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A B S T R A C T   

Post-wildfire mass wasting is a major problem throughout many regions worldwide. Recent dramatic increases in 
global wildfire activities coupled with a shift in wildfire-prone elevation to higher altitudes raise the need to 
better predict post-fire rainfall-triggered landslides. Despite its importance, only a limited number of studies have 
investigated landslide susceptibility in areas hit by wildfires using hydromechanical models. However, most of 
these studies follow either qualitative or semi-quantitative approaches without explicitly considering the fire’s 
effects on the impacted area’s physical behavior. This study aims to develop and employ a physics-based 
framework to generate susceptibility maps of rainfall-triggered shallow landslides in areas disturbed by wild
fire. A coupled hydromechanical model considering unsaturated flow and root reinforcement is integrated into 
an infinite slope stability model to simulate the triggering of shallow landslides from rainfall. The impact of fire is 
considered through its effects on soil and land cover properties, near-surface processes, and canopy interception. 
The developed model is then integrated into a geographic information system (GIS) to characterize the regional 
distribution of landslide potential and its variability considering topography, geology, land cover, and burn 
severity. The proposed framework was tested for a study site in Southern California. The site was burned in the 
San Gabriel Complex Fire in June 2016 and experienced widespread landsliding almost three years later 
following an extreme rainstorm in January 2019. The proposed framework could successfully model the location 
of observed shallow landslides. The model also revealed a significantly higher likelihood for slope failure in areas 
burned at moderate to high severities as opposed to unburned and low-burn severity areas. The findings of this 
study can be employed to predict the timing and general locations of rainfall-triggered shallow landslides 
following wildfires.   

1. Introduction 

Recent increases in wildfire activities and shifts in their frequency, 
intensity, and seasonality have raised major concerns about socioeco
nomic and environmental impacts stemming from cascading hazards 
around the world. The changes in fire regime are mainly attributed to 
climate and land-use changes as well as warming temperatures, pro
longed drought, reduced snowpack, decreases in warm season precipi
tation frequency, and fire suppression over the last century (Abatzoglou 
and Williams, 2016; Burke et al., 2021; Madadgar et al., 2020; Williams 
et al., 2019). Since the 1980s, the annual area burned in wildfires has 
increased fivefold in the United States, punctuated by massive wildfires 

in 2018 and 2020 (NIFC, 2022). The wildfire-induced changes to 
affected areas may leave them susceptible to a variety of post-fire geo
hazards, such as debris flows, landslides, and soil erosion long after 
burning (Moody et al., 2013; Shakesby and Doerr, 2006; Vahedifard 
et al., 2024). In parallel with the rapid expansion of the wildland-urban 
interface, post-fire geohazards pose a significant threat to the well-being 
and integrity of communities and critical infrastructure (Burke et al., 
2021; Cannon and DeGraff, 2009; De Graff, 2014). The shift in wildfire 
elevation to higher altitudes has especially increased the chance of 
post-fire rainfall-triggered landslides and debris flows (AghaKouchak 
et al., 2018; Alizadeh et al., 2020, 2023). Post-fire landslides have been 
observed and documented in several studies (e.g., Benda and Dunne, 
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1997; Campbell, 1975; Gehring et al., 2019; May and Gresswell, 2004; 
Peduto et al., 2022). These observations highlight the imperative for 
further research to enhance our understanding and susceptibility map
ping of post-fire rainfall-triggered landslides. The findings of such 
studies can contribute toward developing more accurate and effective 
strategies for assessing and mitigating the risks associated with such 
landslides. 

Shallow landslides and debris flows are common hazards in moun
tainous terrains worldwide. While the triggering factor is commonly 
precipitation, wildfire can predispose burned areas to different forms of 
instability. With increased urbanization in mountainous regions, a more 
detailed understanding of the process that controls the shallow land
slides following a wildfire is critical. Regional susceptibility maps and 
models are generally used to investigate post-wildfire ground in
stabilities’ temporal and spatial distribution. Over the last few years, 
several techniques have been adopted for post-wildfire landslide or 
debris-flow susceptibility mapping. Almost all these techniques belong 
to the following categories: qualitative or heuristic methods and quan
titative or semi-quantitative methods (He and Beighley, 2008; Melo and 
Zêzere, 2017). Heuristic methods are based on prior knowledge and 
experience of post-fire ground failures. They involve geomorphological 
analysis and indexing factors contributing to slope instability and 
ranking them based on their impact (e.g., Carabella et al., 2019). 

