo, more precisely its convergence toward an asymmetric
Laplace distribution (1.4):

1.4
(1.4) poeﬁ‘” forx <0,

{poe‘” forz >0,

plx) =

where the three positive parameters pg, « and 3 only depend on i (average wealth per
agent) and v (the ratio between the bank and agent’s combined wealth). Our proof
relies on the so-called entropy method which gives a rigorous proof of the convergence
of p(t) toward the asymmetric Laplace distribution p; see subsection 3.2. Moreover,
a standard linearization analysis performed in subsection 3.3 allows us to obtain an
exponential decay result for the linearized entropy (near equilibrium), provided that
the parameters p and v fulfill certain criteria.

Finally, we would like explore the role played by the bank in terms of wealth
inequality. In particular, we conjecture that the inclusion of the bank and possibility
for agents to go into debt will lead to accentuation of wealth inequality (measured by
the Gini index), compared to the usual unbiased exchange model (without the presence
of a bank). This type of Gini index comparison conjecture (shown numerically in
section 4) makes sense at least heuristically but we are not able to provide a rigorous
proof.

Although we will only investigate a specific binary exchange models in the present
work, other exchange rules can also be imposed and studied, leading to different
models. To name a few, the so-called immediate exchange model introduced in [19]
assumes that pairs of agents are randomly and uniformly picked at each random
time, and each of the agents transfer a random fraction of its money to the other
agents, where these fractions are independent and uniformly distributed in [0, 1]. The
so-called uniform reshuffling model investigated in [5, 15, 22, 25] suggests that the
total amount of money of two randomly and uniformly picked agents possess before
interaction is uniformly redistributed among the two agents after interaction. For
closely related variants of the unbiased exchange model we refer to the recent work
[7]. For other models arising from econophysics, see [2, 6, 9, 10, 11, 16, 17, 23, 24, 31].

2. Formal mean-field limit. In this section, we carry out a formal mean-
field argument of the stochastic agent-based dynamics (1.1) as the number of agents
N goes to infinity. Even our analysis is not completely rigorous, the resulting sys-
tem of ODEs (i.e., (2.4)—(2.5) in Phase I and (2.14)—(2.15) in Phase II) admits a
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unique equilibrium distribution as ¢ — co, which is a two-sided geometric distribution
and can be well approximated by an asymmetric Laplace distribution when g > 1
(i.e., when the initial average amount of dollars per agent becomes large). As our
prediction of the limiting distribution of money based on the large time behavior of
the ODE system (2.14)—(2.15) coincides with the conjecture in [32] and the work in
[23], it strongly indicates that our heuristic mean-field analysis actually captures the
correct deterministic behavior of the underlying stochastic dynamics when we send
N — o0.

The unbiased exchange model with collective debt limit can be written in terms of
a system of stochastic differential equations (driven by Poisson or jump processes [29]),
thanks to the framework set up in [7] for the study of the basic unbiased exchange
model as well as some of its variants. Introducing {Nﬁ” )}19‘, j<nN, which represents a
collection of independent Poisson processes with constant intensity %, the evolution
of each §; is given by

(2.1)

N
AS; ==Y (1= Lcoc0)(8) - 0(Be) AN 437 (1 — 1o )(85) - dol(Be)) AN,

Jj=1

Jj=1

“¢ gives to j5” “j gives to 3”

where we use the notation dg(B.) := 1{B. = 0}. By the obvious symmetry, we can
focus on the case when i = 1 and notice that whenever B. > 1, the SDE for S
simplifies to

N N
(22) dSi=—Y dN{" + S dANg.
Jj=1 j=1
If we introduce
N N
1,5 Al
NN M=
j=1 =

then the two Poisson processes N; and M} are of intensity A := 1. Motivated by
(2.2), we give the following definition of the limiting dynamics of S;(t) as N — oo
from the process point of view, providing that B, > 1.

