Data Assimilation for Online Model Calibration in Discrete Event Simulation

Xiaolin Hu, Mingxi Yan
Department of Computer Science
Georgia State University
Atlanta, GA, 30303, USA

Corresponding Author: Xiaolin Hu

Corresponding Author Email: xhu@gsu.edu

Corresponding Author Address: Department of Computer Science, Georgia State University, 25 Park
Place, Room 726, Atlanta, GA 30303

Abstract

The increasing availability of real-time data collected from dynamic systems brings opportunities for
simulation models to be calibrated online for improving the accuracy of simulation-based studies.
Systematical methods are needed for assimilating real-time measurement data into simulation models. This
paper presents a particle filter-based data assimilation method to support online model calibration in
discrete event simulation. A joint state-parameter estimation problem is defined and a particle filter-based
data assimilation algorithm is presented. The developed method is applied to a discrete event simulation of
a one-way traffic control system. Experiments results demonstrate the effectiveness of the developed
method for calibrating simulation models’ parameters in real time and for improving data assimilation
results.

Keywords:
Data assimilation, Dynamic data driven simulation, Online model calibration, Discrete event simulation,
Particle filters

1. Introduction

Simulation models have long been used to study dynamic systems. As real-time data collected from
dynamic systems become more and more available, there is growing interest in using real-time data to
improve the accuracy of simulation-based studies. A new paradigm of Dynamic Data Driven Simulation
(DDDS) is emerging that allows a simulation system to continuously and systematically assimilate real-
time data to support real-time prediction and analysis for dynamic systems [1]. Four activities are identified
in DDDS, including dynamic state estimation, online model calibration, external input modeling &
forecasting, and simulation-based prediction/analysis. In particular, the online model calibration activity
calibrates a simulation model’s parameters based on real-time data to make the model more accurately
reflect the real-time characteristics of a system. This calibration is carried out in an online fashion (i.e., runs
in parallel with a system in operation) due to the following two reasons. First, it is common for some
characteristics of a system to be known only after the system operates in the real field. This means one
cannot simply assign some “typical” or “average” values to the corresponding model parameters. Instead,
the parameter values need to be estimated in real time based on how the system actually works. Second,
complex dynamic systems may dynamically shift their characteristics due to changes in the operating
environments. For these systems, the corresponding model parameters are not static and need to be
dynamically estimated based on real-time data from the system.

How to carry out online model calibration remains to be an active research topic. In some cases, one
may estimate a parameter’s value directly from measurement data. For example, the production rate of a
manufacturing machine may be a parameter that needs to be calibrated in real time based on how the
machine works in the field. The value of this parameter may be derived directly from the measurement data
of job processing time (assuming such measurements are available). More generally, due to the existence
of data noise and the unobservability of many model parameters (see discussions in [1]), it is undesirable

mailto:xhu@gsu.edu

or infeasible to derive parameter values directly from measurement data. This asks for systematical methods
to carry out parameter estimation. An effective approach is to treat the parameters that need to be estimated
as part of the state vector and formulate a joint state-parameter estimation problem, and then employ data
assimilation techniques to estimate the state and parameters at the same time.

Data assimilation is a methodology that combines measurement data with a dynamic model to optimally
estimate the evolving state of a system. It was originally developed in the field of meteorology and has
gained popularity in many other science and engineering fields, such as geosciences, oceanography,
hydrology, and robotics. The work of data assimilation can be classified into variational data assimilation
and sequential data assimilation. This paper focuses on sequential data assimilation that assimilates data
and corrects the state estimate each time when a new measurement becomes available. Examples of
sequential data assimilation include Kalman filter-based data assimilation and particle filter-based data
assimilation. The former assumes a continuous state space with Gaussian probability density and that the
state transition model and measurement model are linear Gaussian models [2]. These assumptions do not
work for discrete event simulations, which typically use discrete state variables and have non-linear non-
Gaussian behavior. On the other hand, particle filters [3,4] work with arbitrary probability density functions
and do not rely on specific format and characteristics of the underlying models. This makes it a desirable
method to support data assimilation for discrete event simulations.

This paper presents a particle filter-based data assimilation method for online model calibration in
discrete event simulation. We define the joint state-parameter estimation problem for online model
calibration, and describe the particle filter-based data assimilation method. The developed method is applied
to a discrete event simulation of a one-way traffic control system. A series of experiments are designed to
demonstrate the different aspects of data assimilation for online model calibration, covering data
assimilation with and without parameter estimation, calibration of a static parameter, and calibration of a
dynamic parameter. The contributions of this paper are two-fold. First, it defines the online model
calibration problem in a formal way and presents a general particle filter-based data assimilation method
for online model calibration in discrete event simulation. Second, it evaluates the different aspects of online
model calibration using a concrete discrete event simulation example. The evaluation and analysis based
on this example demonstrate the effectiveness of online model calibration and provide guidelines to apply
the developed method to other simulation applications.

The remainder of this paper is organized as follows. Section 2 describes the related work of online
model calibration. Section 3 presents the online model calibration problem and the particle filter-based data
assimilation method. Section 4 describes the one-way traffic control system application. Section 5 presents
the experiment results covering the different aspects of online model calibration. Section 6 discusses several
aspects related to this work and concludes this work.

2. Related Work

Within the simulation field, model calibration refers to the process of adjusting the parameters of a
simulation model to make it better model a system under study. This can be done in both an offline fashion
and online fashion. Offline calibration uses historical data to calibrate a simulation model before the model
is used. It is often formulated as a global optimization problem using historical data that may span a long
period of time. On the other hand, online calibration uses real-time data from a system to dynamically adjust
a simulation model to make it match the real-time characteristics of a system. It typically works in an
iterative way, where each iteration uses newly arrived real-time data to continuously update the model
parameters.

The majority work on model calibration belongs to offline calibration. Offline calibration is considered
part of the model evaluation process, which is usually divided into three activities: verification, calibration,
and validation [5]. Several methods of offline calibration were described in [6], including parameter sweeps,
hill climbing, simulated annealing, and genetic algorithms. The work of [7] provided a review of validation
and calibration methods within the context of health care modeling and simulation. It discussed the different
components of model calibration that include calibration parameters, calibration targets, objective functions,
and algorithm for optimizing. An incremental mixture approximate bayesian computation method is

developed and applied to the problem of microsimulation model calibration [8]. Another work of [9]
developed an agent-based model calibration framework, which is based on approaches from the fields of
uncertainty quantification and model optimization. An example of calibrating agent-based models of
innovation diffusion is presented in [10], which uses a gradient-based calibration method. Other examples
of offline calibration include building energy simulation calibration [11,12,13] and traffic simulation
calibration [14,15].

Compared to offline calibration, less work exists for online model calibration. An online calibration
algorithm was developed to support real-time calibration of large-scale traffic simulators [16]. The
developed algorithm is based on the extended Kalman filter framework. The work of [17] developed a joint
state-parameter estimation method using ensemble Kalman filter to support online calibration of a dynamic
model for the application of real-time wind farm control. The topic of online model calibration received
more attention recently due to the growing interest in digital twin technologies. A machine learning-based
method was developed to support online autonomous calibration of digital twin models for nuclear power
plants [18]. The work of [19] presented a particle filter-based method for continuous calibration of a digital
twin model, and compared its performance with static and sequential Bayesian calibration approaches.
Another work of [20] developed a Bayesian calibration method and applied it to online model calibration
using real measurement data from a lab-based demonstrator bridge. None of these works focused on online
model calibration for discrete event simulations.