Quantitative and semi-quantitative methods encompass determin
istic approaches, typically employed at a slope scale, as well as statistical 
approaches such as machine learning and logistic regression. The latter 
includes the development of empirical models using historical obser
vations of post-fire rainfall-induced slope instabilities in the relevant 
region (Cannon et al., 2010; Donovan and Santi, 2017; Gartner et al., 
2008; Di Napoli et al., 2020). Empirical models are typically computa
tionally efficient and can, therefore, be pivotal for conducting rapid 
hazard analyses. They are particularly adept at establishing rainfall 
intensity-duration thresholds for burned areas, offering quick, pre
liminary estimates of mass wasting susceptibility post-wildfire, and 
sidestepping the computational demands of process-based models. 
Importantly, these models can be integrated into Geographic Informa
tion Systems (GIS) for evaluating post-fire geohazards, crucial for 
emergency management. For instance, in southern California, empiri
cally derived thresholds are integral to post-fire debris-flow early 
warning systems (Staley et al., 2017). However, these models are region- 
specific and only applicable to the narrow geographical locations and 
specific geologic, geomorphic, and climatic conditions by which they are 
trained. These models are data-driven, and in order to be used for other 
regions, they must be modified based on the characteristics of the new 
region of interest (Cannon et al., 2010). Empirical approaches estab
lished solely based on historical data exhibit a notable limitation by 
disregarding the impact of shifting precipitation patterns and fire re
gimes. This oversight becomes particularly significant as recent studies 
have indicated a growing occurrence of extreme precipitation events 
(Ragno et al., 2018). Finally, empirical models neither explicitly account 
for the wildfire-induced changes in land cover, soil properties, and near- 
surface processes nor consider the underlying physical processes leading 
to post-fire ground failures upon precipitation. 

Wildfires can have short- and long-term effects on the mechanical 
and hydrological response of the affected area. Combustion of the 
above-ground biomass, intensive drying of the soil, decreases in the soil 
porosity and permeability, and enhancement or formation of a hydro
phobic layer on the soil surface all lower the ground infiltration and 
enhance surface runoff after the fire (Chen et al., 2020; Debano, 2000; 
Ebel and Moody, 2020; Stoof et al., 2012). Depending on sediment and 
debris availability as well as geologic and topographic settings of the 
burned area, the increased runoff can lead to catastrophic debris flows 
shortly after the fire (Moody et al., 2013; Nyman et al., 2011; Rengers 
et al., 2016). However, during the recovery state after the fire and 
through the recovery of infiltration capacity, mass wasting tends to shift 
from runoff-driven failures like debris flows to infiltration-triggered 

discrete shallow landslides (Parise and Cannon, 2012). Roots decay, 
reduction of evapotranspiration, changes in vegetation coverage and 
canopy interception, and alteration in soil mechanical and hydraulic 
properties are key factors that predispose landscapes to shallow land
slides following a wildfire (Gehring et al., 2019; Lei et al., 2022; Masi 
et al., 2021; Shakesby and Doerr, 2006; Vergani et al., 2017). 

The main objective of this study is to develop a physics-based 
framework for regional shallow landslide susceptibility assessment of 
wildfire-disturbed areas. We employ an infinite slope stability model 
with a transient hydromechanical model to evaluate the safety factor of 
slopes over time following a wildfire. The proposed model is then 
employed in a GIS framework to account for the regional distribution of 
potential shallow landslides based on topography, geology, land cover, 
rainfall intensity and duration, and soil burn severity. The effect of 
wildfire on the hillslope behavior is seen through the induced changes in 
canopy interception, evapotranspiration rate, root reinforcement, and 
mechanical and hydraulic properties of the soil. The applicability of the 
proposed framework in post-wildfire landslide susceptibility mapping is 
tested against a case study in the San Gabriel Mountains, California, 
USA. The area experienced several landslides during a heavy rainstorm 
in January 2019, three years after it was burned in the San Gabriel 
Complex Fire in 2016. 