DEFINITION 2.1 (mean-field equation—Phase I). We define S; to be the
compound Poisson process satisfying the following SDE:

(2.3) S, = —dN, + dM;,

in which N: and M: are independent Poisson processes with unit intensity.
We denote by p(t) = (...,p—n(t),...,0-1(t),p0(t),p1(t),...,pn(t),...) the law of

the process Sy (t), i.e. pn(t) =P [S1(t) =n]. Its time evolution is given by the following
dynamics:

d
(2.4) P =Q1lp(?)]
with
(2.5) Q1[Pln :==Pnt1 +Pn-1—2pn for n € Z.
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Remark 2.2. Tt is readily seen that p(t) is exactly the law of a continuous-time

symmetric simple random walk on Z defined via

Nt
(2.6) X; = Xo+ ZYi

i=1
with Y; € {—1,1} being a sequence of independent Rademacher random signs and N;
being a Poisson clock running at unit rate. In particular, we have the elementary
observation that E|X;| 122 4. Indeed, the previous observation follows readily
by writing

E|X,| :/ P(|X,|>z) do
0

and noticing that P(|X|>x) 2% 1 for each 2>0.

The distribution p(¢) naturally preserves its mass (since it is a probability mass
function) and the mean value (as the total amount of money in the whole system is
preserved), thus if we introduce the affine subspaces:

(2.7) Su—{pIan—l,anO,ann—/i}

nez ne”L

and
St ={peS,|pn=0forn<o},

then it is clear that the unique solution p(t) of (2.4)-(2.5) with p(0) € S;F satisfies
p(t) € S, for all t>0. Moreover, if we define the average amount of “debt” per agent
as

(2.8) Dlp]=~ Y npa,

n<—1

this quantity is no-decreasing because & D[p(t)] = po(t) > 0. Since the average amount
of debt each agent can sustain in the underlying stochastic N-agents system is at most
pv, we therefore terminate the evolution of Phase I (2.4)—(2.5) until ¢t =¢., where

(2.9) te =min{D[p(t)] = pv}.
Remark 2.3. Thanks to the previous remark, E|X;| 2% 1. By the identity

|X;| = X, + X; and the obvious symmetry, we deduce that D[p(t)] = E[X, ] is also
unbounded as t — co. This observation ensures the finiteness of the ..

At the level of the agent-based system, after the first time when there is no cash
in the bank, i.e., when ¢ > 5% := min{7>0 | B.(7) = 0}, the analysis is much more
involved so heuristic reasoning plays a major role in this manuscript. We notice that
we have the following basic relations for all time ¢ > 0:

N N
(2.10) B.=B.-Y S;,dB.=-) dS;,

i=1 1=1
and B. > 0. Therefore, the evolution of B, is much faster than the evolution of
each of the S;’s (as the rate at which B, will make a jump is of order N due to the

summation over ¢ € {1,2,..., N} in (2.10)), indicating that (2.10) is really a “fast”
dynamics compared to (2.1). These observations motivate the next definition:
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DEFINITION 2.4 (mean-field equation—Phase II). We define S, (for t >
t58°¢ ) to be the compound Poisson process satisfying the following SDE:

(2.11) 48, = — (1 ooy (S1) - Z) AN! + (1—(1-Y)-Z)dM!,

in which IQT% and Mtl are independent Poisson processes running at the unit intensity.
Moreover, Y =Y (t) ~ B(r(t)) and Z = Z(t) ~ B(qo(t)) are independent Bernoulli
random variables with parameters

(2.12) r=P [§1 > 1}
and
P(3 = 0}
(2.13) qo = :

respectively.

We again denOtE by p(t) = ( . apfn(t)a ce apfl(DaPO(t)apl(t)’ s ,Pn(t)» o ) the
law of the process Sy(t) for t > t., i.e., p,(t) = P[Si(t) = n] for ¢t > t,. Its time
evolution is given by the following dynamics:

(214) <p(t) = Qalp(t)
with
(2.15)
mpnﬂ + g Pl ((T+Po€((jd+po) + Tfpo> Pny ns—1
Q2[pln = { P1+ 0 P — (o taresy + vigs ) Pos n=0,
Prtr+ 35 P11 — (14 7550 ) Pno n=1,
where
(2.16) r::an and d:= Z Dn
n>1 n<—1

represent the proportion of “rich” and “indebted” agents, respectively.

Remark 2.5. We will illustrate the basic intuition behind Definition 2.4. Under
the large population limit N — oo, we denote by q(t) = (go(t),q1(t),...) the law of
Be(t). It is easily seen that the transition rates of B, can be described by Figure 4
below.

