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Abstract 
The increasing availability of real-time data collected from dynamic systems brings opportunities for 
simulation models to be calibrated online for improving the accuracy of simulation-based studies. 
Systematical methods are needed for assimilating real-time measurement data into simulation models. This 
paper presents a particle filter-based data assimilation method to support online model calibration in 
discrete event simulation. A joint state-parameter estimation problem is defined and a particle filter-based 
data assimilation algorithm is presented. The developed method is applied to a discrete event simulation of 
a one-way traffic control system. Experiments results demonstrate the effectiveness of the developed 
method for calibrating simulation models’ parameters in real time and for improving data assimilation 
results.  
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1. Introduction 
Simulation models have long been used to study dynamic systems. As real-time data collected from 
dynamic systems become more and more available, there is growing interest in using real-time data to 
improve the accuracy of simulation-based studies. A new paradigm of Dynamic Data Driven Simulation 
(DDDS) is emerging that allows a simulation system to continuously and systematically assimilate real-
time data to support real-time prediction and analysis for dynamic systems [1]. Four activities are identified 
in DDDS, including dynamic state estimation, online model calibration, external input modeling & 
forecasting, and simulation-based prediction/analysis. In particular, the online model calibration activity 
calibrates a simulation model’s parameters based on real-time data to make the model more accurately 
reflect the real-time characteristics of a system. This calibration is carried out in an online fashion (i.e., runs 
in parallel with a system in operation) due to the following two reasons. First, it is common for some 
characteristics of a system to be known only after the system operates in the real field. This means one 
cannot simply assign some “typical” or “average” values to the corresponding model parameters. Instead, 
the parameter values need to be estimated in real time based on how the system actually works. Second, 
complex dynamic systems may dynamically shift their characteristics due to changes in the operating 
environments. For these systems, the corresponding model parameters are not static and need to be 
dynamically estimated based on real-time data from the system. 

How to carry out online model calibration remains to be an active research topic. In some cases, one 
may estimate a parameter’s value directly from measurement data. For example, the production rate of a 
manufacturing machine may be a parameter that needs to be calibrated in real time based on how the 
machine works in the field. The value of this parameter may be derived directly from the measurement data 
of job processing time (assuming such measurements are available). More generally, due to the existence 
of data noise and the unobservability of many model parameters (see discussions in [1]), it is undesirable 
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or infeasible to derive parameter values directly from measurement data. This asks for systematical methods 
to carry out parameter estimation. An effective approach is to treat the parameters that need to be estimated 
as part of the state vector and formulate a joint state-parameter estimation problem, and then employ data 
assimilation techniques to estimate the state and parameters at the same time. 

Data assimilation is a methodology that combines measurement data with a dynamic model to optimally 
estimate the evolving state of a system. It was originally developed in the field of meteorology and has 
gained popularity in many other science and engineering fields, such as geosciences, oceanography, 
hydrology, and robotics. The work of data assimilation can be classified into variational data assimilation 
and sequential data assimilation. This paper focuses on sequential data assimilation that assimilates data 
and corrects the state estimate each time when a new measurement becomes available. Examples of 
sequential data assimilation include Kalman filter-based data assimilation and particle filter-based data 
assimilation. The former assumes a continuous state space with Gaussian probability density and that the 
state transition model and measurement model are linear Gaussian models [2]. These assumptions do not 
work for discrete event simulations, which typically use discrete state variables and have non-linear non-
Gaussian behavior. On the other hand, particle filters [3,4] work with arbitrary probability density functions 
and do not rely on specific format and characteristics of the underlying models. This makes it a desirable 
method to support data assimilation for discrete event simulations.  

This paper presents a particle filter-based data assimilation method for online model calibration in 
discrete event simulation. We define the joint state-parameter estimation problem for online model 
calibration, and describe the particle filter-based data assimilation method. The developed method is applied 
to a discrete event simulation of a one-way traffic control system. A series of experiments are designed to 
demonstrate the different aspects of data assimilation for online model calibration, covering data 
assimilation with and without parameter estimation, calibration of a static parameter, and calibration of a 
dynamic parameter. The contributions of this paper are two-fold. First, it defines the online model 
calibration problem in a formal way and presents a general particle filter-based data assimilation method 
for online model calibration in discrete event simulation. Second, it evaluates the different aspects of online 
model calibration using a concrete discrete event simulation example. The evaluation and analysis based 
on this example demonstrate the effectiveness of online model calibration and provide guidelines to apply 
the developed method to other simulation applications.  

The remainder of this paper is organized as follows. Section 2 describes the related work of online 
model calibration. Section 3 presents the online model calibration problem and the particle filter-based data 
assimilation method. Section 4 describes the one-way traffic control system application. Section 5 presents 
the experiment results covering the different aspects of online model calibration. Section 6 discusses several 
aspects related to this work and concludes this work. 

  
2. Related Work 
Within the simulation field, model calibration refers to the process of adjusting the parameters of a 
simulation model to make it better model a system under study. This can be done in both an offline fashion 
and online fashion. Offline calibration uses historical data to calibrate a simulation model before the model 
is used. It is often formulated as a global optimization problem using historical data that may span a long 
period of time. On the other hand, online calibration uses real-time data from a system to dynamically adjust 
a simulation model to make it match the real-time characteristics of a system. It typically works in an 
iterative way, where each iteration uses newly arrived real-time data to continuously update the model 
parameters.  

The majority work on model calibration belongs to offline calibration. Offline calibration is considered 
part of the model evaluation process, which is usually divided into three activities: verification, calibration, 
and validation [5]. Several methods of offline calibration were described in [6], including parameter sweeps, 
hill climbing, simulated annealing, and genetic algorithms. The work of [7] provided a review of validation 
and calibration methods within the context of health care modeling and simulation. It discussed the different 
components of model calibration that include calibration parameters, calibration targets, objective functions, 
and algorithm for optimizing. An incremental mixture approximate bayesian computation method is 



developed and applied to the problem of microsimulation model calibration [8]. Another work of [9] 
developed an agent-based model calibration framework, which is based on approaches from the fields of 
uncertainty quantification and model optimization. An example of calibrating agent-based models of 
innovation diffusion is presented in [10], which uses a gradient-based calibration method. Other examples 
of offline calibration include building energy simulation calibration [11,12,13] and traffic simulation 
calibration [14,15].  

Compared to offline calibration, less work exists for online model calibration. An online calibration 
algorithm was developed to support real-time calibration of large-scale traffic simulators [16]. The 
developed algorithm is based on the extended Kalman filter framework. The work of [17] developed a joint 
state-parameter estimation method using ensemble Kalman filter to support online calibration of a dynamic 
model for the application of real-time wind farm control. The topic of online model calibration received 
more attention recently due to the growing interest in digital twin technologies. A machine learning-based 
method was developed to support online autonomous calibration of digital twin models for nuclear power 
plants [18]. The work of [19] presented a particle filter-based method for continuous calibration of a digital 
twin model, and compared its performance with static and sequential Bayesian calibration approaches. 
Another work of [20] developed a Bayesian calibration method and applied it to online model calibration 
using real measurement data from a lab-based demonstrator bridge. None of these works focused on online 
model calibration for discrete event simulations.  