The activities of offline calibration and online calibration are not isolated from each other. An in-depth
discussion about the difference and relationship between offline calibration and online calibration can be
found in [1]. In particular, offline calibration provides a baseline model, from which online calibration is
carried out. From a simulation project lifecycle point of view, offline calibration belongs to the modeling
phase where the goal is to develop a high-quality model that match with historical observations. After the
model is developed, online calibration can be carried out using real-time data collected from a system. The
online calibration starts from the model calibrated from offline calibration.

3. Particle Filter-based Data Assimilation for Online Model Calibration

3.1. The Online Model Calibration Problem: Joint State-Parameter Estimation
The goal of online model calibration is to dynamically calibrate a simulation model’s parameters based on
real-time measurement data to make the model more accurately capture the characteristics of a system in
operation. It is essentially an estimation problem to estimate the parameters based on real-time measurement
data. As an estimation problem, this is usually formulated in a probabilistic way. Let y; := y(¢;) be the
measurement data y at time ty; Vo.x := (¥(to), y(t1), ..., y(tx)) be the sequence of measurements up to
time t;. Let 8 be the parameter vector to be calibrated. We define 8, := 6(t;) be the parameter vector 6
at time t;. Then the online model calibration problem can be defined as
POk |Yo:x), ey
i.e., computing the probability distribution of 8 conditioned on the measurements y,.,. This is carried out
in an iterative way: when new measurement data become available at time ¢, 1, a new calibration is carried
out to update the estimate of the model parameters.
Online model calibration can be carried out using data assimilation methods. Data assimilation provides
a systematical way to estimate a system’s state from observation data (also called measurement data). In
data assimilation, a dynamic system is generally formulated as a dynamic state-space model, which is
composed of the state transition model of Equation (2) and the measurement model of Equation (3) as
described below:
X = freO—1, Ui Vi) (2)
Vi = G (X, &) 3)
where x;,_; and x;, are the state vectors of step k — 1 and step k, respectively; u; is the external input
vector of step k, and yy, is the measurement vector of step k. Due to the probabilistic nature of state
estimation, the state transition model (Equation (2)) is also called the state transition density and is

expressed by p(xy | xx—1, Uy); the measurement model (Equation (3)) is also called the measurement density
and is expressed by p (yx |xx).

The function f; () defines the dynamics of the state transition and the function g, () defines the mapping
from the state to the measurement. The y,, and &, are two independent random vectors modeling the noises
(or uncertainties) involved in the state transition and measurement. The former is called the process noise
and the latter is called the measurement noise. At step k, the sequences of external inputs u4.; (i.e., input
data) and measurements y;.; (i.e., measurement data) up to this step are assumed to be known. The initial
state x; is assumed to be known too based on some prior knowledge. Nevertheless, the states x;.; are
hidden and cannot be observed directly. They need to be estimated.

The state transition model (2) captures the knowledge about how the dynamic system evolves its state
over time. This knowledge is important for data assimilation as it can generate a prediction of the belief of
the state at a future time. A simulation model specifies a systems’ state transition and thus can serve as a
state transition model. The measurement model (3) links state with measurement data so that information
from the latter can be utilized to update the (predicted) belief of the state. A measurement model can be
viewed as the model of the sensors that collect the measurement data. It describes, at some level of
abstraction, how the state x;, causes sensor measurement y;. These two models each plays unique roles in
estimating the dynamically changing state of a system.

To applying data assimilation to online model calibration, a common approach is to formulate it as a
joint state-parameter estimation problem. In this approach, the to-be-estimated parameters are included as
part of the state vector that needs to be estimated. Let x;, be the n-dimensional state vector and 8, be the
h-dimensional parameter vector that need to be estimated at step k. Typically, the set of parameters that
need to estimated is a small subset of all the parameters of a dynamic model. We define an augmented state
vector z;, by appending the parameter vector 8, to the state vector xy, i.e.,

X
Zx = (Qi) or z = (Xyh0 Xa40 " Xnjer 011 O2 6 On)T “4)
where z; is a n + h dimensional vector, x;; (i = 1,...,n) is the ith element of the state vector, and
0;x G = 1,..., h) is the jth element of the parameter vector.

The dynamics of the state x; is defined by the state transition model (i.e., the simulation model). To
formulate the state-space model for the joint state-parameter estimation, we need a way to define how the
parameters 0;, evolve over time. A popular treatment is to add small random perturbations to the parameters
in each step of the transition [21]. Typically, the random perturbations are modeled by zero-mean Gaussian
distributions with some specified variances for each parament element, i.e.,

O = Ox-1 + Gk (5)
$e~N (0, Wy), (6)
where {; are the random perturbations modeled as zero-mean Gaussian noises, and W, is a diagonal
covariance matrix for the Gaussian noises that has variance 0]-2 for the jth parameter. The initial parameter
values can be set based on information from the offline model calibration. Adding random perturbations to
the parameter values allows generating new parameter values in each step of the data assimilation. This
supports robust estimation even if the initial values are not close to the true values. Large variances of the
Gaussian noises lead to large changes of the parameter values in each step. The large variances may be
necessary if the estimation has not converged or if one expects the parameter values change dynamically in
a fast pace. Otherwise, small variances are preferred. For example, when the parameter under estimation is
expected to be a static parameter, a small variance will lead to more stable estimation results.

Combining the parameters’ dynamic model Equation (5) with the state transition model Equation (2),
we have a new state transition model for the augmented state vector zy:

2k = freGr—1, W Vi i) = (fk(xkt_gl' ek__i_léuk’)/k))- (7
k-1 T Sk

Note that the f;, () function in Equation (7) explicitly lists the model parameters 8, _; because the state

transition of step k should use the estimated model parameters from step k — 1. In joint state-parameter

estimation, the model parameters at different steps need to be differentiated because their values vary over
time.

Using the augmented state vector z,, the measurement model can be rewritten to

Vie = Gk(Zr, &) £ g (X, &) (®)

where G () maps from the augmented state vector z, to the measurement vector yj. The Gy (zx, &) is
equivalent to g (xx, &) because yy, is completely defined by the state x;, due to the Markov assumption of
the state space formulation (see details in [1]).

Equations (7) and (8) together form the state-space model for the joint state-parameter estimation
problem.

3.2. Particle Filter-based Data Assimilation
The state space formulation described in the previous section allows us to carry out data assimilation to
estimate the state variables and model parameters at the same time. Due to the discrete state variables and
the non-linear non-Gaussian behavior of discrete event simulation models, we develop data assimilation
based on particle filters. Specifically, we choose to employ the bootstrap filter algorithm [3,4] to carry out
the data assimilation. The bootstrap filter algorithm uses the state transition model (i.e., the state transition
density) to evolve particles during the sampling step. For a discrete event simulation application, the state
transition model is defined by the discrete event simulation model. Another major advantage of the
bootstrap algorithm is that it simplifies the computation of particles’ importance weights, where the weight
is defined by the likelihood probability that can be computed from the measurement model (i.e., the
measurement density).

Particle filters represent the belief distribution of a state vector under estimation using a set of weighted
samples, each of which is called a particle. A particle is a concrete instantiation of the state vector. Let

(L)1s the

ith particle, and Wk)is the non-negative importance weight of the ith particle. The importance weights from
all the particles sum to one. The bootstrap filter implements a sequential importance sampling with
resampling (SISR) procedure. It uses the state transition density p(xy |x,_1, u) as the proposal distribution
in importance sampling, and invokes resampling in every step. The bootstrap filter algorithm is shown
below, where k denotes the time step and y;™® denotes the measurement data at step k.

{(x,(:), Wkl)) |i= 1 ., N} be the set of weighted particles, where N is the size of the particle set, x

The Bootstrap Filter Algorithm
1. Initialization, k = 0:
o fori=1,..,N,sample xéi) ~p(x0).
e Advance the time step by setting k = 1.