That is, the transition B, — B, + 1 occurs when a “rich” agent is being picked
(S; > 1) and gives a dollar to an “indebted” agent (S;<0). Similarly, the transition
B. — B.—1 happens when an agent without dollars is being picked (S; < 0) and gives
a dollar to an agent without debt (S; > 0), and moreover, B, > 1. As the evolution of
B, is a “fast” dynamic, we assume its distribution will relax to its ergodic invariant
distribution within a time-scale that is negligible compared to the evolution of each
of the S;’s. Thus, from the following detailed balance equation at equilibrium:

Gn 7T d=gns1- (T +po)- (d+po),
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(rate B. — B.+1)

*-—o— O ®
0 1 n—1 n n

N > B,

(
Gl

((’I'er()) . (der())) (rate BC—>BC_1)

F1c. 4. Schematic illustration of the evolution of B. (amount of cash in the bank).

Q‘+ (d+po)(1— qo))(rate Sy =5 +1)

(rate§1%§171) O(rate@aérl)

when 3 <o when 3, >0

Fic. 5. Schematic illustration of the evolution of S1 in Phase II.

(m)nqo for all n > 0. Taking into account that

EnZO gn =1, we end up with

one arrives at ¢, =

(r+po) (d+po)’
which is exactly (2.13). On the other hand, the transition rates of S; can be described
by Figure 5 below.
This suggests that the evolution of p(¢) should obey

d -
(2.17) P =Qlp®),
with
_ (1 - QO)(anrl _pn) + 7(pn71 _pn)7 n<-—1,
(2.18) Qlpln. = p1— (1 —=qo)po +  y(p-1—po), n=0,
Pr41 = Pn + Y(Pn-1-pn);, n2>L
with v =7+ (d 4+ po)(1 — qo). If we insert go = (Tﬂm’)’m, then the system (2.17)-

(2.18) coincides with (2.14)-(2.15).

3. Large time behavior. Although our mean-field analysis is not completely
rigorous, we will soon see that our system of ODEs (i.e., (2.4)—(2.5) for ¢ < ¢, and
(2.14)—(2.15) for t > t.) converges to a double-geometric distribution as ¢ — oo,
which resembles an asymmetric Laplace distribution when p becomes large. Taking
into account the conjecture in [32] and the work of [23], as well as several numerical
experiments, we believe that the two phase dynamics (1.3) accurately captures the
mean-field behavior of the stochastic N-agents dynamics as N — oco.
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3.1. Elementary properties of the limit equation. In Phase II, the average
amount of debt per agent D (2.8) is preserved; therefore we can further restrict the
affine space where the solution p(t) of (2.14)—(2.15) lives:

(31) SH,V: p|zpn:1apn207ann:,u7_znpn:,uy ,

nez nez n<0

it is straightforward to check that if p(t.) € S,., then p(t) € Sy, for all t > t,.
Now, we identify the unique equilibrium solution associated with (2.14)—(2.15) in this
space.

PROPOSITION 3.1. The unique equilibrium solution of (2.14)-(2.15) in S, de-
noted by p* ={pk }nez, is given by

7”* n d* —n
3.2 ij:< ) Py, n >0, pZZ( ) Py, n <0,
3.2) ™ +py 0 d* +pg 0
in which
53 1/(4v+2) ifu=1,
3.3 PO= 1 nwt+d)— vl
a . (HQ_Hl)/Q & * Zfﬂ%lv
—1)ps+1
(3.4) T*:%, and d*=1—pi—r".

Proof. From the evolution equation in Phase II (2.14)—(2.15), it is straightfor-
ward to check that the equilibrium distribution takes the ascertained form (3.2). As
we also have p* € S,,,, we impose that

anfl =u, and — anfl =puu.
neZ n<0

These constraints lead us to

(" +pg) =ph (nv+p)  and  d*(d*+pp) =pg .

Combining these relations with the elementary identity r* 4+ pf + d* = 1, we obtain
the desired result. O

Remark 3.2. Under the settings of Proposition 3.1, if we take > 1 while keep-
ing v fixed, the two-sided geometric distribution p* (3.2) can be well approximated
by the asymmetric Laplace distribution given by (1.4) and conjectured in [23, 32].
Furthermore, we have an estimation of the parameters pg, v, 8 of this distribution
with

1 2 1 v 1 1+v
(3.5) po~;(\/1+7u—ﬁ), ozwu(l 1+u>’ 5~u< V 1).

