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Abstract

Chromatin is a complex of DNA with histone proteins organized into nucleosomes that regulates
genome accessibility and controls transcription, replication and repair by dynamically switching
between open and compact states as a function of different parameters including histone post-
translational modifications and interactions with chromatin modulators. Continuing advances in
structural biology techniques including X-ray crystallography, cryo-electron microscopy and
nuclear magnetic resonance (NMR) spectroscopy have facilitated studies of chromatin systems,
in spite of challenges posed by their large size and dynamic nature, yielding important functional
and mechanistic insights. In this review we highlight recent applications of magic angle spinning
solid-state NMR — an emerging technique that is uniquely-suited toward providing atomistic
information for rigid and flexible regions within biomacromolecular assemblies — to detailed
characterization of structure, conformational dynamics and interactions for histone core and tail
domains in condensed nucleosomes and oligonucleosome arrays mimicking chromatin at high

densities characteristic of the cellular environment.
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Introduction

Eukaryotic DNA is organized into chromatin, a highly conserved complex that controls
essential genome functions. The basic unit of chromatin is the nucleosome (Figure 1), which
contains ~147 bp of DNA wrapped nearly twice around a histone octamer complex containing
two copies each of histones H2A, H2B, H3 and H4 [1,2]. Human genomic DNA is wrapped into
~30 million nucleosomes, which are connected by linker DNA varying between ~20-70 base
pairs (bp) in length [3,4] and compact into dynamic higher order structures [4—8] to regulate
genome accessibility and control transcription, replication and repair [6—10].

Chromatin regulates gene expression by converting between open active euchromatin and
compact repressive heterochromatin, with dynamic switching between chromatin states required
for the expression of a gene to change [4—8]. Chromatin function is modulated by numerous
covalent histone post-translational modifications (PTMs), including acetylation and methylation
of lysine residues and phosphorylation of serines and threonines [11,12]. The majority of PTM
sites are located on the positively charged N-terminal tail domains [13—15], which extend out of
the nucleosome and range from approximately 15 to 35 amino acid (aa) residues in length for the
different histone proteins [2]. Histone tail PTMs control chromatin compaction and act to recruit
histone reader proteins that recognize specific PTMs [6,13—18] or combinations of PTMs
constituting the “histone code” [13,19,20]. Additionally, multiple PTMs in the globular histone
domains within the nucleosome core, which modulate DNA unwrapping and breathing,
nucleosome stability and transcription factor binding to nucleosomal DNA, have been identified
[20-24].

Atomic resolution structures of the relatively rigid domains for in vitro-assembled

nucleosomes, oligonucleosome arrays and their numerous complexes with chromatin modulators



have been determined by X-ray crystallography and, more recently, cryo-electron microscopy
(cryo-EM) [25-28], yielding important insights into the function and mechanisms of chromatin.
These structural biology techniques, however, are not able to visualize the histone N-terminal
tails due to missing density or to directly probe biomacromolecular motions occurring on
timescales of microseconds to seconds [29], which appear to play key roles in chromatin
function [7,8,25,30,31]. In contrast, nuclear magnetic resonance (NMR) spectroscopy — in
solution and the solid state — is ideally suited toward atomic level analysis of protein
conformation, conformational dynamics over a wide range of timescales, and interactions for
both structured and conformationally flexible domains [29,32-36].

In the context of chromatin, a multitude of solution NMR studies targeting histone N-
terminal tails in mononucleosomes have been performed [37,38]; overall, data emerging from
these experiments, complemented by results of atomistic microsecond timescale molecular
dynamics (MD) simulations [39], indicate that histone tail domains within nucleosomes are
conformationally dynamic yet engage in transient, fuzzy complex type interactions [40] with
nucleosomal DNA [37,38]. While considerably more challenging due to the relatively large size
of the nucleosome particle (~200 kDa), solution NMR approaches based on site-specific
incorporation of '*CH3 methyl groups on an otherwise highly deuterated background [41] can
also be employed and these methods have enabled characterization of the structure,
conformational dynamics and interactions for the globular histone core as well as nucleosomal
DNA [25,38,42]. On the other hand, high-resolution structural and dynamic studies of
condensates of nucleosomes and nucleosome arrays with effective sizes in the multi-megadalton
regime under conditions that correspond to typical concentrations of chromatin in cells (~100-

