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Abstract

Classical analysis of convex and non-convex optimization methods often requires the Lipshitzness of
the gradient, which limits the analysis to functions bounded by quadratics. Recent work relaxed this
requirement to a non-uniform smoothness condition with the Hessian norm bounded by an affine function
of the gradient norm, and proved convergence in the non-convex setting via gradient clipping, assuming
bounded noise. In this paper, we further generalize this non-uniform smoothness condition and develop
a simple, yet powerful analysis technique that bounds the gradients along the trajectory, thereby leading
to stronger results for both convex and non-convex optimization problems. In particular, we obtain the
classical convergence rates for (stochastic) gradient descent and Nesterov’s accelerated gradient method
in the convex and/or non-convex setting under this general smoothness condition. The new analysis
approach does not require gradient clipping and allows heavy-tailed noise with bounded variance in the
stochastic setting.

1 Introduction

In this paper, we study the following unconstrained optimization problem

minx∈Xf(x), (1)

where X ⊆ R
d is the domain of f . Classical textbook analyses [Nemirovskij and Yudin, 1983, Nesterov, 2003]

of (1) often require the Lipschitz smoothness condition, which assumes
∥

∥∇2f(x)
∥

∥ ≤ L almost everywhere for
some L ≥ 0 called the smoothness constant. This condition, however, is rather restrictive and only satisfied
by functions that are both upper and lower bounded by quadratic functions.

Recently, Zhang et al. [2019] proposed the more general (L0, L1)-smoothness condition, which assumes
∥

∥∇2f(x)
∥

∥ ≤ L0 + L1 ‖∇f(x)‖ for some constants L0, L1 ≥ 0, motivated by their extensive language model
experiments. This notion generalizes the standard Lipschitz smoothness condition and also contains e.g.
univariate polynomial and exponential functions. For non-convex and (L0, L1)-smooth functions, they prove
convergence of gradient descent (GD) and stochastic gradient descent (SGD) with gradient clipping and also
provide a complexity lower bound for constant-stepsize GD/SGD without clipping. Based on these results,
they claim gradient clipping or other forms of adaptivity provably accelerate the convergence for (L0, L1)-
smooth functions. Perhaps due to the lower bound, all the follow-up works under this condition that we
are aware of limit their analyses to adaptive methods. Most of these focus on non-convex functions. See
Section 2 for more discussions of related works.

∗Equal contribution.
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In this paper, we significantly generalize the (L0, L1)-smoothness condition to the ℓ-smoothness condition
which assumes

∥

∥∇2f(x)
∥

∥ ≤ ℓ(‖∇f(x)‖) for some non-decreasing continuous function ℓ. We develop a
simple, yet powerful approach, which allows us to obtain stronger results for both convex and non-convex
optimization problems when ℓ is sub-quadratic (i.e., limu→∞ ℓ(u)/u2 = 0) or even more general. The ℓ-
smooth function class with a sub-quadratic ℓ also contains e.g. univariate rational and double exponential
functions. In particular, we prove the convergence of constant-stepsize GD/SGD and Nesterov’s accelerated
gradient method (NAG) in the convex or non-convex settings. For each method and setting, we obtain the
classical convergence rate, under a certain requirement of ℓ. In addition, we relax the assumption of bounded
noise to the weaker one of bounded variance with the simple SGD method. See Table 1 for a summary of
our results and assumptions for each method and setting. At first glance, our results “contradict” the lower
bounds on constant-stepsize GD/SGD in [Zhang et al., 2019, Wang et al., 2022]; this will be reconciled in
Section 5.3.

Our approach analyzes boundedness of gradients along the optimization trajectory. The idea behind
it can be informally illustrated by the following “circular” reasoning. On the one hand, if gradients along
the trajectory are bounded by a constant G, then the Hessian norms are bounded by the constant ℓ(G).
Informally speaking, we essentially have the standard Lipschitz smoothness condition1 and can apply classical
textbook analyses to prove convergence, which implies that gradients converge to zero. On the other hand,
if gradients converge, they must be bounded, since any convergent sequence is bounded. In other words,
the bounded gradient condition implies convergence, and convergence also implies the condition back, which
forms a circular argument. If we can break this circularity of reasoning in a rigorous way, both the bounded
gradient condition and convergence are proved. In this paper, we will show how to break the circularity
using induction or contradiction arguments for different methods and settings in Sections 4 and 5. We note
that the idea of bounding gradients can be applied to the analysis of other optimization methods, e.g., the
concurrent work [Li et al., 2023] by subset of the authors, which uses a similar idea to obtain a rigorous and
improved analysis of the Adam method [Kingma and Ba, 2014].
Contributions. In light of the above discussions, we summarize our main contributions as follows.

• We generalize the standard Lipschitz smoothness and also the (L0, L1)-smoothness condition to the ℓ-
smoothness condition, and develop a new approach for analyzing convergence under this condition by
bounding the gradients along the optimization trajectory.

• We prove the convergence of constant-stepsize GD/SGD/NAG in the convex and non-convex settings, and
obtain the classical rates for all of them, as summarized in Table 1.

Besides the generalized smoothness condition and the new approach, our results are also novel in the following
aspects.

• The convergence results of constant-stepsize methods challenge the folklore belief on the necessity of
adaptive stepsize for generalized smooth functions.

• We obtain new convergence results for GD and NAG in the convex setting under the generalized smooth-
ness condition.

• We relax the assumption of bounded noise to the weaker one of bounded variance of noise in the stochastic
setting with the simple SGD method.

1This statement is informal because we can only bound Hessian norms along the trajectory, rather than almost everywhere
within a convex set as in the standard Lipschitz smoothness condition. For example, even if the Hessian norm is bounded at
both xt and xt+1, it does not directly mean the Hessian norm is also bounded over the line segment between them, which is
required in classical analysis. A more formal statement will need Lemma 3.3 presented later in the paper.
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Table 1: Summary of the results. ǫ denotes the sub-optimality gap of the function value in convex settings,
and the gradient norm in non-convex settings. “∗” denotes optimal rates.

Method Convexity ℓ-smoothness Gradient complexity

GD

Strongly convex
No requirement

O(log(1/ǫ)) (Theorem 4.3)
Convex O(1/ǫ) (Theorem 4.2 )

Non-convex
Sub-quadratic ℓ O(1/ǫ2)∗ (Theorem 5.2)

Quadratic ℓ Ω(exp. in cond #) (Theorem 5.4 )

NAG Convex Sub-quadratic ℓ O(1/
√
ǫ)∗ (Theorem 4.4 )

SGD Non-convex Sub-quadratic ℓ O(1/ǫ4)∗ (Theorem 5.3)

2 Related work

Gradient-based optimizaiton. The classical gradient-based optimization problems for the standard Lip-
schitz smooth functions have been well studied for both convex [Nemirovskij and Yudin, 1983, Nesterov,
2003, d’Aspremont et al., 2021] and non-convex functions. In the convex setting, the goal is to reach an
ǫ-sub-optimal point x satisfying f(x) − infx f(x) ≤ ǫ. It is well known that GD achieves the O(1/ǫ) gradient
complexity and NAG achieves the accelerated O(1/

√
ǫ) complexity which is optimal among all gradient-

based methods. For strongly convex functions, GD and NAG achieve the O(κ log(1/ǫ)) and O(
√
κ log(1/ǫ))

complexity respectively, where κ is the condition number and the latter is again optimal. In the non-convex
setting, the goal is to find an ǫ-stationary point x satisfying ‖∇f(x)‖ ≤ ǫ, since finding a global minimum
is NP-hard in general. It is well known that GD achieves the optimal O(1/ǫ2) complexity which matches
the lower bound in [Carmon et al., 2017]. In the stochastic setting for unbiased stochastic gradient with
bounded variance, SGD achieves the optimal O(1/ǫ4) complexity [Ghadimi and Lan, 2013], matching the
lower bound in [Arjevani et al., 2019]. In this paper, we obtain the classical rates in terms of ǫ for all the
above-mentioned methods and settings, under a far more general smoothness condition.
Generalized smoothness. The (L0, L1)-smoothness condition proposed by Zhang et al. [2019] was studied
by many follow-up works. Under the same condition, [Zhang et al., 2020] considers momentum in the updates
and improves the constant dependency of the convergence rate for SGD with clipping derived in [Zhang et al.,
2019]. [Qian et al., 2021] studies gradient clipping in incremental gradient methods, [Zhao et al., 2021]
studies stochastic normalized gradient descent, and [Crawshaw et al., 2022] studies a generalized SignSGD
method, under the (L0, L1)-smoothess condition. [Reisizadeh et al., 2023] studies variance reduction for
(L0, L1)-smooth functions. [Chen et al., 2023] proposes a new notion of α-symmetric generalized smoothness,
which is roughly as general as (L0, L1)-smoothness. [Wang et al., 2022] analyzes convergence of Adam and
provides a lower bound which shows non-adaptive SGD may diverge. In the stochastic setting, the above-
mentioned works either consider the strong assumption of bounded gradient noise or require a very large batch
size that depends on ǫ, which essentially reduces the analysis to the deterministic setting. [Faw et al., 2023]
proposes an AdaGrad-type algorithm in order to relax the bounded noise assumption. Perhaps due to the
lower bounds in [Zhang et al., 2019, Wang et al., 2022], all the above works study methods with an adaptive
stepsize. In this and our concurrent work [Li et al., 2023], we further generalize the smoothness condition
and analyze various methods under this condition through bounding the gradients along the trajectory.

3 Function class

In this section, we discuss the function class of interest where the objective function f lies. We start with the
following two standard assumptions in the literature of unconstrained optimization, which will be assumed
throughout Sections 4 and 5 unless explicitly stated.

Assumption 1. The objective function f is differentiable and closed within its open domain X .

3



Assumption 2. The objective function f is bounded from below, i.e., f∗ := infx∈X f(x) > −∞.

A function f is said to be closed if its sub-level set {x ∈ dom(f) | f(x) ≤ a} is closed for each a ∈ R.
A continuous function f with an open domain is closed if and only f(x) tends to positive infinity when x
approaches the boundary of its domain [Boyd and Vandenberghe, 2004]. Assumption 1 is necessary for our
analysis to ensure that the iterates of a method with a reasonably small stepsize stays within the domain
X . Note that for X = R

d considered in most unconstrained optimization papers, the assumption is trivially
satisfied as all continuous functions over R

d are closed. We consider a more general domain which may not
be the whole space because that is the case for some interesting examples in our function class of interest
(see Section 3.1.3). However, it actually brings us some additional technical difficulties especially in the
stochastic setting, as we need to make sure the iterates do not go outside of the domain.

3.1 Generalized smoothness

In this section, we formally define the generalized smoothness condition, and present its properties and
examples.

3.1.1 Definitions

Definitions 1 and 2 below are two equivalent ways of stating the definition, where we use B(x,R) to denote
the Euclidean ball with radius R centered at x.

Definition 1 (ℓ-smoothness). A real-valued differentiable function f : X → R is ℓ-smooth for some non-
decreasing continuous function ℓ : [0,+∞) → (0,+∞) if

∥

∥∇2f(x)
∥

∥ ≤ ℓ(‖∇f(x)‖) almost everywhere (with
respect to the Lebesgue measure) in X .

Remark 3.1. Definition 1 reduces to the classical L-smoothness when ℓ ≡ L is a constant function. It reduces
to the (L0, L1)-smoothness proposed in [Zhang et al., 2019] when ℓ(u) = L0 + L1u is an affine function.

Definition 2 ((r, ℓ)-smoothness). A real-valued differentiable function f : X → R is (r, ℓ)-smooth for
continuous functions r, ℓ : [0,+∞) → (0,+∞) where ℓ is non-decreasing and r is non-increasing, if it satisfies
1) for any x ∈ X , B(x, r(‖∇f(x)‖)) ⊆ X , and 2) for any x1, x2 ∈ B(x, r(‖∇f(x)‖)), ‖∇f(x1) − ∇f(x2)‖ ≤
ℓ(‖∇f(x)‖) · ‖x1 − x2‖.

The requirements that ℓ is non-decreasing and r is non-increasing do not cause much loss in generality.
If these conditions are not satisfied, one can replace ℓ and r with the non-increasing function r̃(u) :=
inf0≤v≤u r(v) ≤ r(u) and non-decreasing function ℓ̃(u) := sup0≤v≤u ℓ(v) ≥ ℓ(u) in Definitions 1 and 2. Then

the only requirement is r̃ > 0 and ℓ̃ < ∞.
Next, we prove that the above two definitions are equivalent in the following proposition, whose proof is

involved and deferred to Appendix A.2.

Proposition 3.2. An (r, ℓ)-smooth function is ℓ-smooth; and an ℓ-smooth function satisfying Assumption 1
is (r,m)-smooth where m(u) := ℓ(u+ a) and r(u) := a/m(u) for any a > 0.

The condition in Definition 1 is simple and one can easily check whether it is satisfied for a given example
function. On the other hand, Definition 2 is a local Lipschitz condition on the gradient that is harder to
verify. However, it is useful for deriving several useful properties in the next section.

3.1.2 Properties

First, we provide the following lemma which is very useful in our analyses of all the methods considered in
this paper. Its proof is deferred to Appendix A.3.
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Lemma 3.3. If f is (r, ℓ)-smooth, for any x ∈ X satisfying ‖∇f(x)‖ ≤ G, we have 1) B(x, r(G)) ⊆ X , and
2) for any x1, x2 ∈ B(x, r(G)),

‖∇f(x1)−∇f(x2)‖≤L ‖x1−x2‖ , f(x1)≤f(x2)+
〈

∇f(x2), x1−x2

〉

+
L

2
‖x1−x2‖2

, (2)

where L := ℓ(G) is the effective smoothness constant.

Remark 3.4. Since we have shown the equivalence between ℓ-smoothness and (r, ℓ)-smoothness, Lemma 3.3
also applies to ℓ-smooth functions, for which we have L = ℓ(2G) and r(G) = G/L if choosing a = G in
Proposition 3.2.