Indeed, by taking p > 1 in (3.3), we can perform the following simple asymptotic
analysis for pg:

. p(v+3) — /22 + P+ 4 1
pO: 2 =
(w2 =1)/2 2<u(1/+%)+1/u2y2+u21/+i)

1 1 1 ! 2
: =— | ——=—=) =— (V1+v—+v) .
1+2v+2Vv2+rv  u <\/1+u+ﬁ> I ( f)

==
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Similarly, the asymptotic behavior of a can be seem from the asymptotic analysis for

log (1/#) Thanks to (3.3), (3.4), and the asymptotic argument for p§ above, we
0

have

% % (p+1) /1 _ 2 1
log 1/ r :log (/’L+1)p0+1 Nlog 14 ( +v \/ﬁ) +
™ +p — @(1/14_1/_\/'5)24_1

1+ (VIT7 - yo)° 4 )

[=F1

+ 0
= |0 3
1+ (\/1+u—ﬁ)27(7”+”“_ﬁ)
(VTFv—v7)

i (1)

The argument for [ is pretty similar and hence will be omitted here.

3.2. Convergence to asymmetric Laplace distribution. The main goal of
this section is to prove the convergence of the solution p(¢) in Phase II (2.14)-
(2.15) to its two-sided geometric equilibrium solution p* as t — co. The essence of
the method consists of studying the (relative) entropy dissipation between the two
distributions. We remind the formula for estimating the relative entropy:

(3.6) i (plla) = 3 o (22).

neZ

THEOREM 3.3. Let p(t) = {pn(t)}i>e. e the unique solution to (2.14)—(2.15) with
p(ts) €Sy, then for all t > t. we have

d * n n n T
it (p(0)[1p7) == o (P25 = B o e

dt =~ T r+po Pn/(r + po)
(3.7) =
S rd <Pn+1 Pn)logMH/@Hpo)@
= r+po \d+po d pafd T

Consequently, if 3, <o Pn(ts) ™+, coPn(ts) c <00 for some c¢>1, then the solu-
tion p(t) converges strongly in (P for 1<p<oo as t — oo to the two-sided geometric
distribution p*.

Proof. We split the computation of

d L d d .
a DkL (p(t) ||p ) = 7 an log pn, — a an Ingn
neL ne”Z

into two parts. On the one hand, we have

d * * * *
T an logp;, = Zp’n logp; +p'o logps + Z p'n logpy, ;=14 114111,
neE”Z n>1 n<—1
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where
(3.8)
r* r*
I= lo +nlo + n—1 | logpt +nlo
T;pn-‘rl( gD . > ZH p 1( gD gr*ﬂ)é)
r r*
Z(1+ >pn <logp3+nlog *>,
n>1 T+ Po o

r rd r
3.9 M= (p, + - + log pt,
(3.9) (pl rtpol ! ((r +po) (d+po) 7"+P0> po) &Po

and

rd r*
1= ———————DPn logp§ +n log ———
Z (T+p0) (d+p0)p +1 <ng0 n 10g T*+p8>

n<—1
r r*
+ n—1 | logpy +n log ————
810 n;w()p  (tospi e nog )
—Z( tor )p" <1°gp3+”10g a )
= 7’+P0 d+po) T+ o r+pg

Assembling (3.8)—(3.10), we end up with
(3.11) 4 > pnlogp;, =0
. dr nezpn gPn =Y.

On the other hand, straightforward computations lead us to

d T pn+1
PMACTEES <p e ) log

n>0 T+P0 Pn

d
r d d Pn+1
- § r (d+ pn+1_pn) log o
n<0 Po bo

n

(3.12)
Z (pn+1 Pn ) ] Pn+1/T
= — — og
">0 T+ Do pn/(r + po)
_ Z <Pn+1 _Pn> o Pnt1/(d+po)
e 17”+P0 d+po d po/d

Combining (3.11) and (3.12) gives rise to the advertised entropy dissipation result
(3.7). The last statement of Theorem 3.3 can be handled in a similar way as in the
case for the basic unbiased exchange model (without the presence of a bank); see, for
instance, [7, 26]. 0

