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A latent class selection model for categorical
response variables with nonignorably missing data∗

Jung Wun Lee, Ofer Harel†

We develop a new selection model for nonignorable miss-
ing values in multivariate categorical response variables by
assuming that the response variables and their missingness
can be summarized into categorical latent variables. Our
proposed model contains two categorical latent variables.
One latent variable summarizes the response patterns while
the other describes the response variables’ missingness. Our
selection model is an alternative method to other incom-
plete data methods when the incomplete data mechanism is
nonignorable. We implement simulation studies to evaluate
the performance of the proposed method and analyze the
General Social Survey 2018 data to demonstrate its perfor-
mance.
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1. INTRODUCTION

Nonresponse is a common but serious issue in data col-
lection and analysis especially in survey-based research. Ob-
servations with any nonresponse increase the risk of obtain-
ing inaccurate inferences on parameters of interest because
it may degrade the performance of confidence intervals, re-
duce the statistical power, and magnify biases in parameter
estimates. In this sense, appropriate adjustments to nonre-
sponse are needed for research with incomplete data such as
surveys or other observational studies.

Handling nonresponse generally requires different tech-
niques depending on the types of nonresponse and the as-
sumptions the researchers are willing to make on the miss-
ingness process. The three common nonresponse mecha-
nisms are MAR (missing at random), MCAR (missing com-
pletely at random), and MNAR (missing not at random).
MAR denotes that the missingness on a variable does not
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depend on itself but may depend on the other observed vari-
ables in the data. MCAR is a special case of MAR where
missingness on a variable is not related to any observed or
missing variables. MNAR occurs if the missingness depends
on unobserved values of the data.

Since different nonresponse mechanisms require different
remedies to reduce biases and allow for efficient estimates, it
is important to apply appropriate technique in dealing with
nonresponse. For example, Demirtas and Schafer [1] showed
that applying MAR-based methods or using inappropriate
MNAR-based methods on a MNAR data may cause biased
parameter estimates which reduces the coverage of their con-
fidence intervals. To overcome such potential problems, we
are motivated to develop new methodology under a MNAR
condition that can handle nonignorable nonresponse and is
less sensitive to the choice of the nonignorable model com-
pared to other selection models.

Developing appropriate tools for missing values under
MNAR is important for prospective analysts because these
are common problems in social and clinical sciences such
as education [2], psychology [3], and clinical trial research
[4]. For example, self-reported questionnaires are commonly
used in research on substance use, risk behavior, social at-
titudes, or smoking. In these surveys for example, some re-
spondents might refuse to report their true behaviors be-
cause they don’t want to reveal their behaviors or opinions
which may be considered undesirable. Also, some respon-
dents who do not disclose may dismiss some items because
they do not think these items apply to them.

Three general types of methods have been suggested for
incomplete data under MNAR. Selection models describe
the conditional distribution of the missingness given the
complete data [5, 6]. Another possible approach to the
MNARmechanism is a pattern mixture model which decom-
poses the joint distribution of complete data and missingness
into the conditional distribution of complete data given the
missingness, and the marginal distribution of missingness
[7]. The third method is referred to as a shared parameter
model which assumes the existence of a latent variable that
explains the association between the nonresponse patterns
and the observed variables [8]. In this article, we are inter-
ested in developing a new selection model because we are
interested in individuals’ propensities to non-respond. A se-
lection model may answer this question as it models how
an individual’s response pattern may impact its probability
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of being observed or missing. In this sense, our goal is to
use a latent class framework in modeling missing patterns
and complete data and to avoid the instability and extreme
sensitivity of conventional selection models, as pointed in
[9, 10, 11]. Because our proposed model explains the impact
of complete data on missingness via latent variables, it can
also be considered as a combination of selection model and
shared-parameter model.

Several papers suggested summarizing a large number
of missingness patterns into few representative prototypes
via latent class model [12]. For example, latent classes are
used for summarizing mixture patterns in a pattern mix-
ture model [13] or reducing the number of missingness pat-
terns in dropouts [14]. Each of these models adopted the
shared parameter model whose response variables followed
the normal distribution, and the latent classes were defined
by the missingness indicators. Jung et al. [10] suggested a
latent class selection model for nonignorable missing values
by constructing a categorical latent variable using missing
indicators of response variables, while treating the response
variables and other variables as covariates.

The goal of this paper is to suggest a latent class selec-
tion model which can deal with non-ignorably missing values
by imposing a latent igorability assumption as suggested in
[15, 16]. Latent ignorability assumes that the missingness de-
pends on a summary of the missing values rather than all the
missing values themselves. In this paper, we posit a categor-
ical latent variable which summarizes the patterns of miss-
ingness. In Section 2, we briefly review a latent class model
(LCM) and missingness mechanisms to propose our new la-
tent class selection model (LCSM) for non-ignorable missing
data. In Section 3, we describe two estimation strategies for
LCSM. In Section 4 we apply the LCSM to the General
Social Study (GSS) data to illustrate that missing patterns
can be modeled by a latent class structure. Conclusions and
directions for further research are discussed in Section 5.

2. MODEL

Latent class model

A latent class model postulates a categorical latent vari-
able which provides a set of partitions of population that
cannot be measured directly via response variables. Let
Yi = [Yi1, . . . , YiP ] be discrete random variables that have
r1, . . . , rP categories, respectively, and Xi = [Xi1, . . . , XiK ]
are individual covariates such as demographic factors. The

number of possible response patterns of Yi is
P∏

j=1

rj , but it

can be summarized into S number of patterns by introduc-
ing a discrete latent variable U that has S categories. Indi-
viduals with the same latent class membership U = u are
homogeneous in their responses Y, and individuals in dif-
ferent classes will show different response patterns. In this

manner, we reduce a
P∏

j=1

rj dimensional contingency table

into S categories. Further, we assume that the [Yi1, . . . , YiP ]
are conditionally independent when U is observed. Namely,
this is a local independence assumption [17] in that all exist-
ing associations among [Yi1, . . . , YiP ] can be explained by a
latent variable U . Under such assumptions, we can construct
the joint distribution of Yi as follows:

P (Yi | Xi) =
S∑

u=1

P (U = u | Xi)
P∏

p=1

P (Yip | U = u).(1)

Here, the non-differential measurement assumption [17] has
been imposed such that P (Yip | U,Xi) = P (Yip | U) for
all p = 1 . . . P . This means that the conditional distribution
of Yi given U are invariant to the covariates Xi. If such
assumption does not hold, then P (Yip | U,Xi) needs to be
modeled via additional parameterizations such as multino-
mial logistic regression [18].

Missingness mechanisms

Suppose the data Y ∈ RN×P consists of N observations
with P random variables with some missing values. We de-
note Yi = [Yi1, . . . , YiP ] to be the response vector of the
ith individual. Next, we define a matrix of random vari-
ables R ∈ RN×P , i = 1 . . . , N, p = 1 . . . , P , where Rip = 1
if Yip was observed and Rip = 0 if Yip was missing. Note
that Rip is a random variable because the missingness on
Yip is random. Next, we can decompose the ith response
vector into [YO

i ,Y
m
i ], where YO

i and Ym
i are notations for

observed and missing individual outcomes, respectively. Let
θ be parameters related to the data Y and ξ be parame-
ters related to missingness indicator R. The complete data
likelihood of ith individual is equivalent to the joint distri-
bution of [YO

i ,Y
m
i ,Ri | θ, ξ]. Note that Ri are completely

observed because it should be clear whether each record Yip

is observed or missing. Now, we can decompose the complete
data likelihood as follows.

P (YO
i ,Y

m
i ,Ri | θ, ξ) = P (Ri | YO

i ,Y
m
i , θ, ξ)(2)

× P (YO
i ,Y

m
i | θ, ξ).

The complete data likelihood can be written as the prod-
uct of the conditional probability of Ri given Yi and the
marginal distribution of Yi (see Eq. 2). The conditional
probability of Ri given Yi can be referred to as the missing-
ness mechanism which describes the probabilistic occurrence
of missing values [7, 15, 6]. The missingness mechanism is
MAR if the conditional distribution of R given Y does not
depend on Ym, that is, P (R | Y) = P (R | YO). MCAR is a
special case of MAR in that the missingness pattern R is in-
dependent ofY and thus P (R | Y) = P (R). Further, we say
the missingness mechanism is ignorable if the missingness
mechanism is MAR (or MCAR) (i) and (ii) the joint param-
eter space of [ξ, θ] is the Cartesian product of the respective
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parameter space of ξ and θ. That is, Ωξ×θ = Ωξ×Ωθ. When
at least one of these two conditions does not hold, then the
missingness mechanism becomes non-ignorable (MNAR).

In practice, we are interested in inferences of the data pa-
rameters θ based on the observed data likelihood. The ob-
served likelihood of each individual will consist of [YO

i ,Ri]
and can be obtained by integrating the complete data likeli-
hood with respect to Ym

i . Now, when the missingness mech-
anism is ignorable, the contribution of R on the observed
likelihood can be excluded from the estimation for data pa-
rameter θ [6]. On the other hand, the conditional distribu-
tion of R given Y must be included in the estimation if the
ignorablity assumption does not hold.