Lemma 3.3 states that, if the gradient at x is bounded by some constant G, then within its neighborhood
with a constant radius, we can obtain (2), the same inequalities that were derived in the textbook analy-
sis [Nesterov, 2003] under the standard Lipschitz smoothness condition. With (2), the analysis for generalized
smoothness is not much harder than that for standard smoothness. Since we mostly choose x = x2 = xt

and x1 = xt+1 in the analysis, in order to apply Lemma 3.3, we need two conditions: ‖∇f(xt)‖ ≤ G and
‖xt+1 − xt‖ ≤ r(G) for some constant G. The latter is usually directly implied by the former for most
deterministic methods with a small enough stepsize, and the former can be obtained with our new approach
that bounds the gradients along the trajectory.

With Lemma 3.3, we can derive the following useful lemma which is the reverse direction of a generalized
Polyak-Lojasiewicz (PL) inequality, whose proof is deferred to Appendix A.3.

Lemma 3.5. If f is ℓ-smooth, then ‖∇f(x)‖2 ≤ 2ℓ(2 ‖∇f(x)‖) · (f(x) − f∗) for any x ∈ X .

Lemma 3.5 provides an inequality involving the gradient norm and the sub-optimality gap. For example,
when ℓ(u) = uρ for some 0 ≤ ρ < 2, this lemma suggests ‖∇f(x)‖ ≤ O

(

(f(x) − f∗)1/(2−ρ)
)

, which means
the gradient norm is bounded whenever the function value is bounded. The following corollary provides
a more formal statement for general sub-quadratic ℓ (i.e., limu→∞ ℓ(u)/u2 = 0), and we defer its proof to
Appendix A.3.

Corollary 3.6. Suppose f is ℓ-smooth where ℓ is sub-quadratic. If f(x) − f∗ ≤ F for some x ∈ X and
F ≥ 0, denoting G := sup{u ≥ 0 | u2 ≤ 2ℓ(2u) · F}, then they satisfy G2 = 2ℓ(2G) · F and we have
‖∇f(x)‖ ≤ G < ∞.

Therefore, in order to bound the gradients along the trajectory as we discussed below Lemma 3.3, it
suffices to bound the function values, which is usually easier.

3.1.3 Examples

The most important subset of ℓ-smooth (or (r, ℓ)-smooth) functions are those with a polynomial ℓ, and can
be characterized by the (ρ, L0, Lρ)-smooth function class defined below.

Definition 3 ((ρ, L0, Lρ)-smoothness). A real-valued differentiable function f is (ρ, L0, Lρ)-smooth for con-
stants ρ, L0, Lρ ≥ 0 if it is ℓ-smooth with ℓ(u) = L0 + Lρu

ρ.

Definition 3 reduces to the standard Lipschitz smoothness condition when ρ = 0 or Lρ = 0 and to the
(L0, L1)-smoothness proposed in [Zhang et al., 2019] when ρ = 1. We list several univariate examples of
(ρ, L0, Lρ)-smooth functions for different ρs in Table 2 with their rigorous justifications in Appendix A.1.
Note that when x goes to infinity, polynomial and exponential functions corresponding to ρ = 1 grow much
faster than quadratic functions corresponding to ρ = 0 . Rational and logarithmic functions for ρ > 1 grow
even faster as they can blow up to infinity near finite points. Note that the domains of such functions are
not R

d, which is why we consider the more general Assumption 1 instead of simply assuming X = R
d.

Aside from logarithmic functions, the (2, L0, L2)-smooth function class also includes other univariate
self-concordant functions. This is an important function class in the analysis of Interior Point Methods
and coordinate-free analysis of the Newton method [Nesterov, 2003]. More specifically, a convex function
h : R → R is self-concordant if |h′′′(x)| ≤ 2h′′(x)3/2 for all x ∈ R. Formally, we have the following proposition
whose proof is deferred to Appendix A.1.
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Table 2: Examples of univariate (ρ, L0, Lρ) smooth functions for different ρs. The parameters a, b, p are real
numbers (not necessarily integers) satisfying a, b > 1 and p < 1 or p ≥ 2. We use 1+ to denote any real
number slightly larger than 1.

ρ 0 1 1 1+ 1.5 2 p−2
p−1

Example Functions Quadratic Polynomial ax a(bx) Rational Logarithmic xp

Proposition 3.7. If h : R → R is a self-concordant function satisfying h′′(x) > 0 over the interval (a, b),
then h restricted on (a, b) is (2, L0, 2)-smooth for some L0 > 0.

4 Convex setting

In this section, we present the convergence results of gradient descent (GD) and Nesterov’s accelerated
gradient method (NAG) in the convex setting. Formally, we define convexity as follows.

Definition 4. A real-valued differentiable function f : X → R is µ-strongly-convex for µ ≥ 0 if X is a
convex set and f(y) − f(x) ≥

〈

∇f(x), y − x
〉

+ µ
2 ‖y − x‖2

for any x, y ∈ X . A function is convex if it is
µ-strongly-convex with µ = 0.

We assume the existence of a global optimal point x∗ throughout this section, as in the following assump-
tion. However, we want to note that, for gradient descent, this assumption is just for simplicity rather than
necessary.

Assumption 3. There exists a point x∗ ∈ X such that f(x∗) = f∗ = infx∈X f(x).

4.1 Gradient descent

The gradient descent method with a constant stepsize η is defined via the following update rule

xt+1 = xt − η∇f(xt). (3)

As discussed below Lemma 3.3, the key in the convergence analysis is to show ‖∇f(xt)‖ ≤ G for all t ≥ 0
and some constant G. We will prove it by induction relying on the following lemma whose proof is deferred
to Appendix B.

Lemma 4.1. For any x ∈ X satisfying ‖∇f(x)‖ ≤ G, define x+ := x − η∇f(x). If f is convex and

(r, ℓ)-smooth, and η ≤ min
{

2
ℓ(G) ,

r(G)
2G

}

, we have x+ ∈ X and ‖∇f(x+)‖ ≤ ‖∇f(x)‖ ≤ G.

Lemma 4.1 suggests that for gradient descent (3) with a small enough stepsize, if the gradient norm at
xt is bounded by G, then we have ‖∇f(xt+1)‖ ≤ ‖∇f(xt)‖ ≤ G, i.e., the gradient norm is also bounded
by G at t+ 1. In other words, the gradient norm is indeed a non-increasing potential function for gradient
descent in the convex setting. With a standard induction argument, we can show that ‖∇f(xt)‖ ≤ ‖∇f(x0)‖
for all t ≥ 0. As discussed below Lemma 3.3, then we can basically apply the classical analysis to obtain
the convergence guarantee in the convex setting as in the following theorem, whose proof is deferred to
Appendix B.

Theorem 4.2. Suppose f is convex and (r, ℓ)-smooth. Denote G := ‖∇f(x0)‖ and L := ℓ(G), then the

iterates generated by (3) with η ≤ min
{

1
L ,

r(G)
2G

}

satisfy ‖∇f(xt)‖ ≤ G for all t ≥ 0 and

f(xT ) − f∗ ≤ ‖x0 − x∗‖2

2ηT
.
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Algorithm 1: Nesterov’s Accelerated Gradient Method (NAG)

input A convex and ℓ-smooth function f , stepsize η, initial point x0

1: Initialize z0 = x0, B0 = 0, and A0 = 1/η.
2: for t = 0, ... do

3: Bt+1 = Bt + 1
2

(

1 +
√

4Bt + 1
)

4: At+1 = Bt+1 + 1/η
5: yt = xt + (1 −At/At+1)(zt − xt)
6: xt+1 = yt − η∇f(yt)
7: zt+1 = zt − η(At+1 −At)∇f(yt)
8: end for

Since η is a constant independent of ǫ or T , Theorem 4.2 achieves the classical O(1/T ) rate, or O(1/ǫ)
gradient complexity to achieve an ǫ-sub-optimal point, under the generalized smoothness condition. Since
strongly convex functions are a subset of convex functions, Lemma 4.1 still holds for them. Then we
immediately obtain the following result in the strongly convex setting, whose proof is deferred to Appendix B.

Theorem 4.3. Suppose f is µ-strongly-convex and (r, ℓ)-smooth. Denote G := ‖∇f(x0)‖ and L := ℓ(G),

then the iterates generated by (3) with η ≤ min
{

1
L ,

r(G)
2G

}

satisfy ‖∇f(xt)‖ ≤ G for all t ≥ 0 and

f(xT ) − f∗ ≤ µ(1 − ηµ)T

2(1 − (1 − ηµ)T )
‖x0 − x∗‖2

.

Theorem 4.3 gives a linear convergence rate and the O((ηµ)−1 log(1/ǫ)) gradient complexity to achieve

an ǫ-sub-optimal point. Note that for ℓ-smooth functions, we have r(G)
G = 1

L (see Remark 3.4), which means
we can choose η = 1

2L . Then we obtain the O(κ log(1/ǫ)) rate, where κ := L/µ is the local condition number
around the initial point x0. For standard Lipschitz smooth functions, it reduces to the classical rate of
gradient descent.

4.2 Nesterov’s accelerated gradient method

In the case of convex and standard Lipschitz smooth functions, it is well known that Nesterov’s accelerated
gradient method (NAG) achieves the optimal O(1/T 2) rate. In this section, we show that under the ℓ-
smoothness condition with a sub-quadratic ℓ, the optimal O(1/T 2) rate can be achieved by a slightly modified
version of NAG shown in Algorithm 1, the only difference between which and the classical NAG is that the
latter directly sets At+1 = Bt+1 in Line 4. Formally, we have the following theorem, whose proof is deferred
to Appendix C.

Theorem 4.4. Suppose f is convex and ℓ-smooth where ℓ is sub-quadratic. Then there always exists a

constant G satisfying G ≥ max

{

8

√

ℓ(2G)((f(x0) − f∗) + ‖x0 − x∗‖2
), ‖∇f(x0)‖

}

. Denote L := ℓ(2G) and

choose η ≤ min
{

1
16L2 ,

1
2L

}

. The iterates generated by Algorithm 1 satisfy

f(xT ) − f∗ ≤ 4(f(x0) − f∗) + 4 ‖x0 − x∗‖2

ηT 2 + 4
.

It is easy to note that Theorem 4.4 achieves the accelerated O(1/T 2) convergence rate, or equivalently
the O(1/

√
ǫ) gradient complexity to find an ǫ-sub-optimal point, which is optimal among gradient-based

methods [Nesterov, 2003].
In order to prove Theorem 4.4, we also use induction to show the gradients along the trajectory of

Algorithm 1 are bounded by G. However, unlike gradient descent, the gradient norm is no longer a potential
function or monotonically non-increasing, which makes the induction analysis more challenging. Suppose

7



that we have shown ‖∇f(ys)‖ ≤ G for s < t. To complete the induction, it suffices to prove ‖∇f(yt)‖ ≤ G.
Since xt = yt−1 − η∇f(yt−1) is a gradient descent step by Line 6 of Algorithm 1, Lemma 4.1 directly shows
‖∇f(xt)‖ ≤ G. In order to also bound ‖∇f(yt)‖, we try to control ‖yt − xt‖, which is the most challenging
part of our proof. Since yt − xt can be expressed as a linear combination of past gradients {∇f(ys)}s<t, it
might grow linearly with t if we simply apply ‖∇f(ys)‖ ≤ G for s < t. Fortunately, Lemma 3.5 allows us
to control the gradient norm with the function value. Thus if the function value is decreasing sufficiently
fast, which can be shown by following the standard Lyapunov analysis of NAG, we are able to obtain a good
enough bound on ‖∇f(ys)‖ for s < t, which allows us to control ‖yt − xt‖. We defer the detailed proof to
Appendix C.

Note that Theorem 4.4 requires a smaller stepsize η = O(1/L2), compared to the classical O(1/L) stepsize
for standard Lipschitz smooth functions. The reason is we require a small enough stepsize to get a good
enough bound on ‖yt − xt‖. However, if the function is further assumed to be ℓ-smooth with a sub-linear
ℓ, the requirement of stepsize can be relaxed to η = O(1/L), similar to the classical requirement. See
Appendix C for the details.

In the strongly convex setting, we can also prove convergence of NAG with different {At}t≥0 parameters
when f is ℓ-smooth with a sub-quadratic ℓ, or (ρ, L0, Lρ)-smooth with ρ < 2. The rate can be further
improved when ρ becomes smaller. However, since the constants G and L are different for GD and NAG,
it is not clear whether the rate of NAG is faster than that of GD in the strongly convex setting. We will
present the detailed result and analysis in Appendix D.

5 Non-convex setting

In this section, we present convergence results of gradient descent (GD) and stochastic gradient descent
(SGD) in the non-convex setting.

5.1 Gradient descent

Similar to the convex setting, we still want to bound the gradients along the trajectory. However, in the
non-convex setting, the gradient norm is not necessarily non-increasing. Fortunately, similar to the classical
analyses, the function value is still non-increasing and thus a potential function, as formally shown in the
following lemma, whose proof is deferred to Appendix E.

Lemma 5.1. Suppose f is ℓ-smooth where ℓ is sub-quadratic. For any given F ≥ 0, let G :=
sup

{

u ≥ 0 | u2 ≤ 2ℓ(2u) · F
}

and L := ℓ(2G). For any x ∈ X satisfying f(x) − f∗ ≤ F , define
x+ := x− η∇f(x) where η ≤ 2/L, we have x+ ∈ X and f(x+) ≤ f(x).

Then using a standard induction argument, we can show f(xt) ≤ f(x0) for all t ≥ 0. According to
Corollary 3.6, it implies bounded gradients along the trajectory. Therefore, we can show convergence of
gradient descent as in the following theorem, whose proof is deferred to Appendix E.

Theorem 5.2. Suppose f is ℓ-smooth where ℓ is sub-quadratic. Let G :=
sup

{

u ≥ 0 | u2 ≤ 2ℓ(2u) · (f(x0) − f∗)
}

and L := ℓ(2G). If η ≤ 1/L, the iterates generated by (3)
satisfy ‖∇f(xt)‖ ≤ G for all t ≥ 0 and

1

T

∑

t<T

‖∇f(xt)‖2 ≤ 2(f(x0) − f∗)

ηT
.