200 mg/mL) [43] fall outside the realm of solution NMR spectroscopy. Instead, such studies may



be pursued by magic-angle spinning (MAS) solid-state NMR, which is subject to few limitations
related to sample solubility, molecular size or degree of order, as demonstrated in recent years
for a broad range of large biomacromolecular complexes and assemblies [35,36] including
chromatin [42,44]. By utilizing multidimensional radiofrequency pulse sequences that rely on
through-space dipolar coupling or through-bond J-coupling based magnetization transfers under
MAS [35,36], this technology facilitates, in principle, the selective observation of NMR signals
corresponding to all backbone and side-chain atoms located in relatively rigid and highly
conformationally flexible protein domains, respectively, thereby enabling comprehensive
investigation of local structure and dynamics at specific protein sites.

In this review we highlight recent studies of condensed nucleosomes and nucleosome
arrays mimicking chromatin at physiological concentrations by multidimensional MAS solid-
state NMR techniques, including studies aimed at the detailed analysis of structure,
conformational dynamics and interactions for the nucleosome core and histone tail domains as a
function of different chromatin parameters as well as emerging applications to the

characterization of complexes with chromatin-binding proteins.

Chromatin samples for solid-state NMR

The preparation of in vitro samples of nucleosomes and nucleosome arrays suitable for
analysis by MAS solid-state NMR has been discussed at length in comprehensive recent reviews
[42,44] and is only briefly summarized here. These samples are generally prepared by
reconstituting appropriately isotope enriched (e.g., 2H,'*C,'>N) recombinant histone proteins with
purified DNA, generated by synthetic or recombinant methods, corresponding to a high-affinity

nucleosome positioning sequence (NPS) such as Widom 601 [45] with possible linker DNA



overhangs (e.g., ~10-20 bp) or to multiple tandem NPS repeats, typically on the order of 10 to
20, separated by linker DNA (Figure 2).

For nucleosome arrays distinct chromatin conformational states can be generated in the
presence of varying concentrations of cations corresponding to different levels of DNA charge
neutralization, with divalent cations such as Mg?* added as MgCl: (or other multivalent cations)
being particularly effective in this regard [46]. Namely, in the absence of Mg?* extended “beads-
on-a-string” fibers that model open chromatin are obtained, which can be readily sedimented by
ultracentrifugation [47], especially for arrays larger than ~10 nucleosome units, and transferred
to a MAS solid-state NMR sample holder (rotor) for subsequent spectroscopic analysis [48]; low
Mg?" concentrations (~1-2 mM) generally result in folded fibers, while Mg?" concentrations
significantly higher than 2 mM yield large aggregates of fibers displaying an extensive network
of interactions between nucleosome subunits located within different fibers [46] (Figure 2).
Interestingly, in specific buffers containing combinations of Mg?* and K" ions nucleosome arrays
have been found to form liquid-liquid phase separated condensates [46,49—51], which are also
amenable to characterization by MAS solid-state NMR methods. To generate condensates of
mononucleosomes for solid-state NMR studies, both low (2 mM) Mg?" concentration combined
with ultracentrifugation over an extended period [52,53] and precipitation using higher (20 mM)
Mg?" concentration [54] have been used, with the former approach resulting in sediments devoid
of regular packing or long-range ordering of nucleosomes expected for high Mg?" concentrations

[53].



Structural and dynamic studies of histone tails by solid-state NMR

As noted above, NMR studies of mononuclosomes in solution indicate that histone N-
terminal tail domains form dynamic fuzzy complexes with nucleosomal DNA [37,38]. While
early studies of histone H3 tails within condensed nucleosome arrays based on backbone amide
hydrogen/deuterium exchange detected by solution NMR suggested that histone tails may
become immobilized and structured within the chromatin environment [55], direct J-based MAS
solid-state NMR experiments targeting H3 and H4 tails in nucleosome arrays as a function of
degree of condensation, achieved by varying the Mg** concentration in the 0-5 mM range,
revealed that these domains actually retain significant conformational flexibility even in compact
chromatin states [48].