The activities of offline calibration and online calibration are not isolated from each other. An in-depth 
discussion about the difference and relationship between offline calibration and online calibration can be 
found in [1]. In particular, offline calibration provides a baseline model, from which online calibration is 
carried out. From a simulation project lifecycle point of view, offline calibration belongs to the modeling 
phase where the goal is to develop a high-quality model that match with historical observations. After the 
model is developed, online calibration can be carried out using real-time data collected from a system. The 
online calibration starts from the model calibrated from offline calibration.  
 
3. Particle Filter-based Data Assimilation for Online Model Calibration 
 
3.1. The Online Model Calibration Problem: Joint State-Parameter Estimation 
The goal of online model calibration is to dynamically calibrate a simulation model’s parameters based on 
real-time measurement data to make the model more accurately capture the characteristics of a system in 
operation. It is essentially an estimation problem to estimate the parameters based on real-time measurement 
data. As an estimation problem, this is usually formulated in a probabilistic way. Let 𝑦𝑦𝑘𝑘 ∶= 𝑦𝑦(𝑡𝑡𝑘𝑘) be the 
measurement data 𝑦𝑦 at time 𝑡𝑡𝑘𝑘; 𝑦𝑦0:𝑘𝑘 ∶= (𝑦𝑦(𝑡𝑡0),𝑦𝑦(𝑡𝑡1), … ,𝑦𝑦(𝑡𝑡𝑘𝑘)) be the sequence of measurements up to 
time 𝑡𝑡𝑘𝑘. Let 𝜃𝜃 be the parameter vector to be calibrated. We define 𝜃𝜃𝑘𝑘 ∶= 𝜃𝜃(𝑡𝑡𝑘𝑘) be the parameter vector 𝜃𝜃 
at time 𝑡𝑡𝑘𝑘. Then the online model calibration problem can be defined as 
 𝑝𝑝(𝜃𝜃𝑘𝑘|𝑦𝑦0:𝑘𝑘), (1) 
i.e., computing the probability distribution of 𝜃𝜃𝑘𝑘 conditioned on the measurements 𝑦𝑦0:𝑘𝑘. This is carried out 
in an iterative way: when new measurement data become available at time 𝑡𝑡𝑘𝑘+1, a new calibration is carried 
out to update the estimate of the model parameters. 

Online model calibration can be carried out using data assimilation methods. Data assimilation provides 
a systematical way to estimate a system’s state from observation data (also called measurement data). In 
data assimilation, a dynamic system is generally formulated as a dynamic state-space model, which is 
composed of the state transition model of Equation (2) and the measurement model of Equation (3) as 
described below:  
 𝑥𝑥𝑘𝑘 = 𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘−1,𝑢𝑢𝑘𝑘 , 𝛾𝛾𝑘𝑘) (2) 
 𝑦𝑦𝑘𝑘 = 𝑔𝑔𝑘𝑘(𝑥𝑥𝑘𝑘 , 𝜀𝜀𝑘𝑘) (3) 
where 𝑥𝑥𝑘𝑘−1  and 𝑥𝑥𝑘𝑘  are the state vectors of step 𝑘𝑘 − 1 and step 𝑘𝑘, respectively; 𝑢𝑢𝑘𝑘  is the external input 
vector of step 𝑘𝑘 , and 𝑦𝑦𝑘𝑘  is the measurement vector of step 𝑘𝑘 . Due to the probabilistic nature of state 
estimation, the state transition model (Equation (2)) is also called the state transition density and is 



expressed by 𝑝𝑝(𝑥𝑥𝑘𝑘|𝑥𝑥𝑘𝑘−1,𝑢𝑢𝑘𝑘); the measurement model (Equation (3)) is also called the measurement density 
and is expressed by 𝑝𝑝(𝑦𝑦𝑘𝑘|𝑥𝑥𝑘𝑘). 

The function 𝑓𝑓𝑘𝑘() defines the dynamics of the state transition and the function 𝑔𝑔𝑘𝑘() defines the mapping 
from the state to the measurement. The 𝛾𝛾𝑘𝑘 and 𝜀𝜀𝑘𝑘 are two independent random vectors modeling the noises 
(or uncertainties) involved in the state transition and measurement. The former is called the process noise 
and the latter is called the measurement noise. At step 𝑘𝑘, the sequences of external inputs 𝑢𝑢1:𝑘𝑘 (i.e., input 
data) and measurements 𝑦𝑦1:𝑘𝑘 (i.e., measurement data) up to this step are assumed to be known. The initial 
state 𝑥𝑥0  is assumed to be known too based on some prior knowledge. Nevertheless, the states 𝑥𝑥1:𝑘𝑘  are 
hidden and cannot be observed directly. They need to be estimated. 

The state transition model (2) captures the knowledge about how the dynamic system evolves its state 
over time. This knowledge is important for data assimilation as it can generate a prediction of the belief of 
the state at a future time. A simulation model specifies a systems’ state transition and thus can serve as a 
state transition model. The measurement model (3) links state with measurement data so that information 
from the latter can be utilized to update the (predicted) belief of the state. A measurement model can be 
viewed as the model of the sensors that collect the measurement data. It describes, at some level of 
abstraction, how the state 𝑥𝑥𝑘𝑘 causes sensor measurement 𝑦𝑦𝑘𝑘. These two models each plays unique roles in 
estimating the dynamically changing state of a system.  

To applying data assimilation to online model calibration, a common approach is to formulate it as a 
joint state-parameter estimation problem. In this approach, the to-be-estimated parameters are included as 
part of the state vector that needs to be estimated. Let 𝑥𝑥𝑘𝑘 be the 𝑛𝑛-dimensional state vector and 𝜃𝜃𝑘𝑘 be the 
ℎ-dimensional parameter vector that need to be estimated at step 𝑘𝑘. Typically, the set of parameters that 
need to estimated is a small subset of all the parameters of a dynamic model. We define an augmented state 
vector 𝑧𝑧𝑘𝑘 by appending the parameter vector 𝜃𝜃𝑘𝑘 to the state vector 𝑥𝑥𝑘𝑘, i.e., 

𝑧𝑧𝑘𝑘 = �
𝑥𝑥𝑘𝑘
𝜃𝜃𝑘𝑘� or  𝑧𝑧𝑘𝑘 = (𝑥𝑥1,𝑘𝑘 , 𝑥𝑥2,𝑘𝑘 ,⋯ , 𝑥𝑥𝑛𝑛,𝑘𝑘 ,𝜃𝜃1,𝑘𝑘 , 𝜃𝜃2,𝑘𝑘 ,⋯ ,𝜃𝜃ℎ,𝑘𝑘)𝑇𝑇, (4) 

where 𝑧𝑧𝑘𝑘  is a 𝑛𝑛 + ℎ  dimensional vector, 𝑥𝑥𝑖𝑖,𝑘𝑘 (𝑖𝑖 = 1, … ,𝑛𝑛)  is the 𝑖𝑖 th element of the state vector, and 
𝜃𝜃𝑗𝑗,𝑘𝑘 (𝑗𝑗 = 1, … , ℎ) is the 𝑗𝑗th element of the parameter vector.  