2. Importance sampling step (input: {xk 1 N o U, Yy

=D

e for i =1,...,N, sample (i.e., predict) new state X, ~ using the state transition

model (the simulation model): p(xy |xk_1, Ug).
e for i =1,...,N, compute the importance weight as the likelihood

probability: " = p (v = y"|z”).
e for i =1,...,N, normalize the importance weights: w,~ = Wkl) /ZN 1ng;) .

3. Resampling step (input: {(xlg),wkl))}

e Resample N particles {x;;)}N 1accordmg to the normalized weights.
4. Advance the time step and start a new cycle:

o Setk « k+1,and go to step 2.

The algorithm starts from an initialization step that generates N initial particles following the belief of
the initial state p(x,). Afterwards, each iteration of the algorithm starts from a particle set {x,(fz1 N,
representing the posterior belief from the previous iteration. In the importance sampling, each particle uses
the state transition model (which is the simulation model) to predict its next state. The importance weight
of the particle is then computed as the likelihood probability based on the predicted state and the
measurement data y;*® of this step. A higher likelihood probability leads to a larger weight and a lower
likelihood probability leads to a smaller weight. The importance weights of all the particles are then
normalized. The outcome of the importance sampling is a set of weighted particles {f,g), W,El)}, which act
as an intermediate approximation for the posterior distribution at step k. In the resampling step, N offspring
samples are drawn with probability proportional to the normalized weights. The particles with large weights
are selected multiple times while the particles with small weights may be eliminated. The set of resampled
particles represent the final posterior distribution of the state at this step. This set of particles also serve as
the input for the next iteration of the bootstrap filter algorithm.

Initialization of the bootstrap filter algorithm needs to generate N initial particles following the belief
of the initial state. When knowledge about the initial state is available, the initial set of particles can be
generated using that knowledge. Otherwise, a common practice is to generate the initial particles randomly
covering a wide state space in a uniform way. For the model parameters that need to be calibrated online,
their initial values may be sampled around the baseline values resulting from the offline model calibration.

Detailed implementation and explanation of the bootstrap filter algorithm can be found in the literature
(e.g.,[1, 2, 22]). In particular, to introduce data assimilation to broader audience in the modeling and
simulation community, the work of [22] offers a tutorial on Bayesian sequential data assimilation and
particle filtering within the context of discrete event simulation. Other related works include [23, 24, 25,

26], which studied various aspects of particle filter-based data assimilation for discrete event simulations.

4. The One-Way Traffic Control System

To demonstrate online model calibration, we consider the one-way traffic control system described in [27]
as an example. The one-way traffic control system is illustrated in Figure 1. During a road construction, the
one-way traffic control is managed by two persons deployed to the west and east ends of the road segment.
Each person carries a STOP/SLOW hand-held traffic paddle to control the traffic, where the STOP sign
means vehicles should stop and wait, and the SLOW sign means vehicles can slowly move ahead to pass
the road segment. It is assumed that the two persons coordinate and always use the STOP/SLOW signs in
opposite directions: when one uses the STOP sign the other would use the SLOW sign. In the following
description, we refer to the STOP sign as the red traffic light and the SLOW sign as the green traffic light,
and refer to vehicles’ moving directions as east-moving (moving towards east) and west-moving (moving
towards west). During the time when the traffic light is green on a specific direction (east-moving or west-
moving), the arrival vehicles moving in the opposite direction are queued. The queues at the west side and
cast side of the road segment are named as the west-side queue and east-side queue, respectively.

west-moving one-way west-moving observer
departure vehicles traffic control arrival vehicles location
e g YY) v
B & ‘i‘ .‘i§§§§i3 "D @ b (I)
%L East-side queue
west-side queue
——
) - ‘;ID @0 ¥ one-way traffic road i g’
east-moving east-moving
arrival vehicles departure vehicles

Figure 1: The one-way traffic control system [27]

To ensure construction workers’ safety, only one vehicle is allowed to move on the one-way traffic
control road at any time. During a green light period, the traffic-control person on the corresponding side
would signal a vehicle to move ahead only after the previous vehicle has finished crossing the road segment.
The one-way traffic control system switches the traffic lights under the following two conditions:

1. Ifthe elapsed time for the current moving direction has reached a pre-defined threshold (120
seconds in this example) and the opposite moving direction has cars waiting, switch the traffic
light. Note that if the opposite moving direction has no car waiting, the traffic light does not
switch even after the 120-second threshold. Also note that the traffic light switches only after the
road segment is cleared if there is a car already moving on the road.

2. If the current moving direction has no car waiting and the opposite moving direction has cars
waiting in the queue, switch the traffic light even if the 120-second threshold is not reached.

The vehicles at both sides of the road segment arrive randomly and independently, modeled by Poisson
distributions. For the east-moving vehicles, the Poisson distribution has an arriving rate Agqga0p = 1/7 (1
car per 7 seconds in average). For the west-moving vehicles, the arriving rate is A, esemop = 1/10 (1 car
per 10 seconds in average). This means there are more east-moving vehicles than west-moving vehicles.
The time it takes for a vehicle to cross the road segment is also a random number, modeled by a truncated
normal distribution that has the mean y.,,ssr = 4.0 (seconds), variance 62 = 0.52, and lies within the
range of [Ucrosst = 1, Uerosst + 11

To collect measurement data from the system, an observer (sensor) is deployed at the location on the
east end of the one-way traffic road that is marked as the “observer location” in Figure 1. The observer is
able to count the number of vehicles moving crossing its location for both the east-moving departure
vehicles (named as eastMoving departure) and west-moving arrival vehicles (named as
westMoving_arrival). The observer reports data every 30 seconds. It does not record the specific time that
a vehicle crosses the observation location — all it reports is the total number of vehicles that have departed
and arrived in the past time interval. The data reported by the observer is noisy, with a 10% noise added to
the actual number of vehicles crossing the observer location.

We use a DEVS [28]-based model to model the one-way traffic control system. This is a DEVS coupled
model that includes three atomic models: eastMovCarGenr, westMovCarGenr, and oneWayTrafficRoad,
as described below.

o castMovCarGenr: generates the east-moving traffic arriving at the west side of the road segment.

Traffic are generated based on a Poisson distribution with rate A,g5ip00 = 1/7.

o westMovCarGenr: generates the west-moving traffic arriving at the east side of the road segment.
Traffic are generated based on a Poisson distribution with rate A, esep00 = 1/10.

o oneWayTrafficRoad: models the one-way traffic road segment, including the traffic control logic
as well as the time for vehicles to cross the road segment. This model has two input ports
eastMovArival and westMovArrival that receive vehicles generated from the eastMovCarGenr
and westMovCarGenr, respectively. The vehicles finishing crossing the road segment are sent out
through the eastMovDeparture and westMovDeparture output ports. An important parameter of
this atomic model is the average cross time p.,-,ss7 as described above.

Figure 2(a) shows the results of a specific simulation scenario that runs for 1000 seconds of simulation
time. The values of four state variables westSideQueue size, eastSideQueue size, TrafficLightState, and
elapsedTimelnGreen are displayed over time. The frafficLightState has two possible values: “east-moving
green” or “west-moving green”. The former is displayed as value 20, and the latter is displayed as value 0.
The elapsedTimelnGreen is the elapsed time in the “east-moving green” or “west-moving green” state. It
is a continuous variable with non-negative values. The elapsedTimelnGreen is reset to zero whenever the
traffic light switches.