It is clear that Theorem 5.2 gives the classical O(1/ǫ2) gradient complexity to achieve an ǫ-stationary
point, which is optimal as it matches the lower bound in [Carmon et al., 2017].
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5.2 Stochastic gradient descent

In this part, we present the convergence result for stochastic gradient descent defined as follows.

xt+1 = xt − ηgt, (4)

where gt is an estimate of the gradient ∇f(xt). We consider the following standard assumption on the
gradient noise ǫt := gt − ∇f(xt).

Assumption 4. Et−1[ǫt] = 0 and Et−1

[

‖ǫt‖2
]

≤ σ2 for some σ ≥ 0, where Et−1 denotes the expectation

conditioned on {gs}s<t.

Under Assumption 4, we can obtain the following theorem.

Theorem 5.3. Suppose f is ℓ-smooth where ℓ is sub-quadratic. For any 0 < δ < 1, we denote F :=
8(f(x0) − f∗ + σ)/δ and G := sup{u ≥ 0 | u2 ≤ 2ℓ(2u) · F} < ∞. Denote L := ℓ(2G) and choose

η ≤ min
{

1
2L ,

1
4G

√
T

}

and T ≥ F
ηǫ2 for any ǫ > 0. Then with probability at least 1 − δ, the iterates generated

by (4) satisfy ‖∇f(xt)‖ ≤ G for all t < T and

1

T

∑

t<T

‖∇f(xt)‖2 ≤ ǫ2.

As we choose η = O(1/
√
T ), Theorem 5.3 gives the classical O(1/ǫ4) gradient complexity, where we

ignore non-leading terms. This rate is optimal as it matches the lower bound in [Arjevani et al., 2019]. The
key to its proof is again to bound the gradients along the trajectory. However, bounding gradients in the
stochastic setting is much more challenging than in the deterministic setting, especially with the heavy-tailed
noise in Assumption 4. We briefly discuss some of the challenges as well as our approach below and defer
the detailed proof of Theorem 5.3 to Appendix F.

First, due to the existence of heavy-tailed gradient noise as considered in Assumption 4, neither the
gradient nor the function values is non-increasing. The induction analyses we have used in the deterministic
setting hardly work. In addition, to apply Lemma 3.3, we need to control the update at each step and
make sure ‖xt+1 − xt‖ = η ‖gt‖ ≤ G/L. However, gt might be unbounded due to the potentially unbounded
gradient noise.

To overcome these challenges, we define the following random variable τ .

τ1 := min{t | f(xt+1) − f∗ > F} ∧ T,

τ2 := min

{

t

∣

∣

∣

∣

‖ǫt‖ >
G

5ηL

}

∧ T, (5)

τ := min{τ1, τ2},

where we use a ∧ b to denote min{a, b} for any a, b ∈ R. Then at least before time τ , we know that the
function value and gradient noise are bounded, where the former also implies bounded gradients according
to Corollary 3.6. Therefore, it suffices to show the probability of τ < T is small, which means with a high
probability, τ = T and thus gradients are always bounded before T .

Since both the gradient and noise are bounded for t < τ , it is straightforward to bound the update
‖xt+1 − xt‖, which allows us to use Lemma 3.3 and other useful properties. However, it is still non-trivial
to upper bound E[f(xτ ) − f∗] as τ is a random variable instead of a fixed time step. Fortunately, τ is a
stopping time with nice properties. That is because both f(xt+1) and ǫt = gt − ∇f(xt) only depend on
{gs}s≤t, i.e., the stochastic gradients up to t. Therefore, for any fixed t, the events {τ > t} only depend on
{gs}s≤t, which show τ is a stopping time. Then with a careful analysis, we are still able to obtain an upper
bound on E[f(xτ ) − f∗] = O(1).

On the other hand, τ < T means either τ = τ1 < T or τ = τ2 < T . If τ = τ1 < T , by its definition, we
know f(xτ+1) − f∗ > F . Roughly speaking, it also suggests f(xτ ) − f∗ > F/2. If we choose F such that
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it is much larger than the upper bound on E[f(xτ ) − f∗] we just obtained, by Markov’s inequality, we can
show the probability of τ = τ1 < T is small. In addition, by union bound and Chebyshev’s inequality, the
probability of τ2 < T can also be bounded by a small constant. Therefore, we have shown τ < T . Then the
rest of the analysis is not too hard following the classical analysis.

5.3 Reconciliation with existing lower bounds

In this section, we reconcile our convergence results for constant-stepsize GD/SGD in the non-convex setting
with existing lower bounds in [Zhang et al., 2019] and [Wang et al., 2022], based on which the authors claim
that adaptive methods such as GD/SGD with clipping and Adam are provably faster than non-adaptive
GD/SGD. This may seem to contradict our convergence results. In fact, we show that any gain in adaptive
methods is at most by constant factors, as GD and SGD already achieve the optimal rates in the non-convex
setting.

[Zhang et al., 2019] provides both upper and lower complexity bounds for constant-stepsize GD for
(L0, L1)-smooth functions, and shows that its complexity is O(Mǫ−2), where

M := sup{‖∇f(x)‖ | f(x) ≤ f(x0)}

is the supremum gradient norm below the level set of the initial function value. If M is very large, then the
O(Mǫ−2) complexity can be viewed as a negative result, and as evidence that constant-stepsize GD can be
slower than GD with gradient clipping, since in the latter case, they obtain the O(ǫ−2) complexity without
M . However, based on our Corollary 3.6, their M can be actually bounded by our G, which is a constant.
Therefore, the gain in adaptive methods is at most by constant factors.

[Wang et al., 2022] further provides a lower bound which shows non-adaptive GD may diverge for some
examples. However, their counter-example does not allow the stepsize to depend on the initial sub-optimality
gap. In contrast, our stepsize η depends on the effective smoothness constant L, which depends on the initial
sub-optimality gap through G. Therefore, there is no contradiction here either. We should point out that
in the practice of training neural networks, the stepsize is usually tuned after fixing the loss function and
initialization, so it does depend on the problem instance and initialization.

5.4 Lower bound

For (ρ, L0, Lρ)-smooth functions with ρ < 2, it is easy to verify that the constant G in both Theorem 5.2
and Theorem 5.3 is a polynomial function of problem-dependent parameters like L0, Lρ, f(x0) − f∗, σ, etc.
In other words, GD and SGD are provably efficient methods in the non-convex setting for ρ < 2. In this
section, we show that the requirement of ρ < 2 is necessary in the non-convex setting with the lower bound
for GD in the following Theorem 5.4, whose proof is deferred in Appendix G. Since SGD reduces to GD
when there is no gradient noise, it is also a lower bound for SGD.

Theorem 5.4. Given L0, L2, G0,∆0 > 0 satisfying L2∆0 ≥ 10, for any η ≥ 0, there exists a (2, L0, L2)-
smooth function f that satisfies Assumptions 1 and 2, and initial point x0 that satisfies ‖∇f(x0)‖ ≤ G0 and
f(x0) − f∗ ≤ ∆0, such that gradient descent with stepsize η (3) either cannot reach a 1-stationary point or
takes at least exp(L2∆0/8)/6 steps to reach a 1-stationary point.

6 Conclusion

In this paper, we generalize the standard Lipschitz smoothness as well as the (L0, L1)-
smoothness [Zhang et al., 2020] conditions to the ℓ-smoothness condition, and develop a new approach for
analyzing the convergence under this condition. The approach uses different techniques for several methods
and settings to bound the gradient along the optimization trajectory, which allows us to obtain stronger
results for both convex and non-convex problems. We obtain the classical rates for GD/SGD/NAG methods
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in the convex and/or non-convex setting. Our results challenge the folklore belief on the necessity of adaptive
methods for generalized smooth functions.

There are several interesting future directions following this work. First, the ℓ-smoothness can perhaps be
further generalized by allowing ℓ to also depend on potential functions in each setting, besides the gradient
norm. In addition, it would also be interesting to see if the techniques of bounding gradients along the
trajectory that we have developed in this and the concurrent work [Li et al., 2023] can be further generalized
to other methods and problems and to see whether more efficient algorithms can be obtained. Finally,
although we justified the necessity of the requirement of ℓ-smoothness with a sub-quadratic ℓ in the non-
convex setting, it is not clear whether it is also necessary for NAG in the convex setting, another interesting
open problem.
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A Proofs related to generalized smoothness

In this section, we provide the proofs of propositions and lemmas related to the generalized smoothness
condition in Definition 1 or 2. First, in Appendix A.1, we justify the examples we discussed in Section 3.
Next, we provide the detailed proof of Proposition 3.2 in Appendix A.2. Finally, we provide the proofs of
the useful properties of generalized smoothness in Appendix A.3, including Lemma 3.3, Lemma 3.5, and
Corollary 3.6 stated in Section 3.1.2.

A.1 Justification of examples in Section 3

In this section, we justify the univariate examples of (ρ, L0, Lρ)-smooth functions listed in Table 2 and also
provide the proof of Propositions 3.7.

First, it is well-known that all quadratic functions have bounded Hessian and are Lipschitz smooth,
corresponding to ρ = 0. Next, [Zhang et al., 2019, Lemma 2] shows that any univariate polynomial is
(L0, L1)-smooth, corresponding to ρ = 1. Then, regarding the exponential function f(x) = ax where a > 1,
we have f ′(x) = log(a)ax and f ′′(x) = log(a)2ax = log(a)f ′(x), which implies f is (1, 0, log(a))-smooth.
Similarly, by standard calculations, it is straight forward to verify that logarithmic functions and xp, p 6= 1
are also (ρ, L0, Lρ)-smooth with ρ = 2 and ρ = p−2

p−1 respectively. So far we have justified all the examples in

Table 2 except double exponential functions a(bx) and rational functions, which will be justified rigorously
by the two propositions below.

First, for double exponential functions in the form of f(x) = a(bx) where a, b > 1, we have the following
proposition, which shows f is (ρ, L0, Lρ)-smooth for any ρ > 1.

Proposition A.1. For any ρ > 1, the double exponential function f(x) = a(bx), where a, b > 1, is (ρ, L0, Lρ)-
smooth for some L0, Lρ ≥ 0. However, it is not necessarily (L0, L1)-smooth for any L0, L1 ≥ 0.

Proof of Proposition A.1. By standard calculations, we can obtain

f ′(x) = log(a) log(b) bxa(bx), f ′′(x) = log(b)(log(a)bx + 1) · f ′(x). (6)

Note that if ρ > 1,

lim
x→+∞

|f ′(x)|ρ
|f ′′(x)| = lim

x→+∞
|f ′(x)|ρ−1

log(b)(log(a)bx + 1)
= lim

y→+∞
(log(a) log(b)y)

ρ−1
a(ρ−1)y

log(b)(log(a)y + 1)
= ∞,

where the first equality is a direct calculation based on (6); the second equality uses change of variable y = bx;
and the last equality is because exponential functions grow faster than affine functions. Therefore, for any
Lρ > 0, there exists x0 ∈ R such that |f ′′(x)| ≤ Lρ |f ′(x)|ρ if x > x0. Next, note that limx→−∞ f ′′(x) = 0.
Then for any λ1 > 0, there exists x1 ∈ R such that |f ′′(x)| ≤ λ1 if x < x1. Also, since f ′′ is continuous,
by Weierstrass’s Theorem, we have |f ′′(x)| ≤ λ2 if x1 ≤ x ≤ x0 for some λ2 > 0. Then denoting L0 =
max{λ1, λ2}, we know f is (ρ, L0, Lρ)-smooth.

Next, to show f is not necessarily (L0, L1)-smooth, consider the specific double exponential function
f(x) = e(ex). Then we have

f ′(x) = exe(ex), f ′′(x) = (ex + 1) · f ′(x).

For any x ≥ max {log(L0 + 1), log(L1 + 1)}, we can show that

|f ′′(x)| > (L1 + 1)f ′(x) > L0 + L1 |f ′(x)| ,

which shows f is not (L0, L1) smooth for any L0, L1 ≥ 0.

In the next proposition, we show that any univariate rational function f(x) = P (x)/Q(x), where P and
Q are two polynomials, is (ρ, L0, Lρ)-smooth with ρ = 1.5.
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Proposition A.2. The rational function f(x) = P (x)/Q(x), where P and Q are two polynomials, is
(1.5, L0, L1.5)-smooth for some L0, L1.5 ≥ 0. However, it is not necessarily (ρ, L0, Lρ)-smooth for any ρ < 1.5
and L0, Lρ ≥ 0.

Proof of Proposition A.2. Let f(x) = P (x)/Q(x) where P and Q are two polynomials. Then the partial
fractional decomposition of f(x) is given by

f(x) = w(x) +
m
∑

i=1

ji
∑

r=1

Air

(x− ai)r
+

n
∑

i=1

ki
∑

r=1

Birx+ Cir

(x2 + bix+ ci)r
,

where w(x) is a polynomial, Air, Bir, Cir , ai, bi, ci are all real constants satisfying b2
i − 4ci < 0 for each

1 ≤ i ≤ n which implies x2 + bix + ci > 0 for all x ∈ R. Assume ji ≥ 1 and Aiji 6= 0 without loss of
generality. Then we know f has only finite singular points {ai}1≤i≤m and has continuous first and second
order derivatives at all other points. To simplify notation, denote

pir(x) :=
Air

(x − ai)r
, qir(x) :=

Birx+ Cir

(x2 + bix+ ci)r
.

Then we have f(x) = w(x) +
∑m

i=1

∑ji

r=1 pir(x) +
∑n

i=1

∑ki

r=1 qir(x). We know that r+2
r+1 ≤ 1.5 for any r ≥ 1.

Then we can show that

lim
x→ai

|f ′(x)|1.5

|f ′′(x)| = lim
x→ai

∣

∣p′
iji

(x)
∣

∣

1.5

∣

∣p′′
iji

(x)
∣

∣

≥ 1

ji + 1
, (7)

where the first equality is because one can easily verify that the first and second order derivatives of piji

dominate those of all other terms when x goes to ai, and the second equality is by standard calculations
noting that ji+2

ji+1 ≤ 1.5. Note that (7) implies that, for any Lρ > ji + 1, there exists δi > 0 such that

|f ′′(x)| ≤ Lρ |f ′(x)|1.5
, if |x− ai| < δi. (8)

Similarly, one can show limx→∞
|f ′(x)|1.5

|f ′′(x)| = ∞, which implies there exists x0 > 0 such that

|f ′′(x)| ≤ Lρ |f ′(x)|1.5
, if |x| > x0. (9)

Define

B := {x ∈ R | |x| ≤ x0 and |x− ai| ≥ δi, ∀i} .