The dynamics of the state 𝑥𝑥𝑘𝑘 is defined by the state transition model (i.e., the simulation model). To 
formulate the state-space model for the joint state-parameter estimation, we need a way to define how the 
parameters 𝜃𝜃𝑘𝑘 evolve over time. A popular treatment is to add small random perturbations to the parameters 
in each step of the transition [21]. Typically, the random perturbations are modeled by zero-mean Gaussian 
distributions with some specified variances for each parament element, i.e.,  
 𝜃𝜃𝑘𝑘 = 𝜃𝜃𝑘𝑘−1 + 𝜁𝜁𝑘𝑘, (5) 
 𝜁𝜁𝑘𝑘~𝑁𝑁(0,𝑊𝑊𝑘𝑘), (6) 
where 𝜁𝜁𝑘𝑘  are the random perturbations modeled as zero-mean Gaussian noises, and 𝑊𝑊𝑘𝑘  is a diagonal 
covariance matrix for the Gaussian noises that has variance 𝜎𝜎𝑗𝑗2 for the 𝑗𝑗th parameter. The initial parameter 
values can be set based on information from the offline model calibration. Adding random perturbations to 
the parameter values allows generating new parameter values in each step of the data assimilation. This 
supports robust estimation even if the initial values are not close to the true values. Large variances of the 
Gaussian noises lead to large changes of the parameter values in each step. The large variances may be 
necessary if the estimation has not converged or if one expects the parameter values change dynamically in 
a fast pace. Otherwise, small variances are preferred. For example, when the parameter under estimation is 
expected to be a static parameter, a small variance will lead to more stable estimation results.  

Combining the parameters’ dynamic model Equation (5) with the state transition model Equation (2), 
we have a new state transition model for the augmented state vector 𝑧𝑧𝑘𝑘: 

 𝑧𝑧𝑘𝑘 = 𝑓𝑓𝑘𝑘(𝑧𝑧𝑘𝑘−1,𝑢𝑢𝑘𝑘 , 𝛾𝛾𝑘𝑘 , 𝜁𝜁𝑘𝑘) = �𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘−1,𝜃𝜃𝑘𝑘−1,𝑢𝑢𝑘𝑘 , 𝛾𝛾𝑘𝑘)
𝜃𝜃𝑘𝑘−1 + 𝜁𝜁𝑘𝑘

�.  (7) 

Note that the 𝑓𝑓𝑘𝑘() function in Equation (7) explicitly lists the model parameters 𝜃𝜃𝑘𝑘−1 because the state 
transition of step 𝑘𝑘 should use the estimated model parameters from step 𝑘𝑘 − 1. In joint state-parameter 



estimation, the model parameters at different steps need to be differentiated because their values vary over 
time.  

Using the augmented state vector 𝑧𝑧𝑘𝑘, the measurement model can be rewritten to  
 𝑦𝑦𝑘𝑘 = 𝑔𝑔�𝑘𝑘(𝑧𝑧𝑘𝑘 , 𝜀𝜀𝑘𝑘) ≝ 𝑔𝑔𝑘𝑘(𝑥𝑥𝑘𝑘 , 𝜀𝜀𝑘𝑘), (8) 
where 𝑔𝑔�𝑘𝑘() maps from the augmented state vector 𝑧𝑧𝑘𝑘  to the measurement vector 𝑦𝑦𝑘𝑘 . The 𝑔𝑔�𝑘𝑘(𝑧𝑧𝑘𝑘 , 𝜀𝜀𝑘𝑘) is 
equivalent to 𝑔𝑔𝑘𝑘(𝑥𝑥𝑘𝑘 , 𝜀𝜀𝑘𝑘) because 𝑦𝑦𝑘𝑘 is completely defined by the state 𝑥𝑥𝑘𝑘 due to the Markov assumption of 
the state space formulation (see details in [1]).  

Equations (7) and (8) together form the state-space model for the joint state-parameter estimation 
problem.  
 
3.2. Particle Filter-based Data Assimilation 
The state space formulation described in the previous section allows us to carry out data assimilation to 
estimate the state variables and model parameters at the same time. Due to the discrete state variables and 
the non-linear non-Gaussian behavior of discrete event simulation models, we develop data assimilation 
based on particle filters. Specifically, we choose to employ the bootstrap filter algorithm [3,4] to carry out 
the data assimilation. The bootstrap filter algorithm uses the state transition model (i.e., the state transition 
density) to evolve particles during the sampling step. For a discrete event simulation application, the state 
transition model is defined by the discrete event simulation model. Another major advantage of the 
bootstrap algorithm is that it simplifies the computation of particles’ importance weights, where the weight 
is defined by the likelihood probability that can be computed from the measurement model (i.e., the 
measurement density). 

Particle filters represent the belief distribution of a state vector under estimation using a set of weighted 
samples, each of which is called a particle. A particle is a concrete instantiation of the state vector. Let 
{〈𝑥𝑥𝑘𝑘

(𝑖𝑖),𝑤𝑤𝑘𝑘
(𝑖𝑖)〉 | 𝑖𝑖 = 1, … ,𝑁𝑁} be the set of weighted particles, where 𝑁𝑁 is the size of the particle set, 𝑥𝑥𝑘𝑘

(𝑖𝑖)is the 
𝑖𝑖th particle, and 𝑤𝑤𝑘𝑘

(𝑖𝑖)is the non-negative importance weight of the 𝑖𝑖th particle. The importance weights from 
all the particles sum to one. The bootstrap filter implements a sequential importance sampling with 
resampling (SISR) procedure. It uses the state transition density 𝑝𝑝(𝑥𝑥𝑘𝑘|𝑥𝑥𝑘𝑘−1,𝑢𝑢𝑘𝑘) as the proposal distribution 
in importance sampling, and invokes resampling in every step. The bootstrap filter algorithm is shown 
below, where 𝑘𝑘 denotes the time step and 𝑦𝑦𝑘𝑘𝑚𝑚𝑚𝑚 denotes the measurement data at step 𝑘𝑘. 

 

 
 

The Bootstrap Filter Algorithm 
1. Initialization, 𝑘𝑘 = 0: 

• for  𝑖𝑖 = 1, … ,𝑁𝑁, sample 𝑥𝑥0
(𝑖𝑖) ~ 𝑝𝑝(𝑥𝑥0). 