2. Methodology 

The proposed framework for mapping shallow landslide suscepti
bility post-wildfire comprises three components: 1) transient evaluation 
of soil moisture to analyze water flow in unsaturated, vegetated slopes; 
2) a slope stability model to calculate the factor of safety; and 3) regional 
mapping to identify affected areas, burn severities, and variations in 
local rainfall patterns. This approach combines hydrological and 
geotechnical assessments with spatial analysis to effectively identify 
areas at risk of landslides following wildfire events. To the best of the 
authors’ knowledge, this study is the first attempt in the literature to 
regionally examine the post-wildfire stability of variably saturated 
vegetated hillslopes against rainfall-triggered shallow landslides 
employing a physics-based approach. The formulations account for 
antecedent conditions of soil and vegetation cover, wildfire-induced 
alterations in transpiration and root reinforcement, hydromechanical 
coupling, and time-varying infiltration rates. These new features 
distinguish the current study from prior studies in the field. It is noted 
that some of the elements integrated into the proposed framework are 
from well-established principles in the literature of unsaturated soil 
mechanics and hydrology. However, there has been no such attempt in 
the literature to integrate all these elements in one unifying framework 
and investigate thoroughly the post-wildfire stability of unsaturated 
hillslopes against rainfall-triggered shallow landslides in the form and 
details the current study has done. 

2.1. Soil moisture dynamics 

2.1.1. Soil water balance 
The complete terrain soil water balance can be described as (Abbate 

et al., 2019; Daly and Porporato, 2006; Farmer et al., 2003): 

∂θ
∂t

= P(t) − Ic(t) − LQ(T) − ET(t) (1)  

where θ is the soil volumetric water content, t is time, P is the rainfall 
rate, Ic is the canopy interception, LQ represents the sum of runoff and 
deep drainage below the root zone, and ET is the evapotranspiration 
rate. 

Canopy interception is the amount of rainfall that remains on the leaf 
surface and depends on the canopy density, vegetation type, and rainfall 
intensity and duration (Kozak et al., 2007). Merriam (1960) developed 
the following model to estimate the cumulative interception during each 
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rainfall event: 

Ic = Sc
max

(
1 − e− P

Sc
max

)
(2)  

where Sc
max is the canopy’s maximum storage capacity across the study 

area, assuming complete canopy cover. This equation was originally 
developed for forests with complete area coverage. However, for sparse 
canopy vegetation such as crops and shrubs, the Merriam model is 
modified as follows (Aston, 1979; Kozak et al., 2007): 

Ic = FcSc
max

(
1 − e−

ηP
Sc
max

)
(3)  

η = 0.065LAI (4)  

where Fc is the canopy cover fraction within the modeling unit (i.e., grid 
cell or pixel), η equals the fraction of rainfall that falls on the canopy, 
and LAI is the leaf area index defined as the amount of leaf material in a 
canopy. FPAR, defined as the fraction of incoming solar radiation 
absorbed by a photosynthetic organism, is used as a surrogate of vege
tation fraction (Fc) in this study (Los et al., 2000). The canopy’s 
maximum storage capacity can be evaluated using different datasets or 
empirical equations (e.g., von Hoyningen-Huene, 1981). 

It is assumed that runoff and drainage into deeper layers occur 
instantly when the layer is close to saturation (Bouten and Jansson, 
1995). The two mechanisms that generate runoff are soil saturation and 
Hortonian overland flow during the rainfall. The coefficient of infiltra
tion (α) is used in this study to calculate the amount of water that in
filtrates the soil from rainfall that reaches the ground, Pg(t). 