We know B is a compact set and therefore the continuous function f ′′ is bounded within B, i.e., there exists
some constant L0 > 0 such that

|f ′′(x)| ≤ L0, if x ∈ B. (10)

Combining (8), (9), and (10), we have shown

|f ′′(x)| ≤ L0 + Lρ |f ′(x)|1.5
, ∀x ∈ dom(f),

which completes the proof of the first part.
For the second part, consider the ration function f(x) = 1/x. Then we know that f ′(x) = −1/x2 and

f ′′(x) = 2/x3. Note that for any ρ < 1.5 and 0 < x ≤ min{(L0 + 1)−1/3, (Lρ + 1)−1/(3−2ρ)}, we have

|f ′′(x)| =
1

x3
+

1

x3−2ρ
· |f ′(x)|ρ > L0 + Lρ |f ′(x)|ρ ,

which shows f is not (ρ, L0, Lρ) smooth for any ρ < 1.5 and L0, Lρ ≥ 0.
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Finally, we complete this section with the proof of Proposition 3.7, which shows self-concordant functions
are (2, L0, L2)-smooth for some L0, Lρ ≥ 0.

Proof of Proposition 3.7. Let h : R → R be a self-concordant function. We have h′′′(x) ≤ 2h′′(x)3/2. Then,
for x ∈ (a, b), we can obtain

1

2
h′′(x)−1/2h′′′(x) ≤ h′′(x).

Integrating both sides from x0 to y for x0, y ∈ (a, b), we have

h′′(y)1/2 − h′′(x0)1/2 ≤ h′(y) − h′(x0).

Therefore,

h′′(y) ≤ (h′′(x0)1/2 − h′(x0) + h′(y))2 ≤ 2(h′′(x0)1/2 − h′(x0))2 + 2h′(y)2.

Since h′′(y) > 0, we have |h′′(y)| = h′′(y). Therefore, the above inequality shows that h is (2, L0, L2)-smooth
with L0 = 2(h′′(x0)1/2 − h′(x0))2 and L2 = 2.

A.2 Proof of Proposition 3.2

In order to prove Proposition 3.2, we need the following several lemmas. First, the lemma below partially
generalizes Grönwall’s inequality.

Lemma A.3. Let α : [a, b] → [0,∞) and β : [0,∞) → (0,∞) be two continuous functions. Suppose
α′(t) ≤ β(α(t)) almost everywhere over (a, b). Denote function φ(u) :=

∫

1
β(u) du. We have for all t ∈ [a, b],

φ(α(t)) ≤ φ(α(a)) − a+ t.

Proof of Lemma A.3. First, by definition, we know that φ is increasing since φ′ = 1
β > 0. Let function

γ : [a, b] → R be the solution of the following differential equation

γ′(t) = β(γ(t)) ∀t ∈ (a, b), γ(a) = α(a). (11)

Then we have

dφ(γ(t)) =
dγ(t)

β(γ(t))
= dt.

Integrating both sides, noting that γ(a) = α(a) by (11), we obtain

φ(γ(t)) − φ(α(a)) = t− a.

Then it suffices to show φ(α(t)) ≤ φ(γ(t)), ∀t ∈ [a, b]. Note that the following inequality holds almost
everywhere.

(φ(α(t)) − φ(γ(t)))′ = φ′(α(t))α′(t) − φ′(γ(t))γ′(t) =
α′(t)

β(α(t))
− γ′(t)

β(γ(t))
≤ 0,

where the inequality is because α′(t) ≤ β(α(t)) by the assumption of this lemma and γ′(t) = β(γ(t)) by (11).
Since φ(α(a)) − φ(γ(a)) = 0, we know for all t ∈ [a, b], φ(α(t)) ≤ φ(γ(t)), which completes the proof.

With Lemma A.3, one can bound the gradient norm within a small enough neighborhood of a given point
as in the following lemma.
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Lemma A.4. If the objective function f is ℓ-smooth, for any two points x, y ∈ R
d such that the closed line

segment between x and y is contained in X , if ‖y − x‖ ≤ a
ℓ(‖∇f(x)‖+a) for any a > 0, we have

‖∇f(y)‖ ≤ ‖∇f(x)‖ + a.

Proof of Lemma A.4. Denote z(t) := (1 − t)x + ty for 0 ≤ t ≤ 1. Then we know z(t) ∈ X for all 0 ≤ t ≤ 1
by the assumption made in this lemma. Then we can also define α(t) := ‖∇f(z(t))‖ for 0 ≤ t ≤ 1. Note
that for any 0 ≤ t ≤ s ≤ 1, by triangle inequality,

α(s) − α(t) ≤ ‖∇f(z(s)) − ∇f(z(t))‖ . (12)

We know that α(t) = ‖∇f(z(t))‖ is differentiable almost everywhere since f is second order differentiable
almost everywhere (Here we assume α(t) 6= 0 for 0 < t < 1 without loss of generality. Otherwise, one can
define tm = sup{0 < t < 1 | α(t) = 0} and consider the interval [tm, 1] instead). Then the following equality
holds almost everywhere

α′(t) = lim
s↓t

α(s) − α(t)

s− t
≤ lim

s↓t

‖∇f(z(s)) − ∇f(z(t))‖
s− t

=

∥

∥

∥

∥

lim
s↓t

∇f(z(s)) − ∇f(z(t))

s− t

∥

∥

∥

∥

=
∥

∥∇2f(z(t))(y − x)
∥

∥ ≤
∥

∥∇2f(z(t))
∥

∥ ‖y − x‖ ≤ ℓ(α(t)) ‖y − x‖ ,

where the first inequality is due to (12) and the last inequality is by Definition 1. Let β(u) := ℓ(u) · ‖y − x‖
and φ(u) :=

∫ u

0
1

β(v)dv. By Lemma A.3, we know that

φ (‖∇f(y)‖) = φ(u(1)) ≤ φ(u(0)) + 1 = φ (‖∇f(x)‖) + 1.

Denote ψ(u) :=
∫ u

0
1

ℓ(v)dv = φ(u) · ‖y − x‖. We have

ψ (‖∇f(y)‖) ≤ψ (‖∇f(x)‖) + ‖y − x‖
≤ψ (‖∇f(x)‖) +

a

ℓ(‖∇f(x)‖ + a)

≤
∫ ‖∇f(x)‖

0

1

ℓ(v)
dv +

∫ ‖∇f(x)‖+a

‖∇f(x)‖

1

ℓ(v)
dv

=ψ(‖∇f(x)‖ + a).

Since ψ is increasing, we have ‖∇f(y)‖ ≤ ‖∇f(x)‖ + a.

With Lemma A.4, we are ready to prove Proposition 3.2.

Proof of Proposition 3.2. We prove the two directions in this proposition separately.
1. An (r, ℓ)-smooth function is ℓ-smooth.

For each fixed x ∈ X where ∇2f(x) exists and any unit-norm vector w, by Definition 2, we know that
for any t ≤ r(‖∇f(x)‖),

‖∇f(x+ tw) − ∇f(x)‖ ≤ t · ℓ(‖∇f(x)‖).

Then we know that

∥

∥∇2f(x)w
∥

∥ =

∥

∥

∥

∥

lim
t↓0

1

t
(∇f(x + tw) − ∇f(x))

∥

∥

∥

∥

= lim
t↓0

1

t
‖(∇f(x + tw) − ∇f(x))‖ ≤ ℓ(‖∇f(x)‖),

which implies
∥

∥∇2f(x)
∥

∥ ≤ ℓ(‖∇f(x)‖) for any point x if ∇2f(x) exists.
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Then it suffices to show that ∇2f(x) exists almost everywhere. Note that for each x ∈ X , Defini-
tion 2 states that the gradient function is ℓ(‖∇f(x)‖) Lipschitz within the ball B(x, r(‖∇f(x)‖)). Then by
Rademacher’s Theorem, f is twice differentiable almost everywhere within this ball. Then we can show it
is also twice differentiable almost everywhere within the entire domain X as long as we can cover X with
countably many such balls. Define Sn := {x ∈ X | n ≤ ‖∇f(x)‖ ≤ n + 1} for integer n ≥ 0. We have
X = ∪n≥0Sn. One can easily find an internal covering of Sn with balls of size r(n + 1)2, i.e., there exist
{xn,i}i≥0, where xn,i ∈ Sn, such that Sn ⊆ ∪i≥0B(xn,i, r(n + 1)) ⊆ ∪i≥0B(xn,i, r(‖∇f(xn,i)‖)). Therefore
we have X ⊆ ∪n,i≥0B(xn,i, r(‖∇f(xn,i)‖)) which completes the proof.

2. An ℓ-smooth function satisfying Assumption 1 is (r,m)-smooth where m(u) := ℓ(u+a) and

r(u) := a/m(u) for any a > 0.

For any y ∈ R
d satisfying ‖y − x‖ ≤ r(‖∇f(x)‖) = a

ℓ(‖∇f(x)‖+a) , denote z(t) := (1− t)x+ ty for 0 ≤ t ≤ 1.

We first show y ∈ X by contradiction. Suppose y /∈ X , let us define tb := inf{0 ≤ t ≤ 1 | z(t) /∈ X } and
zb := z(tb). Then we know zb is a boundary point of X . Since f is a closed function with an open domain,
we have

lim
t↑tb

f(z(t)) = ∞. (13)

On the other hand, by the definition of tb, we know z(t) ∈ X for every 0 ≤ t < tb. Then by Lemma A.4, for
all 0 ≤ t < tb, we have ‖∇f(z(t))‖ ≤ ‖∇f(x)‖ + a. Therefore for all 0 ≤ t < tb,

f(z(t)) ≤f(x) +

∫ t

0

〈

∇f(z(s)), y − x
〉

ds

≤f(x) + (‖∇f(x)‖ + a) · ‖y − x‖
<∞,

which contradicts (13). Therefore we have shown y ∈ X . Since y is chosen arbitrarily with the ball
B(x, r(‖∇f(x)‖)), we have B(x, r(‖∇f(x)‖)) ⊆ X . Then for any x1, x2 ∈ B(x, r(‖∇f(x)‖)), we denote
w(t) := tx1 + (1 − t)x2. Then we know w(t) ∈ B(x, r(‖∇f(x)‖)) for all 0 ≤ t ≤ 1 and can obtain

‖∇f(x1) − ∇f(x2)‖ =

∥

∥

∥

∥

∫ 1

0

∇2f(w(t)) · (x1 − x2) dt

∥

∥

∥

∥

≤ ‖x1 − x2‖ ·
∫ 1

0

ℓ(‖∇f(x)‖ + a) dt

=m(‖∇f(x)‖) · ‖x1 − x2‖ ,

where the last inequality is due to Lemma A.4.

A.3 Proofs of lemmas implied by generalized smoothness

In this part, we provide the proofs of the useful properties stated in Section 3.1.2, including Lemma 3.3,
Lemma 3.5, and Corollary 3.6.

Proof of Lemma 3.3. First, note that since ℓ is non-decreasing and r is non-increasing, we have ℓ(‖∇f(x)‖) ≤
ℓ(G) = L and r(G) ≤ r(‖∇f(x)‖). Then by Definition 2, we directly have that B(x, r(G)) ⊆
B(x, r(‖∇f(x)‖)) ⊆ X , and that for any x1, x2 ∈ B(x, r(G)), we have

‖∇f(x1) − ∇f(x2)‖ ≤ ℓ(‖∇f(x)‖) ‖x1 − x2‖ ≤ L ‖x1 − x2‖ .
2We can find an internal covering in the following way. We first cover Sn with countably many hyper-cubes of length

r(n + 1)/
√

d, which is obviously doable. Then for each hyper-cube that intersects with Sn, we pick one point from the
intersection. Then the ball centered at the picked point with radius r(n + 1) covers this hyper-cube. Therefore, the union of all
such balls can cover Sn.
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Next, for the second inequality in (2), define z(t) := (1 − t)x2 + tx1 for 0 ≤ t ≤ 1. We know z(t) ∈
B(x, r(G)). Note that we have shown

‖∇f(z(t)) − ∇f(x2)‖ ≤ L ‖z(t) − x2‖ = tL ‖x1 − x2‖ . (14)

Then we have

f(x1) − f(x2) =

∫ 1

0

〈

∇f(z(t), x1 − x2

〉

dt

=

∫ 1

0

〈

∇f(x2), x1 − x2

〉

+
〈

∇f(z(t)) − ∇f(x2), x1 − x2

〉

dt

≤
〈

∇f(x2), x1 − x2

〉

+ L ‖x1 − x2‖2
∫ 1

0

t dt

=
〈

∇f(x2), x1 − x2

〉

+
L

2
‖x1 − x2‖2

,

where the inequality is due to (14).

Proof of Lemma 3.5. If f is ℓ-smooth, by Proposition 3.2, f is also (r,m)-smooth where m(u) = ℓ(2u) and

r(u) = u/ℓ(2u). Then by Lemma 3.3 where we choose G = ‖∇f(x)‖, we have that B
(

x, ‖∇f(x)‖
ℓ(2‖∇f(x)‖)

)

⊆ X ,

and that for any x1, x2 ∈ B
(

x, ‖∇f(x)‖
ℓ(2‖∇f(x)‖)

)

, we have

f(x1) ≤ f(x2) +
〈

∇f(x2), x1 − x2

〉

+
ℓ(2 ‖∇f(x)‖)

2
‖x1 − x2‖ .

Choosing x2 = x and x1 = x− ∇f(x)
ℓ(2‖∇f(x)‖) , it is easy to verify that x1, x2 ∈ B

(

x, ‖∇f(x)‖
ℓ(2‖∇f(x)‖)

)

. Therefore, we

have

f∗ ≤ f

(

x− ∇f(x)

ℓ(2 ‖∇f(x)‖)

)

≤ f(x) − ‖∇f(x)‖2

2ℓ(2 ‖∇f(x)‖)
,

which completes the proof.