Latent class selection model (LCSM)

Suppose the ignorability assumption does not hold and
hence we should take R into account when estimating the
data parameter θ. In this paper, we use a latent class struc-
ture to specify the nonresponse patterns P (R | Y) by sum-
marizing the missingness patterns into several common cat-
egories. Let W denote a latent response propensity which
determines the values of [R1, . . . , RP ]. Namely, W is a cat-
egorical latent variable identified through the missingness
indicators [R1, . . . , RP ] which identifies the groups of indi-
viduals with respect to their nonresponse patterns. We as-
sume that the response patterns of R (i.e., the nonresponse
patterns) are directly dependent on [U,W ], where U is an-
other categorical latent variable measured by the response
variables Y = [YO,Ym]. Fig.1 identifies the structure of
our proposed LCSM model.

Figure 1. Structure of a latent class selection model

To construct the complete data likelihood of the model,
we are assuming additional conditions as follows:

1. [Y1, . . . , YP ] and [R1, . . . , RP ] are related only through
U and W .

2. [Y1, . . . , YP ] and W are conditionally independent on
U .

3. [R1, . . . , RP ] and U are conditionally independent on
W .

These assumptions imply that all the associations be-
tween the response variable Y and R can be explained

by a latent variable U and a missingness propensity W .
These assumptions are plausible in that they only assume
the existence of two categorical latent variables and do not
require additional assumptions, for example, a functional
form of association between [U,W ]. In this sense, these as-
sumptions can be considered as the general case of other
assumptions that require more specific details on the miss-
ing mechanism on Y. In addition, the proposed model may
yield better interpretations on the representative patterns
of nonresponses as well as response patterns by having two
seperate latent variable, rather than a single latent variable
U . Based on these assumptions, the complete data likeli-
hood of the model consists of [R,YO,Ym, U,W ], and the
observed data likelihood can be obtained by integrating the
complete data likelihood over [Ym, U,W ] as follows.

P (R,YO) =

∫ ∫ ∫
P (R,YO,Ym, U,W )dYmdUdW

=

∫ ∫ ∫
P (R,W | YO,Ym, U)P (YO,Ym, U)dYmdUdW

=

∫ ∫ ∫
P (R,W | U)P (YO | Ym, U)P (Ym, U)dYmdUdW

=

∫ ∫ ∫
P (R,W | U)P (YO | U)P (Ym, U)dYmdUdW

=

∫ ∫ ∫
P (R,W | U)P (YO | U)P (Ym | U)P (U)dYmdUdW

=

∫ ∫
P (R,W | U)P (YO | U)P (U)

∫
P (Ym | U)dYmdUdW

=

∫ ∫
P (R,W | U)P (YO | U)P (U)dUdW(3)

The missingness mechanism P (R,W | U) is MNAR because
[R,W ] depend on U and U is the summary of Y. In this
way, the non-response indicator R is affected by both YO

and Ym via the latent variable U and missing propensity
W . Harel and Schafer [15] described such mechanisms as
latent ignorability, where missingness mechanism becomes
ignorable if latent variables [U,W ] are observed. Further,
we impose additional conditions on Y and R as follows

1. [Y1, . . . , YP ] are conditionally independent on U . That

is, P (Y1, . . . , YP | U) =
P∏

m=1
P (Ym | U).

2. [R1, . . . , RP ] are conditionally independent on U and

W . That is, P (R1, . . . , RP | U,W ) =
P∏

m=1
P (Rm |

U,W ).

These two assumptions allows the response variables
[Y1, . . . , YP ] be conditionally independent given value of U ,
and missingness indicators [R1, . . . , RP ] are conditionally in-
dependent given values of [U,W ]. Now, we define four pa-
rameter types that constitute the proposed LCA model with
non-ignorable missing values.

1. ρmk|u = P (Ym = k | U = u) is the measurement
parameter for response variable Ym given U = u,
k = 1, . . . , rm, m = 1 . . . P .
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2. γu = P (U = u) is the proportion of latent class U = u.
3. ϕph|w,u = P (Rp = h | W = w,U = u) is the mea-

surement parameter for non-response variable Rp given
that [U,W ] = [u,w], h = 0, 1, p = 1 . . . P .

4. δw|u = P (W = w | U = u) is the proportion of latent
missing propensity w, given that latent class member-
ship is u.

Based on these four parameter types, we can formulate
Eq. (4) in parameterized form as follows:

Li =

∫ ∫
P (YO

i ,Ym
i ,Ri, U,W | Xi) dYmdUdW

=

∫ ∫
P (Ri,W | U)P (YO

i | U)P (U | Xi) dUdW

=

∫ ∫
P (Ri | W,U)P (W | U)P (YO

i | U)P (U | Xi) dUdW

=

∫ ∫
P (W | U)

P∏
p=1

P (Rip | W,U)P (U | Xi)×

×
∏

m∈Oi

P (Yim | U) dUdW

=

D∑
w=1

S∑
u=1

δw|u

P∏
p=1

1∏
h=0

ϕ
I(Rip=h)

ph|w,u
γu(Xi)

∏
m∈Oi

rm∏
k=1

ρ
I(Yim=k)
mk|u

 .

(4)

We assume that the covariates Xi only affects the distri-
bution of U . Then, the effect of Xi on the prevalence of
latent classes γu, u = 1, . . . , S can be explained via baseline
multinomial logistic regression. This assumption simplifies
the model and provides a direct interpretation for the effect
of Xi on U . Let βu = [β1u, . . . , βKu]

′ be a vector of coeffi-
cients which represent the effect of Xi = [Xi1, . . . , XiK ]′ on
uth latent class. Then, the prevalence of latent classes can
be written as follows:

γu(Xi) =
exp(Xiβu)
S∑

s=1
exp(Xiβs)

, u = 1, . . . , S.(5)

3. PARAMETER ESTIMATION

In this section, we discuss two parameter estimation
strategies for LCSM that can be adopted depending on the
analysis goal, sample size, and the existence of subjective
information on the parameters. One method is maximum
likelihood (ML) estimation for researchers who seek asymp-
totic properties of estimates. The other is Bayesian estima-
tion which uses additional information by placing priors on
the parameters.

Maximum likelihood estimation via EM
algorithm

The Expectation-Maximization (EM) algorithm [19] was
devised to calculate maximum likelihood estimates and al-
lows missing values. Since LCSM faces two types of missing

values that are (i) nonresponse on the response variables and
(ii) unobservable latent class memberships, the conventional
EM method is a good strategy to obtain ML estimates.

The conventional EM algorithm consists of two steps:
(i) in the E-step, we calculate the expectation of the log-
complete data likelihood E(logL∗), and (ii) in the M-step,
we calculate the updated parameter estimates by maximiz-
ing the expectation. In the E-step, we need to calculate
the conditional expectation of the latent variables [U,W ]
given [R,Y,X]. Since both latent variables are categori-
cal, [U,W | R,Y,X] follows a multinomial distribution,
whose probabilities for each level are denoted by θi(u,w),
u = 1, . . . , S and w = 1, . . . , D. Consequently, the joint
probability θi(u,w) = P (U = u,W = w | Ri,Yi,Xi) of the
latent variables [U,W ] given the ith observed responses and
covariates are defined as follows.

θi(w,u) =

δw|u
P∏

p=1

1∏
h=0

ϕ
I(Rip=h)

ph|w,u
γu(Xi)

∏
m∈Oi

rm∏
k=1

ρ
I(Yim=k)
mk|u

S∑
u=1

D∑
w=1

{
δw|u

P∏
p=1

1∏
h=0

ϕ
I(Rip=h)

ph|w,u
γu(Xi)

∏
m∈Oi

rm∏
k=1

ρ
I(Yim=k)
mk|u

}
(6)

θi(u) =
D∑

w=1

θi(w,u) and θi(w) =
S∑

u=1

θi(w,u), u = 1, . . . , S, w = 1, . . . , D.

In the E-step, we calculate the expectation of the complete
log-likelihood using Eq. (6) as follows:

logL∗
i = I(Wi = w,Ui = u)logδw|u

+

P∑
m=1

1∑
h=0

I(Wi = w,Ui = u)I(Rip = h)logϕph|w,u(7)

+ I(Ui = u)I(Rip = h)logγu

+
∑

m∈Oi

rm∑
k=1

I(Ui = u)I(Yim = k)logρmk|u

E(logL∗
i ) =

P∑
p=1

1∑
h=0

θi(w,u)I(Rip = h)logϕph|w,u

+ θi(w,u)logδw|u + θi(u)logγu(8)

+
∑

m∈Oi

rm∑
k=1

θi(u)I(Yim = k)logρmk|u.

Since we assume the hierarchical latent class structure on
P (R | Y ), the complete data likelihood and its expectation
can be written in forms of multinomial distribution as in
Eq. (7). Then in the M-step, we maximize Eq. (7) using
the Lagrange Multipliers under the following constraints;

(i)
S∑

u=1

D∑
d=1

θi(w,u) = 1 and (ii)
S∑

u=1
θi(u) = 1. The maximizer

of Eq. (7) with respect to each parameters can be calculated
as follows:
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ρ̂mk|u =

N∑
i=1

θi(u)I(Yim = k)

N∑
i=1

θi(u)

, γ̂u =
1

N

N∑
i=1

θi(u)(9)

ϕ̂ph|w,u =

N∑
i=1

θi(w,u)I(Rip = h)

N∑
i=1

θi(w,u)

, δ̂w|u =

N∑
i=1

θi(w,u)

N∑
i=1

θi(u)

.