To illustrate the convergence of p(t) toward the equilibrium p*, we run a simu-
lation and plot the evolution of p(t) at different times (see Figure 6-left) as well as
the evolution of the relative entropy Dkr (p(t)||p*) over time (see Figure 6-right).
Notice that the decay of the relative entropy changes abruptly around ¢ = 200 which
corresponds to the transition of the dynamics from Phase I to Phase II. During
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0.040 A

— p(t = 50) relative entropy Dk, (p(t) || p*)
0,035 1 p(t = 200) \ = fitting: c1exp(—c2v/1)
\

0.030 1 p(t = 400)
0.025 p(t = 1000)

= = P’ equilibrium

N
\
RN
N

0.020

0.0151

probability

0.010 +

relative entropy

0.005 +

0.000 1

100 [ 1000 2000 3000 4000 5000

time (t)

F1G. 6. Left: evolution of the distribution p(t) toward the equilibrium p* (3.2). The dynamics
are in Phase I till t ~ 200. Right: evolution of the relative entropy (3.6) between the solution
p(t) and the equilibrium p*. In Phase II (i.e., t>200), the decay is approzimately given by
c1 exp(—cz\/i) with c1 = .674 and co = .182.

the phase II, the decay of the relative entropy is well approximated by a decay of the
form

(3.13) Dt (P(1) || p*) = c1 exp(—c2 V1),

where the coefficients ¢; = .674 and co = .182 are estimated using mean-square error
criteria. We emphasize here that the ansatz for the decay of the relative entropy
Dk (p(t) ||p*) (3.13) is inspired from a very recent work on the vanilla unbiased
exchange model [4], which corresponds to the special case of the model at hand where
v=0.

3.3. Linearization analysis. We perform a standard linearization analysis near
the two-sided geometric equilibrium distribution p*. The hope is that for some ranges
of parameter choices for y and v, the linearized entropy will decay exponentially fast
in time. As we will soon realize, to enlarge the parameter choices of u and v for which
the linearized entropy decreases exponentially fast, one has to find the best possible
constants for certain Poincaré-type inequalities.

We linearize the ODE system (2.14)—(2.15) near its equilibrium p*, i.e., we set
Pn = P} +ew, for 0<e < 1 for all n € Z to obtain the following linearized system
around p*:

d
(3.14) &w = L[w]
with
* 7,*
LW, =wpt1 — Wy + —— (Wp—1 —wy) +a———(p),_1 —p,,) forn>1,
[w] +1 r*+p3( 1 ) T*+P8(p 1= D)
* r*

r
Liwlpg=w + —— (w_1 —wy) +a — (p*;, — p3;

[(w]o 1 7“*+p6( 1 0) r*+p3(p1 Po)
r* d*

+p5) (d* +p5)

(ot 8) i)
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and
r*d* ( )+ r*
Wn, — Wn *
(r+pp) (d +p5) " T+ pj
7"* * * T’*d* (a+ﬂ) (p* 7p*)
O‘ﬁ(pn—l 7pn)+ * * :H‘l * =
™ + Dy (r* +pg) (d* + pg)

Llwl, =

(wn—l - wn)

forn < -1,

where we set

Z Wn Z Wn Z Wn, Z Wn
o n>1 . n>0 and ﬁ L n<—1 . n<0

It is straightforward to check that

w(t)eV:= Weél(ZHan:O,ann:O,ann:O

nez neZ n<0

for all t. Moreover, if we denote the linearized entropy associated with the linearized
system (3.14) by

(3.15) Ew]:= Yz,

a direct computation yields

1d r* d* r* d*
77E[ } (1_ 7+Oé27'*+52

2dt (T*+p*)(d*+p )) e T 4 ph
(3.16) 0 o

2
_ wn-l—l ’U)n r Z (wn—i-l n)
2 : 7,* * * :
+p0 n<—1

n>0 pn+1

We can bound a? as follows. Introduce {a, }nz0 by defining o, = L for n > 1 and
an = = + ——— for n < —1. Similarly, let {\,}nx0 be defined by X, = fyl for n > 1 and
An =72 for n < —1, where 7; and 79 are constants whose choices will be optimized
later. The deﬁmtlon of «, together with the fact that w € V, allows us to deduce that

2

a? = Z(/\nn+1)oznwn

n#0
X (mn+1)?pn X (en+1)?p; )
< n>1 + n<—1 Wy,
- (r*)? (r* +pp)? r @
Optigﬂzing the values of 71 and 72 gives rise to v1 = — 530~ +p* and 2 = 5 d*p ips . Thus,
we obtain
1 (d*)2 w?
(3.17) a? < —+ - — n
2r*+py  (2d* +pp) (r* +pp) o j2s