I(t) = α × Pg(t) (5)  

where I is the amount of rainfall that infiltrates into the soil. This study 
does not model the redistribution of the runoff water from one grid cell 
to the adjacent cells at lower elevations. 

ET data are collected using the MODIS MOD16 global evapotrans
piration product with a spatial resolution of 500 m and a temporal 
resolution of 8 days. The MOD16 ET datasets are calculated based on the 
improved ET algorithm proposed by Mu et al. (2011) over their older 
version model (Mu et al., 2007). The algorithm is a modification of the 
Cleugh et al., 2007 model and is based on the Penman-Monteith logic 
(Monteith, 1965). The algorithm employs MODIS land cover, albedo, LA, 

Enhanced Vegetation Index (EVI), and daily meteorological data from 
NASA’s Global Modeling and Assimilation Office (Mu et al., 2011). The 
evapotranspiration rate can be proportioned into evaporation (E) and 
transpiration (T) based on the vegetation cover fraction (Mu et al., 
2011): 

T = ET × Fc (6)  

E = ET × (1 − Fc) (7)  

2.1.2. Water flow in unsaturated slopes 
The flow of water into an unsaturated vegetated slope is modeled by 

extending (Richards, 1931) equation. The one-dimensional form of 
Richards’ (1931) equation to describe the water flow in the vertical (Z) 
directions is defined as: 

∂
∂Z

[

k
(

∂h
∂Z

+ 1
) ]

=
∂θ
∂t

(8)  

where k is the hydraulic conductivity of the soil and a function of its 
moisture content, and h is the pressure head. Considering the slope 
inclination (β), and the effect of transpiration on water flow in vegetated 
slopes, Eq. (8) can be modified for the direction perpendicular to the 
slope (z = Zcosβ) as follows: 

∂
∂z

(

k
∂h
∂z

)

+
∂k
∂z

cosβ − S(z) =
∂θ
∂t

(9)  

S(z) = Ar(z)TH(z) (10)  

where S(z) is the sink term considering the effects of root water uptake, 
H(z) is the Heaviside function equal to 1 for the root zone and 0 beyond 
the root depth, and Ar(z) is a shape function describing the root distri
bution along the depth. In this study, it is assumed that roots are 
distributed uniformly along the soil depth. 

Water flow in the soil is a coupled phenomenon (Khalili et al., 2008; 
Thomas and He, 1997). Water flux in and out of the soil changes the 
soil’s effective stress, which causes soil deformation. These changes, in 
turn, affect water flow in the soil media by altering the soil porosity, 
permeability, and water retention capacity (Wu and Zhang, 2009). 
Considering this coupled behavior, Eq. (9) can be rewritten as (Tracy 
and Vahedifard, 2022, 2023): 

Fig. 1. Flowchart of the proposed regional susceptibility mapping of post-wildfire landslides.  

M. Abdollahi et al.                                                                                                                                                                                                                              



Engineering Geology 335 (2024) 107538

4

∂
∂z

(

k
∂h
∂z

)

+
∂k
∂z

cosβ − S(z) = Seχγw
(1 + υ)(1 − 2υ)

(1 − υ)E
h + (θs − θr)

∂Se

∂t
(11)  

where χ is the Bishop (1959) effective stress parameter and E is the soil 
elastic modulus. They are both functions of soil moisture content and are 
obtained through an iterative process. θs and θr are the saturated and 
residual water contents, respectively. Se is the effective degree of satu
ration and can be calculated as: 

Se =
θ − θr

θs − θr
(12) 

The complete derivation of Eq. (11) can be found in Abdollahi et al. 
(2023) and (Tracy and Vahedifard, 2022, 2023). Eq. (11) is inherently 
nonlinear. To linearize and solve the equation, we took the following 
steps and assumptions:  

1. The exponential functional model of Gardner (1958) is used to 
describe the soil water retention curve (SWRC) and the hydraulic 
conductivity function (HCF): 

k = eαhks (13)  

Se = eαh (14)  

where α is a fitting parameter.  