• Advance the time step by setting 𝑘𝑘 = 1. 
2. Importance sampling step (input: {𝑥𝑥𝑘𝑘−1

(𝑖𝑖) }𝑖𝑖=1𝑁𝑁 , 𝑢𝑢𝑘𝑘, 𝑦𝑦𝑘𝑘𝑚𝑚𝑚𝑚) 
• for  𝑖𝑖 = 1, … ,𝑁𝑁, sample (i.e., predict) new state 𝑥̅𝑥𝑘𝑘

(𝑖𝑖) using the state transition 
model (the simulation model): 𝑝𝑝( 𝑥𝑥𝑘𝑘|𝑥𝑥𝑘𝑘−1

(𝑖𝑖) ,𝑢𝑢𝑘𝑘). 
• for  𝑖𝑖 = 1, … ,𝑁𝑁, compute the importance weight as the likelihood 

probability: 𝑤𝑤�𝑘𝑘
(𝑖𝑖) = 𝑝𝑝 �𝑦𝑦𝑘𝑘 = 𝑦𝑦𝑘𝑘𝑚𝑚𝑚𝑚�𝑥̅𝑥𝑘𝑘

(𝑖𝑖)�.  

• for  𝑖𝑖 = 1, … ,𝑁𝑁, normalize the importance weights: 𝑤𝑤𝑘𝑘
(𝑖𝑖) = 𝑤𝑤�𝑘𝑘

(𝑖𝑖) ∑ 𝑤𝑤�𝑘𝑘
(𝑗𝑗)𝑁𝑁

𝑗𝑗=1�  . 
3. Resampling step (input: {〈𝑥̅𝑥𝑘𝑘

(𝑖𝑖),𝑤𝑤𝑘𝑘
(𝑖𝑖)〉}𝑖𝑖=1𝑁𝑁 ) 

• Resample 𝑁𝑁 particles {𝑥𝑥𝑘𝑘
(𝑖𝑖)}𝑖𝑖=1𝑁𝑁 according to the normalized weights. 

4. Advance the time step and start a new cycle: 
• Set 𝑘𝑘 ← 𝑘𝑘 + 1, and go to step 2. 



The algorithm starts from an initialization step that generates 𝑁𝑁 initial particles following the belief of 
the initial state 𝑝𝑝(𝑥𝑥0). Afterwards, each iteration of the algorithm starts from a particle set {𝑥𝑥𝑘𝑘−1

(𝑖𝑖) }𝑖𝑖=1𝑁𝑁  
representing the posterior belief from the previous iteration. In the importance sampling, each particle uses 
the state transition model (which is the simulation model) to predict its next state. The importance weight 
of the particle is then computed as the likelihood probability based on the predicted state and the 
measurement data 𝑦𝑦𝑘𝑘𝑚𝑚𝑚𝑚 of this step. A higher likelihood probability leads to a larger weight and a lower 
likelihood probability leads to a smaller weight. The importance weights of all the particles are then 
normalized. The outcome of the importance sampling is a set of weighted particles {𝑥̅𝑥𝑘𝑘

(𝑖𝑖),𝑤𝑤𝑘𝑘
(𝑖𝑖)}, which act 

as an intermediate approximation for the posterior distribution at step 𝑘𝑘. In the resampling step, 𝑁𝑁 offspring 
samples are drawn with probability proportional to the normalized weights. The particles with large weights 
are selected multiple times while the particles with small weights may be eliminated. The set of resampled 
particles represent the final posterior distribution of the state at this step. This set of particles also serve as 
the input for the next iteration of the bootstrap filter algorithm.  

Initialization of the bootstrap filter algorithm needs to generate 𝑁𝑁 initial particles following the belief 
of the initial state. When knowledge about the initial state is available, the initial set of particles can be 
generated using that knowledge. Otherwise, a common practice is to generate the initial particles randomly 
covering a wide state space in a uniform way. For the model parameters that need to be calibrated online, 
their initial values may be sampled around the baseline values resulting from the offline model calibration.  

Detailed implementation and explanation of the bootstrap filter algorithm can be found in the literature 
(e.g.,[1, 2, 22] ). In particular, to introduce data assimilation to broader audience in the modeling and 
simulation community, the work of [22] offers a tutorial on Bayesian sequential data assimilation and 
particle filtering within the context of discrete event simulation. Other related works include [23, 24, 25, 
26], which studied various aspects of particle filter-based data assimilation for discrete event simulations. 
 
4. The One-Way Traffic Control System 
To demonstrate online model calibration, we consider the one-way traffic control system described in [27] 
as an example. The one-way traffic control system is illustrated in Figure 1. During a road construction, the 
one-way traffic control is managed by two persons deployed to the west and east ends of the road segment. 
Each person carries a STOP/SLOW hand-held traffic paddle to control the traffic, where the STOP sign 
means vehicles should stop and wait, and the SLOW sign means vehicles can slowly move ahead to pass 
the road segment. It is assumed that the two persons coordinate and always use the STOP/SLOW signs in 
opposite directions: when one uses the STOP sign the other would use the SLOW sign. In the following 
description, we refer to the STOP sign as the red traffic light and the SLOW sign as the green traffic light, 
and refer to vehicles’ moving directions as east-moving (moving towards east) and west-moving (moving 
towards west). During the time when the traffic light is green on a specific direction (east-moving or west-
moving), the arrival vehicles moving in the opposite direction are queued. The queues at the west side and 
east side of the road segment are named as the west-side queue and east-side queue, respectively.   
 

 
Figure 1: The one-way traffic control system [27] 
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To ensure construction workers’ safety, only one vehicle is allowed to move on the one-way traffic 

control road at any time. During a green light period, the traffic-control person on the corresponding side 
would signal a vehicle to move ahead only after the previous vehicle has finished crossing the road segment. 
The one-way traffic control system switches the traffic lights under the following two conditions: 

1. If the elapsed time for the current moving direction has reached a pre-defined threshold (120 
seconds in this example) and the opposite moving direction has cars waiting, switch the traffic 
light. Note that if the opposite moving direction has no car waiting, the traffic light does not 
switch even after the 120-second threshold. Also note that the traffic light switches only after the 
road segment is cleared if there is a car already moving on the road. 

2. If the current moving direction has no car waiting and the opposite moving direction has cars 
waiting in the queue, switch the traffic light even if the 120-second threshold is not reached.  

 
The vehicles at both sides of the road segment arrive randomly and independently, modeled by Poisson 

distributions. For the east-moving vehicles, the Poisson distribution has an arriving rate 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 1/7 (1 
car per 7 seconds in average). For the west-moving vehicles, the arriving rate is 𝜆𝜆𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 1/10 (1 car 
per 10 seconds in average). This means there are more east-moving vehicles than west-moving vehicles. 
The time it takes for a vehicle to cross the road segment is also a random number, modeled by a truncated 
normal distribution that has the mean 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 4.0 (seconds), variance 𝜎𝜎2 = 0.52 , and lies within the 
range of [𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 1, 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 1].  

To collect measurement data from the system, an observer (sensor) is deployed at the location on the 
east end of the one-way traffic road that is marked as the “observer location” in Figure 1. The observer is 
able to count the number of vehicles moving crossing its location for both the east-moving departure 
vehicles (named as eastMoving_departure) and west-moving arrival vehicles (named as 
westMoving_arrival). The observer reports data every 30 seconds. It does not record the specific time that 
a vehicle crosses the observation location – all it reports is the total number of vehicles that have departed 
and arrived in the past time interval. The data reported by the observer is noisy, with a 10% noise added to 
the actual number of vehicles crossing the observer location. 