Through iteration by alternating E- and M-steps, we can
numerically obtain ML estimates for [δ,ρ,γ,ϕ]. When an
individual-specific covariates Xi are considered, a hybrid of
EM and Newton-Raphson algorithm suggested by [17] can
be used to obtain the numerical ML estimates of regression
coefficients. Let β̂t be the value of β at the t-th iterations

and S(β̂t) and H(β̂t) be the first and second derivative of
observed data likelihood with respect to β that are evaluated
at [βt, δt,ϕt,ρt]. Then we can implement Newton-Raphson
method as follows:

β̂t+1 = β̂t −H(β̂t)
−1S(β̂t).(10)

It is known that the maximum likelihood estimator (MLE)
follows asymptotically normal distribution under some reg-
ularity conditions. These conditions includes (i) existence of
third derivative of log-likelihood function, (ii) boundness of
the third derivative of log-likelihood, and (iii) having the
Fisher information matrix to be positive-definite. Details of
conditions are discussed in [20]. In this paper, we apply sug-
gested conditions in [20] directly and obtain the asymptotic
properties of MLE as shown in Lemma 3.1.

Lemma 3.1. Let Θ = [ρ,ϕ,β, δ] be a vector of free pa-
rameters of the LCSM, and let f(y | Θ) be a probability
density function of the LCSM. Next, let y = [y1, . . . , yn]
be independent observations, and the log-likelihood equa-

tions are give by l(Θ | y) =
n∑

i=1

logf(yi | Θ). Finally,

let Θ0 be the true value of parameters, and let Θ̂n be the
MLE of Θ. Then, Θ̂n is asymptotically normally distributed
with mean Θ0 and covariance matrix {nIn(Θ̂n)}−1, where

In(Θ̂n) =
1
n

n∑
i=1

∂l(Θ|yi)
∂Θ

∂l(Θ|yi)
∂Θ

T ∣∣
Θ̂n

is the observed Fisher

information matrix evaluated at Θ̂n.

Lemma 3.1 can be proved by directly applying Propo-
sition 1 in [20]. The observed Fisher information requires
the second derivatives of the log-likelihood function with re-
spect to all elements of Θ. The details of the first and second
derivatives of log-likelihood functions with respect to Θ are
given in an Appendix.

Bayesian estimation via MCMC algorithm

There are several difficulties in implementing the EM al-
gorithm in a multi-dimensional finite mixture model. First,
the EM algorithm may fail to provide a global maximum
if the algorithm starts with inappropriate initial values.
Second, the Hessian matrix of the model can, numerically,
be singular when the parameter estimates locate near the
boundary of the parameter space, or the likelihood function
does not have a quadratic shape. In addition, the asymptotic
properties of ML estimates may not apply if the sample is
not sufficiently large. As an alternative approach, we sug-
gest a Bayesian framework which not only may address the
obstacles of the EM method, but also can use subjective
information on the parameters of the model.

LetΘ = [δ,γ,ϕ,ρ] be the vector of parameters of LCSM.
The posterior distribution P (Θ | R,Y,X) is specified based
on the prior distribution P (Θ) and the likelihood function
L(Θ | Y,R,X). In case of LCSM, however, the posterior
distribution is difficult to describe because of unobservable
latent variables [U,W ]. Instead, we may use augmented pos-
terior distribution as suggested in [21, 22]. Consider an aug-
mented likelihood P (Θ | R,Y,Z), where Zi = [Ui,Wi] is
a vector of the latent memberships of the ith individual,
i = 1, . . . , N . Such augmented likelihood can be obtained
by imputing latent class membership Zi based on parame-
ters Θ and [Yi,Ri]. Then we can obtain an augmented pos-
terior probability distribution P (Θ | R,Y,Z) by multiply-
ing prior distributions P (Θ) with the augmented likelihood
which can be calculated based on the conditional probabil-
ities in Eq. (6).

Based on this augmented posterior distribution, we sug-
gest an iterative two-step MCMC procedure which is a type
of Gibbs sampling using the data augmentation. It consists
of an imputation step (I-step) and a posterior step (P-step).
In the I-step, we calculate the augmented posterior by gener-
ating a random Zi for i = 1, . . . , N independently using the
current parameters and observed data [Y,R]. In the P-step,
we draw new parameter values from the augmented poste-
rior distribution. Iterating between these two steps provides
a sequence of posterior samples of parameters that converge
to the posterior distribution, and those posterior samples
can be used for parameter estimations.

In the I-step, the latent class membership for the [U,W ]
can be imputed by drawing Zi(u,w) = [Ui,Wi] indepen-
dently from a multinomial distribution with the probabil-
ities θi(1,1), . . . , θi(D,S) as follows.

[zi(1,u), . . . , zi(D,u)]
iid∼ multi(1, θi(1,u), . . . , θi(D,u)),(11)

u = 1, . . . , S.

Given the imputed class and profile membership, the aug-
mented likelihood can be written as follows:

A latent class selection model 5



P (Θ(u,w) | R,Y,Z) ∝
N∏
i=1

γ
I(Ui=u)
d δ

I(Ui=u,Wi=w)
d|u

×
N∏
i=1

P∏
p=1

1∏
h=0

ϕ
I(Rip=h,Ui=u,Wi=w)

ph|w,u(12)

×
N∏
i=1

∏
m∈Oi

rm∏
k=1

ρ
I(Yim=k,Ui=u)
mk|u

In this paper, we impose the Jeffrey’s prior on each of the
parameters. Let P (ρ), P (ϕ), P (γ), P (δ) be the prior distri-
butions. Since all random variables (Yj | U), (Rj | W,U),
(W | U), and U follow multinomial distributions, Jeffrey’s
prior for each set of parameters become Dirichlet distribu-
tion as follows

[γ1, . . . , γS ] ∼ D(1/2, . . . , 1/2),(13)

[δ1|u, . . . , δD|u] ∼ D(1/2, . . . , 1/2), u = 1, . . . , S.

[ρp1|u, . . . , ρprp|u] ∼ D(1/2, . . . , 1/2), p = 1, . . . , P.

[ϕp0|w,u, ϕp1|w,u] ∼ D(1/2, 1/2), p = 1, . . . , P.

Now, we may calculate posterior distributions as follows:

P (Θ(u,w) | R,Y,Z) ∝ δ
(nw|u+1/2)

w|u γ(nu+1/2)
u

×
P∏

p=1

1∏
h=0

ϕ
(nph|w,u+1/2)

ph|w,u(14)

×
P∏

m=1

rm∏
k=1

ρ
(nmk|u+1/2)

mk|u .

Here, the number of observations imputed to the latent
classes are defined as follows.

nw|u =
N∑
i=1

I(Ui = u,Wi = w), nu =
N∑
i=1

I(Ui = u),(15)

nmk|u =
N∑
i=1

I(Yim = k, Ui = u)

nph|w,u =
N∑
i=1

I(Rip = h,Wi = w,Ui = u)

w = 1, . . . , D, u = 1, . . . , S, m, p = 1, . . . , P.

In the P-step, we draw new parameter values from
Eq. (14) using the Gibbs sampling.

[γ1, . . . , γS ] ∼ D(n1 + 1/2, . . . , nS + 1/2),(16)

[δ1|u, . . . , δD|u] ∼ D(n(1|u) + 1/2, . . . , n(D|u) + 1/2),

[ρp1|u, . . . , ρprp|u] ∼ D(n(p1|u) + 1/2, . . . , n(prp|u) + 1/2),

[ϕp0|w,u, ϕp1|w,u] ∼ D(n(p0|w,u) + 1/2, n(p1|w,u) + 1/2).

When we consider the covariate(s) Xi effect on U , the
parameter γu is replaced with γu(Xi) as suggested in
Eq. (5), and β becomes a target parameter. Unfortunately,
an explicit form of conditional posterior distribution of
P (β, δ,ρ,ϕ | Xi,Yi,Ri,Zi) does not exist. Thus, we em-
ploy a Metropolis-Hastings algorithm to obtain the posterior
sample of β instead of using Gibbs sampling. Let β∗ be a
vector of candidate values of β from a proposal density π(β),

where π(β) is the density function of N(β̂
ML

, I(β̂
ML

)−1)
where I(β) is the Fisher information of β. Then, we can
calculate the acceptance probability α(β,β∗) as follows

α(β,β∗) = min(1,
N∏
i=1

S∏
u=1

{
γu(Xi) | β∗

γu(Xi) | β

}
).(17)

The candidate value β∗ is accepted with probability of
Eq. (17) as the iteration proceeds.

Now, we can summarize the Bayesian estimation via
Gibbs sampling as follows:

1. Let Θt = [δt,γt,ϕt,ρt] be parameter values at the t-th
iteration.

2. Given observed Yi and Xi, calculate conditional proba-
bilities θi(u,d) for i = 1 . . . N and impute the latent class
memberships Ui and non-response propensities Wi as in
Eq. (6).

3. Based on the imputed latent class memberships Zi =
[Ui,Wi], calculate the augmented likelihood function as
in Eq. (12).