Proof of Corollary 3.6. We first show G < ∞. Note that since ℓ is sub-quadratic, we know
limu→∞ 2ℓ(2u)/u2 = 0. Therefore, for any F > 0, there exists some M > 0 such that 2ℓ(2u)/u2 < 1/F for
every u > M . In other words, for any u satisfying u2 ≤ 2ℓ(2u) · F , we must have u ≤ M . Therefore, by
definition of G, we have G ≤ M < ∞ if F > 0. If F = 0, we trivially get G = 0 < ∞. Also, since the
set {u ≥ 0 | u2 ≤ 2ℓ(2u) · F} is closed and bounded, we know its supremum G is in this set and it is also
straightforward to show G2 = 2ℓ(2G) · F .

Next, by Lemma 3.5, we know

‖∇f(x)‖2 ≤ 2ℓ(2 ‖∇f(x)‖) · (f(x) − f∗) ≤ 2ℓ(2 ‖∇f(x)‖) · F.

Then based on the definition of G, we have ‖∇f(x)‖ ≤ G.

B Analysis of GD for convex functions

In this section, we provide the detailed convergence analysis of gradient descent in the convex setting,
including the proofs of Lemma 4.1 and Theorem 4.2, for which the following lemma will be helpful.
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Lemma B.1 (Co-coercivity). If f is convex and (r, ℓ)-smooth, for any x ∈ X and y ∈ B(x, r(‖∇f(x)‖)/2),
we have y ∈ X and

〈∇f(x) − ∇f(y), x− y〉 ≥ 1

L
‖∇f(x) − ∇f(y)‖2 ,

where L = ℓ(‖∇f(x)‖).

Proof of Lemma B.1. Define the Bregman divergences φx(w) := f(w) − 〈∇f(x), w〉 and φy(w) := f(w) −
〈∇f(y), w〉, which are both convex functions. Since ∇φx(w) = ∇f(w) − ∇f(x), we have ∇φx(x) = 0 which
implies minw φx(w) = φx(x) as φx is convex. Similarly we have minw φy(w) = φy(y).

Denote rx := r(‖∇f(x)‖). Since f is (r, ℓ)-smooth, we know its gradient ∇f is L-Lipschitz locally in
B(x, rx). Since ∇φx(w) − ∇f(w) = ∇f(x) is a constant, we know ∇φx is also L-Lipschitz locally in B(x, rx).
Then similar to the proof of Lemma 3.3, one can easily show that for any x1, x2 ∈ B(x, rx), we have

φx(x1) ≤ φx(x2) +
〈

∇φx(x2), x1 − x2

〉

+
L

2
‖x1 − x2‖2

. (15)

Note that for any y ∈ B(x, r(‖∇f(x)‖)/2) as in the lemma statement,
∥

∥

∥

∥

y − 1

L
∇φx(y) − x

∥

∥

∥

∥

≤ ‖y − x‖ +
1

L
‖∇f(y) − ∇f(x)‖ ≤ 2 ‖y − x‖ ≤ rx,

where the first inequality uses triangle inequality and ∇φx(y) = ∇f(y) − ∇f(x); and the second inequality
uses Definition 2. It implies that y − 1

L∇φx(y) ∈ B(x, rx). Then we can obtain

φx(x) = min
w
φx(w) ≤ φx

(

y − 1

L
∇φx(y)

)

≤ φx(y) − 1

2L
‖∇φx(y)‖2

,

where the last inequality uses (15) where we choose x1 = y − 1
L∇φx(y) and x2 = y. By the definition of φx,

the above inequality is equivalent to

1

2L
‖∇f(y) − ∇f(x)‖2 ≤ f(y) − f(x) − 〈∇f(x), x − y〉.

Similar argument can be made for φy(·) to obtain

1

2L
‖∇f(y) − ∇f(x)‖2 ≤ f(x) − f(y) − 〈∇f(y), y − x〉.

Summing up the two inequalities, we can obtain the desired result.

With Lemma B.1, we prove Lemma 4.1 as follows.

Proof of Lemma 4.1. Let L = ℓ(G). We first verify that x+ ∈ B(x, r(G)/2). Note that
∥

∥x+ − x
∥

∥ = ‖η∇f(x)‖ ≤ ηG ≤ r(G)/2,

where we choose η ≤ r(G)/(2G). Thus by Lemma B.1, we have

∥

∥∇f(x+)
∥

∥

2
= ‖∇f(x)‖2

+ 2〈∇f(x+) − ∇f(x),∇f(x)〉 +
∥

∥∇f(x+) − ∇f(x)
∥

∥

2

= ‖∇f(x)‖2 − 2

η
〈∇f(x+) − ∇f(x), x+ − x〉 +

∥

∥∇f(x+) − ∇f(x)
∥

∥

2

≤ ‖∇f(x)‖2
+

(

1 − 2

ηL

)

∥

∥∇f(x+) − ∇f(x)
∥

∥

2

≤ ‖∇f(x)‖2 ,

where the first inequality uses Lemma B.1 and the last inequality chooses η ≤ 2/L.
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With Lemma 4.1, we are ready to prove both Theorem 4.2 and Theorem 4.3.

Proof of Theorem 4.2. Denote G := ‖∇f(x0)‖. Then we trivially have ‖∇f(x0)‖ ≤ G. Lemma 4.1 states
that if ‖∇f(xt)‖ ≤ G for any t ≥ 0, then we also have ‖∇f(xt+1)‖ ≤ ‖∇f(xt)‖ ≤ G. By induction, we can
show that ‖∇f(xt)‖ ≤ G for all t ≥ 0. Then the rest of the proof basically follows the standard textbook
analysis. We still provide the detailed proof below for completeness.

Note that ‖xt+1 − xt‖ = η ‖∇f(xt)‖ ≤ ηG ≤ r(G), where we choose η ≤ r(G)/(2G). Thus we can apply
Lemma 3.3 to obtain

0 ≥ f(xt+1) − f(xt) − 〈∇f(xt), xt+1 − xt〉 − L

2
‖xt+1 − xt‖2

≥ f(xt+1) − f(xt) − 〈∇f(xt), xt+1 − xt〉 − 1

2η
‖xt+1 − xt‖2

, (16)

where the last inequality chooses η ≤ 1/L. Meanwhile, by convexity between xt and x∗, we have

0 ≥ f(xt) − f∗ + 〈∇f(xt), x
∗ − xt〉. (17)

Note that (t+ 1)×(16)+(17) gives

0 ≥ f(xt) − f∗ + 〈∇f(xt), x
∗ − xt〉

+ (1 + t)

(

f(xt+1) − f(xt) − 〈∇f(xt), xt+1 − xt〉 − 1

2η
‖xt+1 − xt‖2

)

.

Then reorganizing the terms of the above inequality, noting that

‖xt+1 − x∗‖2 − ‖xt − x∗‖2
= ‖xt+1 − xt‖2

+ 2〈xt+1 − xt, xt − x∗〉
= ‖xt+1 − xt‖2 + 2η〈∇f(xt), x

∗ − xt〉,

we can obtain

(t+ 1)(f(xt+1) − f∗) +
1

2η
‖xt+1 − x∗‖2 ≤ t(f(xt) − f∗) +

1

2η
‖xt − x∗‖2

.

The above inequality implies t(f(xt) − f∗) + 1
2η ‖xt − x∗‖2 is a non-increasing potential function, which

directly implies the desired result.

Proof of Theorem 4.3. Since strongly convex functions are also convex, by the same argument as in the
proof of Theorem 4.2, we have ‖∇f(xt)‖ ≤ G := ‖∇f(x0)‖ for all t ≥ 0. Moreover, (16) still holds. For
µ-strongly-convex function, we can obtain a tighter version of (17) as follows.

0 ≥ f(xt) − f∗ + 〈∇f(xt), x
∗ − xt〉 +

µ

2
‖x∗ − xt‖2 . (18)

Let A0 = 0 and At+1 = (1 +At)/(1 − ηµ) for all t ≥ 0. Combining (16) and (18), we have

0 ≥ (At+1 − At)(f(xt) − f∗ + 〈∇f(xt), x
∗ − xt〉)

+At+1

(

f(xt+1) − f(xt) − 〈∇f(xt), xt+1 − xt〉 − 1

2η
‖xt+1 − xt‖2

)

.

Then reorganizing the terms of the above inequality, noting that

‖xt+1 − x∗‖2 − ‖xt − x∗‖2
= ‖xt+1 − xt‖2

+ 2〈xt+1 − xt, xt − x∗〉
= ‖xt+1 − xt‖2 + 2η〈∇f(xt), x

∗ − xt〉,
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we can obtain

At+1(f(xt+1) − f∗) +
1 + ηµAt+1

2η
‖xt+1 − x∗‖2 ≤ At(f(xt) − f∗) +

1 + ηµAt

2η
‖xt − x∗‖2 .

The above inequality means At(f(xt) − f∗) + 1+ηµAt

2η ‖xt − x∗‖2 is a non-increasing potential function. Thus
by telescoping we have

f(xT ) − f∗ ≤ µ(1 − ηµ)T

2(1 − (1 − ηµ)T )
‖x0 − x∗‖2

.

C Analysis of NAG for convex functions

In this section, we provide the detailed analysis of Nesterov’s accelerated gradient method in the convex
setting. As we discussed in Section 4.2, the stepsize size choice in Theorem 4.4 is smaller than the classical
one. Therefore, we provide a more fine-grained version of the theorem, which allows the stepsize to depend
on the degree of ℓ.

Theorem C.1. Suppose f is convex and ℓ-smooth. For α ∈ (0, 2], if ℓ(u) = o(uα), i.e., limu→∞ ℓ(u)/uα = 0,
then there must exist a constant G such that for L := ℓ(2G), we have

G ≥ max

{

8 max{L1/α−1/2, 1}
√

L((f(x0) − f∗) + ‖x0 − x∗‖2
), ‖∇f(x0)‖

}

. (19)

Choose η ≤ min
{

1
16L3−2/α ,

1
2L

}

. Then the iterates of Algorithm 1 satisfy

f(xT ) − f∗ ≤ 4(f(x0 − f∗) + 4 ‖x0 − x∗‖2

ηT 2 + 4
.

Note that when α = 2, i.e., ℓ is sub-quadratic, Theorem C.1 reduces to Theorem 4.4 which chooses
η ≤ min{ 1

16L2 ,
1

2L}. When α = 1, i.e., ℓ is sub-linear, the above theorem chooses η ≤ 1
16L as in the classical

textbook analysis up to a numerical constant factor.
Throughout this section, we will assume f is convex and ℓ-smooth, and consider the parameter choices

in Theorem C.1, unless explicitly stated. Note that since f is ℓ-smooth, it is also (r,m)-smooth with
m(u) = ℓ(u + G) and r(u) = G

ℓ(u+G) by Proposition 3.2. Note that m(G) = ℓ(2G) = L and r(G) = G/L.

Then the stepsize satisfies η ≤ 1/(2L) ≤ min{ 2
m(G) ,

r(G)
2G }.

Before proving Theorem C.1, we first present several additional useful lemmas. To start with, we provide
two lemmas regarding the weights {At}t≥0 and {Bt}t≥0 used in Algorithm 1. The lemma below states that
Bt = Θ(t2).

Lemma C.2. The weights {Bt}t≥0 in Algorithm 1 satisfy 1
4 t

2 ≤ Bt ≤ t2 for all t ≥ 0.

Proof of Lemma C.2. We prove this lemma by induction. First note that the inequality obviously holds for
B0 = 0. Suppose its holds up to t. Then we have

Bt+1 = Bt +
1

2
(1 +

√

4Bt + 1) ≥ 1

4
t2 +

1

2
(1 +

√

t2 + 1) ≥ 1

4
(t+ 1)2.

Similarly, we have

Bt+1 = Bt +
1

2
(1 +

√

4Bt + 1) ≤ t2 +
1

2
(1 +

√

4t2 + 1) ≤ (t+ 1)2.
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Lemma C.2 implies the following useful lemma.

Lemma C.3. The weights {At}t≥0 in Algorithm 1 satisfy that

(1 − At

At+1
)

1

At

t−1
∑

s=0

√

As+1(As+1 −As − 1) ≤ 4.

Proof of Lemma C.3. First, note that it is easy to verify that As+1 − As − 1 = Bs+1 − Bs − 1 ≥ 0, which
implies each term in the LHS of the above inequality is non-negative. Then we have

(1 − At

At+1
)

1

At

t−1
∑

s=0

√

As+1(As+1 −As − 1)

≤ 1

At+1

√
At

(At+1 −At)
t−1
∑

s=0

(As+1 −As − 1) (At ≥ As+1)

=
1

At+1

√
At

(Bt+1 −Bt)
t−1
∑

s=0

(Bs+1 −Bs − 1) (As = Bs + 1/η)

=
1

At+1

√
At

· 1

2
(1 +

√

4Bt + 1)
t−1
∑

s=0

(

−1 +
1

2
(1 +

√

4Bs + 1)

)

(by definition of Bs)

≤ 8
1

(t+ 1)2t
· (t+ 1)

t2

2
(by At ≥ Bt and Lemma C.2)

≤ 4.

The following lemma summarizes the results in the classical potential function analysis of NAG in
[d’Aspremont et al., 2021]. In order to not deal with the generalized smoothness condition for now, we
directly assume the inequality (20) holds in the lemma, which will be proved later under the generalized
smoothness condition.

Lemma C.4. For any t ≥ 0, if the following inequality holds,

f(yt) + 〈∇f(yt), xt+1 − yt〉 +
1

2η
‖xt+1 − yt‖2 ≥ f(xt+1), (20)

then we can obtain

At+1(f(xt+1) − f∗) +
1

2η
‖zt+1 − x∗‖2 ≤ At(f(xt) − f∗) +

1

2η
‖zt − x∗‖2

. (21)

Proof of Lemma C.4. These derivations below can be found in [d’Aspremont et al., 2021]. We present them
here for completeness.