We use a DEVS [28]-based model to model the one-way traffic control system. This is a DEVS coupled 
model that includes three atomic models: eastMovCarGenr, westMovCarGenr, and oneWayTrafficRoad, 
as described below. 

• eastMovCarGenr: generates the east-moving traffic arriving at the west side of the road segment. 
Traffic are generated based on a Poisson distribution with rate 𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 1/7.  

• westMovCarGenr: generates the west-moving traffic arriving at the east side of the road segment. 
Traffic are generated based on a Poisson distribution with rate 𝜆𝜆𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 1/10.   

• oneWayTrafficRoad: models the one-way traffic road segment, including the traffic control logic 
as well as the time for vehicles to cross the road segment. This model has two input ports 
eastMovArival and westMovArrival that receive vehicles generated from the eastMovCarGenr 
and westMovCarGenr, respectively. The vehicles finishing crossing the road segment are sent out 
through the eastMovDeparture and westMovDeparture output ports. An important parameter of 
this atomic model is the average cross time 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 as described above.  

 
Figure 2(a) shows the results of a specific simulation scenario that runs for 1000 seconds of simulation 

time. The values of four state variables westSideQueue size, eastSideQueue size, TrafficLightState, and 
elapsedTimeInGreen are displayed over time. The trafficLightState has two possible values: “east-moving 
green” or “west-moving green”. The former is displayed as value 20, and the latter is displayed as value 0. 
The elapsedTimeInGreen is the elapsed time in the “east-moving green” or “west-moving green” state. It 
is a continuous variable with non-negative values. The elapsedTimeInGreen is reset to zero whenever the 
traffic light switches.  

 



 
Figure 2: Sample simulation scenario and measurement data 

 
One can see that the traffic light switches irregularly, governed by the traffic control rules and influenced 

by the number of vehicles waiting on the east side and west side queues. When both queues have vehicles, 
the traffic light switches after elapsedTimeInGreen reaches 120 seconds. When the queues on both sides 
are small, the traffic light may switch frequently because once all the vehicles on one side pass the road 
segment the traffic light switches immediately to allow vehicles on the other side to use the road. One can 
also see that when the TrafficLightState is “east-moving green” (value 20), the westSideQueue decreases 
because vehicles on the west side can move forward. A similar pattern can be observed for the 
eastSideQueue. 

Figure 2(b) shows the measurement data eastMoving_departure and westMoving_arrival for the 
simulation run shown in Figure 2(a). Since the measurement data is collected every 30 seconds, 33 
measurement data were collected over the 1000 simulation time. One can see that the measurement data for 
both eastMoving_departure and westMoving_arrival varied between 0 and 9. The measurement data 
(indirectly) reflect the state of the one-way traffic system. For example, when the traffic light state is “east-
moving green” and there are many vehicles waiting on the west side queue, the eastMoving_departure 
measurement would have relatively large values for several steps in a row (see the circled measurements in 
Figure 2(b) as an example). Despite the information carried by the measurement data, one cannot directly 
derive the state values (e.g., the exact number of vehicles in the west-side or east-side queues) from the 
measurement data.  

Data assimilation is useful for this application because an accurate state estimation from real-time 
measurement data allows one to initialize simulation runs using the estimated real-time state to predict the 
future behavior of the system. Such predictions are useful for supporting real-time decision making, e.g., 
to direct traffic away if the predicted waiting time for crossing the road segment is too long. The work of 
[27] provides a concrete example of using data assimilation to support simulation-based real-time 
prediction/analysis for this system.  
 
5. Experiment Results 
 
5.1. Identical Twin Experiment 
Based on the one-way traffic control system described in Section 4, we carry out a series of experiments to 
demonstrate different aspects of online model calibration. We use the identical twin experiment design [1] 
to carry out the experiments. In the identical twin experiment design, a simulation (referred to as the “true 
system”) is first run and the corresponding data are recorded. The measurement data obtained from this 
simulation are regarded as coming from the “true system” (also called the “real system”), and the state 
trajectory recorded from this simulation and the parameters used in this simulation are considered the “true” 
state and “true” parameters, respectively. Using the measurement data collected from the “true system”, 
data assimilation is then carried out and the state/parameter estimates are checked against the true 
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state/parameters. The first simulation that serves as the “true system” is often based on the same simulation 
model as the one used in data assimilation. Nevertheless, it has a different model configuration, e.g., 
different initial state, input trajectory, random number seeds, or model parameters for generating behaviors 
that are “unknown” to the data assimilation. In this way, it acts as a surrogate for the real system and 
generates synthetic measurements to be assimilated. To differentiate the model used in the “true system” 
from the one used in data assimilation, we name the former the “true system” model and the latter simply 
the simulation model. 

Figure 3 illustrates the identical twin experiment design used in this paper. For the one-way traffic 
control system, the dynamic behavior is driven by the east-moving and west-moving traffic as well as the 
time for vehicles to cross the road segment, all of which are influenced by the random number generation 
in the model. By changing the seeds of random number generation, we can produce different simulation 
scenarios. Based on this idea, in the identical twin experiment we set up the “true system” model using a 
specific set of random number seeds that are unknown to the data assimilation. The different random 
numbers between the true system model and the simulation model lead to different model behaviors 
between the two. Without knowing the actual behavior of the true system model, the data assimilation 
estimates the true system state by assimilating measurement data from the true system.  

 

 
Figure 3: The identical twin experiment design 

 
Besides the different random number seeds, the identical twin experiment design also focuses on an 

important model parameter: 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, and make the true system model and the simulation model to have 
different values for this parameter. The goal is to study the impact of this model parameters on the data 
assimilation results and to evaluate how well the joint state-parameter estimation can estimate this 
parameter. Recall that the parameter 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  specifies the average time for vehicles to cross the road 
segment (i.e., the mean of the truncated normal distribution from which vehicles’ crossing time is sampled). 
The default value of 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is 4.0. A smaller 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 means vehicles pass the road segment faster, and thus 
leads to less vehicles in the queues on both sides of the road segment. A larger 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 means vehicles pass 
the road segment slower, and thus leads to larger queue sizes on both sides.  

In the following description, we use 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  to refer to the parameter of the true system model, and 
𝜇𝜇𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐷𝐷𝐷𝐷  to refer to the parameter of the simulation model. Specific values of 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  and 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷  vary 
between experiments and are described in each experiment section.  

We consider two types of data assimilation activities (shown on the right side of Figure 3) as described 
below. 

• Data assimilation activity 1: state estimation without online model calibration (i.e., without 
parameter estimation). This activity aims to demonstrate the effectiveness of data assimilation and 
the impact of imperfect model parameters on data assimilation results. In this activity, the true 
system model and the simulation model may use different model parameters.  