——— westSideQueue eastSideQueue TrafficLightState elapseTimelnGreen —e— westMoving_arrival eastMoving_departure

()
NTEAA A N

1000

25 140

=

O R, N WA U N ® OO

120
20

100

15 80

‘ W/ M A

Elapsed time in green (seconds)
Number of Cars

Queue Length and Traffic Light State

e (seconds) Time (seconds)

(a) Simulation results (b) Measurement data

Figure 2: Sample simulation scenario and measurement data

One can see that the traffic light switches irregularly, governed by the traffic control rules and influenced
by the number of vehicles waiting on the east side and west side queues. When both queues have vehicles,
the traffic light switches after elapsedTimelnGreen reaches 120 seconds. When the queues on both sides
are small, the traffic light may switch frequently because once all the vehicles on one side pass the road
segment the traffic light switches immediately to allow vehicles on the other side to use the road. One can
also see that when the TrafficLightState is “east-moving green” (value 20), the westSideQueue decreases
because vehicles on the west side can move forward. A similar pattern can be observed for the
eastSideQueue.

Figure 2(b) shows the measurement data eastMoving departure and westMoving arrival for the
simulation run shown in Figure 2(a). Since the measurement data is collected every 30 seconds, 33
measurement data were collected over the 1000 simulation time. One can see that the measurement data for
both eastMoving departure and westMoving arrival varied between 0 and 9. The measurement data
(indirectly) reflect the state of the one-way traffic system. For example, when the traffic light state is “east-
moving green” and there are many vehicles waiting on the west side queue, the eastMoving departure
measurement would have relatively large values for several steps in a row (see the circled measurements in
Figure 2(b) as an example). Despite the information carried by the measurement data, one cannot directly
derive the state values (e.g., the exact number of vehicles in the west-side or east-side queues) from the
measurement data.

Data assimilation is useful for this application because an accurate state estimation from real-time
measurement data allows one to initialize simulation runs using the estimated real-time state to predict the
future behavior of the system. Such predictions are useful for supporting real-time decision making, e.g.,
to direct traffic away if the predicted waiting time for crossing the road segment is too long. The work of
[27] provides a concrete example of using data assimilation to support simulation-based real-time
prediction/analysis for this system.

5. Experiment Results

5.1.1dentical Twin Experiment

Based on the one-way traffic control system described in Section 4, we carry out a series of experiments to
demonstrate different aspects of online model calibration. We use the identical twin experiment design [1]
to carry out the experiments. In the identical twin experiment design, a simulation (referred to as the “true
system”) is first run and the corresponding data are recorded. The measurement data obtained from this
simulation are regarded as coming from the “true system” (also called the “real system”), and the state
trajectory recorded from this simulation and the parameters used in this simulation are considered the “true”
state and “true” parameters, respectively. Using the measurement data collected from the “true system”,
data assimilation is then carried out and the state/parameter estimates are checked against the true

state/parameters. The first simulation that serves as the “true system” is often based on the same simulation
model as the one used in data assimilation. Nevertheless, it has a different model configuration, e.g.,
different initial state, input trajectory, random number seeds, or model parameters for generating behaviors
that are “unknown” to the data assimilation. In this way, it acts as a surrogate for the real system and
generates synthetic measurements to be assimilated. To differentiate the model used in the “true system”
from the one used in data assimilation, we name the former the “frue system” model and the latter simply
the simulation model.

Figure 3 illustrates the identical twin experiment design used in this paper. For the one-way traffic
control system, the dynamic behavior is driven by the east-moving and west-moving traffic as well as the
time for vehicles to cross the road segment, all of which are influenced by the random number generation
in the model. By changing the seeds of random number generation, we can produce different simulation
scenarios. Based on this idea, in the identical twin experiment we set up the “true system” model using a
specific set of random number seeds that are unknown to the data assimilation. The different random
numbers between the true system model and the simulation model lead to different model behaviors
between the two. Without knowing the actual behavior of the true system model, the data assimilation
estimates the true system state by assimilating measurement data from the true system.

Data assimilation activity 1:
The “Real System” Data Assimilation State estimation (without
/ online model calibration)

The “true system” model r;aizsurement The simulation model
Data assimilation activity 2:
(Parameter:ufiie) (Parameter: ug%sr) \ Joint state-parameter
estimation (using online

model calibration)

Figure 3: The identical twin experiment design

Besides the different random number seeds, the identical twin experiment design also focuses on an
important model parameter: U 557, and make the true system model and the simulation model to have
different values for this parameter. The goal is to study the impact of this model parameters on the data
assimilation results and to evaluate how well the joint state-parameter estimation can estimate this
parameter. Recall that the parameter y.,.,ssr Specifies the average time for vehicles to cross the road
segment (i.e., the mean of the truncated normal distribution from which vehicles’ crossing time is sampled).
The default value of y,pssr 18 4.0. A smaller y.,-,ssr means vehicles pass the road segment faster, and thus
leads to less vehicles in the queues on both sides of the road segment. A larger p.,.,ssr means vehicles pass
the road segment slower, and thus leads to larger queue sizes on both sides.

In the following description, we use ufr%é . to refer to the parameter of the true system model, and

U4 o to refer to the parameter of the simulation model. Specific values of ufr e and u24 .+ vary
between experiments and are described in each experiment section.

We consider two types of data assimilation activities (shown on the right side of Figure 3) as described
below.

e Data assimilation activity 1: state estimation without online model calibration (i.e., without
parameter estimation). This activity aims to demonstrate the effectiveness of data assimilation and
the impact of imperfect model parameters on data assimilation results. In this activity, the true
system model and the simulation model may use different model parameters.

e Data assimilation activity 2: joint state-parameter estimation (using online model calibration). In
this activity, the ufle.. used by the true system model is unknown to the simulation model. The
goal is to show how well the data assimilation is able to estimate this parameter over time, and how

the joint state-parameter estimation can improve state estimation results.

In all the experiments, the measurement data eastMoving departure and westMoving arrival are
collected every 30 seconds. The values of the measurement data depend on the specific behavior of the true
system model, which is driven by the arrival vehicles on both sides of the road segment (controlled by the
random number seeds of the traffic generation models). To save space, we do not show the specific values
of the measurement data.

All the experiments consider 200 data assimilation steps (total 6000s because each data assimilation
step is 30s). When showing the state estimation results, we focus only on the westSideQueue size and
eastSideQueue size because they have the most impact on vehicles’ delay time for crossing the road
segment. The particle filtering algorithm in all the experiments uses 4000 particles.

5.2.Data Assimilation with Imperfect Model Parameter
This set of experiments aim to demonstrate the effectiveness of data assimilation for state estimation
without using online model calibration. To evaluate the impact of imperfect model parameters on state
estimation results, we intentionally make the ulT¥ .. different from the u24 . The mismatch of these two
parameters, in a way, represent that a simulation model does not model a real system perfectly.
Specifically, the true system model uses different u{T% . to generate measurement data in different
experiment, but the simulation model in all the experiments use the same u24 ... In this way, the
measurement data is generated from a true system that is different from the simulation model used in data
assimilation. We then study how the different levels of discrepancy between the ul"“é.. and 24 ...
influence the state estimation results. Specific settings of the experiments are described below.
e True system model: each experiment uses a different 74 . that varies from 3.0 to 5.0 with an
0.25 interval, i.e., uirte . € {3.0,3.25,3.5,3.75,4.0,4.25,4.5,4.75, 5.0}.

e The simulation model: all experiments use the same u24..r = 4.0.

Note that the random number seeds used in the true system model and the simulation model are also
different. The specific values of the random number seeds for all the experiments are omitted in this paper.