4. Calculate the posterior distribution ofΘt using the aug-
mented likelihood and prior distributions as in Eq. (14).

5. Draw a new posterior sample Θt+1 from Eq. (16).
6. Repeat 2. ∼ 5. and collect the posterior samples.

To remove the dependency of final parameter estimates
on the initial values, we implement sufficiently many MCMC
iterations and discard a reasonable number of posterior sam-
ples from the beginning as a burn-in period. The length of
burn-in period can be determined based on the time-series
plot of posterior samples obtained during the iterations.

Numerical Studies

We present two different simulation studies. One is de-
signed to evaluate whether the two estimation strategies for
LCSM model work properly. In a single run, we generate
synthetic data under LCSM model and fit the model as pro-
posed in Section 3. The 95% credible interval (CI) of each
Bayesian estimates is obtained from the posterior samples,
while the confidence interval based on the EM method is
obtained from the inverse of the negative Hessian matrix.
This procedure is repeated 1000 times and the empirical
coverage of CIs are obtained. For the true model of the sim-
ulation data, we consider a latent class selection model with
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Table 1. Simulation results under MNAR, strong parameters,
and N = 1000.

EM estimates MCMC estimates
Param Bias Length RMSE CP Bias Length RMSE CP

ϕ11|11 0.033 0.127 0.034 0.947 0.100 0.120 0.031 0.944
ϕ21|11 -0.027 0.133 0.032 0.962 0.127 0.128 0.033 0.953
ϕ31|11 0.008 0.115 0.031 0.959 -0.113 0.110 0.030 0.935
ϕ41|11 0.018 0.117 0.029 0.957 -0.162 0.112 0.029 0.926
ϕ11|21 -0.153 0.077 0.021 0.961 0.068 0.069 0.019 0.953
ϕ21|21 -0.004 0.070 0.018 0.951 0.098 0.069 0.018 0.944
ϕ31|21 0.018 0.070 0.017 0.949 0.011 0.075 0.018 0.953
ϕ41|21 -0.057 0.076 0.020 0.949 0.011 0.068 0.017 0.953
ϕ11|12 0.116 0.071 0.018 0.947 0.092 0.069 0.016 0.925
ϕ21|12 0.024 0.070 0.021 0.942 0.092 0.073 0.018 0.953
ϕ31|12 -0.145 0.077 0.018 0.943 0.145 0.069 0.022 0.913
ϕ41|12 0.109 0.076 0.030 0.957 0.183 0.068 0.020 0.953
ϕ11|22 -0.154 0.117 0.036 0.954 -0.232 0.115 0.029 0.935
ϕ21|22 -0.126 0.136 0.029 0.945 -0.002 0.129 0.029 0.981
ϕ31|22 0.032 0.125 0.029 0.951 0.269 0.123 0.034 0.953
ϕ41|22 0.141 0.118 0.030 0.966 -0.218 0.118 0.031 0.953
ρ11|1 0.100 0.105 0.028 0.961 -0.098 0.104 0.025 0.935
ρ21|1 0.031 0.104 0.026 0.949 -0.011 0.101 0.027 0.935
ρ31|1 0.094 0.073 0.016 0.957 -0.324 0.072 0.021 0.928
ρ41|1 0.118 0.073 0.019 0.956 0.037 0.070 0.017 0.963
ρ11|2 -0.046 0.072 0.019 0.952 -0.200 0.071 0.018 0.965
ρ21|2 0.063 0.105 0.025 0.949 -0.065 0.101 0.028 0.953
ρ31|2 0.093 0.105 0.025 0.941 0.047 0.101 0.026 0.949
ρ41|2 0.172 0.072 0.019 0.958 0.069 0.072 0.018 0.941
δ1|1 0.033 0.087 0.023 0.962 0.160 0.070 0.023 0.944
δ1|2 -0.045 0.088 0.022 0.941 0.116 0.091 0.021 0.981
β01 -0.022 0.464 0.256 0.935 -0.183 0.462 0.125 0.925
β11 0.078 0.352 0.170 0.944 0.178 0.346 0.102 0.917

four binary response variables [Y1 . . . Y4] and a categorical
latent variable U that has two classes (S = 2). The size
of each simulated data is either 300 or 1000, to represent a
small sample size (N = 300) and a large sample (N = 1000).
Finally, the nonresponse propensity W is set to be a binary
latent variable (i.e., D = 2).

In each scenario, three classes of parameter values are
chosen where true ρ-parameter values are (i) strong (ρ =
0.9 or 0.1), (ii) mixed (some values are close to 0.5), and
(iii) weak (all values are close to 0.5). For each scenario,
we report standardized bias (Bias), root mean-square error
(RMSE), coverage (CP), and average length of the interval
95% CI (Length). We consider any standardized bias with
an absolute value greater than 0.4 and coverage probabilities
that are less than 0.9 to be unacceptable, as suggested in
[23]. The proportion of incomplete individuals are set to be
10%, 25%, and 50%. For brevity, we report the results from
50% missing, which is the largest amount of missing values
among our scenarios.

Tables 1 through 4 illustrate the simulation results un-
der the strong and mixed pararmeter classes with N = 300
and 1000 under the MNAR scenario. Simulation results are
acceptable in that the Bias of the estimates are mostly less

Table 2. Simulation results under MNAR, mixed parameters,
and N = 1000.

EM estimates MCMC estimates
Param Bias Length RMSE CP Bias Length RMSE CP

ϕ11|11 -0.028 0.181 0.050 0.937 0.019 0.126 0.031 0.933
ϕ21|11 -0.164 0.137 0.036 0.942 -0.011 0.167 0.039 0.942
ϕ31|11 0.042 0.127 0.031 0.939 -0.125 0.168 0.031 0.942
ϕ41|11 0.005 0.124 0.033 0.944 -0.020 0.132 0.031 0.956
ϕ11|21 -0.059 0.078 0.019 0.942 -0.022 0.119 0.019 0.946
ϕ21|21 -0.093 0.073 0.018 0.956 -0.040 0.116 0.019 0.956
ϕ31|21 -0.032 0.075 0.019 0.947 0.107 0.078 0.017 0.956
ϕ41|21 0.095 0.078 0.020 0.955 -0.014 0.071 0.019 0.937
ϕ11|12 -0.112 0.073 0.020 0.954 -0.096 0.072 0.020 0.966
ϕ21|12 0.151 0.075 0.018 0.954 -0.008 0.077 0.017 0.961
ϕ31|12 -0.213 0.079 0.021 0.939 -0.026 0.072 0.019 0.963
ϕ41|12 0.089 0.110 0.027 0.952 0.097 0.073 0.020 0.943
ϕ11|22 -0.035 0.125 0.035 0.962 -0.316 0.078 0.029 0.928
ϕ21|22 -0.039 0.239 0.057 0.947 -0.085 0.103 0.034 0.946
ϕ31|22 -0.034 0.179 0.057 0.956 0.026 0.121 0.055 0.965
ϕ41|22 -0.092 0.133 0.049 0.932 -0.142 0.191 0.044 0.932
ρ11|1 -0.105 0.123 0.033 0.953 -0.010 0.114 0.031 0.956
ρ21|1 0.026 0.152 0.042 0.959 0.109 0.149 0.042 0.932
ρ31|1 0.018 0.108 0.027 0.958 -0.116 0.104 0.027 0.956
ρ41|1 0.047 0.080 0.022 0.948 0.004 0.079 0.019 0.942
ρ11|2 -0.232 0.075 0.021 0.941 0.026 0.074 0.021 0.927
ρ21|2 0.019 0.153 0.041 0.939 -0.105 0.152 0.040 0.937
ρ31|2 0.045 0.157 0.041 0.952 0.062 0.153 0.020 0.923
ρ41|2 0.040 0.076 0.018 0.954 -0.074 0.074 0.027 0.924
δ1|1 0.151 0.096 0.026 0.957 -0.164 0.101 0.029 0.922
δ1|2 0.136 0.103 0.027 0.962 0.019 0.106 0.029 0.928
β01 0.052 0.504 0.270 0.934 0.061 0.488 0.145 0.907
β11 -0.001 0.369 0.192 0.935 -0.083 0.363 0.112 0.916
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Table 3. Simulation results under MNAR, strong parameters,
and N = 300.