• Data assimilation activity 2: joint state-parameter estimation (using online model calibration). In 
this activity, the 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  used by the true system model is unknown to the simulation model. The 
goal is to show how well the data assimilation is able to estimate this parameter over time, and how 
the joint state-parameter estimation can improve state estimation results.  
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In all the experiments, the measurement data eastMoving_departure and westMoving_arrival are 
collected every 30 seconds. The values of the measurement data depend on the specific behavior of the true 
system model, which is driven by the arrival vehicles on both sides of the road segment (controlled by the 
random number seeds of the traffic generation models). To save space, we do not show the specific values 
of the measurement data.  

All the experiments consider 200 data assimilation steps (total 6000s because each data assimilation 
step is 30s). When showing the state estimation results, we focus only on the westSideQueue size and 
eastSideQueue size because they have the most impact on vehicles’ delay time for crossing the road 
segment. The particle filtering algorithm in all the experiments uses 4000 particles.  
 
5.2. Data Assimilation with Imperfect Model Parameter 
This set of experiments aim to demonstrate the effectiveness of data assimilation for state estimation 
without using online model calibration. To evaluate the impact of imperfect model parameters on state 
estimation results, we intentionally make the 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑟𝑟𝑢𝑢𝑢𝑢  different from the 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷 . The mismatch of these two 
parameters, in a way, represent that a simulation model does not model a real system perfectly. 

Specifically, the true system model uses different 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  to generate measurement data in different 
experiment, but the simulation model in all the experiments use the same 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷 . In this way, the 
measurement data is generated from a true system that is different from the simulation model used in data 
assimilation. We then study how the different levels of discrepancy between the 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  and 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷  
influence the state estimation results. Specific settings of the experiments are described below.  

• True system model:  each experiment uses a different 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  that varies from 3.0 to 5.0 with an 
0.25 interval, i.e., 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∈  {3.0, 3.25, 3.5, 3.75, 4.0, 4.25, 4.5, 4.75, 5.0}.  

• The simulation model: all experiments use the same 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷 = 4.0. 
 
Note that the random number seeds used in the true system model and the simulation model are also 

different. The specific values of the random number seeds for all the experiments are omitted in this paper.  
Figure 4 shows the state estimation results for the westSideQueue and eastSideQueue from three data 

assimilation runs whose 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  are 3.5, 4.0, and 4.5, respectively. The state estimates in each data 
assimilation step is computed as the average from all the particles (after the resampling), marked as 
DA_aveWestSideQueue and DA_aveEastSideQueue in the figure. The corresponding “true” states for the 
two state variables are also displayed in the figure, marked as real_westSideQueue and real_eastSideQueue. 

As can be seen, for the data assimilation run where 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 3.5 and 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷 = 4.0 (the top diagram), 
the true west-side queue and east-side queue oscillate but stay in a relatively low level (less than 10). This 
is because the 𝜇𝜇𝑐𝑐𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  is small and vehicles can pass the road segment fast, and thus leading to few vehicles 
in the queues. For this experiment, the data assimilation accurately estimates the small number of vehicles 
as well as their oscillations in the two queues, even though the simulation model’s 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷  is larger than the 
true system model’s 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 . This is because the measurement data carry information that reflect the 
frequent switches of the traffic light due to the relatively small number queued vehicles on both sides of the 
road segment. Combining this information with the knowledge of how the system works (defined by the 
simulation model), the data assimilation is able to estimate the traffic light states and the queue sizes over 
time. We note that an accurate estimation does not mean the estimated state perfectly matches the real state. 
Instead, it means it has relatively small errors.    

 



 
Figure 4: State estimation without using online model calibration: (top) state estimation results when 
𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 3.5 and 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷 = 4.0; (middle) state estimation results when 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 4.0 and 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷 = 4.0; 
(bottom) state estimation results when 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 4.5 and 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷 = 4.0. 

 
For the data assimilation run where 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 4.0 and 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷 = 4.0 (the middle diagram), the 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

becomes larger compared to the previous experiment. This means it takes longer for vehicles to cross the 
road segment and thus it is likely for more vehicles to be queued. In particular, during time between 3000s 
and 5000s, there are significant number of vehicles queued on both sides in the real system. The west-side 
has a longer queue because vehicles on this side arrive more frequently. For this experiment, the data 
assimilation is able to estimate the east-side queue accurately almost all the time. This is because the 
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westMoving_arrival measurement data has direct information about the number of vehicles arrived on the 
east side. For the west-side queue, between time 3500s and 5100s, the estimated queue size is larger than 
the real queue size. During this period of time, the measurement data indicate that there are many vehicles 
queued on the west side; nevertheless, it does not carry information about the actual number of queued 
vehicles. This results in some errors for the west-side queue estimation. Nevertheless, by the time of 5100s, 
the real system’s west-side queue is cleared and that is reflected in the measurement data. This allows the 
data assimilation to adjust its estimation of the west-side queue and correctly reset the estimation to close 
to zero. This example illustrates how data assimilation can combine information from both the measurement 
data and simulation model to estimate the dynamically evolving system state.  

Finally, for the data assimilation run where 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 4.5 and 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷 = 4.0 (bottom diagram), it takes 
even longer time for vehicles in the real system to cross the road segment. This causes many vehicles to be 
queued on the west side of the road segment. For this experiment, the data assimilation is still able to 
estimate the east-side queue. However, for the west-side queue, although the estimation indicates the west 
side queue has many vehicles, the specific estimated value is much smaller than the real value. This is 
because the 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷 = 4.0 is smaller than the 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 4.5 used by the true system model. The smaller 
𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐴𝐴  means the data assimilation assumes vehicles pass the road segment faster than they do in the real 
system, and thus leading to smaller estimation of the queue size. In this experiment, one can see that the 
data assimilation provides some level of state estimation; however, one of the state variables has significant 
estimation errors due to the inaccurate model parameter of  𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷 .  

To quantitatively show the impact of imperfect model parameters on state estimation results, we 
systematically change the 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  from 3.0 to 5.0 with an increment of 0.25 but keep the 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷  to be a 
constant of 4.0. For each set of parameters (e.g., 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 3.0  and 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷 = 4.0), we carry out 20 
independent data assimilation runs and compute the Root Mean Square Error (RMSE) of the data 
assimilation results. The RMSE is calculated based on the differences between the estimated state and the 
corresponding true state for the westSideQueue and eastSideQueue state variables. Since the data 
assimilation results are represented by a set of particles, we calculate the RMSE using the estimations from 
all the particles. For each data assimilation run, a RMSE is first calculated by averaging all particles’ RMSE 
in each data assimilation step and then the overall RMSE of the data assimilation run is computed as the 
average of the RMSEs from all the data assimilation steps (the first 10 steps are excluded from the 
computation because it takes several steps for the data assimilation to converge). After obtaining the 
RMSEs from all the 20 runs, we remove the largest and the smallest RMSE values and then compute a final 
average RMSE using the remaining 18 values.   

The blue curve (marked as “DA without Parameter Estimation”) in Figure 5 shows the computed RMSE 
for the different sets of parameters. The horizontal axis represents the different 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  values (3.0, 3.25, 
3.5, 3.75, 4.0, 4.25, 4.5, 4.75, 5.0). The 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷  is always 4.0 and thus is not shown in the figure. The vertical 
axis represents the RMSE value. Note that Figure 5 also shows the results for the “Joint State-Parameter 
Estimation” (the red curve), details of which will be described in the next section. 