2. The following change of variables is used: 

h = eah − e−acosβz (15)  

ĥ = h − hss (16) 

where hss is the steady-state solution to Eq. (11) using the first change 
of variables (Eq. (15)).  

3. Eq. (11) can be solved for a specified head pressure at the top 
boundary (htop). To solve the equation for a given water flux at the 
top boundary (q), an iterative procedure is employed to find the 
corresponding pressure head for a given q(t). 

The solution to Eq. (11) can be obtained as follows:   

c2 =
(eαhtop − e−αLcosβ) − SL2

kscosβ + S
αkscos2β − Se−αL2cosβ

αkscos2β

1 − e−aLcosβ (18)  

c1 = c2 × α × cosβ (19)  

ĥ =
∑∞

k=1
Aksin(λkz)exp

⎛

⎜
⎜
⎝ −

αcosβ
2

z −

(

λ2
k + α2cos2β

4

)

χγw
(1+ν)(1−2ν)

E(1−ν)
+ α(θs − θr)

kst

⎞

⎟
⎟
⎠ (20)  

λk =
πk
L

k = 0, 1, 2, … (21)  

where Ak is a constant that can be evaluated from the initial condition 

(ĥ(z, 0) = − hss). The detailed derivation of Eqs. (17)–(21) is presented 
by Abdollahi et al. (2023). 

The calculated pressure head solution is introduced into a Heaviside 
series expansion to describe a time-varying flux (i.e., infiltration or 
evaporation) at the top boundary: 

h(z, t) =
∑N

n=1
H(t− tn)×

(
h(z, t − tn) |qn

)
−

∑N

n=1
H(t− tn+1)×

(
h(z, t − tn+1) |qn

)

(22)  

where N is the total number of time intervals, tn is the time at the nth time 
interval in the top boundary surface flux sequence, and qn is the surface 
flux at the nth time. 

A new feature of the current study lies within employing a coupled 
hydromechanical model of unsaturated soils that considers fluid-solid 
interactions, a critical factor often overlooked in many other analyt
ical models designed for shallow landslide prediction. The choice, albeit 
with its simplifications, is a step forward in understanding these com
plex phenomena under the veil of uncertainty. Recent studies (Tracy and 
Vahedifard, 2022, 2023) have demonstrated significant differences in 
pressure heads obtained from coupled versus uncoupled analytical so
lutions for fine-grained soils with a low Gardner’s coefficient. Their 
findings indicate that uncoupled solutions reach a steady state faster 
than coupled models in such soils, revealing the considerable impact of 
hydromechanical coupling. This effect diminishes as Gardner’s coeffi
cient increases, highlighting the importance of considering hydrome
chanical coupling in landslide modeling. 

2.2. Infinite slope stability 

Shallow landslides are most frequently translational slope failures 
involving the upper few meters of unconsolidated surface materials such 
as soil or regolith (Godt et al., 2012). In this paper, slope stability is 
examined using a one-dimensional infinite slope stability model (Taylor, 
1948). The infinite slope method is ideal for landslides in which the 
failure and ground surfaces are near-parallel, the slide’s thickness-to- 
length ratio is relatively small, and the local topographic curvature is 
minor (Milledge et al., 2012). Many studies have shown that this 
mechanism can reasonably represent shallow landslides in mountainous 
terrain, including those disturbed by wildfire (e.g., Gorsevski et al., 

2006; Godt et al., 2012; Araújo Santos et al., 2020). However, future 
work could consider different failure mechanisms through the adapta
tion of different slope stability methods that reflect appropriate land
slide kinematics (e.g., rotation, compound failures, etc.). 