EM estimates MCMC estimates
Param Bias Length RMSE CP Bias Length RMSE CP

ϕ11|11 0.045 0.289 0.066 0.981 0.139 0.228 0.054 0.971
ϕ21|11 0.181 0.298 0.062 0.906 0.104 0.229 0.058 0.955
ϕ31|11 -0.057 0.284 0.070 0.925 -0.296 0.223 0.064 0.919
ϕ41|11 -0.144 0.265 0.067 0.887 -0.226 0.225 0.057 0.923
ϕ11|21 0.084 0.159 0.041 0.878 0.002 0.147 0.042 0.927
ϕ21|21 0.054 0.152 0.040 0.934 -0.199 0.138 0.033 0.971
ϕ31|21 0.006 0.153 0.034 0.943 -0.178 0.137 0.034 0.961
ϕ41|21 0.035 0.157 0.040 0.953 0.015 0.142 0.041 0.953
ϕ11|12 -0.038 0.149 0.039 0.916 -0.095 0.139 0.040 0.934
ϕ21|12 -0.063 0.144 0.032 0.925 -0.167 0.138 0.040 0.943
ϕ31|12 -0.206 0.160 0.041 0.934 0.268 0.152 0.039 0.929
ϕ41|12 -0.009 0.161 0.037 0.935 0.048 0.142 0.045 0.924
ϕ11|22 -0.018 0.292 0.062 0.972 -0.209 0.212 0.039 0.953
ϕ21|22 -0.024 0.301 0.064 0.915 0.168 0.228 0.056 0.957
ϕ31|22 -0.009 0.282 0.058 0.962 0.198 0.226 0.062 0.962
ϕ41|22 -0.007 0.291 0.06 0.962 -0.217 0.212 0.053 0.944
ρ11|1 -0.032 0.232 0.049 0.961 0.252 0.141 0.054 0.934
ρ21|1 0.051 0.224 0.051 0.962 0.253 0.147 0.056 0.943
ρ31|1 0.126 0.152 0.035 0.925 -0.187 0.138 0.035 0.949
ρ41|1 0.208 0.155 0.037 0.962 -0.313 0.196 0.041 0.949
ρ11|2 0.153 0.154 0.033 0.953 -0.135 0.199 0.037 0.962
ρ21|2 0.098 0.235 0.050 0.972 -0.257 0.138 0.056 0.916
ρ31|2 0.186 0.223 0.061 0.943 0.249 0.180 0.055 0.928
ρ41|2 0.052 0.148 0.033 0.887 0.084 0.179 0.038 0.937
δ1|1 0.042 0.180 0.049 0.962 0.091 0.201 0.048 0.953
δ1|2 0.022 0.182 0.041 0.953 -0.221 0.198 0.046 0.959
β01 -0.193 0.945 0.256 0.935 -0.014 0.934 0.253 0.917
β11 0.231 0.714 0.170 0.944 -0.025 0.709 0.214 0.907

Table 4. Simulation results under MNAR, mixed parameters,
and N = 300.

EM estimates MCMC estimates
Param Bias Length RMSE CP Bias Length RMSE CP

ϕ11|11 0.024 0.260 0.075 0.943 0.249 0.261 0.063 0.962
ϕ21|11 0.037 0.239 0.064 0.935 -0.136 0.244 0.057 0.971
ϕ31|11 -0.149 0.281 0.069 0.896 -0.279 0.224 0.058 0.972
ϕ41|11 -0.001 0.294 0.057 0.953 0.210 0.224 0.054 0.934
ϕ11|21 -0.061 0.163 0.039 0.942 -0.119 0.154 0.039 0.943
ϕ21|21 0.033 0.155 0.039 0.926 -0.049 0.139 0.038 0.962
ϕ31|21 0.015 0.153 0.038 0.943 0.184 0.141 0.040 0.941
ϕ41|21 -0.276 0.169 0.036 0.981 -0.050 0.150 0.039 0.932
ϕ11|12 0.091 0.154 0.033 0.972 -0.289 0.139 0.039 0.934
ϕ21|12 0.057 0.157 0.042 0.915 -0.104 0.147 0.037 0.980
ϕ31|12 -0.080 0.162 0.037 0.943 -0.006 0.146 0.039 0.966
ϕ41|12 -0.149 0.210 0.053 0.981 -0.208 0.165 0.041 0.932
ϕ11|22 0.154 0.311 0.039 0.925 0.229 0.225 0.063 0.934
ϕ21|22 0.039 0.444 0.038 0.962 0.272 0.281 0.060 0.990
ϕ31|22 -0.126 0.381 0.036 0.971 -0.250 0.261 0.062 0.931
ϕ41|22 0.026 0.303 0.033 0.925 0.292 0.238 0.061 0.935
ρ11|1 0.180 0.257 0.042 0.925 0.207 0.227 0.068 0.916
ρ21|1 -0.015 0.311 0.037 0.972 0.106 0.286 0.076 0.943
ρ31|1 -0.039 0.213 0.053 0.972 -0.181 0.205 0.057 0.916
ρ41|1 0.095 0.165 0.068 0.981 -0.127 0.151 0.042 0.912
ρ11|2 -0.011 0.156 0.092 0.953 -0.224 0.146 0.039 0.925
ρ21|2 0.022 0.308 0.075 0.943 -0.109 0.294 0.079 0.927
ρ31|2 -0.062 0.319 0.067 0.990 0.168 0.302 0.076 0.919
ρ41|2 -0.032 0.156 0.036 0.953 0.026 0.143 0.040 0.981
δ1|1 0.054 0.194 0.047 0.969 -0.155 0.189 0.047 0.952
δ1|2 -0.047 0.202 0.057 0.897 -0.292 0.194 0.051 0.971
β01 -0.158 1.050 0.270 0.934 -0.124 1.023 0.270 0.934
β11 0.209 0.754 0.192 0.935 0.195 0.767 0.218 0.916
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Table 5. Simulation results using MCMC algorithm under
MNAR, weak parameters.

N = 1000 N = 300
Param Bias Length RMSE CP Bias Length RMSE CP

ϕ11|11 0.068 0.175 0.044 0.942 0.337 0.242 0.060 0.963
ϕ21|11 0.024 0.132 0.038 0.928 -0.346 0.280 0.078 0.924
ϕ31|11 -0.003 0.121 0.033 0.931 0.062 0.245 0.060 0.946
ϕ41|11 -0.004 0.118 0.031 0.928 0.321 0.273 0.081 0.943
ϕ11|21 0.014 0.079 0.022 0.928 -0.245 0.182 0.050 0.925
ϕ21|21 -0.002 0.071 0.018 0.952 -0.330 0.161 0.040 0.963
ϕ31|21 -0.002 0.073 0.019 0.956 -0.001 0.162 0.047 0.944
ϕ41|21 -0.002 0.077 0.021 0.924 -0.040 0.170 0.045 0.921
ϕ11|12 0.016 0.077 0.017 0.966 -0.002 0.165 0.047 0.925
ϕ21|12 -0.003 0.072 0.018 0.953 0.042 0.154 0.044 0.927
ϕ31|12 -0.003 0.074 0.019 0.961 0.159 0.184 0.048 0.944
ϕ41|12 0.017 0.078 0.021 0.951 -0.183 0.162 0.039 0.925
ϕ11|22 -0.014 0.104 0.029 0.961 -0.265 0.249 0.060 0.953
ϕ21|22 -0.001 0.120 0.030 0.927 0.252 0.279 0.069 0.971
ϕ31|22 0.012 0.170 0.046 0.946 0.266 0.252 0.068 0.970
ϕ41|22 -0.004 0.126 0.029 0.942 -0.151 0.248 0.065 0.962
ρ11|1 0.012 0.120 0.034 0.923 0.180 0.315 0.081 0.953
ρ21|1 0.010 0.149 0.038 0.956 0.017 0.308 0.088 0.916
ρ31|1 -0.001 0.105 0.031 0.949 -0.114 0.215 0.048 0.972
ρ41|1 -0.002 0.079 0.021 0.932 -0.084 0.215 0.057 0.933
ρ11|2 -0.003 0.076 0.020 0.946 -0.206 0.219 0.058 0.971
ρ21|2 -0.003 0.153 0.042 0.937 -0.012 0.309 0.078 0.944
ρ31|2 0.013 0.154 0.039 0.946 0.044 0.312 0.084 0.961
ρ41|2 0.025 0.075 0.020 0.942 0.236 0.221 0.060 0.962
δ1|1 0.091 0.201 0.048 0.953 0.307 0.209 0.048 0.972
δ1|2 -0.221 0.198 0.046 0.959 -0.245 0.210 0.058 0.925
β01 0.065 0.934 0.253 0.917 0.065 1.176 0.292 0.944
β11 0.026 0.709 0.214 0.907 0.026 0.812 0.117 0.971

Table 6. The standardized bias of four different methods with
weak measurement parameterers.

N = 1000 N = 300
Param EM MCMC MAR CCA EM MCMC MAR CCA

β10 -0.095 -0.051 -0.067 -0.058 -0.156 -0.154 -0.036 -0.058
β11 0.166 0.149 0.216 0.305 0.200 0.065 0.166 0.196
ϕ11|1 -0.081 0.041 -0.053 -0.018 -0.086 -0.059 -0.100 0.264
ϕ21|1 -0.019 -0.009 -0.005 0.077 -0.196 -0.130 -0.156 0.238
ϕ31|1 0.020 0.021 -0.019 -0.081 0.008 0.023 -0.001 -0.418
ϕ41|1 0.128 0.073 0.098 0.117 0.052 0.062 -0.036 -0.416
ϕ11|2 -0.017 0.011 -0.020 -0.018 0.057 0.056 0.109 -0.252
ϕ21|2 0.029 0.040 0.026 0.032 0.088 0.065 0.091 -0.242
ϕ31|2 -0.059 -0.042 -0.088 -0.111 -0.033 -0.017 -0.021 0.314
ϕ41|2 -0.139 -0.096 -0.153 -0.160 -0.040 -0.049 -0.044 0.244

than 0.4, and CP are close to 0.95 for all parameters in both
small and large sample size. Such results are expected be-
cause the synthetic data are generated from the fitted model.
These tables imply that both EM and MCMC algorithms
provide proper point estimates and confidence intervals un-
der strong and mixed scenarios. When the sample size is
small (i.e., N = 300), the standardized bias tend to increase
and coverage probabilities are more deviated from 0.95 than
when N = 1000, but these results are still acceptable if the
parameters are still in the strong class. In the case of the
mixed strength parameter class with N = 300, the coverage
probabilities of some ML estimates from the EM algorithm
are lower than 0.9, as highlighted in Table 4. On the other
hand, the performance of Bayesian estimates from MCMC
algorithm are acceptable for all of the classes of parameters.