First, since f is convex, the convexity between x∗ and yt gives

f∗ ≥ f(yt) + 〈∇f(yt), x
∗ − yt〉.

Similarly the convexity between xt and yt gives

f(xt) ≥ f(yt) + 〈∇f(yt), xt − yt〉.
Combining the above two inequalities as well as (20) assumed in this lemma, we have

0 ≥ (At+1 −At)(f(yt) − f∗ + 〈∇f(yt), x
∗ − yt〉)

+At(f(yt) − f(xt) + 〈∇f(yt), xt − yt〉)

+At+1

(

f(xt+1) − f(yt) − 〈∇f(yt), xt+1 − yt〉 − 1

2η
‖xt+1 − yt‖2

)

. (22)
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Furthermore, note that

1

2η

(

‖zt+1 − x∗‖2 − ‖zt − x∗‖2
)

=
1

2η

(

‖zt+1 − zt‖2
+ 2〈zt+1 − zt, zt − x∗〉

)

=
1

2η

(

η2(At+1 −At)
2 ‖∇f(yt)‖2 − 2η(At+1 −At)〈∇f(yt), zt − x∗〉

)

=
η

2
(At+1 −At)

2 ‖∇f(yt)‖2 − (At+1 −At)〈∇f(yt), zt − x∗〉. (23)

Meanwhile, we have

At+1xt+1 = At+1yt − ηAt+1∇f(yt) = At+1xt + (At+1 −At)(zt − xt) − ηAt+1∇f(yt).

Thus we have

(At+1 −At)zt = At+1xt+1 −Atxt + ηAt+1∇f(yt).

Plugging back in (23), we obtain

1

2η

(

‖zt+1 − x∗‖2 − ‖zt − x∗‖2
)

=
η

2
(At+1 −At)

2 ‖∇f(yt)‖2 + (At+1 −At)〈∇f(yt), x
∗〉

+ 〈−At+1xt+1 +Atxt − ηAt+1∇f(yt),∇f(yt)〉.

Thus

(At+1 −At)〈∇f(yt), x
∗〉 + 〈Atxt −At+1xt+1,∇f(yt)〉

=
1

2η

(

‖zt+1 − x∗‖2 − ‖zt − x∗‖2
)

+ η(At+1 − 1

2
(At+1 −At)

2) ‖∇f(yt)‖2 .

So we can reorganize (22) to obtain

0 ≥ At+1(f(xt+1) − f∗) −At(f(xt) − f∗)

+ (At+1 −At)〈∇f(yt), x
∗〉 + 〈Atxt −At+1xt+1,∇f(yt)〉

− 1

2η
At+1 ‖xt+1 − yt‖2

= At+1(f(xt+1) − f∗) −At(f(xt) − f∗)

+
1

2η

(

‖zt+1 − x∗‖2 − ‖zt − x∗‖2
)

+
η

2
(At+1 − (At+1 −At)

2) ‖∇f(yt)‖2
.

Then we complete the proof noting that it is easy to verify

At+1 − (At+1 −At)
2 = Bt+1 +

1

η
− (Bt+1 −Bt)

2 =
1

η
≥ 0.

In the next lemma, we show that if ‖∇f(yt)‖ ≤ G, then the condition (20) assumed in Lemma C.4 is
satisfied at time t.

Lemma C.5. For any t ≥ 0, if ‖∇f(yt)‖ ≤ G, then we have ‖∇f(xt+1)‖ ≤ G, and furthermore,

f(yt) + 〈∇f(yt), xt+1 − yt〉 +
1

2η
‖xt+1 − yt‖2 ≥ f(xt+1).
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Proof of Lemma C.5. As disccued below Theorem C.1, the stepsize satisfies η ≤ 1/(2L) ≤ min{ 2
m(G) ,

r(G)
2G }.

Therefore we can apply Lemma 4.1 to show ‖∇f(xt+1)‖ ≤ ‖∇f(yt)‖ ≤ G. For the second part, note that
‖xt+1 − yt‖ = η ‖∇f(yt)‖ ≤ G

2L ≤ r(G), we can apply Lemma 3.3 to show

f(xt+1) ≤ f(yt) + 〈∇f(yt), xt+1 − yt〉 +
L

2
‖xt+1 − yt‖2

≤ f(yt) + 〈∇f(yt), xt+1 − yt〉 +
1

2η
‖xt+1 − yt‖2

.

With Lemma C.4 and Lemma C.5, we can show that ‖∇f(yt)‖ ≤ G for all t ≥ 0, as in the lemma below.

Lemma C.6. For all t ≥ 0, ‖∇f(yt)‖ ≤ G.

Proof of Lemma C.6. We will prove this lemma by induction. First, by Lemma 3.5 and the choice of G, it
is easy to verify that ‖∇f(x0)‖ ≤ G. Then for any fixed t ≥ 0, suppose that ‖∇f(xs)‖ ≤ G for all s < t.
Then by Lemma C.4 and Lemma C.5, we know that ‖∇f(xs)‖ ≤ G for all 0 ≤ s ≤ t, and that for all s < t,

As+1(f(xs+1) − f∗) +
1

2η
‖zs+1 − x∗‖2 ≤ As(f(xs) − f∗) +

1

2η
‖zs − x∗‖2

. (24)

By telescoping (24), we have for all 0 ≤ s < t,

f(xs+1) − f∗ ≤ 1

ηAs+1
((f(x0) − f∗) + ‖z0 − x∗‖2

). (25)

For 0 ≤ s ≤ t, since ‖∇f(xs)‖ ≤ G, then Lemma 3.5 implies

‖∇f(xs)‖2 ≤ 2L(f(xs) − f∗). (26)

Note that by Algorithm 1, we have

zt − xt =
At−1

At
(zt−1 − xt−1) − η(At −At−1)∇f(yt−1) + η∇f(yt−1).

Thus we can obtain

zt − xt = − 1

At

t−1
∑

s=1

ηAs+1(As+1 −As − 1)∇f(ys).

Therefore

yt − xt = −(1 − At

At+1
)

1

At

t−1
∑

s=1

ηAs+1(As+1 −As − 1)∇f(ys).

Thus we have

‖yt − xt‖ ≤ (1 − At

At+1
)

1

At

t−1
∑

s=1

ηAs+1(As+1 −As − 1) ‖∇f(ys)‖ =: I.

Since ‖∇f(ys)‖ ≤ G and ‖xs+1 − ys‖ = ‖η∇f(ys)‖ ≤ r(G) for s < t, by Lemma 3.3, we have

I ≤ (1 − At

At+1
)

1

At

t−1
∑

s=1

ηAs+1(As+1 −As − 1)(‖∇f(xs+1)‖ + ηL ‖∇f(ys)‖)

≤ ηLI + (1 − At

At+1
)

1

At

t−1
∑

s=1

ηAs+1(As+1 −As − 1) ‖∇f(xs+1)‖ .
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Thus

‖yt − xt‖

≤I ≤ 1

1 − ηL
(1 − At

At+1
)

1

At

t−1
∑

s=1

ηAs+1(As+1 −As − 1) ‖∇f(xs+1)‖

≤ 1

1 − ηL
(1 − At

At+1
)

1

At

t−1
∑

s=1

ηAs+1(As+1 −As − 1)
√

2L(f(xs+1) − f∗) (by (26))

≤ 1

1 − ηL
(1 − At

At+1
)

1

At

t−1
∑

s=1

ηAs+1(As+1 −As − 1)

√

2L

As+1
· 1

η
((f(x0) − f∗) + ‖z0 − x∗‖2

) (by (25))

=
2
√
ηL

1 − ηL
(1 − At

At+1
)

1

At

t−1
∑

s=1

√

As+1(As+1 −As − 1)

√

(f(x0) − f∗) + ‖z0 − x∗‖2

≤ 8
√
η

1 − ηL

√

L((f(x0) − f∗) + ‖z0 − x∗‖2) (by Lemma C.3)

≤ 1

2L3/2−1/α
· L1/2−1/αG =

G

2L
≤ r(G). (by the choices of η and G)

Since ‖∇f(xt)‖ ≤ G and we just showed ‖xt − yt‖ ≤ r(G), by Lemma 3.3, we have

‖∇f(yt)‖ ≤ ‖∇f(xt)‖ + L ‖yt − xt‖

≤
√

2L

ηAt
((f(x0) − f∗) + ‖z0 − x∗‖2

) + L · G
2L

(by (26) and (25))

≤ G

(

1

4
+

1

2

)

≤ G. (by At ≥ 1/η and choice of G)

Then we complete the induction as well as the proof.

With the three lemmas above, it is straight forward to prove Theorem C.1.

Proof of Theorem C.1. Combining Lemmas C.4, C.5, and C.6, we know the following inequality holds for all
t ≥ 0.

At+1(f(xt+1) − f∗) +
1

2η
‖zt+1 − x∗‖2 ≤ At(f(xt) − f∗) +

1

2η
‖zt − x∗‖2

,

Then by telescoping, we directly complete the proof.

D Analysis of NAG for strongly convex functions

In this section, we provide the convergence analysis of the modified version of Nesterov’s accelerated gradient
method for µ-strongly-convex functions defined in Algorithm 2.

The convergence results is formally presented in the following theorem.

Theorem D.1. Suppose f is µ-strongly-convex and ℓ-smooth. For α ∈ (0, 2], if ℓ(u) = o(uα), i.e.,
limu→∞ ℓ(u)/uα = 0, then there must exist a constant G such that for L := ℓ(2G), we have

G ≥ 8 max{L1/α−1/2, 1}
√

L((f(x0) − f∗) + µ ‖z0 − x∗‖2
)/min{µ, 1}. (27)
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Algorithm 2: NAG for µ-strongly-convex functions

input A µ-strongly-convex and ℓ-smooth function f , stepsize η, initial point x0

1: Initialize z0 = x0, B0 = 0, and A0 = 1/(ηµ).
2: for t = 0, ... do

3: Bt+1 =
2Bt+1+

√
4Bt+4ηµB2

t +1

2(1−ηµ)

4: At+1 = Bt+1 + 1
ηµ

5: τt = (At+1−At)(1+ηµAt)
At+1+2ηµAtAt+1−ηµA2

t
and δt = At+1−At

1+ηµAt+1

6: yt = xt + τt(zt − xt)
7: xt+1 = yt − η∇f(yt)
8: zt+1 = (1 − ηµδt)zt + ηµδtyt − ηδt∇f(yt)
9: end for

If we choose

η ≤ min







1

144L3−2/α log4
(

e+ 144L3−2/α

µ

) ,
1

2L







. (28)

The iterates generated by Algorithm 2 satisfy

f(xT ) − f∗ ≤ (1 − √
ηµ)T −1(f(x0 − f∗) + µ ‖z0 − x∗‖2

)

ηµ+ (1 − √
ηµ)T −1

.

The above theorem gives a gradient complexity of O
(

1√
ηµ log(1/ǫ)

)

. Note that Theorem 4.2 shows the

complexity of GD is O
(

1
ηµ log(1/ǫ)

)

. It seems NAG gives a better rate at first glance. However, note

that the choices of G,L, η in these two theorems are different, it is less clear whether NAG accelerates the
optimization in this setting. Below, we informally show that, if ℓ(u) = o(

√
u), the rate we obtain for NAG

is faster than that for GD.
For simplicity, we informally assume ℓ(u) ≍ xρ with ρ ∈ (0, 1). Let G0 = ‖∇f(x0)‖. Then for GD, by

Theorem 4.2, we have ηgdµ ≍ µ/ℓ(G0) ≍ µ/Gρ
0. For NAG, since ℓ is sub-linear we can choose α = 1 in the

theorem statement. Since f is µ-strongly-convex, by standard results, we can show that f(x0) − f∗ ≤ 1
µG

2
0

and ‖z0 − x∗‖ ≤ 1
µG0. Thus the requirement of G in (27) can be simplified as G & ℓ(G) · G0/µ, which is

satisfied if choosing G ≍ (G0/µ)1/(1−ρ). Then we also have ηnag ≍ 1
ℓ(G) ≍ (µ/G0)ρ/(1−ρ). Thus

√
ηnagµ ≍

(µ/Gρ
0)1/(2−2ρ). This means whenever 1/(2 − 2ρ) < 1, i.e., 0 ≤ ρ < 1/2, we have

√
ηnagµ & ηgdµ, which

implies the rate we obtain for NAG is faster than that for GD.
In what follows, we will provide the proof of Theorem D.1. We will always use the parameter choices in

the theorem throughout this section.

D.1 Useful lemmas

In this part, we provide several useful lemmas for proving Theorem D.1. To start with, the following two
lemmas provide two useful inequalities.

Lemma D.2. For any 0 ≤ u ≤ 1, we have log(1 + u) ≥ 1
2u.

Lemma D.3. For all 0 < p ≤ 1 and t ≥ 0, we have

t ≤ 2√
p

log(e+
1

p
)(p(1 +

√
p)t + 1).
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Proof of Lemma D.3. Let

f(t) =
2√
p

log(e+
1

p
)(p(1 +

√
p)t + 1) − t.

It is obvious that f(t) ≥ 0 for t ≤ 2√
p log(e+ 1

p ). For t > 2√
p log(e+ 1

p ), we have

f ′(t) = 2
√
p log(e+

1

p
) log(1 +

√
p)(1 +

√
p)t − 1

≥ p(1 +
√
p)t − 1 (by Lemma D.2)

= p exp(t log(1 +
√
p)) − 1

≥ p exp(t
√
p/2) − 1 (by Lemma D.2)

≥ p(e+ 1/p) − 1 ≥ 0. (since t > 2√
p log(e+ 1

p ))

Thus f is non-decreasing and

f(t) ≥ f

(

2√
p

log(e+
1

p
)

)

≥ 0.

In the next four lemmas, we provide several useful inequalities regarding the weights {At}t≥0 and {Bt}t≥0

used in Algorithm 2.

Lemma D.4. For all s ≤ t, we have

Bt+1 −Bt

Bt+1
· Bs+1 −Bs

1 + ηµBs+1
≤ 1,

which implies τt · δs ≤ 1.