In a similar fashion, we also get

(3.18) 5 < (g + ) S
n#0

2d* +p5 (27 +pg) (d* +pg)? j2
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as well as
(r*)* (d*)?
w3 e T @die) w3
Po Pot zrip;  @aimn ) ez Pn
Thus, we have the following upper bound:
(S I
(r* +p5) (d* +p5) ) p5 T+ pg

<

1 B T* d* B 7“* B ’I"* (d*)Q
(r*+pg) (d*+p5)  2r+p;  (2d" +p§) (r* +pj)?

(320) B ’I"* d* B (,,,*)3 d* wfg
(r*+pg) 2d*+p5)  (r* +p5) (2 +p§) (d* +p5)? ) g

’I"* T* (d*)2 )
+ + Elw
(5535 * @y oo o) P

. (( r* d* . (r*)3 d* ) Efwl

™+ py) (2d* +pg)  (r*+ph) (27 +ph) (dF +p§)?

On the other hand, we have the following simple lower bound on 37 -, (Wnr—wn)®

Py
2
3.91 (wn+l - wn)2 > V r* +p8 —Vrr w721
(3.21) Z P = \/W ZPT
n>0 n Po n>0 "
Indeed, we have
2
w 1
doE=d | Y (e —wn)
n>0 Pn n>0 Pn k>n+1
1
=D — > (wpar—wr) Y (wea —w)
n>0 P kSt >ntl
1
= (wr—1 —w) (we—1 — wy) > —
k,0>1 0<n<min(k—1,0—1) P
2r* 1 1
== > (w1 —wi) (we—1 — wy) (* - *>
Po 52 Pr Po
1 1
+— > (w1 —wy)? <* - *>
0 k>1 P Po
1 1
* ( ) i w2 (w wy)
2r Wp—1 — W 11—
<2 (gl ) (s ) Ly e
: :
_24/r*(r* +pp) Z (w1 —wy)? ujl
Po =1 P =0 Pn

™ +pp (Wp—1 — wi)?
) D
Po =3 Dr—1
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from which the advertised lower bound (3.21) follows. By a parallel reasoning, we
also obtain

322 3 el (STESE)
0

Combining (3.21) and (3.22) leads us to the following lower bound:

* *
n<—1 Pri1 n<0 Pn

*

(Wpy1 — wp)? r (Wnt1 — wn)?
> + >
™ 4+ pg

* *
n>0 Pn n<—1 D1

(VTR e (A
= e -‘rpf) = o r* +p3 A/ d* era

3.23 2 2
( ) . /T* +p37 /7,* 7,.* /d* +p8_«/d*
> min , ” E[w]
\/ T+ D ™ 4+ po £\ a* +p§
2 2
\TF Dy — VT r* Vd*+pf— Vd* wi
—+ max R "
‘/T*+p8 T*+p0 \/d*+p6

To alleviate the writing, we define

*
n<o Pn

C _1_ 7"* d* 3 7"* 3 ’I"* (d*)Q
(3.24) ) (@ ) 2 (2d7 ) (7 4 pp)?
° ,,,* d* (T*)3 d*

() (2dr )t py) (207 +pg) (dF + ph)?

(325)  Cp—max (W—W> - (m—ﬁ>

N T g NCEY
* * d* 2 *d*
03 = *r * + * : *( )* *)2 + * *T * *
2r*+py  (2d* +pg) (r* +pp) (r*+pp) (2d* +pp)
(3.26) ()3 d*

(r* 4+ pj) (2 + p§) (d* +p§)?’

G2 Ci—uin (W*”’é—ﬁ‘)? - (vd*ﬂéﬁ*)g

NGRS Tt 4pg VA& + g
and
(r)? (d*)?
(3.28) gL Lk SN LR )

SO (@ )2
Ptz T @a

Then we arrive at the following differential inequality for the linearized entropy E[w]:

2
(3.29) Ldpo (- o)™

s S %—(04—03)E~
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2

If we recall the upper bound (3.19) on 7:9, in order to have an exponential decay
0

result for the linearized entropy, it suffices to ensure that

(3.30) Cy—Cs3—~(C4 —Cg)]l{01>02}>0.