Figure 4 shows the state estimation results for the westSideQueue and eastSideQueue from three data
assimilation runs whose uf%¢.. are 3.5, 4.0, and 4.5, respectively. The state estimates in each data
assimilation step is computed as the average from all the particles (after the resampling), marked as
DA _aveWestSideQueue and DA_aveFEastSideQueue in the figure. The corresponding “true” states for the
two state variables are also displayed in the figure, marked as real westSideQueue and real eastSideQueue.

As can be seen, for the data assimilation run where puT¥e . = 3.5 and pu24 ..r = 4.0 (the top diagram),
the true west-side queue and east-side queue oscillate but stay in a relatively low level (less than 10). This
is because the uf7%¢ . is small and vehicles can pass the road segment fast, and thus leading to few vehicles
in the queues. For this experiment, the data assimilation accurately estimates the small number of vehicles

as well as their oscillations in the two queues, even though the simulation model’s u24 .o is larger than the

true system model’s uT%e .. This is because the measurement data carry information that reflect the
frequent switches of the traffic light due to the relatively small number queued vehicles on both sides of the
road segment. Combining this information with the knowledge of how the system works (defined by the
simulation model), the data assimilation is able to estimate the traffic light states and the queue sizes over
time. We note that an accurate estimation does not mean the estimated state perfectly matches the real state.

Instead, it means it has relatively small errors.

DA without Parameter Estimation (u&74¢.. = 3.5, u24 . = 4.0)
14
—s—real_westSideQueue —+—real_eastSideQueue
12
DA_aveWestSideQueue DA_aveEastSideQueue
10 t
X
5 og st
[1 e
> ! |
é 6 \ Mﬁ “11 ‘
Il T8
4 [1
n” A A J‘m «T* " » H ’ ,s ﬁ
> A yL« W A i fr sl me AL u%[
A o\ i ol ph P ,1 s
0 I&ﬂd Y 3 v »&m Y‘..’.l[ﬂ(il ¥ Muﬂ
1000 2000 3000 4000 5000 6000
Time (seconds)
DA without Parameter Estimation (uf%é.. = 4.0, u24 ... = 4.0)
45
40 —=—real_westSideQueue ——real_eastSideQueue
35 DA_aveWestSideQueue DA_aveEastSideQueue
o 30
N
3 25
>
[
3
g

20 f\
15
1 .‘
f\ [" f A

10 Bl : \

‘5‘ "M‘ ,-:JI: s':\.ﬁ lﬁf“‘ ¢ 3 y

A b A N r‘,:r-.«
0

(%)

HV

'hn Xy

'ﬁ. W
1000 2000 3000 4000 5000 6000

Time (seconds)

DA without Parameter Estimation (ufr4¢.. = 4.5, u24 . = 4.0)

160

140 —a— real_westSideQueue ——real_eastSideQueue

120 DA_aveWestSideQueue DA_aveEastSideQueue
S 100
g 80
[
3 60

40
v
o «‘”’w’“ g v o
.. ,1”'. o A :7"1’ "‘«,"..‘. P
2000 3000 4000

Time (seconds)

Figure 4: State estimation without using online model calibration: (top) state estimation results when
pbrue = 3.5 and u24 .r = 4.0; (middle) state estimation results when plr¥e . = 4.0 and u24 .. = 4.0;
(bottom) state estimation results when uf7%e.. = 4.5 and u24 .. = 4.0.

For the data assimilation run where uXr%¢. = 4.0 and u24 .., = 4.0 (the middle diagram), the ufr%e_.
becomes larger compared to the previous experiment. This means it takes longer for vehicles to cross the
road segment and thus it is likely for more vehicles to be queued. In particular, during time between 3000s
and 5000s, there are significant number of vehicles queued on both sides in the real system. The west-side
has a longer queue because vehicles on this side arrive more frequently. For this experiment, the data
assimilation is able to estimate the east-side queue accurately almost all the time. This is because the

westMoving_arrival measurement data has direct information about the number of vehicles arrived on the
east side. For the west-side queue, between time 3500s and 5100s, the estimated queue size is larger than
the real queue size. During this period of time, the measurement data indicate that there are many vehicles
queued on the west side; nevertheless, it does not carry information about the actual number of queued
vehicles. This results in some errors for the west-side queue estimation. Nevertheless, by the time of 5100s,
the real system’s west-side queue is cleared and that is reflected in the measurement data. This allows the
data assimilation to adjust its estimation of the west-side queue and correctly reset the estimation to close
to zero. This example illustrates how data assimilation can combine information from both the measurement
data and simulation model to estimate the dynamically evolving system state.

Finally, for the data assimilation run where 7% = 4.5 and u24 . v = 4.0 (bottom diagram), it takes
even longer time for vehicles in the real system to cross the road segment. This causes many vehicles to be
queued on the west side of the road segment. For this experiment, the data assimilation is still able to
estimate the east-side queue. However, for the west-side queue, although the estimation indicates the west
side queue has many vehicles, the specific estimated value is much smaller than the real value. This is
because the u24 .r = 4.0 is smaller than the ulT¥¢. = 4.5 used by the true system model. The smaller
ula .+ means the data assimilation assumes vehicles pass the road segment faster than they do in the real
system, and thus leading to smaller estimation of the queue size. In this experiment, one can see that the
data assimilation provides some level of state estimation; however, one of the state variables has significant
estimation errors due to the inaccurate model parameter of 24 ...

To quantitatively show the impact of imperfect model parameters on state estimation results, we

systematically change the utT¥¢ . from 3.0 to 5.0 with an increment of 0.25 but keep the u24 ... to be a

constant of 4.0. For each set of parameters (e.g., u%é.. = 3.0 and u24 .. = 4.0), we carry out 20
independent data assimilation runs and compute the Root Mean Square Error (RMSE) of the data
assimilation results. The RMSE is calculated based on the differences between the estimated state and the
corresponding true state for the westSideQueue and eastSideQueue state variables. Since the data
assimilation results are represented by a set of particles, we calculate the RMSE using the estimations from
all the particles. For each data assimilation run, a RMSE is first calculated by averaging all particles’ RMSE
in each data assimilation step and then the overall RMSE of the data assimilation run is computed as the
average of the RMSEs from all the data assimilation steps (the first 10 steps are excluded from the
computation because it takes several steps for the data assimilation to converge). After obtaining the
RMSEs from all the 20 runs, we remove the largest and the smallest RMSE values and then compute a final
average RMSE using the remaining 18 values.

The blue curve (marked as “DA without Parameter Estimation”) in Figure 5 shows the computed RMSE
for the different sets of parameters. The horizontal axis represents the different uX7%¢.. values (3.0, 3.25,
3.5,3.75,4.0,4.25,4.5,4.75,5.0). The u24 . is always 4.0 and thus is not shown in the figure. The vertical
axis represents the RMSE value. Note that Figure 5 also shows the results for the “Joint State-Parameter
Estimation” (the red curve), details of which will be described in the next section.

RMSE for the westSideQueue and eastSideQueue Estimation

—#— DA without Parameter Estimation

Joint State-Parameter Estimation

20 -
N /
P L

3 3.25 35 3.75 4 4.25 4.5 4.75 5

true
HerossT

Figure 5: Quantitative results of state estimation with and without parameter estimation. The RMSEs are
computed from 20 independent data assimilation runs for each case.