In the strong and mixed scenarios, the Bias and RMSE of
the two estimation methods are similar. The Bayesian esti-
mates shows slightly shorter CIs than ML estimates, but the
differences are hardly noticeable. In the weak scenarios, how-
ever, the Hessian matrix of LCSM are mostly singular when
evaluated at the MLEs and thus the asymptotic confidence
intervals for ML estimates are unavailable. Meanwhile, the
credible intervals for the Bayesian estimates showed reason-
able coverage probabilities. Table 5 conveys the simulation
results of MCMC methods under the weak scenario with
N = 300 and 1000. Since the biases are reasonably small
and the coverage probabilities are all close to 0.95, we can
conclude that MCMC algorithm works properly, regardless
of the sample size and the class of parameters. In this sense,
the Bayesian estimation is preferred to EM methods espe-
cially when the measurement parameters are weak.

A second simulation study is conducted to compare the
performance of several methods with different assumptions
on the missingness mechanisms. We generate the data us-
ing the same latent class structure as in the first study, and
fitted three different methods as follows: (1) the proposed
latent class selection model using EM-algorithm (EM), (2)
the proposed latent class selection model using MCMC-
procedure (MCMC), (3) a latent class model with adjusted
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Table 7. The average length of interval of four different
methods with weak measurement parameterers.

N = 1000 N = 300
Param EM MCMC MAR CCA EM MCMC MAR CCA

β10 1.451 1.126 1.304 1.510 2.212 2.056 2.631 3.704
β11 0.849 0.632 0.677 0.825 2.371 1.378 1.433 2.760
ϕ11|1 0.174 0.146 0.155 0.178 0.342 0.256 0.300 0.379
ϕ21|1 0.175 0.147 0.156 0.178 0.347 0.256 0.296 0.384
ϕ31|1 0.175 0.147 0.156 0.178 0.342 0.250 0.289 0.388
ϕ41|1 0.178 0.148 0.156 0.178 0.340 0.256 0.293 0.380
ϕ11|2 0.178 0.148 0.158 0.181 0.344 0.251 0.291 0.381
ϕ21|2 0.177 0.146 0.157 0.180 0.346 0.254 0.292 0.381
ϕ31|2 0.180 0.148 0.157 0.181 0.345 0.256 0.290 0.383
ϕ41|2 0.179 0.148 0.157 0.180 0.345 0.253 0.290 0.385

Table 8. The RMSE of four different methods with weak
measurement parameterers.

N = 1000 N = 300
Param EM MCMC MAR CCA EM MCMC MAR CCA

β10 0.553 0.369 0.367 0.424 1.049 0.841 0.831 1.293
β11 0.252 0.188 0.183 0.230 0.578 0.407 0.414 1.266
ϕ11|1 0.054 0.045 0.043 0.048 0.127 0.083 0.079 0.095
ϕ21|1 0.048 0.042 0.041 0.042 0.134 0.086 0.081 0.097
ϕ31|1 0.052 0.043 0.042 0.046 0.126 0.079 0.072 0.091
ϕ41|1 0.054 0.041 0.041 0.047 0.125 0.084 0.077 0.084
ϕ11|2 0.059 0.044 0.044 0.051 0.133 0.083 0.079 0.097
ϕ21|2 0.051 0.041 0.042 0.045 0.136 0.086 0.085 0.098
ϕ31|2 0.054 0.042 0.040 0.046 0.134 0.084 0.079 0.088
ϕ41|2 0.053 0.043 0.042 0.050 0.133 0.081 0.076 0.091

Table 9. The coverage probability of intervals of four different
methods with weak measurement parameterers.

N = 1000 N = 300
Param EM MCMC MAR CCA EM MCMC MAR CCA

β10 0.892 0.929 0.919 0.874 0.879 0.922 0.921 0.940
β11 0.844 0.932 0.959 0.954 0.890 0.974 0.928 0.905
ϕ11|1 0.893 0.941 0.929 0.929 0.874 0.973 0.917 0.883
ϕ21|1 0.914 0.936 0.964 0.949 0.862 0.923 0.926 0.889
ϕ31|1 0.793 0.959 0.959 0.954 0.863 0.921 0.919 0.910
ϕ41|1 0.795 0.924 0.929 0.957 0.873 0.945 0.926 0.935
ϕ11|2 0.893 0.969 0.944 0.935 0.847 0.962 0.913 0.913
ϕ21|2 0.929 0.924 0.959 0.954 0.839 0.967 0.923 0.905
ϕ31|2 0.894 0.964 0.954 0.899 0.865 0.957 0.924 0.825
ϕ41|2 0.893 0.939 0.932 0.899 0.866 0.959 0.915 0.891

estimator under MAR mechanism (MAR), as used in [24],
and (4) the conventional latent class model using only the
complete cases (CCA).

When the simulation data are generated from the
strong/mixed classes of parameters with N = 1000, the per-
formance of all four methods are comparable. CCA tends
to have larger biases and longer CIs than the other meth-
ods, but the magnitude of the differences is barely no-
ticeable. When the simulation is conducted with the weak
classes of parameters, however, the results are quite differ-
ent. Hence, we only report the weak parameter class scenar-
ios for brevity.

Tables 6∼9 display the standardized bias, average inter-
val length, root mean-square error, and coverage probabil-
ity of 95% CIs from four different methods under weak-
measurement parameters, respectively. Overall, CCA pro-
vides the largest standardized biases, and some of them are
problematic in that their absolute values exceed 0.4 [23].
Also, CCA provides the largest length of intervals among
the four methods. Consequently, confidence intervals based
on the CCA method fail to cover the true parameter val-
ues too often, as shown in Table 9. With the MAR method,
biases are acceptable but the lengths of the confidence in-
tervals tend to be inflated compared to the MCMC method,
resulting in lower coverage probabilities. Such trends are
more noticeable when the sample size is small.

The performance of EM-algorithm on our proposed
LCSM are also questionable when the population is gen-
erated under the weak parameter class. As mentioned in
the first simulation study, the information matrix is singu-
lar so the standard errors are unavailable. In the simulation
study, we inverted the sub-matrix of Hessian matrix that
corresponds to data parameters only (i.e., β and ϕ) to com-
pare the results to that of MAR and CCA. As shown in Ta-
ble 9, the performance of EM estimates are questionable in
that the coverage probabilities noticeably deviate from 0.95
under weak-measurement scenario regardless of the sample
size. In addition, average interval lengths, RMSE, and stan-
dardized biases are noticeably larger than other three meth-
ods. On the other hand, the Bayesian estimates via pro-
posed MCMC algorithm show acceptable coverage proba-
bilities between 0.922 ∼ 0.973. Also, their average length
of intervals and RMSE are smaller than the others. Conse-
quently, we conclude that using MCMC algorithm would be
a better choice when the estimated measurement parame-
ters are weak (that is, between 0.3 and 0.7). Under the weak-
measurement parameters, the performance of EM-estimates
are unacceptable in terms of standard errors and other four
measures. The Bayesian estimates, on the other hand, work
properly, as discussed earlier in Table 5.

4. APPLICATION TO GSS DATA

The General Social Study (GSS) is a longitudinal soci-
ological survey that monitors and explains trends, behav-
iors, and attributes among non-institutionalized adults in
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the United States. The GSS has published the updated data
annually or biennially since 1972, and the latest version was
published in 2018 with questionnaires regarding social is-
sues such as mental health, religions, child stigma, quality
of work-life etc. The data sets are available at the GSS web-
site: http://www.gss.norc.org/.

Numerous papers studied public opinions and attitudes
toward legal abortion based on GSS data [25, 26, 27]. Along
with these papers, we apply our proposed LCSM to illustrate
its usage in statistical practice by discovering new insights
on abortion attitudes among U.S. citizens. In the 2018 GSS
data, respondents were asked whether or not it should be
legal for a pregnant woman to have an abortion under spe-
cific circumstances. Six binary variables are defined as ”Tell
me whether or not you think it should be possible for a
pregnant woman to obtain a legal abortion under certain
circumstances?” Six circumstances are (1) for any reasons
(ABANY), (2) if there is a strong chance of serious defect
in the baby (ABDEFECT), (3) if the woman’s own health
is seriously endangered by the pregnancy (ABHLTH), (4) if
the woman is married and does not want any more children
(ABNOMORE), (5) if the family has a very low income and
cannot afford any more children (ABPOOR), and (6) if the
woman became pregnant as a result of rape (ABRAPE).
Table 10 enumerates the proportions of 1, 574 individuals
who responded ”Yes” and nonresponse proportions under
six particular circumstances.