Proof of Lemma D.4. By Algorithm 2, it is easy to verify

(Bs+1 −Bs)2 = Bs+1(1 + ηµBs+1).

This implies

Bs = Bs+1 −
√

Bs+1(1 + ηµBs+1).

Thus

Bt

Bt+1
= 1 −

√

ηµ+
1

Bt+1
≥ 1 −

√

ηµ+
1

Bs+1
=

Bs

Bs+1
,

where in the inequality, we use the fact that Bs is non-decreasing with s. Therefore

Bt+1 −Bt

Bt+1
· Bs+1 −Bs

1 + ηµBs+1
≤ Bs+1 −Bs

Bs+1
· Bs+1 −Bs

1 + ηµBs+1
= 1.

Thus we have

τt · δs =
(At+1 −At)(1 + ηµAt)

At+1 + 2ηµAtAt+1 − ηµA2
t

· As+1 −As

1 + ηµAs+1

≤ At+1 −At

At+1
· As+1 −As

1 + ηµAs+1
(by At+1 ≥ At)

=
Bt+1 −Bt

At+1
· Bs+1 −Bs

1 + ηµAs+1
(by As+1 −As = Bs+1 −Bs)

≤ Bt+1 −Bt

Bt+1
· Bs+1 −Bs

1 + ηµBs+1
≤ 1. (by As+1 ≥ Bs+1)
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Lemma D.5. If 0 < ηµ < 1, then for any t ≥ 1, we have

Bt

1 − √
ηµ

≤ Bt+1 ≤ 3Bt

1 − ηµ
.

Thus

Bt ≥ 1

(1 − √
ηµ)t−1

≥ (1 +
√
ηµ)t−1.

Proof of Lemma D.5. For t ≥ 1, we have Bt ≥ 1 thus

Bt+1 =
2Bt + 1 +

√

4Bt + 4ηµB2
t + 1

2(1 − ηµ)
≤ 2Bt + 1

1 − ηµ
≤ 3Bt

1 − µη
.

On the other hand, we have

Bt+1 =
2Bt + 1 +

√

4Bt + 4ηµB2
t + 1

2(1 − ηµ)

≥ 2Bt +
√

(2Bt
√
ηµ)2

2(1 − ηµ)

=
Bt

1 − √
ηµ
.

Thus

Bt ≥
(

1

1 − √
ηµ

)t−1

B1 ≥
(

1

1 − √
ηµ

)t−1

≥ (1 +
√
ηµ)t−1.

Lemma D.6. For 0 < ηµ < 1 and t ≥ 1, we have

t
∑

s=0

√

Bs ≤ (1 − ηµ)Bt+1 ≤ 3Bt.

Proof of Lemma D.6.

Bt+1 =
2Bt + 1 +

√

4Bt + 4ηµB2
t + 1

2(1 − ηµ)

≥ Bt +

√
Bt

1 − ηµ

≥ · · ·

≥
t
∑

s=0

√
Bs

1 − ηµ
.

Combined with Lemma D.5, we have the desired result.

Lemma D.7. For t ≥ 1, we have

t−1
∑

s=0

√

As+1

At
≤ 3 + 4 log(e+

1

ηµ
).
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Proof of Lemma D.7. By Lemma D.5, we have

At = Bt +
1

ηµ
≥ (1 +

√
ηµ)t−1 +

1

ηµ
. (29)

Thus, we have

t−1
∑

s=0

√

As+1

At
=

t−1
∑

s=0

√

Bs+1 + 1/(ηµ)

At

≤
t−1
∑

s=0

√

Bs+1

At
+

t√
ηµAt

≤ 3 +
1√
ηµAt

· 2√
ηµ

log(e+
1

ηµ
)(ηµ(1 +

√
ηµ)t + 1) (by Lemma D.6 and Lemma D.3)

≤ 3 + 4 log(e+
1

ηµ
). (by Inequality (29))

D.2 Proof of Theorem D.1

With all the useful lemmas in the previous section, we proceed to prove Theorem D.1, for which we need
several additional lemmas. First, similar to Lemma C.4, the following lemma summarizes the results in the
classical potential function analysis of NAG for strongly convex functions in [d’Aspremont et al., 2021].

Lemma D.8. For any t ≥ 0, if the following inequality holds

f(yt) + 〈∇f(yt), xt+1 − yt〉 +
1

2η
‖xt+1 − yt‖2 ≥ f(xt+1),

then we can obtain

At+1(f(xt+1) − f∗) +
1 + ηµAt+1

2η
‖zt+1 − x∗‖2 ≤ At(f(xt) − f∗) +

1 + ηµAt

2η
‖zt − x∗‖2

.

Proof of Lemma D.8. These derivations can be found in d’Aspremont et al. [2021]. We present it here for
completeness.

The strong convexity between x∗ and yt gives

f∗ ≥ f(yt) + 〈∇f(yt), x
∗ − yt〉 +

µ

2
‖x∗ − yt‖2 .

The convexity between xt and yt gives

f(xt) ≥ f(yt) + 〈∇f(yt), xt − yt〉.

Combining the above two inequalities and the one assumed in this lemma, we have

0 ≥ (At+1 −At)(f
∗ − f(yt) − 〈∇f(yt), x

∗ − yt〉 − µ

2
‖x∗ − yt‖2

)

+At(f(yt) − f(xt) − 〈∇f(yt), xt − yt〉)

+At+1(f(xt+1) − f(yt) − 〈∇f(yt), xt+1 − yt〉 − 1

2η
‖xt+1 − yt‖2

).
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Reorganizing we can obtain

At+1(f(xt+1) − f∗) +
1 + ηµAt+1

2η
‖zt+1 − x∗‖2

≤ At(f(xt) − f∗) +
1 + ηµAt

2η
‖zt − x∗‖2

+
(At −At+1)2 −At+1 − ηµA2

t+1

1 + ηµAt+1

η

2
‖∇f(yt)‖2

−A2
t

(At+1 −At)(1 + ηµAt)(1 + ηµAt+1)

(At+1 + 2ηµAtAt+1 − ηµA2
t )2

µ

2
‖xt − zt‖2

.

Then we complete the proof noting that

(At −At+1)2 −At+1 − ηµA2
t+1

= (Bt −Bt+1)2 −Bt+1 +
1

ηµ
− ηµ(Bt+1 + 1/(ηµ))2

= ηµB2
t+1 +

1

ηµ
− ηµB2

t+1 − 2Bt+1 − 1

ηµ

= −2Bt+1 ≤ 0.

Next, note that Lemma C.5 still holds in the strongly convex setting. We repeat it below for completeness.

Lemma D.9. For any t ≥ 0, if ‖∇f(yt)‖ ≤ G, then we have ‖∇f(xt+1)‖ ≤ G, and furthermore,

f(yt) + 〈∇f(yt), xt+1 − yt〉 +
1

2η
‖xt+1 − yt‖2 ≥ f(xt+1).

With Lemma D.8 and Lemma D.9, we will show that ‖∇f(yt)‖ ≤ G for all t ≥ 0 by induction in the
following lemma.

Lemma D.10. For all t ≥ 0, we have ‖∇f(yt)‖ ≤ G.

Proof of Lemma D.10. We will prove this lemma by induction. First, by Lemma 3.5 and the choice of G, it
is easy to verify that ‖∇f(x0)‖ ≤ G. Then for any fixed t ≥ 0, suppose that ‖∇f(xs)‖ ≤ G for all s < t.
Then by Lemma D.8 and Lemma D.9, we know that ‖∇f(xs)‖ ≤ G for all 0 ≤ s ≤ t, and that for all s < t,

As+1(f(xs+1) − f∗) +
1 + ηµAs+1

2η
‖zs+1 − x∗‖2 ≤ As(f(xs) − f∗) +

1 + ηµAs

2η
‖zs − x∗‖2 . (30)

By telescoping (30), we have for all 0 ≤ s < t,

f(xs+1) − f∗ ≤ 1

As+1ηµ
(f(x0) − f∗ + µ ‖z0 − x∗‖2

). (31)

For 0 ≤ s ≤ t, since ‖∇f(xs)‖ ≤ G, then Lemma 3.5 implies

‖∇f(xs)‖2 ≤ 2L(f(xs) − f∗). (32)

Note that by Algorithm 2, we have

zt − xt = (1 − ηµδt−1)(1 − τt−1)(zt−1 − xt−1) + η(1 − δt−1)∇f(yt−1).
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Thus

zt − xt = η

t−1
∑

s=0

(1 − δs)∇f(ys)

t−1
∏

i=s+1

(1 − ηµδi)(1 − τi).

Therefore

yt − xt = ητt

t−1
∑

s=0

(1 − δs)∇f(ys)
t−1
∏

i=s+1

(1 − ηµδi)(1 − τi).

Moreover

1 − ηµδi = 1 − ηµ(Ai+1 −Ai)

1 + ηµAi+1
=

1 + ηµAi

1 + ηµAi+1

and

1 − τi = 1 − (Ai+1 −Ai)(1 + ηµAi)

Ai+1 + 2ηµAiAi+1 − ηµA2
i

=
Ai(1 + ηµAi+1)

Ai+1 + 2ηµAiAi+1 − ηµA2
i

≤ Ai(1 + ηµAi+1)

Ai+1(1 + ηµAi)
.

Thus we have

‖yt − xt‖ ≤ ητt

t−1
∑

s=0

(δs − 1)
As+1

At
‖∇f(ys)‖ ≤ η

t−1
∑

s=0

As+1

At
‖∇f(ys)‖ =: I,

where the second inequality follows from Lemma D.4. We further control term I by

I ≤ η

t−1
∑

s=0

As+1

At
(‖∇f(xs+1)‖ + ηL ‖∇f(ys)‖)

≤ ηLI + η

t−1
∑

s=0

As+1

At
‖∇f(xs+1)‖ .

Thus we have

‖yt − xt‖ ≤ η

1 − ηL

t−1
∑

s=0

As+1

At
‖∇f(xs+1)‖

≤ η

1 − ηL

t−1
∑

s=0

As+1

At

√

2L(f(xs+1) − f∗) (by (32))

≤ η

1 − ηL

t−1
∑

s=0

As+1

At

√

2L · 1

As+1ηµ
(f(x0) − f∗ + µ ‖z0 − x∗‖2

) (by (31))

=

√

2ηL(f(x0) − f∗ + µ ‖z0 − x∗‖2)

(1 − ηL)
√
µ

t−1
∑

s=0

√

As+1

At

≤

√

2ηL(f(x0) − f∗ + µ ‖z0 − x∗‖2
)

(1 − ηL)
√
µ

(

3 + 4 log(e+
1

ηµ
)

)

. (by Lemma D.7)

≤
√
η

1 − ηL

(

3 + 4 log(e+
1

ηµ
)

)

· G · L1/2−1/α

4
(by (27))

≤
3 + 4 log(e+ 1

ηµ )

log2
(

e+ 144L3−2/α

µ

) · G

24L
(by (28))

≤ G

2L
≤ r(G).
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Since ‖∇f(xt)‖ ≤ G and we just showed ‖xt − yt‖ ≤ r(G), by Lemma 3.3, we have

‖∇f(yt)‖ ≤ ‖∇f(xt)‖ + L ‖yt − xt‖

≤
√

2L

ηµAt
((f(x0) − f∗) + µ ‖z0 − x∗‖2) + L · G

2L
(by (31))

≤ G

(

1

4
+

1

2

)

≤ G. (by At ≥ 1/(ηµ) and (27))

Then we complete the induction as well as the proof.

Proof of Theorem D.1. Combining Lemmas D.8, D.9, and D.10, we know the following inequality holds for
all t ≥ 0.

At+1(f(xt+1) − f∗)+
1 + ηµAt+1

2η
‖zt+1 − x∗‖2 ≤ At(f(xt) − f∗)+

1 + ηµAt

2η
‖zt − x∗‖2

.

Then by telescoping, we get

At(f(xt) − f∗)+
1 + ηµAt

2η
‖zt − x∗‖2 ≤ A0(f(x0) − f∗)+

1 + ηµA0

2η
‖z0 − x∗‖2

.

Finally, applying Lemma D.5, we have At = Bt + 1/(ηµ) ≥ 1/(1 − √
ηµ)t−1 + 1/(ηµ). Thus completes the

proof.

E Analysis of GD for non-convex functions

In this section, we provide the proofs related to analysis of gradient descent for non-convex function, including
those of Lemma 5.1 and Theorem 5.2.

Proof of Lemma 5.1. First, based on Corollary 3.6, we know ‖∇f(x)‖ ≤ G < ∞. Also note that

∥

∥x+ − x
∥

∥ = ‖η∇f(x)‖ ≤ ηG ≤ G/L.

Then by Lemma 3.3 and Remark 3.4, we have x+ ∈ X and

f(x+) ≤f(x) +
〈

∇f(xt), x
+ − x

〉

+
L

2

∥

∥x+ − x
∥

∥

2

=f(x) − η(1 − ηL/2) ‖∇f(x)‖2

≤f(x).

Proof of Theorem 5.2. By Lemma 5.1, using induction, we directly obtain f(xt) ≤ f(x0) for all t ≥ 0. Then
by Corollary 3.6, we have ‖∇f(xt)‖ ≤ G for all t ≥ 0. Following the proof of Lemma 5.1, we can similarly
show

f(xt+1) − f(xt) ≤ η(1 − ηL/2) − η

2
‖∇f(xt)‖2 ≤ −η

2
‖∇f(xt)‖2 .

Taking a summation over t < T and rearanging terms, we have

1

T

∑

t<T

‖∇f(xt)‖2 ≤ 2(f(x0) − f(xT ))

ηT
≤ 2(f(x0) − f∗)

ηT
.
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F Analysis of SGD for non-convex functions

In this section, we provide the detailed convergence analysis of stochastic gradient descent for ℓ-smooth and
non-convex functions where ℓ is sub-quadratic.

We first present some useful inequalities related to the parameter choices in Theorem 5.3.

Lemma F.1. Under the parameters choices in Theorem 5.3, the following inequalities hold.

ηG
√

2T ≤ 1/2, η2σLT ≤ 1/2, 100η2Tσ2L2 ≤ δG2.