One can see that for the cases where ufr¥¢ . equals to or is less than 4.0, the RMSEs stay at a relatively

low level even though the u24 . . is still different from the uT¥ .. This is because in these cases the
vehicles in the real system can pass the road segment fast and thus there are few queued vehicles on both
sides. The small number of queued vehicles result in frequent switches of traffic light, which are reflected
by the measurement data from the real system. By assimilating these measurement data, the data
assimilation is able to limit the estimation error in a relatively small range, as exemplified by the top and

middle diagrams of Figure 4. For the cases where ufT%¢ . is larger than 4.25, the RMSE increases: the larger

the pulT¥e ., the higher the RMSE. This is because for larger uflie ., the discrepancy between the ufr%e .
and the u24 ..+ becomes larger. A larger discrepancy leads to higher state estimation errors, as exemplified
by the bottom diagram of Figure 4. For these cases, the impact of the imperfect model parameter of pposst

is significant.

5.3.Joint State-Parameter Estimation for a Single Static Parameter
In this set of experiments, instead of using a fixed model parameter that may be incorrect, the data
assimilation assumes the model parameter is unknown and needs to be calibrated based on real-time
measurement data. In other words, the data assimilation carries out join state-parameter estimation. Similar
as the previous experiments, we focus on the p..,ssr parameter and make the true system model use
different ufT#¢ . to generate measurement data. The u5 %€ . considered in this section is a static parameter
that does not change over time. The simulation model assumes the 24 .., is unknown and estimates it
together with the state variables. Specific setting of the experiments is given below.

e True system model: each experiment uses a different 74 . that varies from 3.0 to 5.0 with an

0.25 interval, i.e., uirte . € {3.0,3.25,3.5,3.75,4.0,4.25, 4.5,4.75, 5.0}.

e The simulation model: u2% .., is unknown and needs to be estimated.

Figure 6 shows the results of three data assimilation runs where the true system models use exactly the
same configurations as the three cases shown in Figure 4, respectively. In other words, the true system
models’ ufr¥e . are 3.5, 4.0, and 4.5, respectively, and the measurement data and the true states are the
same as the ones shown in Figure 4. The difference is that the data assimilation runs here use joint state-
parameter estimation as opposed to using a fixed parameter u24 .. = 4.0. Both the state estimation results
(for the westSideQueue and eastSideQueue) and the parameter estimation results are shown. Similar as
before, estimation results in each step is computed as the average from all the particles (after the
resampling). The corresponding true states and true parameter are also displayed in the figure.

One can see that the joint state-parameter estimation in all three cases were able to converge to the true
parameter values after some time. The estimated parameter values do not stay constant over time but are
close to the true parameter values. On the state estimation side, when pufl%e.. is 3.5 and 4.0, the state
estimation results have similar errors as the ones shown in Figure 4. Nevertheless, for the case when
plrue . = 4.5 (the bottom diagram), the joint state-parameter estimation leads to much more accurate
estimation results compared to the one shown in Figure 4. This is because by correctly estimating the
ukrue . parameter, the simulation model is able to more accurately simulate the dynamics of the system and
thus lead to more accurate estimation results. For this specific case, by using an estimated u24 ..+ of 4.5 as
opposed to an incorrect value of 4.0, the data assimilation knows that it takes longer time for vehicles to
cross the road segment, and thus estimates that the west-side queue has more queued vehicles. This example
demonstrates how the online model calibration can significantly improve state estimation results.

To quantitatively show the impact of the join parameter-state estimation on state estimation, we use the
same way as described in Section 5.2 to compute the RMSEs of the estimated westSideQueue and
eastSideQueue based on joint state-parameter estimation. The results are shown in Figure 5 (the red curve
that is marked as “Joint State-Parameter Estimation™). One can see that for the cases when ptT%é . equals
to or is less than 4.0, the RMSEs from the joint state-parameter estimation are about the same as the data

assimilation without using parameter estimation (the blue curve). This is because in these cases the data

assimilation without parameter estimation has relatively small errors already (as explained in Section 5.2).

These results show that the joint state-parameter estimation does not degrade the estimation results for the

cases where the previous data acclimation has accurate state estimations already. After uX7%¢.. becomes

larger than 4.5, the joint state-parameter estimation clearly improves the state estimation results by

significantly reducing the RMSEs. We expect more improvement will be observed if uf%¢ is larger than

5.0 (not shown in the figure). An interesting result exists for the case of &% = 4.25, where the joint
state-parameter estimation has a slightly larger RMSE than the data assimilation that uses a fixed u24 .., =
4.0. This is explainable because the joint state-parameter estimation does not perfectly estimate the uf %€ ..
The errors between the estimated parameter and the true parameter may be even larger than using a fixed
u24 o+ = 4.0. This means when the discrepancy between the true system model and the simulation model

is relatively small, there may be little benefit of using joint state-parameter estimation.

Joint State-Parameter Estimation (ufr¢.,. = 3.5) — State Result Joint State-Parameter Estimation (ufr¥¢ .. = 3.5) — Parameter Result
16 8
1 —s— real_westSideQueue —+—real_eastSideQueue 7 —=s— real_crossingTime
12 DA_aveWestSideQueue DA_aveEastSideQueue 6 —+— DA_aveCrossingTime
3
g
g0 . £5
v g u S 4
> o 2 kW
0 -—
3 6 1\ g3 [4 e~ F
4 22
[\ T~
2 sl o P A J"‘ R W g :
3 o ol g By
0 B <Y 'ﬂ " lLJ.L .L... P m ‘ (AT 0
0 1000 2000 3000 4000 0 1000 2000 3000 4000 5000 6000
Time (seconds) Time (seconds)
Joint State-Parameter Estimation (ufT¥¢., = 4.0) - State Result Joint State-Parameter Estimation (ufr¥¢ .. = 4.0) — Parameter Result
40 9
35 —=— real_westSideQueue —— real_eastSideQueue 8 —=— real_crossingTime
30 DA_aveWestSideQueue DA_aveEastSideQueue 7 —=—DA_aveCrossingTime
1%
Q25 56
N £
2 gs
H P S,
] =
g ﬁ Y 'é 3
b 4 :
‘r_,_ ’V\ 1 i & ’J ‘; 1
e
& h&.‘h ™ i o
1000 2000 3000 0 1000 2000 3000 4000 5000 6000
Time (seconds) Time (seconds)
Joint State-Parameter Estimation (ufT¥e ., = 4.5) - State Result Joint State-Parameter Estimation (ufr¢ . = 4.5) — Parameter Result
160 7
140 T real_westSideQueue —+—real_eastSideQueue —=—real_crossingTime
P S 6 -
120 DA_aveWestSideQueue DA_aveEastSideQueue Wy L] —+—DA_aveCrossingTime
5

100
80

IS

w

Queue size

60 !

40 A
MW“‘"\"%“'W'A‘Z ¥

20
0 lué"- u'_c.. Ju m“‘a

3000 4000 0 1000 2000 3000 4000 5000 6000
Time (seconds) Time (seconds)

Model parameter

N

-

o

0 1000

Figure 6: Data assimilation using joint state-parameter estimation: (top) state and parameter estimation
results when pfl%e. = 3.5; (middle) state and parameter estimation results when ufr4é.. = 4.0; (bottom)

state and parameter estimation results when pT4.. = 4.5,

This set of experiments show that the joint state-parameter estimation is able to estimate a static
parameter of the true system model correctly. Furthermore, it is able to improve the state estimation for the
cases where the data assimilation without using parameter estimation have large errors.