These initial MAS solid-state NMR studies were performed at a moderate magnetic field
strength and relied on *C and >N detection, offering somewhat limited spectral resolution and
sensitivity and precluding residue-specific analysis. With increased availability of high and
ultrahigh field magnets and MAS probes optimized for 'H detection, however, high-quality 2D
and 3D correlation MAS solid-state NMR spectra of histone tails in condensed nucleosomes and
nucleosome arrays can nowadays be routinely recorded (Figure 2), which permits quantitative
site-resolved measurements of NMR chemical shifts and spin relaxation rates enabling more
comprehensive analyses of histone tail conformation, dynamics and interactions in chromatin. In
one recent MAS solid-state NMR study of H3 tails in nucleosome arrays with DNA linkers of
different length ranging from 15 to 60 bp, backbone '°N spin relaxation rates were determined
and used to evaluate residue-specific rotational correlation times [56]. Comparison of these data
with results of analogous solution NMR measurements for 147 bp nucleosomes and nucleosomes

containing two flanking 20 bp linker DNA overhangs [56,57] revealed considerable attenuation



of H3 tail dynamics in the arrays irrespective of the specific linker DNA length relative to
nucleosomes with or without DNA linkers, consistent with transient electrostatic interactions of
H3 tail residues with linker DNA segments amplified by the structured chromatin environment
[56,57]. In another recent study, MAS solid-state NMR was used to investigate nucleosome
arrays reconstituted with H4 containing mono- or tri-methylated lysine 20 concluding that
H4K20 mono-methylation results in an altered H4 tail conformation and enhanced tail dynamics
relative to unmethylated and trimethylated tails [58]. Remarkably, this finding appears to
correlate with chromatin function given that these two PTMs modulate chromatin structure in
distinct ways, with H4K20 mono-methylation associated with increased chromatin accessibility
and gene expression [58] and H4K20 tri-methylation with a more compact chromatin structure
[59].

The dynamic nature of histone tails is likely to be an important functional feature and
suggests that these domains remain accessible to various chromatin modulators
[25,37,38,42,44,60], and the ability to directly visualize these domains by MAS solid-state NMR
methods in systems modeling condensed chromatin is, in principle, expected to enable their
conformations, dynamics and interactions in complexes with chromatin-binding proteins to be
evaluated in detail. A recent study demonstrated the feasibility of this approach for a histone
reader, PHD2 domain of CHD4, that weakly binds unmodified H3 tails, using co-sediments of
nucleosomes containing 2H,'3C,'’N-enriched H3 with unlabeled PHD2 [53]. Reduced cross-peak
intensities were noted for several H3 residues located near the N-terminus in J-based
experiments, consistent with PHD2 interacting with the H3 tail. At the same time, no new
resonances in dipolar-based experiments that would be consistent with the structuring and

rigidification of the H3 tail upon PHD2 binding were detected, suggesting that the PHD2-H3 tail



complex exhibits considerable dynamics in the compact chromatin environment [53]. Another
recent study focused on dissecting the interactions between phosphorylated heterochromatin
protein la (pHP1a), which binds H3K9 tri-methylated tails, and condensed nucleosomes and
nucleosome arrays under conditions of liquid-liquid phase separation [61]. Interestingly, J-based
MAS solid-state NMR experiments indicated a reduction in conformational dynamics of not only
the H3 tails, as may be anticipated due to pHP1a binding, but also of the H4 tails which are not
believed to engage in specific interactions with pHP1o. Though the exact nature of interactions
responsible for the observed decrease in H4 tail flexibility remains unclear, such large-scale
changes in histone tail dynamics upon protein binding may have significant functional

consequences [61].

Structural and dynamic studies of the nucleosome core by solid-state NMR

Dipolar-based MAS solid-state NMR techniques enable the selective detection and
structural and dynamic characterization of relatively rigid domains of biomacromolecular
assemblies [35]. In the context of chromatin systems, such techniques enable high resolution and
sensitivity 2D and 3D solid-state NMR spectra to be recorded that, in principle, can report on all
histone globular core residues in condensed nucleosomes or nucleosome arrays as illustrated in
Figure 2 for histone H3 in 16-mer Widom 601 DNA arrays with 60 bp DNA linkers [62].