Proof of Lemma F.1. First note that by Corollary 3.6, we know

G2 = 2LF = 16L(f(x0) − f∗ + σ)/δ ≥ 16Lσ/δ,

i.e., σL ≤ G2δ/16. Then since we choose η ≤ 1
4G

√
T

, we have

ηG
√

2T ≤
√

2/4 ≤ 1/2,

η2σLT ≤η2TG2δ/16 ≤ δ/256 ≤ 1/2,

100η2Tσ2L2 ≤100η2TG4δ2/256 ≤ δG2.

Next, we show the useful lemma which bounds E[f(xτ ) − f∗] and E

[

∑

t<τ ‖∇f(xt)‖2
]

simultaneously.

Lemma F.2. Under the parameters choices in Theorem 5.3, the following inequality holds

E

[

f(xτ ) − f∗ +
η

2

∑

t<τ

‖∇f(xt)‖2

]

≤ f(x0) − f∗ + σ.

Proof of Lemma F.2. If t < τ , by the definition of τ , we know f(xt) − f∗ ≤ F and ‖ǫt‖ ≤ G
5ηL , and the

former also implies ‖∇f(xt)‖ ≤ G by Corollary 3.6. Then we can bound

‖xt+1 − xt‖ = η ‖gt‖ ≤ η(‖∇f(xt)‖ + ‖ǫt‖) ≤ ηG+
G

5L
≤ G

L
,

where we use the choice of η ≤ 1
2L . Then based on Lemma 3.3 and Remark 3.4, for any t < τ , we have

f(xt+1) − f(xt) ≤
〈

∇f(xt), xt+1 − xt

〉

+
L

2
‖xt+1 − xt‖2

= − η
〈

∇f(xt), gt

〉

+
η2L

2
‖gt‖2

≤ − η ‖∇f(xt)‖2 − η
〈

∇f(xt), ǫt

〉

+ η2L ‖∇f(xt)‖2
+ η2L ‖ǫt‖2

≤ − η

2
‖∇f(xt)‖2 − η

〈

∇f(xt), ǫt

〉

+ η2L ‖ǫt‖2
, (33)

where the equality is due to (4); the second inequality uses gt = ǫt+∇f(xt) and Young’s inequality ‖y + z‖2 ≤
2 ‖y‖2 + 2 ‖z‖2 for any vectors y, z; and the last inequality chooses η ≤ 1/(2L). Taking a summation over
t < τ and rearanging terms, we have

f(xτ ) − f∗ +
η

2

∑

t<τ

‖∇f(xt)‖2 ≤ f(x0) − f∗ − η
∑

t<τ

〈

∇f(xt), ǫt

〉

+ η2L
∑

t<τ

‖ǫt‖2 .
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Now we bound the last two terms on th RHS. First, for the last term, we have

E

[

∑

t<τ

‖ǫt‖2

]

≤ E

[

∑

t<T

‖ǫt‖2

]

≤ σ2T,

where the first inequality uses τ ≤ T by its defnition; and in the last inequality we use Assumption 4.
For the cross term, note that Et−1

[〈

∇f(xt), ǫt

〉]

= 0 by Assumption 4. So this term is a sum of a
martingale difference sequence. Since τ is a stopping time, we can apply the optional stopping theorem to
obtain

E





∑

t≤τ

〈

∇f(xt), ǫt

〉



 = 0. (34)

Then we have

E

[

−
∑

t<τ

〈

∇f(xt), ǫt

〉

]

=E
[〈

∇f(xτ ), ǫτ

〉]

≤ GE[‖ǫτ ‖] ≤ G

√

E[‖ǫτ ‖2]

≤ G

√

√

√

√

√E





∑

t≤T

‖ǫt‖2



 ≤ σG
√
T + 1 ≤ σG

√
2T,

where the equality is due to (34); the first inequality uses ‖∇f(xτ )‖ ≤ G by the definition of τ in (5) and
Corollary 3.6; the fourth inequality uses E[X ]2 ≤ E[X2] for any random variable X ; and the last inequality
uses Assumption 4.

Combining all the bounds above, we get

E

[

f(xτ ) − f∗ +
η

2

∑

t<τ

‖∇f(xt)‖2

]

≤f(x0) − f∗ + ησG
√

2T + η2σ2LT

≤f(x0) − f∗ + σ,

where the last inequality is due to Lemma F.1.

With Lemma F.2, we are ready to prove Theorem 5.3.

Proof of Theorem 5.3. We want to show the probability of {τ < T } is small, as its complement {τ = T }
means f(xt) − f∗ ≤ F for all t ≤ T which implies ‖∇f(xt)‖ ≤ G for all t ≤ T . Note that

{τ < T } = {τ2 < T } ∪ {τ1 < T, τ2 = T }.

Therefore we only need to bound the probability of each of these two events on the RHS.
We first bound P(τ2 < T ). Note that

P(τ2 < T ) =P

(

⋃

t<T

{

‖ǫt‖ >
G

5ηL

}

)

≤
∑

t<T

P

(

‖ǫt‖ >
G

5ηL

)

≤25η2Tσ2L2

G2

≤δ/4,
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where the first inequality uses union bound; the second inequality applies Chebyshev’s inequality and
E[‖ǫt‖2

] = E[Et−1[‖ǫt‖2
]] ≤ σ2 for each fixed t by Assumption 4; the last inequality uses Lemma F.1.

Next, we will bound P(τ1 < T, τ2 = T ). Note that under the event {τ1 < T, τ2 = T }, we know that 1)
τ = τ1 < T which implies f(xτ+1) − f∗ > F ; and 2) τ < T = τ2 which implies ‖ǫτ ‖ ≤ G

5ηL by the definition

in (5). Also note that we always have f(xτ ) − f∗ ≤ F which implies ‖∇f(xτ )‖ ≤ G by Corollary 3.6. Then
we can show

‖xτ+1 − xτ ‖ = η ‖gτ ‖ ≤ η(‖∇f(xτ )‖ + ‖ǫτ ‖) ≤ ηG+
G

5L
≤ G

L
,

where we choose η ≤ 1
2L . Then based on Lemma 3.3 and Remark 3.4, we have

f(xτ+1) − f(xτ ) ≤ − η

2
‖∇f(xτ )‖2 − η

〈

∇f(xτ ), ǫτ

〉

+ η2L ‖ǫτ ‖2

≤η ‖∇f(xτ )‖ · ‖ǫτ ‖ + η2L ‖ǫτ ‖2

≤G2

4L

=
F

2
,

where the first inequality is obtained following the same derivation as in (33); the last equality is due to
Corollary 3.6. Therefore we can show that under the event {τ1 < T, τ2 = T },

f(xτ ) − f∗ = f(xτ ) − f(xτ+1) + f(xτ+1) − f∗ > F/2.

Hence,

P(τ1 < T, τ2 = T ) ≤ P (f(xτ ) − f∗ > F/2) ≤ E[f(xτ ) − f∗]

F/2
≤ 2(f(x0) − f∗ + σ)

F
= δ/4,

where the second inequality uses Markov’s inequality; the third inequality uses Lemma F.2; and in the last
inequality we choose F = 8(f(x0) − f∗ + σ)/δ.

Therefore we can show

P(τ < T ) ≤ P(τ2 < T ) + P(τ1 < T, τ2 = T ) ≤ δ/2.

Then we also know P(τ = T ) ≥ 1 − δ/2 ≥ 1/2. Therefore, by Lemma F.2,

2(f(x0) − f∗ + σ)

η
≥E

[

∑

t<τ

‖∇f(xt)‖2

]

≥P(τ = T )E

[

∑

t<T

‖∇f(xt)‖2

∣

∣

∣

∣

∣

τ = T

]

≥1

2
E

[

∑

t<T

‖∇f(xt)‖2

∣

∣

∣

∣

∣

τ = T

]

.

Then we have

E

[

1

T

∑

t<T

‖∇f(xt)‖2

∣

∣

∣

∣

∣

τ = T

]

≤ 4(f(x0) − f∗ + σ)

ηT
=

δF

2ηT
≤ δ

2
· ǫ2,

where the last inequality uses the choice of T . Let E := { 1
T

∑

t<T ‖∇f(xt)‖2
> ǫ2} denote the event of

not converging to an ǫ-stationary point. By Markov’s inequality, we have P(E) ≤ δ/2. Therefore we have
P({τ < T } ∪ E) ≤ δ, which completes the proof.
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G Lower bound

In this section, we provide the proof of Theorem 5.4.

Proof of Theorem 5.4. Let c, η0 > 0 satisfy η0 ≤ c2/2. Consider

f(x) =











log(|x| − c), |x| ≥ y

2 log(y − c) − log(2y − |x| − c), c/2 ≤ |x| < y

kx2 + b, |x| < c/2,

where c > 0 is a constant and y = (c+
√

c2 + 2η0)/2 > 0 is the fixed point of the iteration

xt+1 =

∣

∣

∣

∣

xt − η0

xt − c

∣

∣

∣

∣

,

and k, b are chosen in such a way that f(x) and f ′(x) are continuous. Specifically, choose k = c−1f ′(c/2)
and b = f(c/2) − cf ′(c/2)/4. Since f(−x) = f(x), f(x) is symmetric about the line x = 0. In a small
neighborhood, f(x) is symmetric about (y, f(y)), so f ′(x) is continuous at y.

Let us first consider the smoothness of f . By symmetry, it suffices to consider x > 0. Then,

f ′(x) =











(x− c)−1, x ≥ y

(2y − x− c)−1, c/2 ≤ x < y

2kx, 0 < x < c/2.

Its Hessian is given by

f ′′(x) =











−(x− c)−2, x > y

(2y − x− c)−2, c/2 < x < y

2k, 0 < x < c/2.

Hence, f(x) is (2, 2k, 1)-smooth.
Note that f(x) has a stationary point 0. For stepsize ηf satisfying η0 ≤ ηf ≤ c2/4, there exists z =

(c +
√

c2 + 2ηf ) ≥ y such that −z = z − ηf (y − c)−1 and by symmetry, once xτ = z, xt = ±z for all t ≥ τ ,
making the GD iterations stuck. Now we choose a proper x0 such that f ′(x0) and f(x0) − f(0) are bounded.

We consider arriving at y from above. That is, x0 ≥ x1 ≥ . . . xτ = z > c > 0. Since in each update where
xt+1 = xt − ηf (xt − c)−1 > c,

xt − xt+1 = xt − (xt − ηf (xt − c)−1) = ηf (xt − c)−1 ≤ √
ηf .

Hence, we can choose τ in such a way that 3c/2 ≤ x0 < 3c/2 +
√
ηf . Then,

log(c/2) ≤ f(x0) ≤ log(c/2 +
√
ηf ), 2/(c+ 2

√
ηf ) ≤ f ′(x0) ≤ 2/c.

By definition, y − c = η0(c+
√

c2 + 2η0)−1. Hence,

f(c/2) = 2 log(y − c) − log(2y − c/2 − c)

= 2 log(η0) − 2 log(c+
√

c2 + 2η0) − log(
√

c2 + 2η0 − c/2),

f ′(c/2) =
1

√

c2 + 2η0 − c/2
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Then,

f(x0) − f(0) = f(x0) − f(c/2) + cf ′(c/2)/4

≤ log(c/2 +
√
ηf ) + 2 log(η−1

0 ) + 2 log(c+
√

c2 + 2η0)

+ log(
√

c2 + 2η0 − c/2) +
c

4

1
√

c2 + 2η0 − c/2

≤ log(c) + 2 log(η−1
0 ) + 2 log(2

√
2c2) + log(

√
2c2) +

1

2

= 4 log(c) + 2 log(η−1
0 ) +

7

2
log(2) +

1

2
.

For stepsize ηf < η0, reaching below 4c/3 takes at least

(x0 − 4c/3)/
√
ηf ≥ c/(6

√
ηf ) > cη

−1/2
0 /6

steps to reach 4c/3, where f ′(4c/3) = log(c/3).
Now we set c and η0 and scale function f(x) to satisfy the parameter specifications L0, L2, G0,∆0. Define

g(x) = L−1
2 f(x). Then, g(x) is (2, 2kL−1

2 , L2)-smooth. Since the gradient of g(x) is L−1
2 times f(x), the

above analysis for f(x) applies to g(x) by replacing η0 with η1 = L2η0 and ηf with η = L2ηf . To ensure
that

2kL−1
2 = 2(cL2)−1f ′(c/2) =

2

cL2

1
√

c2 + 2η1 − c/2
≤ 4

c2L2
≤ L0,

it suffices to take c ≥ 2/
√
L0L2. To ensure that

g′(x0) ≤ 2

L2c
≤ G0,

it suffices to take c ≥ 2/(L2G0). To ensure that

g(x0) − g(0) ≤ (4 log(c) + 2 log(η−1
1 ) + 3.5 log 2 + 0.5)L−1

2 ≤ ∆0,

it suffices to take

log(η−1
1 ) =

L2∆0 − 3.5 log 2 − 0.5

2
− 2 log(c).

Since we require η1 ≤ c2/2, parameters L2 and ∆0 need to satisfy

log 2 − 2 log(c) ≤ L2∆0 − 3.5 log 2 − 0.5

2
− 2 log(c),

that is, L2∆0 ≥ 5.5 log 2+0.5, which holds because L2∆0 ≥ 10. Take c = max{2/
√
L0L2, 2/(L2G0),

√

8/L0}.
Then, as long as η ≤ 2/L0, the requirement that η ≤ c2/4 is satisfied. Therefore, on g(x) with initial point
x0, gradient descent with a constant stepsize either gets stuck, or takes at least

cη
−1/2
1 /6 =

c

6
exp

(L2∆0 − 3.5 log 2 − 0.5

4
− log(c)

)

=
1

6
exp(

L2∆0 − 3.5 log 2 − 0.5

4
)

≥ 1

6
exp(

L2∆0

8
)

steps to reach a 1-stationary point.
On the other hand, if η > 2/L0, consider the function f(x) = L0

2 x
2. For any xt 6= 0, we always have

|xt+1| / |xt| = |1 − ηL0| > 1, which means the iterates diverge to infinity.
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