 

 
Figure 5: Quantitative results of state estimation with and without parameter estimation. The RMSEs are 
computed from 20 independent data assimilation runs for each case.  
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One can see that for the cases where 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  equals to or is less than 4.0, the RMSEs stay at a relatively 

low level even though the 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷  is still different from the 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 . This is because in these cases the 
vehicles in the real system can pass the road segment fast and thus there are few queued vehicles on both 
sides. The small number of queued vehicles result in frequent switches of traffic light, which are reflected 
by the measurement data from the real system. By assimilating these measurement data, the data 
assimilation is able to limit the estimation error in a relatively small range, as exemplified by the top and 
middle diagrams of Figure 4. For the cases where 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  is larger than 4.25, the RMSE increases: the larger 
the 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , the higher the RMSE. This is because for larger 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , the discrepancy between the 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
and the 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷  becomes larger. A larger discrepancy leads to higher state estimation errors, as exemplified 
by the bottom diagram of Figure 4. For these cases, the impact of the imperfect model parameter of 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
is significant.  
 
5.3. Joint State-Parameter Estimation for a Single Static Parameter  
In this set of experiments, instead of using a fixed model parameter that may be incorrect, the data 
assimilation assumes the model parameter is unknown and needs to be calibrated based on real-time 
measurement data. In other words, the data assimilation carries out join state-parameter estimation. Similar 
as the previous experiments, we focus on the 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  parameter and make the true system model use 
different 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  to generate measurement data. The 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  considered in this section is a static parameter 
that does not change over time. The simulation model assumes the 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷  is unknown and estimates it 
together with the state variables. Specific setting of the experiments is given below.  

• True system model:  each experiment uses a different 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  that varies from 3.0 to 5.0 with an 
0.25 interval, i.e., 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∈  {3.0, 3.25, 3.5, 3.75, 4.0, 4.25, 4.5, 4.75, 5.0}.   

• The simulation model: 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷  is unknown and needs to be estimated.  
 

Figure 6 shows the results of three data assimilation runs where the true system models use exactly the 
same configurations as the three cases shown in Figure 4, respectively. In other words, the true system 
models’ 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  are 3.5, 4.0, and 4.5, respectively, and the measurement data and the true states are the 
same as the ones shown in Figure 4. The difference is that the data assimilation runs here use joint state-
parameter estimation as opposed to using a fixed parameter 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷 = 4.0. Both the state estimation results 
(for the westSideQueue and eastSideQueue) and the parameter estimation results are shown. Similar as 
before, estimation results in each step is computed as the average from all the particles (after the 
resampling). The corresponding true states and true parameter are also displayed in the figure. 

One can see that the joint state-parameter estimation in all three cases were able to converge to the true 
parameter values after some time. The estimated parameter values do not stay constant over time but are 
close to the true parameter values. On the state estimation side, when 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  is 3.5 and 4.0, the state 
estimation results have similar errors as the ones shown in Figure 4. Nevertheless, for the case when 
𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 4.5 (the bottom diagram), the joint state-parameter estimation leads to much more accurate 
estimation results compared to the one shown in Figure 4. This is because by correctly estimating the 
𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  parameter, the simulation model is able to more accurately simulate the dynamics of the system and 
thus lead to more accurate estimation results. For this specific case, by using an estimated 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷  of 4.5 as 
opposed to an incorrect value of 4.0, the data assimilation knows that it takes longer time for vehicles to 
cross the road segment, and thus estimates that the west-side queue has more queued vehicles. This example 
demonstrates how the online model calibration can significantly improve state estimation results.  

To quantitatively show the impact of the join parameter-state estimation on state estimation, we use the 
same way as described in Section 5.2 to compute the RMSEs of the estimated westSideQueue and 
eastSideQueue based on joint state-parameter estimation. The results are shown in Figure 5 (the red curve 
that is marked as “Joint State-Parameter Estimation”). One can see that for the cases when 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  equals 
to or is less than 4.0, the RMSEs from the joint state-parameter estimation are about the same as the data 
assimilation without using parameter estimation (the blue curve). This is because in these cases the data 



assimilation without parameter estimation has relatively small errors already (as explained in Section 5.2). 
These results show that the joint state-parameter estimation does not degrade the estimation results for the 
cases where the previous data acclimation has accurate state estimations already. After 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  becomes 
larger than 4.5, the joint state-parameter estimation clearly improves the state estimation results by 
significantly reducing the RMSEs. We expect more improvement will be observed if 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  is larger than 
5.0 (not shown in the figure). An interesting result exists for the case of 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 4.25, where the joint 
state-parameter estimation has a slightly larger RMSE than the data assimilation that uses a fixed 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷 =
4.0. This is explainable because the joint state-parameter estimation does not perfectly estimate the 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 . 
The errors between the estimated parameter and the true parameter may be even larger than using a fixed 
𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷 = 4.0. This means when the discrepancy between the true system model and the simulation model 
is relatively small, there may be little benefit of using joint state-parameter estimation.  

 

 
Figure 6: Data assimilation using joint state-parameter estimation: (top) state and parameter estimation 
results when 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 3.5; (middle) state and parameter estimation results when 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 4.0; (bottom) 
state and parameter estimation results when 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 4.5. 
 

This set of experiments show that the joint state-parameter estimation is able to estimate a static 
parameter of the true system model correctly. Furthermore, it is able to improve the state estimation for the 
cases where the data assimilation without using parameter estimation have large errors.  
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5.4. Joint State-Parameter Estimation for a Dynamic Parameter  
In all the previous experiments, the 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  is a static parameter that does not change over time. This section 
studies how data assimilation works for real systems that have dynamic parameters, i.e., parameter that 
dynamically change over time. To set up the experiments, we make the true system model use a dynamic 
𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  as described below. Similar as before, we carry out two data assimilation activities: 1) activity 1: 
state estimation without parameter estimation; and 2) activity 2: joint state-parameter estimation. For the 
activity 1, the 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷  has a constant value of 4.0. For the activity 2, the 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷  is unknown and is estimated 
together with the state variables. Specific settings of the experiments are described below: 

• True system model:  𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  dynamically change in the following way: it stays at 4.0 from 0 to 
1000s, and gradually increases to 6.0 from 1000s and 3000s; it then gradually decreases to 3.0 from 
3000s to 4200s, and again gradually increases to 4.0 from 4200s to 5000s, and then stays at 4.0 
from 5000s to 6000s. The blue curve in the middle diagram of Figure 7 displays these changes.  

• The simulation model of activity 1 (without parameter estimation): use a constant 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑇𝑇𝐷𝐷𝐷𝐷 = 4.0. 
• The simulation model of activity 2 (joint state-parameter estimation): 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷  is unknown and 

needs to be estimated. 
 