The initial MAS solid-state NMR study of the histone core in sedimented nucleosomes by
van Ingen and co-workers [52] used 'H-detected methods and focused primarily on
characterizing the conformation and dynamics of histone H2A as well as nucleosome
interactions with a peptide derived from the viral LANA protein that has been previously

established to specifically recognize the H2A/H2B acidic patch [25]. Notably, in addition to



establishing sequential backbone 'H, *C and >N resonance assignments for the majority of H2A
core residues and confirming that histone tails in sedimented nucleosomes are conformationally
flexible akin to those in condensed nucleosome arrays, the study was able to successfully
confirm the LANA binding site by monitoring perturbations in the H2A chemical shifts and to
model the conformation of the bound peptide on the nucleosome surface that was consistent with
the crystal structure. In a series of elegant studies along similar lines, Nordenskidld and co-
workers [54,63—65] established the nearly complete sequential resonance assignments and
investigated the backbone dynamics of histones H2B, H3 and H4 in the nucleosome core for
both condensed nucleosomes and nucleosome arrays using *C-detected MAS solid-state NMR
experiments. Dynamics on the ns-ps timescale were determined using quantitative residue-
specific measurements of "HN->N and 'Ha-'*Ca dipolar order parameters, while the presence of
ps-ms timescale motions was assessed by inspecting the cross-peak intensities in 3D CANCO
chemical shift correlation spectra. By mapping the histone core residue dynamics on the
nucleosome structure, as illustrated in Figure 3 for H3 and H4 ps-ms motions in Widom 601
DNA nucleosomes [64], the authors proposed the existence of dynamic networks in nucleosomes
that include many residues engaged in contacts with nucleosomal DNA and may be important for
regulating nucleosome stability and DNA accessibility [54,64,65]. Remarkably, comparison of
the dynamic profiles for nucleosomes reconstituted with Widom 601 DNA and telomeric DNA
revealed that the latter display enhanced ps-ms motions for the H3 and H4 core residues (and
more conformationally flexible H3 and H4 N-terminal tails), consistent with the reduced stability
of telomeric nucleosomes [64]. In another recent study, 'H-detected MAS solid-state NMR
methods were used to evaluate the impact of DNA linker length in the 15-60 bp range on H3

core domain structure and interactions in nucleosome arrays [62]. While the histone core did not
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appear to undergo any large-scale conformational changes multiple residues at the DNA-H3
interface showed pronounced chemical shift and linewidth differences for arrays with 15 bp
DNA linkers relative to those with 60 bp linkers (Figure 4), consistent with alternate backbone
and side-chain conformations likely resulting from structural strain and increased heterogeneity
in nucleosome packing for arrays with short DNA linkers.

The ability to detect signals for most histone core backbone and side-chain sites in dipolar-
based MAS solid-state NMR spectra permits intermolecular interactions in chromatin to be
investigated, as demonstrated in the early study highlighted above of histone H2A in sedimented
nucleosomes free and in complex with the LANA peptide fragment [52]. Several additional
studies in this direction have been recently reported by Debelouchina and co-workers [61,66,67]
as expanded upon below. In one study, low temperature dynamic nuclear polarization (DNP)
MAS solid-state NMR, which enables direct observation of both rigid and flexible protein
domains in dipolar-based experiments with concomitant significant (order of magnitude or
larger) enhancements in spectral sensitivity [68,69], was applied to nucleosome arrays
reconstituted with isotope labeled H3 and/or H4 [66]. While selective detection of intermolecular
ISN-13C histone-histone interactions was found to be complicated by the naturally abundant '3C
atoms present in these samples, the study showed that multidimensional chemical-shift
correlation spectra for the nucleosome core residues display sufficient resolution to enable
detection of potentially functionally relevant DNA-histone contacts [66] despite the inherent line
broadening associated with low temperature DNP solid-state NMR spectra of many biological
systems [69]. In another study, carried out for condensed nucleosomes and nucleosome arrays in

complex with pHP1a under conditions of liquid-liquid phase separation [61], in addition to

assessing the influence of pHP1a binding on the conformational dynamics of H3 and H4 histone
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tails as discussed above the impact of pHP1a binding on the histone core domain conformation
and dynamics was evaluated by comparing cross-peak positions and intensities for the H3 and
H4 core residues in 2D *C-13C chemical shift correlation spectra recorded in the presence and
absence of pHP1a. Interestingly, the binding of pHP1a was found to not cause any major
rearrangements of the nucleosome core, in significant contrast to the fission yeast HP1 protein
Swi6 [70] and suggestive of different modes of interaction for pHP 1o and Swi6 with
nucleosomes [61]. Finally, a recent study probed the association and interactions of the
microtubule-associated protein tau with nucleosome arrays under conditions of liquid-liquid
phase separation [67]. The study used 2D J- and dipolar-based MAS solid-state NMR methods to
assess with site-specific resolution any potential structural and dynamic perturbations of the
histone H4 core and tail domains upon tau binding, concluding that in the chromatin context tau
interacts primarily with nucleosomal DNA rather than histones without major impact on the

conformation and dynamics of the nucleosome core and histone tails.