In the infinite slope method, the slope’s factor of safety is defined as 
the ratio of basal Coulomb friction to gravitationally-induced downslope 
destabilizing shear stress. Including the contribution of soil suction and 
root reinforcement (cψ and cr), the factor of safety, FS, along the z di
rection is defined as (Baum et al., 2010; Zhang et al., 2014): 

F.S. =
c′ + cr − cψ

γs(L − z)sinβ
+

tanϕ′

tanβ
(23)  

where γs is the unit weight of soil, and L is the total thickness of the soil 
layer. cψ can be estimated using different shear strength models. In this 
study cψ is defined as (Fredlund and Rahardjo, 1993): 

hss =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c2 −
e−αzCos βc1sec β

a
H(z) = 0

αksc2 + (αS(z − L1) − e−αzcos βksc1 )secβ + S
(

− 1 + e−α(z−L1)cosβ
)
sec2β

αks
H(z) = 1

(17)   
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cψ = h(z, t)tanϕb (24)  

where ϕb represents the rate of increase in shear strength relative to the 
matric suction. Root reinforcement (cr) is considered based on landcover 
type and is simplified as a cohesion as limited information regarding 
load-displacement behavior and vegetation density is available at the 
scales of interest, an assumption common in many studies (e.g., Schmidt 
et al., 2001; Wu et al., 1979; Zhuang et al., 2022). 

2.3. Regional mapping 

Fig. 1 illustrates the key components of the proposed framework. The 
post-fire landslide susceptibility mapping consists of 3 stages. The first 
step is to prepare the data grids of the area geology, digital elevation 
model (DEM), land cover and fraction of photosynthetically active ra
diation (FPAR), soil burn severity (SBS), and meteorological data 
including precipitation and evapotranspiration (ET). These data can be 
obtained from different resources. However, in this study, the soil survey 
geographic database (SSURGO) provided by the United States Depart
ment of Agriculture (USDA), National Centers for Environmental In
formation (NCEI) data archives, the United States Geological Survey 
(USGS) databases, and NASA MODIS (a satellite-based sensor for earth 
measurements) are used to obtain the required data. In the second 
phase, a grid-based distributed analytical model of unsaturated slope 
stability is implemented using Python and ArcGIS programs. The spatial 
distribution of the model is captured by discretizing the area into 
consistent grid cells for which the input data are obtained from the raster 
layers and records. Such data are used in calculating canopy intercep
tion, water flow in unsaturated soils, and root reinforcement. Profiles of 
pressure head across the disturbed area are calculated using the 

hydromechanical model of water flow in unsaturated soil discussed in 
the previous sections. Finally, a factor of safety of cells is assessed, and 
the areas susceptible to landslides are mapped across the burned area at 
the spatial resolution of 10 m. 

3. Study area 

The study area is located at the front range of the San Gabriel 
Mountains in the vicinity of the San Gabriel River and was burned by the 
San Gabriel Complex Fire. The San Gabriel Complex Fire was the com
bination of two separate wildfires, the Fish Fire and the Reservoir Fire, 
both of which ignited on June 20th, 2016, and burned parts of the 
Angeles National Forest located within Los Angeles County in Southern 
California. The fire was contained on July 23rd, 2016, after it had 
burned an area of 22 km2 (CAL FIRE, 2022). Fig. 2 shows the location, 
perimeter, and soil burn severity of the fire. The study area has a Med
iterranean and sub-tropical climate with rainy winters and dry summers 
(Rulli and Rosso, 2005). Based on climatic data for the 30 years between 
1991 and 2020, the annual average precipitation for the area is 720 mm, 
most of which (620 mm) occurs in Winter and Spring (NCEI, 2023). 
Vegetation cover is predominantly shrubs and grass (Rulli and Rosso, 
2005; Terwilliger and Waldron, 1991). Roots are mostly present within 
the soil mantle. However, they also can deeply penetrate the weathered 
bedrock (≥ 4 m), and are largely confined to the joint traces (Sternberg 
et al., 1996). However, they can penetrate and extend into the under
lying weathered bedrock (Rengers et al., 2020). 