5.4.Joint State-Parameter Estimation for a Dynamic Parameter
In all the previous experiments, the u&l4e . is a static parameter that does not change over time. This section
studies how data assimilation works for real systems that have dynamic parameters, i.e., parameter that
dynamically change over time. To set up the experiments, we make the true system model use a dynamic
ubrue . as described below. Similar as before, we carry out two data assimilation activities: 1) activity 1:
state estimation without parameter estimation; and 2) activity 2: joint state-parameter estimation. For the
activity 1, the u24 ..+ has a constant value of 4.0. For the activity 2, the u24 .. is unknown and is estimated
together with the state variables. Specific settings of the experiments are described below:
e True system model: p-T%¢.. dynamically change in the following way: it stays at 4.0 from 0 to
1000s, and gradually increases to 6.0 from 1000s and 3000s; it then gradually decreases to 3.0 from
3000s to 4200s, and again gradually increases to 4.0 from 4200s to 5000s, and then stays at 4.0
from 5000s to 6000s. The blue curve in the middle diagram of Figure 7 displays these changes.
e The simulation model of activity 1 (without parameter estimation): use a constant u24 .. = 4.0.
e The simulation model of activity 2 (joint state-parameter estimation): u24 .., is unknown and

needs to be estimated.

Figure 7 shows the data assimilation results from both data assimilation activity 1 and activity 2. The
top diagram shows the state estimation results of westSideQueue and eastSideQueue from a data
assimilation run without parameter estimation. The middle diagram and bottom diagram show the results
from a data assimilation run using joint state-parameter estimation: the middle diagram shows the puXT%e .

and the parameter estimation result; the bottom diagram shows the state estimation results.

DA without Parameter Estimation (u:74¢. = dynamic, u24 .r = 4.0)

140

120 —a— real_westSideQueue —— real_eastSideQueue

100 DA_aveWestSideQueue DA_avekEastSideQueue
2
@ 80
[
o}
2 60
g

40

20 .

A N
o 085 A o, pefacts 5%, VW WA o ok
0 1000 2000 3000 4000 5000 6000
Time (seconds)
Joint State-Parameter Estimation (uf7%¢.. = dynamic) - Parameter Result

8
57 —s—real_crossingTime —+— DA_aveCrossingTime
1]
€6
e
] 5
KT
o
=3

2

0 1000 2000 3000 4000 5000 6000

Time (seconds)

Joint State-Parameter Estimation (uf%¢. = dynamic) — State Result

140

—a— real_westSideQueue ——real_eastSideQueue

120
100 DA_aveWestSideQueue DA_aveEastSideQueue ’r"“N
4 » ,'.

80
60

Queue size

40

20
- - N
0 "'-v";;i.mé' "&:' "‘::'.,".'“,'Z:',":” :." N

0 1000 2000 3000 4000 5000 6000

Time (seconds)

Figure 7: Data assimilation results for a system with dynamic parameter: (top) state estimation results
without using parameter estimation; (middle) parameter estimation results using joint state-parameter
estimation; (bottom) state estimation results using joint state-parameter estimation.

The dynamic changes of uf %€ .. influence the number of vehicles queued on both sides of the road
segment in the real system. One can see that the west-side queue starts to increase after 1000s. It reaches
about 120 at around 4000s, and then gradually decreases. The east side queue increases after 2000s, reaches
its peak (at about 40) at around 3000s, and then decreases to a low level at around 3800s. These changes
are caused by the dynamical changes of the uf"™%¢_... Specifically, the ufT%¢.. starts to increase after 1000s,
making it slower for vehicles to cross the road segment. Thus, the queues on both sides start to increase
after 1000s. After the ul%e . starts to decrease after 3000s, the east-side queue starts to decrease at around
3000s, and the west-side queue starts to decreases at around 4000s.

From the top diagram of Figure 7, one can see that the data assimilation without parameter estimation

is able to estimate both queues before 1500s. After that, the estimations for both queues start to have

significant errors, with the error of the west-side queue reaches as high as 90 (at around 4000s). The
significant estimation error for the west-side queue persists untill the end of the experiment, although the
error starts to reduce after 4000s. One can also see that during the time when there exist significant errors,
the estimated queue sizes are smaller than the true queue sizes. This is because the u24 ... = 4.0 is smaller
than the ulT%¢ . between 1000s and 3800s, which makes vehicles cross the road segment faster than they
actually do in the real system. This incorrect model parameter leads to smaller estimated queue sizes.

For the joint state-parameter estimation, the middle diagram shows that the estimated parameter is able
to track the dynamic changes of the true parameter over time. For example, during the time when ptT%e .
increases from 4.0 to 6.0 between 1000s and 3000s, and then decreases from 6.0 to 3.0 between 3000s and
4200s, the estimated parameter increases and then decreases too. During the time when uf ¢ . maintains
at 4.0 (before 1000s, and after 5000s), the estimated parameter stays at around 4.0 too. This diagram also
shows that the estimated parameter lags behind the changes of the true parameter. This is because without
knowing if the true parameter actually changes or not, particles tend to maintain their parameter values
unless there is significant evidence from measurement data showing otherwise. This tendency results in a
delay for the estimated parameter to track the changes of the true parameter.

The bottom diagram shows that using the joint state-parameter estimation, the state estimation results
are significantly improved. Estimates of both the west-side queue and east-side queue are able to track the
true queue sizes with relatively small errors. This improvement is due to the fact that the estimation of the
dynamical changes of uf7%¢ . reduces the discrepancies between the simulation model and the true system
model, and thus lead to more accurate state estimation results.

To quantitively compare the results of data assimilation with and without using parameter estimation,
we carry out 20 independent runs of data assimilation for each data assimilation activity and compute the
RMSE of the state estimation results just like before. The resulting RMSE from data assimilation activity
1 (without parameter estimation) is 23.2, and from activity 2 (using joint state-parameter estimation) is
17.3. The smaller RMSE from the latter indicates that the joint state-parameter estimation improves the
state estimation results. Similar results have been observed from other experiments using different dynamic

change patterns of the uf7%¢_... Due to space limitation, these results are not included in the paper.

6. Discussion and Conclusion

Several observations can be made based on the experiments described in the previous section. First, the
data assimilation is able to assimilate real-time measurement data from a system to provide state estimates.
In some cases, accurate state estimation can be achieved even when there are non-minor discrepancies
between the simulation model and the true system model. This is because in these cases the measurement
data carries “distinct” information about the true system state, assimilating which lead to accurate state
estimates. For example, when the west-side queue has few vehicles (as exemplified by the top diagram of
Figure 4), a relatively large discrepancy between ufle.. and u24 . or still leads to estimation results that
have small errors. On the other hand, when measurement data do not carry “distinct” information about the
true system state (as exemplified by the bottom diagram of Figure 4), a discrepancy of the model parameters
can lead to significant errors of the state estimates. In these cases, the joint state-parameter estimation can
significantly improve the results, as demonstrated by the experiments in Section 5.3 and 5.4.

Second, the experiments show that the developed particle filter-based data assimilation method can
effectively support joint state-parameter estimation for discrete event simulations. The results show that for
a single parameter that is either static or dynamic, the estimated parameter is able to converge to and stay
around the true parameter value. Furthermore, the joint state-parameter estimation leads to more accurate
state estimations in most of the experiments, and does not degrade the estimation accuracy in other
experiments where the data assimilation without parameter estimation already performs well. The fact that
more accurate state estimates are achieved is because the joint state-parameter estimation allows the
simulation model used in data assimilation to have less discrepancies from a real system under study.

The joint state-parameter estimation uses an augmented state vector (see equation (4)) that has a higher-
dimensional state space. State estimation in a higher-dimensional state space requires the particle filter

algorithm to use more particles in order to converge to the true system state. All the experiments in this
paper use 4000 particles. Nevertheless, preferably the joint state-parameter estimation should use more
particles than the data assimilation without parameter estimation. The impact of the number of particles on
joint state parameter estimation will be studied in future work. It is also important to note that more particles
will lead to higher computation cost.