For convenience, we denote by G, ,, the collection of the parameter values (u,v) € R3
for which the condition (3.30) is satisfied. We claim that this set is nonempty, whence
the linearized entropy will decay exponentially fast in time for all (u,v) € G, ..

PROPOSITION 3.4. The set G,,,, is not empty. Consequently, the linearized en-
tropy E defined by (3.15) decreases exponentially fast in time if (1, v) € Gy ..

Proof. To demonstrate the nonemptiness of the set G, ,, it suffices to present
a specific example. For this purpose, we can take (u,~) = (0.01,0.001) to obtain
Cy — C3 —v(Cy — C2) 1{C1>Cy} ~ 1.6647 - 107°>0. The second part of the the-
orem follows immediately from the definition of G, , and the differential inequality
(3.29). d

Remark 3.5. The lower bounds (3.21) and (3.22) are far from being optimal as
their arguments rely sole on some elementary Cauchy—Schwarz inequalities and the
constraint that w € V has not been exploited at all. We speculate that these lower
bounds (Poincaré-type inequalities) can somehow be significantly sharpened, leading
to a refined version of Proposition 3.4. Meanwhile, Proposition 3.4 only demonstrates
the nonemptiness of the set G, ,, it would be interesting to give some connected
regions (in R2) of the pair of parameters (u,v) for which the criterion (3.30) holds.

4. Debt induced wealth inequality. We would like to conclude our analysis
of the model by investigating the effect of the bank on the inequality of the wealth
distribution, i.e., does the bank increase or decrease inequality? To measure inequality,
we use the Gini index G which is usually an indicator between 0 (no inequality) and 1
(maximum inequality) and measures the inequality in the wealth distribution, and a
higher Gini index indicates worse equality in the society (in terms of the distribution
of wealth).

DEFINITION 4.1 (Gini index). For a given probability mass function p € P(Z)
with mean p € Ry, the Gini index of p is defined by

1 o
(4.1) Glpl=5-> D li—ilpip;.
Pz ez

Equivalently, a probabilistic definition of G[p] is given by
(4.2) Glp] = TAEH?*?IL
where S has p as its probability mass function and S’ is an independent copy of S.

Remark 4.2. Without debt, i.e., if p, = 0 for n<0 or S > 0, one can show that
the Gini index G is always between 0 (no inequality) and 1 (maximum inequality).
Indeed, using triangular inequality:

1, S i ——
(4.3) Glp] < ﬂ(E[IS\HEHS 1) = ﬂ(E[S] +E[S]) =L

However, the Gini index is no longer bounded if the wealth distribution includes
debts. For instance, taking a Gaussian distribution with mean x>0 and variance o2,

i.e., X ~N(u,0?), we obtain
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(4.4) G[X]ziIEHZH with Z ~ N (0,252
1 20

T2V

Thus, if ¢ > i, the Gini index could be arbitrary large.

(4.5)

We would like to compare the evolution of Gini index for the basic unbiased
exchange model and the model at hand (with bank and debt) at the level of the
deterministic ODE system, starting from the same initial distribution. First, we
recall that the unbiased exchange model investigated in [7, 18, 21, 26] is a special case
of the model studied in this work with v = 0, meaning that the bank does not exist
and agents are not allowed to go into debt. The rigorous mean-field analysis shown
in [4, 7, 18, 26] implies that if we denote by q(t) = (go(t),q1(¢),...) the law of the
amount of dollars a typical agent has as N — oo, its time evolution will be given by

d
(4.6) () = Qla(®)]
with
an e e e o

where 7:=3" < qn.

Intuitively, the model with bank investigated in this manuscript permits agents
without dollars in their pocket or agents in debt to be picked to give, thus we speculate
that the Gini index of the distribution p(¢) solution of (1.3) is always larger than the
corresponding Gini index of the distribution q (if they start from the same initial
condition).