The study area is part of the Transverse Ranges consisting of Meso
zoic granitic rocks, and Precambrian igneous and metamorphic rock 
complexes. There are also a few Pleistocene non-marine sedimentary 
layers near riverbeds. Steep slopes with shallow soils in this region result 

Fig. 2. Location of the study area in Southern California, thematic map of the San Gabriel Complex Fire SBS, location of landslides, and the weather station.  
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from a fast tectonic uplift caused by the collision of tectonic plates over 6 
million years ago (Bull, 1991; DiBiase et al., 2010). The soil thickness in 
the area barely exceeds 1 m on hillslopes, and according to the USDA 
datasets (2022) can mostly be graded as sand or loam with high per
meabilities (Tang et al., 2019). The area is prone to landslides due to its 
steep slopes and extreme rainfall events that periodically fall over the 
region (Campbell, 1975). However, wildfires have increased the likeli
hood of instability in this region. In the Las Lomas watershed within the 
Fish Fire’s perimeter, 11 debris flows were observed during the first 
rainy season following the fire (Tang et al., 2019). According to Rengers 
(2020), the third rainy season after the fire initiated widespread shallow 
landsliding in the area. San Gabriel Complex Fire had a landslide density 
of 11.8 landslide scars per square kilometer and tangent of angle of 
reach (ratio of landslide’s change in vertical height from its scarp to its 
toe and runout length) of <0.5 to 1.5 (Rengers, 2020). Observations 
showed that >90% of these landslides were located within the bound
aries of the San Gabriel Complex Fire. 

Python (version 3.7) and ArcGIS (version 10.8) were utilized to 
develop a grid-based, distributed analytical model for the study area’s 
variably saturated soils. This model, designed to solve soil moisture and 
infinite slope stability equations, aids in mapping susceptibility to post- 
wildfire, rainfall-induced shallow landslides. The model’s spatial dis
cretization was achieved by dividing the research region into grid cells 
with a size of 10 m, which resulted in 209,090 and 57,078 cells for the 
Fish Fire and Reservoir Fire, respectively. 

The soil burn severity map was obtained from the USGS Burn 
Severity Portal, Burned Area Emergency Response (BAER, 2022) with a 
resolution of 30 m (Fig. 2). These maps are created using the differenced 
normalized burn ratio (DNBR) approach using the archived and current 
Landsat imagery. The DNBR values are then categorized into very low, 
low, moderate, and high burn severities and shown on a Burned Area 
Reflection Classification (BARC) map (Clark et al., 2006). According to 
the SBS map, 74% and 76% of the land burned in the Fish Fire and 
Reservoir Fire, respectively, have moderate to high burn severity. 

The locations of the landslides were mapped using an inventory 
created by (Rengers, 2020) (Fig. 2). This dataset contains 286 landslide 
polygons mapped after a rainstorm on 16–17 January 2019. Out of 286 
landslides, 264 landslides are located within the perimeters of the San 
Gabriel Complex Fire. 

The daily rainfall data (Fig. 3) was received from NOAA, NCEI online 
database (2022) for a weather station located at the San Gabriel Dam 
(34◦ 12′ 18.72“, - 117◦ 51’ 38.88”) (Fig. 2). The weather station is in 1.8 
and 7.6 km distances from the centers of Reservoir and Fish Fires, 
respectively. The total rainfall reaching the ground was calculated using 
Eqs. (3) & (4). From this value, the amount that would infiltrate the soil 
was estimated via Eq. (5). Considering the high permeability of the 
colluvial deposits in the study area compared to the typical rainfall in
tensity, the coefficient of infiltration is set to 1.0 based on the high 
permeability of the soil type in the study area. ET is collected using 
MODIS Global Terrestrial Evapotranspiration Product (Gap-filled 
MOD16A2GF) in 500 m resolution with a temporal resolution of 8 days. 
FPAR and LAI are extracted from the MODIS datasets (MOD15AH2) with 
a spatial resolution of 500 m. Due to the coarser resolution of the MODIS 
data, the data are down-sampled to 10 m grid cells. 