Another issue that is important for the joint state-parameter estimation is how to decide the level of
perturbation for the dynamics of the parameter. All the experiments in this paper use the same Gaussian
variance when adding perturbations to the parameter in each step, regardless if it is a static parameter or
dynamic parameter. Ideally, if one knows that the parameter under estimation is a static parameter (i.e.,
does not change over time), a smaller variance is preferred. Otherwise, a larger variance should be used.
The impact of variance on parameter estimation is another topic that needs further investigation.

This paper focuses on parameter estimation of a single parameter. The developed data assimilation
method can be directly applied to joint state-parameter estimation with multiple parameters. Nevertheless,
adding more parameters will bring more complexity such as the combination effect of multiple parameters
that may not be distinguishable by the measurement data, as well as the higher dimension of the augmented
state vector. An important future research is to develop online model calibration with multiple parameters.

To conclude, this paper presents a particle filter-based data assimilation method to support online model
calibration for discrete event simulations. A joint state-parameter estimation problem is formally defined
and a particle filter-based data assimilation algorithm is presented. A series of experiments are carried out
to demonstrate the effectiveness and evaluate the different aspects of online model calibration. This paper
focuses on online model calibration with a single parameter. Future work includes further investigating the
performance of joint state-parameter estimation and developing online model calibration with multiple
parameters.

Acknowledgments
This work is supported in part by the US Department of Agriculture (USDA) National Institute of Food
and Agriculture (NIFA) under grant number 2019-67021-29011.

References

[1] Hu X. Dynamic data-driven simulation: Real-time data for Dynamic System Analysis and
prediction. Hackensack, NJ: World Scientific Publishing Co. Pte. Ltd., 2023.

[2] Burgard W, Fox D. Probabilistic Robotics. Cambridge, MA: The MIT Press, 2005.

[3] Doucet A, Freitas N, Gordon N. An introduction to sequential Monte Carlo Methods. Sequential
Monte Carlo Methods in Practice 2001; 3—14.

[4] Arulampalam MS, Maskell S, Gordon N, et al. A tutorial on particle filters for online
nonlinear/non-gaussian bayesian tracking. /[EEE Transactions on Signal Processing 2002; 50: 174—
188.

[51 Rykiel EJ. Testing ecological models: The meaning of validation. Ecological Modelling 1996; 90:
229-244.

[6] Malleson N. Calibration of simulation models. Encyclopedia of Criminology & Criminal Justice
2014; 40: 115-8.

[7] Dahabreh 1J, Chan JA, Earley A, et al. Review of Validation and Calibration Methods for Health
Care Modeling and Simulation. Modeling and Simulation in the Context of Health Technology
Assessment: Review of Existing Guidance, Future Research Needs, and Validity Assessment.
Rockville (MD): Agency for Healthcare Research and Quality (US), 2017.

[8] Rutter CM, Ozik J, DeYoreo M, et al. Microsimulation model calibration using incremental mixture
approximate Bayesian computation. The Annals of Applied Statistics 2019; 13. Epub ahead of print
2019. DOI: 10.1214/19-a0as1279.

[9] McCulloch J, Ge J, Ward JA, et al. Calibrating agent-based models using uncertainty quantification
methods. Journal of Artificial Societies and Social Simulation 2022; 25. Epub ahead of print 2022.
DOI: 10.18564/jasss.4791.

[10]

[11]

[12]

[13]
[14]
[15]
[16]
[17]
[18]

[19]

(20]

(21]

Kotthoff F, Hamacher T. Calibrating agent-based models of innovation diffusion with gradients.
Journal of Artificial Societies and Social Simulation 2022; 25. Epub ahead of print 2022. DOI:
10.18564/jasss.4861.

Manfren M, Aste N, Moshksar R. Calibration and uncertainty analysis for computer models — a
meta-model based approach for Integrated Building Energy Simulation. Applied Energy 2013; 103:
627-641.

Robertson J, Polly B, Collis J. Evaluation of automated model calibration techniques for residential
building energy simulation. National Renewable Energy Lab.(NREL), Golden, CO (United States);
Sep 2013.

Yang Z, Becerik-Gerber B. A model calibration framework for simultaneous multi-level Building
Energy Simulation. Applied Energy 2015; 149: 415-431.

Bartin B, Ozbay K, Gao J, et al. Calibration and validation of large-scale traffic simulation
networks: A case study. Procedia Computer Science 2013; 130: 844-849.

Mudigonda S. Methods for robust calibration of traffic simulation models. PhD Dissertation, The
State University of New Jersey, USA, 2014.

Zhang K. Real-Time Calibration of Large-Scale Traffic Simulators: Achieving Efficiency Through
the Use of Analytical Mode. PhD Dissertation, Massachusetts Institute of Technology, USA, 2020.
Doekemeijer BM, Boersma S, Pao LY, et al. Online model calibration for a simplified les model in
pursuit of real-time closed-loop wind farm control. Wind Energy Science 2018; 3: 749-765.

Song H, Song M, Liu X. Online autonomous calibration of digital twins using machine learning
with application to nuclear power plants. Applied Energy 2022; 326: 119995.

Ward R, Choudhary R, Gregory A, et al. Continuous calibration of a digital twin: Comparison of
Particle Filter and bayesian calibration approaches. Data-Centric Engineering 2021; 2. Epub ahead
of print 2021. DOI: 10.1017/dce.2021.12.

Titscher T, van Dijk T, Kadoke D, et al. Bayesian model calibration and damage detection for a
digital twin of a bridge demonstrator. Engineering Reports 2023. Epub ahead of print 2023. DOI:
10.1002/eng2.12669.

Liu J, West M. Combined parameter and state estimation in simulation-based filtering. In: Doucet
A, de Freitas JFG, Gordon NJ, editors. Sequential Monte Carlo methods in practice. New Y ork:
Springer-Verlag; 2001. pp. 197-223.

Hu X. A tutorial on Bayesian sequential data assimilation for dynamic data driven simulation. In: P
roceedings of the 2023 Annual Modeling and Simulation Conference (ANNSIM) 2023. pp. 680—695.
Xue H, Gu F, Hu X. Data assimilation using sequential Monte Carlo Methods in wildfire spread
simulation. ACM Transactions on Modeling and Computer Simulation 2012; 22: 1-25.

Hu X, Wu P. A data assimilation framework for discrete event simulations. ACM Transactions on
Modeling and Computer Simulation 2019; 29: 1-26.

Xie X, Verbraeck A. A particle filter-based data assimilation framework for discrete event
simulations, Simulation, 2019, Vol. 95(11), 1027-1053

Huang Y, Xie X, Cho Y, Verbraeck A. Particle filter—based data assimilation in dynamic data-
driven simulation: sensitivity analysis of three critical experimental conditions, Simulation, 2023,
Vol. 99(4), 403-415

Hu X. Data Assimilation for Simulation-based real-time prediction/analysis. 2022 Annual Modeling
and Simulation Conference (ANNSIM) 2022. Epub ahead of print 2022. DOI:
10.23919/annsim55834.2022.9859329.

Zeigler BP, Kim TG, Prahofer H. Theory of modeling and simulation. Integrating discrete event
and Continuous Complex Dynamic Systems. 2nd ed. Amsterdam: Academic Press, 2000.

Biography

Xiaolin Hu is a full professor of the Computer Science Department at Georgia State University. He
received his Ph.D. degree from the University of Arizona. His research interests include modeling and
simulation theory and application, data assimilation, dynamic data driven simulation, and agent and multi-
agent systems.

Mingxi Yan is a PhD candidate of the Computer Science Department at Georgia State University. Her
research interests include modeling and simulation, and digital twin technology.