We provide in Figure 7-left the evolution of the Gini index for different values
of v (which measures the ratio of the initial total amount of cash in the bank to the
agents’ combined initial wealth). Without the bank, i.e., when v =0, the Gini index

[bankwea]th| =0 = =02 =05 =] =2 m——y=35 ]

1 Glp(1)]
W o CESENY
+=
>< o] ] 0.06 1
5] =
E =
S 3 L2 0.04
o— @]
g 2 2.
o0 0.02 1
1 -
0 0.00 4
6 10‘00 2600 30‘00 40b0 SUbO —1‘00 —‘75 —.'50 —‘25 6 2‘5 5‘0 7‘5 160
time (t) wealth ($)

Fi1G. 7. Left: evolution of the Gini index G (4.1) for various resources of the bank v. Notice
that the Gini index could exceed 1 when debt is present. Right: the corresponding wealth distribution
p at the final time of the computation t =5000. When v =05, the dynamics has not yet reached the
equilibrium distribution.
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quickly reaches its maximum around G = .8. However, when the bank comes into play
(v > .25), the Gini index could eventually exceed 1. Moreover, the Phases I and II
are clearly seen in the evolution of the Gini index. In Phase I, the Gini index grows
like O(v/t) which is due to the diffusive nature of the dynamics coupled with (4.5).
In Phase II, the growth of the Gini index starts to saturate and the curve converges
to its maximum. In Figure 7-right, we provide the corresponding wealth distribution
at the final time of the computation, i.e., p(t = 5000), depending on the wealth of
the bank v. Without bank (v =0), the distribution is exponential but it becomes an
asymmetric two-sided exponential for »>0. Notice that in the case where v =5 (which
means that the bank has five times more resources than the agents), the dynamics
has not reached yet Phase II at time ¢ = 5000 as we observe in the evolution of the
Gini index G in Figure 7-left. As a result, the distribution p(t = 5000) for v =5 is
still far away from equilibrium and the characteristic cusp at zero dollar has not yet
appeared.

Although we are not able to provide a complete proof of this natural and com-
pelling conjecture based on heuristic reasoning and numerical simulations. The fol-
lowing simple observation is elementary.

PROPOSITION 4.3. Assume that p(t) is the solution of (2.4)~(2.5) for t € [0,%.]
with p(0) € S:[, then the Gini index of p(t) is nondecreasing with respect to time.

Proof. We resort to the probabilistic representation of the Gini index (4.2), so
we introduce independent random variables S and S’ having p as their common

probability mass function. If we set Z =[S — 5’| and let z= {2, },>0 to be law of Z,
it is trivial to see that the evolution of z satisfies

d 2 (znq1+ 201 —22) forn>1,
(4.8) ar {2 (21 — 220) forn =0,
from which we deduce that
d 1 1 Z0
—Glp|=—E[Z]=—- n(zpe1 —22n + 2p—1) = — >0.
dt[]2u[]u§(+ )u

In other words, the Phase I evolution tends to accentuate the wealth inequality and
the proof of Proposition 4.3 is completed. 0

5. Conclusion. In this manuscript, the so-called unbiased exchange model with
collective debt limit is investigated, which can be viewed as an extension of the vanilla
unbiased exchange model proposed in [15] and revisited in [7, 21, 26]. Although
the inclusion of bank creates additional difficulty in the analysis and only a formal
mean-field argument is presented, we found that the prediction of the asymptotic
distribution of wealth as N — oo and t — oo based on our two-phase dynamics (1.3)
agrees with the results reported/conjectured in earlier work [23, 32]. To the best of
our of knowledge, there are no (even formal) mean-field analysis for the model at
hand prior to the present work and we believe that our work leaves many open and
challenging questions to be investigated on a more rigorous ground. For instance, is
it possible to provide a rigorous proof of the propagation of chaos as N — oo to arrive
at the two-phase dynamics (1.3)? How can we extend the recent work [2] to justify
the ansatz for the decay of the relative entropy Dxr, (p(t) || p*) conjectured in (3.13)
(for a fairly generic initial datum)? Is it possible to show rigorously the monotonicity
of the Gini index of p(¢) (solution of (1.3)) with respect to v during Phase II? The
answer to these questions will enable us to have a better understanding of the role
played by the bank and debt.
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Lastly, we emphasize that econophysics models involving bank and debt have not
received enough attention in the past few years, and the model investigated in this
manuscript can be viewed as the representative of a promising and intriguing direction
for further research in the area of econophysics. For instance, it would be interesting
to introduce a bank in other closely related variants of the basic unbiased exchange
model, such as the so-called poor-biased or rich-biased exchange model proposed
in [7].
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