Table 10. Proportion of ”Yes” to questionnaires: ”Should the
legal abortion be possible for a pregnant woman to obtain a

legal abortion under certain circumstances?”

Item Yes (%) Missing (%)

ABANY 48.53 3.17
ABDEFECT 73.95 4.51
ABHLTH 49.43 3.81
ABNOMORE 86.78 3.62
ABPOOR 47.65 3.43
ABRAPE 75.86 4.57

In our model, the number of latent classes S for a latent
variable U and the number of latent propensity D for W
need to be determined when implementing proposed LCSM.
We obtain the maximum likelihood estimates of LCSM with
different number of classes using the EM algorithm and cal-
culate the Bayesian Information Criterion (BIC). The four-
class model is chosen since it has the lowest BIC. Table 11
illustrates the estimated BIC for different number of classes.

Table 11. BIC for latent class selection models with different
number of classes

# of class 2 3 4 5 6

BIC 9778.13 9543.40 9457.58 9759.47 9905.55

Based on the latent class structure, we fit a latent class
selection model using the MCMC algorithm with Jeffrey’s

priors. Both estimation methods provide similar estimates,
but the performance of Bayesian estimates are slightly bet-
ter in terms of RMSE. As such, we discuss the parameter
estimates from the MCMC algorithm. Table 12 conveys the
estimated measurement parameters (i.e., ρ̂p1|d, p = 1 . . . 6,
d = 1 . . . 4) and prevalence of the four class model. As dis-
cussed in Section 2, each estimated ρ̂p1|d denotes the prob-
ability of agreement, ”Yes”, with each questionnaire item
under the dth latent class. Class 1 showed high probabilities
of agreement to legal abortions for all 6 items, while Class 4
strongly disagreed on all of them. In this sense, Class 1 may
be interpreted as Liberal (pro-choice), while Class 4 can be
Conservative (pro-life). Individuals in Class 2 and Class 3
showed high probabilities of consent to the legal abortion
in ABDEFECT, ABNOMORE, and ABRAPE, but the es-
timated probabilities were generally higher in Class 2 than
in Class 3. In this sense, Class 2 is interpreted as Partially
supportive, and Class 3 as Weakly supportive.

Table 12. Parameter estimates of 4-class model for patterns

Manifest item Latent class for response variables
Class 1 Class 2 Class 3 Class 4

ABANY 0.948 0.419 0.027 0.012
ABDEFECT 0.986 0.907 0.637 0.080
ABHLTH 0.980 0.447 0.006 0.005
ABNOMORE 0.997 0.961 0.987 0.245
ABPOOR 0.974 0.322 0.028 0.004
ABRAPE 0.994 0.907 0.687 0.079

Class proportion 0.436 0.203 0.236 0.125

We also considered the effect of three demographic fac-
tors (age, gender, and race) on the prevalence of the latent
classes. Table 13 conveys the estimated odds ratios for each
latent classes versus Class 1 and their 95% CIs. The odds
ratios of uth latent class for ith individual were calculated
as exp(Xβu), where βu is multinomial logistic regression
coefficients of uth latent class, u = 2 . . . 4. Based on the
95% CI, we conclude that the race variable had significant
effect on the prevalences of the latent classes. The odds ra-
tio of Class 2 vs Class 1 was 1.385 times higher in Black
respondents than White respondents. Similarly, the odds ra-
tio of Class 4 vs Class 1 was 1.506 times higher in Black
respondents than White respondents. Lastly, the prevalence
of each latent class were obtained based on Eq. (5) using the
estimated regression model.

Finally, each of the four latent classes had two subclasses,
where one denotes the complete group and the other de-
scribes nonresponse group. Table 14 conveys the estimated
probabilities of ”being observed” of each items (ϕp1|w,u,
p=1,. . . ,6, u=1,. . . ,4, w = 1, 2) and corresponding preva-
lence. Prevalences of each sub-class were calculated based on
the proportions of latent classes in Table 13 and estimated
conditional probabilities (i.e., δw|u, w=1, 2, u=1,. . . ,4). The

estimated ϕ̂ of observed subclasses are similar across all
four latent classes, so we impose the following constraints:
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Table 13. Estimated odds ratios and 95% CI for each latent
classes

Class 2 Class 3 Class 4

Proportion 0.203 0.236 0.125

Intercept
0.406 0.753 0.208

[0.254, 0.649] [0.452, 1.253] [0.127, 0.339]

Age
0.998 0.994 1.004

[0.990, 1.006] [0.986, 1.003] [0.997, 1.012]

Female(vs Male)
1.264 0.889 1.109

[0.988, 1.619] [0.674, 1.175] [0.858, 1.435]

Black(vs White)
1.385 0.972 1.506

[1.023, 1.876] [0.665, 1.418] [1.117, 2.031]

Others(vs White)
1.132 0.974 0.752

[0.773, 1.658] [0.624, 1.519] [0.483, 1.173]

ϕp1|1,1 = ϕp1|1,2 = · · · = ϕp1|1,4, p = 1 . . . 6. Such con-
straints provided a simplified model by identifying a single
complete-subclass and four incomplete subclasses which ex-
plained nonresponse patterns. The likelihood ratio test for
H0 : ϕp1|1,1 = ϕp1|1,2 = · · · = ϕp1|1,4, p = 1 . . . 6, vs Ha: Not
H0. is not rejected at α = 0.05 (test statistic X2 = 18.804,
df = 18) so we conclude that these constraints are accept-
able.

Individuals who belonged to the Completers group show
high probabilities of response for all six items. The subclass
of Class 1 show very low probabilities (i.e., 0.039 ∼ 0.146)
of being observed for each item. Next, individuals in the
subclass of Class 2 are unlikely to respond to ABHLTH,
ABPOOR. Similarly, the subclass of Class 3 have low prob-
abilities of response to ABDEFECT, ABRAPE. Finally, in-
dividuals in the subclass of Class 4 are unlikely to respond
to ABMORE only, with 0.166 probability of response.

It is well known that the finite mixtures of distributions
does not satisfy the identifiability condition because permu-
tations of parameter labels yield identical density functions.
Instead, researchers have focused on providing a local identi-
fiability of the latent class model. Huang [18] discussed the
local identifiability of the conventional latent class model
with covariate and constrained parameters. In this paper,
we investigate the local identifiability of the fitted model
by applying the conditions in [18] directly. To obtain global
identifiability, appropriate constraints that incorporate sci-
entific knowledge and theory are needed [18, 28].

Let Φ = [ϕ1, . . . ,ϕ4] be a 115 by 4 dimensional ma-
trix. Here, 115 is the number of unique response patterns
from [Y1, . . . , Y6], and ϕd ∈ R115 is a vector of probabili-
ties of the 115 unique response patterns under dth latent
class, d = 1, . . . , 4. Also, let ψ = [ψ1|1, . . . ,ψ2|4] be a 38
by 8 dimensional matrix. Here, 38 is the number of unique
response patterns from [R1, . . . , R6], and ψf |d ∈ R38 is a
vector of probabilities of the 38 unique response patterns
under dth latent class and fth latent missing propensity,
d = 1, . . . , 4, f = 1, 2. The fitted latent class selection model
is locally identifiable if (i) [ϕ1, . . . ,ϕ4] are linearly indepen-
dent and (ii) ψ = [ψ1|1, . . . ,ψ2|4] are linearly independent.

We calculated the eigenvalues of ΦTΦ and ψTψ and ob-

served that all eigenvalues are positive. This means that our

fitted model is locally identifiable.

Table 14. Parameter estimates for nonresponse patterns of
4-class model

Nonresponse Complete Subclass Subclass Subclass Subclass
propensity of Class 1 of Class 2 of Class 3 of Class 4

ABANY 0.992 0.039 0.622 0.750 0.867
ABDEFECT 0.983 0.146 0.650 0.488 0.735
ABHLTH 0.990 0.029 0.346 0.833 0.881
ABNOMORE 0.984 0.099 0.980 0.523 0.166
ABPOOR 0.992 0.094 0.441 0.880 0.772
ABRAPE 0.986 0.151 0.834 0.142 0.501

Proportion 0.929 0.011 0.028 0.021 0.011

As an alternative approach, we fit a latent class model

under an MNAR assumption as suggested in [15]. In this

model, both questionnaire items and their missing indica-

tors (i.e., Rip = 1 if Yip is observed, for all i, p) are treated

as response variables. Table 15 shows the 4-class LCA model

that consists of original 6 items and corresponding missing-

ness indicators. Similar to our suggested model in Table 12,

Class 1 was strongly in favor of the legal abortion, while

Class 4 hardly agreed. Class 2 and Class 3 had similar re-

sponse patterns to the questionnaires but Class 3 was un-

likely to respond to all items except ABNOMORE. Based

on Table 15, we found that the alternative model and our

proposed LCSM provided similar interpretations for the four

latent classes, but the proposed LCSM identified more de-

tailed nonresponse propensities by discovering four distinct

subclasses that showed different missing patterns. On the

other hand, the alternative model provided a simpler struc-

tures in that it had smaller number of classes and each latent

class was defined based on both response patterns and non-

response patterns simultaneously.

Table 15. Parameter estimates of 4-class model.