Figure 7 shows the data assimilation results from both data assimilation activity 1 and activity 2. The 
top diagram shows the state estimation results of westSideQueue and eastSideQueue from a data 
assimilation run without parameter estimation. The middle diagram and bottom diagram show the results 
from a data assimilation run using joint state-parameter estimation: the middle diagram shows the 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
and the parameter estimation result; the bottom diagram shows the state estimation results.  

 



 
Figure 7: Data assimilation results for a system with dynamic parameter: (top) state estimation results 
without using parameter estimation; (middle) parameter estimation results using joint state-parameter 
estimation; (bottom) state estimation results using joint state-parameter estimation. 
 

The dynamic changes of 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  influence the number of vehicles queued on both sides of the road 
segment in the real system. One can see that the west-side queue starts to increase after 1000s. It reaches 
about 120 at around 4000s, and then gradually decreases. The east side queue increases after 2000s, reaches 
its peak (at about 40) at around 3000s, and then decreases to a low level at around 3800s. These changes 
are caused by the dynamical changes of the 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 . Specifically, the 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  starts to increase after 1000s, 
making it slower for vehicles to cross the road segment. Thus, the queues on both sides start to increase 
after 1000s. After the 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  starts to decrease after 3000s, the east-side queue starts to decrease at around 
3000s, and the west-side queue starts to decreases at around 4000s. 

From the top diagram of Figure 7, one can see that the data assimilation without parameter estimation 
is able to estimate both queues before 1500s. After that, the estimations for both queues start to have 
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significant errors, with the error of the west-side queue reaches as high as 90 (at around 4000s). The 
significant estimation error for the west-side queue persists untill the end of the experiment, although the 
error starts to reduce after 4000s. One can also see that during the time when there exist significant errors, 
the estimated queue sizes are smaller than the true queue sizes. This is because the 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷 = 4.0 is smaller 
than the 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  between 1000s and 3800s, which makes vehicles cross the road segment faster than they 
actually do in the real system. This incorrect model parameter leads to smaller estimated queue sizes.  

For the joint state-parameter estimation, the middle diagram shows that the estimated parameter is able 
to track the dynamic changes of the true parameter over time. For example, during the time when 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  
increases from 4.0 to 6.0 between 1000s and 3000s, and then decreases from 6.0 to 3.0 between 3000s and 
4200s, the estimated parameter increases and then decreases too. During the time when 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  maintains 
at 4.0 (before 1000s, and after 5000s), the estimated parameter stays at around 4.0 too. This diagram also 
shows that the estimated parameter lags behind the changes of the true parameter. This is because without 
knowing if the true parameter actually changes or not, particles tend to maintain their parameter values 
unless there is significant evidence from measurement data showing otherwise. This tendency results in a 
delay for the estimated parameter to track the changes of the true parameter. 

The bottom diagram shows that using the joint state-parameter estimation, the state estimation results 
are significantly improved. Estimates of both the west-side queue and east-side queue are able to track the 
true queue sizes with relatively small errors. This improvement is due to the fact that the estimation of the 
dynamical changes of 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  reduces the discrepancies between the simulation model and the true system 
model, and thus lead to more accurate state estimation results.  

To quantitively compare the results of data assimilation with and without using parameter estimation, 
we carry out 20 independent runs of data assimilation for each data assimilation activity and compute the 
RMSE of the state estimation results just like before. The resulting RMSE from data assimilation activity 
1 (without parameter estimation) is 23.2, and from activity 2 (using joint state-parameter estimation) is 
17.3. The smaller RMSE from the latter indicates that the joint state-parameter estimation improves the 
state estimation results. Similar results have been observed from other experiments using different dynamic 
change patterns of the 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 . Due to space limitation, these results are not included in the paper.  
 
6. Discussion and Conclusion 
Several observations can be made based on the experiments described in the previous section. First, the 
data assimilation is able to assimilate real-time measurement data from a system to provide state estimates. 
In some cases, accurate state estimation can be achieved even when there are non-minor discrepancies 
between the simulation model and the true system model. This is because in these cases the measurement 
data carries “distinct” information about the true system state, assimilating which lead to accurate state 
estimates. For example, when the west-side queue has few vehicles (as exemplified by the top diagram of 
Figure 4), a relatively large discrepancy between 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  and 𝜇𝜇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷  still leads to estimation results that 
have small errors. On the other hand, when measurement data do not carry “distinct” information about the 
true system state (as exemplified by the bottom diagram of Figure 4), a discrepancy of the model parameters 
can lead to significant errors of the state estimates. In these cases, the joint state-parameter estimation can 
significantly improve the results, as demonstrated by the experiments in Section 5.3 and 5.4.   

Second, the experiments show that the developed particle filter-based data assimilation method can 
effectively support joint state-parameter estimation for discrete event simulations. The results show that for 
a single parameter that is either static or dynamic, the estimated parameter is able to converge to and stay 
around the true parameter value. Furthermore, the joint state-parameter estimation leads to more accurate 
state estimations in most of the experiments, and does not degrade the estimation accuracy in other 
experiments where the data assimilation without parameter estimation already performs well. The fact that 
more accurate state estimates are achieved is because the joint state-parameter estimation allows the 
simulation model used in data assimilation to have less discrepancies from a real system under study.  

The joint state-parameter estimation uses an augmented state vector (see equation (4)) that has a higher-
dimensional state space. State estimation in a higher-dimensional state space requires the particle filter 



algorithm to use more particles in order to converge to the true system state. All the experiments in this 
paper use 4000 particles. Nevertheless, preferably the joint state-parameter estimation should use more 
particles than the data assimilation without parameter estimation. The impact of the number of particles on 
joint state parameter estimation will be studied in future work. It is also important to note that more particles 
will lead to higher computation cost.  

Another issue that is important for the joint state-parameter estimation is how to decide the level of 
perturbation for the dynamics of the parameter. All the experiments in this paper use the same Gaussian 
variance when adding perturbations to the parameter in each step, regardless if it is a static parameter or 
dynamic parameter. Ideally, if one knows that the parameter under estimation is a static parameter (i.e., 
does not change over time), a smaller variance is preferred. Otherwise, a larger variance should be used. 
The impact of variance on parameter estimation is another topic that needs further investigation.  

This paper focuses on parameter estimation of a single parameter. The developed data assimilation 
method can be directly applied to joint state-parameter estimation with multiple parameters. Nevertheless, 
adding more parameters will bring more complexity such as the combination effect of multiple parameters 
that may not be distinguishable by the measurement data, as well as the higher dimension of the augmented 
state vector. An important future research is to develop online model calibration with multiple parameters.  

To conclude, this paper presents a particle filter-based data assimilation method to support online model 
calibration for discrete event simulations. A joint state-parameter estimation problem is formally defined 
and a particle filter-based data assimilation algorithm is presented. A series of experiments are carried out 
to demonstrate the effectiveness and evaluate the different aspects of online model calibration. This paper 
focuses on online model calibration with a single parameter. Future work includes further investigating the 
performance of joint state-parameter estimation and developing online model calibration with multiple 
parameters. 
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