Concluding remarks and future outlook

As illustrated by the recent studies highlighted in this review, multidimensional MAS
solid-state NMR spectroscopy is uniquely positioned to furnish atomic level structural and
dynamic information for histone core and tail domains that are comprised of residues exhibiting
different degrees of conformational flexibility within in vitro-assembled samples of nucleosomes
and nucleosome arrays at high densities corresponding to cellular concentrations of chromatin.
Such studies promise to contribute fundamental insights into the molecular mechanisms of
chromatin compaction and gene regulation and are synergistic with investigations of chromatin

systems by complementary experimental and computational techniques [25-28,37-39].
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Consequently, applications of MAS solid-state NMR to condensed nucleosomes and nucleosome
arrays as a function of different parameters including DNA sequence, PTMs and complexes with
chromatin modulators are anticipated to continue and to grow considerably in the coming years.
While to date most applications of solid-state NMR to chromatin systems have focused
on monitoring the histone protein signals, studies that directly probe the chromatin-binding
partners and nucleosomal DNA are beginning to emerge or can be readily envisioned [71-74].
Notably, all of the above applications are expected to significantly benefit from recent and
ongoing developments in NMR instrumentation, including ultrahigh field (>25 T) magnets and
ultrafast (>100 kHz) MAS probes, and associated methodologies including 'H-detection [75],
dynamic nuclear polarization [66,68,69,72] and paramagnetic NMR [76—-79], combined with
continuing advances in atomistic MD simulations [39] and chemical biology tools [44,80]

tailored toward chromatin systems.
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Figure Captions

Figure 1. DNA packaging into nucleosomes and chromatin, schematically showing locations of
post-translational modifications of histone core and tail residues and interactions with chromatin
binding proteins. The crystal structure of the nucleosome (PDB entry 1KX5) is also shown with
nucleosomal DNA colored in black and histones H2A, H2B, H3 and H4 colored in yellow, red,

blue and green, respectively.

Figure 2. MAS solid-state NMR studies of histone tail and core domains in nucleosome arrays.
(A) Representative atomic force microscopy images of sucrose gradient purified 16-mer
nucleosome arrays with 15, 30 and 60 bp DNA linkers. (B) Nucleosome arrays incubated with 0,
1 and 5 mM MgCl, corresponding to open, folded and aggregated chromatin. (C) H3 amino acid
sequence (Xenopus laevis), with residues structured and unstructured in nucleosome crystals
(PDB entry 1KXS5; panel D) shown in blue and red font, respectively. Dynamically disordered
(bold red) and relatively rigid (bold blue) residues observed in J-based (E) and dipolar-based (F-
H) MAS solid-state NMR spectra. (D) Schematic representation of nucleosome arrays. '’N-'H
NMR spectra of H3 tail (E) and core (F) domains in 16-mer nucleosome arrays with 60 bp DNA
linkers reconstituted with H,'*C,'>N-H3 back-exchanged with H20. (G) *C-°N projection of a
3D (H)CANH spectrum and (H) small regions of '"H-detected 3D spectra for H3 core residues
used to establish sequential resonance assignments. Spectra were recorded at 800 MHz, 60 kHz

MAS rate and sample temperature of ~25 °C. Figure adapted from Refs. [48], [56] and [62].
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Figure 3. Histone H3 and H4 residues exhibiting significant backbone motions on the ps-ms
timescale in the nucleosome core. The most dynamic residues associated with negligible and low
cross-peak intensities in 3D CANCO chemical shift correlation spectra are colored in red and pink,
respectively. The remaining H3 and H4 residues are colored in blue and histones H2A/H2B and
nucleosomal DNA are colored in light grey and dark grey, respectively. Figure adapted from Ref.

[64].

Figure 4. Backbone 'H, ’'N and >C chemical shift perturbations (CSPs) for histone H3 core
residues in 16-mer Widom 601 DNA nucleosome arrays with 60 vs. 15 bp DNA linkers (A),
mapped on the nucleosome structure (B). The 0.1-0.15 ppm and >0.15 ppm thresholds correspond

to ~2.5-56 and >5c from the average CSP. Figure adapted from Ref. [62].
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