Latent Class Class 1 Class 2 Class 3 Class 4

ABANY 0.923 0.134 0.192 0.008
ABDEFECT 0.984 0.778 0.884 0.094
ABHLTH 0.960 0.113 0.123 0.004
ABNOMORE 0.993 0.975 0.978 0.379
ABPOOR 0.936 0.087 0.240 0.003
ABRAPE 0.990 0.802 0.961 0.097
ABANY.R 0.992 0.987 0.434 0.993
ABDEFECT.R 0.986 0.975 0.370 0.969
ABHLTH.R 0.993 0.980 0.320 0.991
ABNOMORE.R 0.999 0.996 0.589 0.881
ABPOOR.R 0.993 0.984 0.412 0.989
ABRAPE.R 0.997 0.972 0.442 0.919

Proportion 0.477 0.325 0.042 0.156
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5. CONCLUSIONS

Latent class models are popular tools for discovering pop-
ulations’ latent groups with respect to the response pat-
terns in categorical response variables. Nonresponse can be
a potential difficulty in applying LCM in practice, espe-
cially when missing values are nonignorable. Numerous tech-
niques for handling nonresponse have been suggested for la-
tent class models, but many of them require either MCAR
or MAR assumptions which are not always acceptable. As
one solution to the MNAR problem, we propose a selection
model which uses an LCM to summarize nonresponse pat-
terns into a smaller number of groups. Our proposed model
is based on a latent ignorability assumption [15] which posits
two categorical variables that summarize response patterns
and nonresponse patterns on the questionnaire items, re-
spectively.

We suggest two estimation methods for the proposed
LCSM. Prospective analysts with large samples may con-
sider using ML estimates via the EM algorithm, while ana-
lysts with specific prior information on their data (or small
sample sizes) may choose to use Bayesian method. The EM
algorithm provides stable estimates when appropriate initial
values are given because the parameterization of the model
provides an explicit form that can easily be maximized [17].

We articulate the EM algorithm details that are specifi-
cally applicable to our suggested model, and discuss the the-
oretical properties of the EM estimators to help prospective
users draw appropriate inferences. Similarly, we propose an
MCMC algorithm based on the Gibbs sampler with detailed
steps and compare their performances with the proposed
EM estimators as well as other conventional methods. Fur-
ther, we have written a program to implement our proposed
LCSM in the R language (version 3.6.1) that is available in
https://sites.google.com/site/leejwegg/.

One drawback of the EM algorithm is its sensitivity to
starting values, so using appropriate initial values was crit-
ical to obtain the global maximum [19]. To avoid the local
maxima problem, users may try a large number of initial
values and take the one with the highest likelihood as the
final ML solution. The Bayesian estimation via MCMC al-
gorithm, on the other hand, was not affected by the initial
values due to the burn-in period, but it is exposed to a
label-switching problem as suggested in [22]. For the var-
ious remedies for label-switching problems in latent class
analysis, see [22, 29].

We analyze the 2018 GSS data using our proposed LCSM.
Our proposed LCSM identified four response patterns of the
abortion-attitude survey items and also discovered that the
individuals’ membership is related to their demographic fac-
tors such as age, gender, and race. In the proposed model,
we assume that individual covariates only affect the latent
response patterns, and such an assumption provides a sim-
pler model with fewer parameters. Incorporating covariates
effects on the latent missing propensity is straightforward.

Our proposed model identified two sub-classes for each la-
tent class where one represents the individuals who were
likely to respond to all questionnaires (completers), and the
other represents the individuals with nonresponse to at least
one items (incomplete). Four (complete) subclasses showed
very high probabilities of response to all questionnaire items
thus are combined into a single subclass, but all (incom-
pleters) subgroups had varying nonresponse patterns. Based
on these findings, we conclude that our LCSM successfully
identifies nonresponse patterns and their proportions.

In this paper, we focused on the simplest form of the
latent class model that is confined to a data set collected
within a single time point. Application of the latent class
selection model can be extended to longitudinal data. For
example, the latent class selection framework can be ap-
plied to identify the patterns of nonignorable dropouts.
Also, we assumed that missingness is not affected by co-
variates (that is, P (W | U) is independent of Xi) to sim-
plify the model. Including the effect of covariate on miss-
ingness via stratified multinomial logistic regression (i.e.,

P (W = w | U = u,Xi) = exp(Xiβw|u)/
D∑

s=1
exp(Xiβs|u),

for each u) can be a further research topic. Such extensions
are expected to contribute to the specification of missingness
under the MNAR mechanism.

APPENDIX I : SCORE FUNCTION OF LCSM

Eq. (18) shows the elements of first derivatives with re-
spect to parameters [ϕ,ρ,β, δ].

∂logL

∂ρmk|d
=

N∑
i=1

θi(d)I(Yim = k)

ρmk|d
.(18)

∂logL

∂ϕph|u,d
=

N∑
i=1

θi(u,d)I(Rip = h)

ϕph|u,d
.

∂logL

∂δu|d
=

N∑
i=1

θi(u,d)

δu|d
.

∂logL

∂βqd
=

N∑
i=1

Xiq(θi(d) − γd(Xi)).

Here, we have p = 1 . . . P, u = 1 . . . S, d = 1, . . . , D,
and q = 1 . . .K. Also, some sets of parameters are con-

strained in a way that
rp∑
k=1

ρmk|d = 1,
1∑

h=0

ϕph|u,d = 1,

and
S∑

u=1
δu|d = 1 for all subscripts. Suppose that AQ =

[diag(1, Q − 1),−1Q−1] ∈ RQ−1×Q denotes the constraint
matrix for Q constrained parameters. Then, we can obtain
the score function with respect to the free parameters as
follows

S(θ) = AQf
′(θ)

where f ′(θ) is the first derivative vector from Eq. (18).
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APPENDIX II : HESSIAN MATRIX OF LCSM

The elements of the Hessian matrix with respect to each
type of parameters [ϕ,ρ,β, δ] are given next. Eq. (19)

shows the second derivatives with respect to parameters ϕ
and the others.

∂2logL

∂ρmk|d∂ρm′k′|d′
=

N∑
i=1

θi(d)(ζdd′(1− ζpp′)− θi(d′))ζYimkζYim′k′

ρmk|d ρm′k′|d′

(19)

∂2logL

∂ρmk|d∂ϕph|u,d′
=

N∑
i=1

θi(u,d)(ζdd′ − θi(u,d′))ζYimkζRiph

ρmk|d ϕph|u,d′

∂2logL

∂ρmk|d∂δu|d′
=

N∑
i=1

(ζdd′ − θi(d))θi(u,d′)ζYimk

ρmk|d δu|d′

∂2logL

∂ρmk|d∂βqd′
=

N∑
i=1

Xiq(ζdd′ − θi(d))θi(d′)ζYimk

ρmk|d

Here, we have q = 1, . . . ,K, k = 0, 1, h = 1, . . . , rp, p =
1, . . . , P, m = 1, . . . , P, u = 1 . . . S, d = 1 . . . D. Also, ζdd′

is defined as 1 if d = d′ and 0 if d ̸= d′

Eq. (20) shows the second derivatives with respect to pa-
rameters ρ and the others.

∂2logL

∂ϕph|u,d∂ϕp′h′|u′,d′
=(20)

N∑
i=1

(ζuu′ζdd′(1− ζmm′)− θi(u,d))θi(u′,d′)ζRiphζRip′h
′

ϕph|u,d ϕp′h′|u′,d′

∂2logL

∂ϕph|u,d∂βqd′
=

N∑
i=1

Xiqθi(u,d)(ζdd′ − θi(d′))ζRiph

ϕph|u,d

∂2logL

∂ϕph|u,d∂δu′|d′
=

N∑
i=1

{
ζdd′ζuu′ − θi(u,d)θi(u′,d′)

}
ζRiph

ϕph|u,d δu′|d′

Here, we have q = 1, . . . ,K, k = 0, 1, h = 1, . . . rp, p =
1, . . . P, m = 1, . . . P, u = 1, . . . S and d = 1, . . . D.

Eq. (21) shows the second derivatives with respect to pa-
rameters δ and the others.

∂2logL

∂δu|d∂δu′|d′
= −

N∑
i=1

θi(u,d)θi(u′,d′)

δu|d δu′|d′

∂2logL

∂δu|d∂βqd′
=

N∑
i=1

Xiqθi(u,d)(ζdd′ − θi(d′))

δu|d′
(21)

Here, we have q = 1, . . . ,K, u = 1, . . . , S and d = 1, . . . , D.
Finally, Eq. (22) shows the second derivatives with re-

spect to parameters β.

∂2logL

∂βqd∂βq′d′
=(22)

N∑
i=1

XiqXiq′
{
θi(d)(ζdd′ − θi(d′))− γd(Xi)(ζdd′ − γd′(Xi))

}

Here, we have q = 1 . . . ,K and d = 1 . . . D.
Similar to the first derivatives, some sets of parameters

are constrained in a way that
rp∑
k=1

ρmk|d = 1,
1∑

h=0

ϕph|u,d =

1, and
S∑

u=1
δu|d = 1 for all subscripts. We can obtain the

Hessian matrix with respect to free parameters as follows

H(θ) = AQf
′′(θ)AT

Q

where f ′′(θ) is the second derivative vector from Eq. (19),
(20) and (21).
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