The terrain slope was calculated from the digital elevation model 
(DEM) with a resolution of 1 m provided through the 3D elevation 
program by USGS (2022) (Figs. 4a & 4b). Within the boundaries of 
either of the two fires, slopes have a median value of 41◦ and a standard 
deviation of 11◦ . The DEM resolution is finer than the grid size we used 
to discretize the area. For each grid, the representative slope is the mean 
value of the finer pixels’ inclination value. Figs. 4c & 4d show the soil 
map of the area created using the SSURGO database (2022). As seen, the 
majority of the soil texture in the area can be classified as either loam 
(CL) or sandy loam (SC), which agrees with prior findings and obser
vations (Thomas et al., 2021). The soil cover in the area is relatively 
shallow. Using the SSURGO database (2022), it was found that soil 
thickness barely exceeds 50 cm. Investigating the landslide character
istics, (Rengers, 2020) indicated that the landslides generally had depths 
ranging between 0.15 and 0.50 m and occurred at the interface of soil 
and the underlying saprolite. (McGuire et al., 2019) also reported that 
the soil in the study area is generally thin, rarely exceeding 1.0 m. In this 
study, it was found that the soil thickness for the majority of the 
analyzed grids is approximately 0.5 m. 

The area land cover (Figs. 4e & 4f) was obtained from the Terra and 
Aqua combined Moderate Resolution Imaging Spectroradiometer 
(MODIS) Land Cover Type (MCD12Q1). The data is available in a spatial 
resolution of 500 m. The dominant vegetation types of the area are grass 
and shrubs. This also can be confirmed with prior studies that defined 

Fig. 3. Daily rainfall data from the San Gabriel Dam rain gauge station in the study area and the calculated infiltration rate.  
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grass and different species of shrubs and bushes, usually known as 
chaparral, as the dominant vegetation type of the area (Rulli and Rosso, 
2005; Terwilliger and Waldron, 1991). Depending on the vegetation, 
measured parameters for the main land cover types in North America 
gathered by (Breuer et al., 2003) are used in this study to obtain the 
corresponding canopy’s maximum storage capacity (Smax

c ). (Terwilliger, 
1988) did a comprehensive study on the contribution of roots of the 
different types of vegetation to the soil shear strength (cr) in the study 
area. In the absence of more detailed data on the distribution of roots’ 
physical and mechanical properties, these reported values are used in 

this study to evaluate the effect of root reinforcement on slope stability. 
The proposed physics-based model was used to characterize changes 

in the factor of safety for each grid. The thematic maps and meteoro
logical data obtained earlier were input to the water flow, root rein
forcement, and slope stability models. Table 1 shows the input 
parameters of the properties of the different soil types and vegetation 
covers used in modeling. Based on the temporal resolution of the 
available data, we employed a time step of one day for the simulations. 
The model was run over the study area for a time period between 09/01/ 
2018 to 01/31/2019 for three months. In general, due to the coarse 
nature of the soils in the study area, the changes in soil suction are rapid 
and mostly occur in response to precipitation. However, for a number of 
specific locations, the model was run from June 2016 to February 2019 
to better illustrate the changes in the factor of safety following the fire 
and during different rainstorms. With respect to the infiltration mea
surements in the study area following the fire (Ebel and Moody, 2020; 
Tang et al., 2019), the coefficient of infiltration was reduced to one-third 
of its original value for areas burned at moderate to high severity 
(Abdollahi et al., 2023). Ebel and Moody (2020) conducted a study on 
fire’s impact on soil hydraulic properties in Southern California, indi
cating that saturated hydraulic conductivity and sorptivity ratios be
tween burned and unburned areas are approximately 0.37 and 0.36, 
respectively. Utilizing Philip’s eqs. (1957, 1969) without adjustments 
for lateral spreading suggests a similar reduction in infiltration rates to 
about one-third of pre-fire levels. This finding aligns with post-wildfire 
observations by other studies (e.g., Conedera et al., 2003; Robichaud, 
2000), confirming the consistency of these effects across studies. It is 
shown that rainfall with a return duration of one to two years can 
gradually wash away the fire-induced hydrophobic layer and improve 
the affected area’s infiltration capacity (Abbate et al., 2019; Conedera 
et al., 2003; Robichaud, 2000). Following this approach, the coefficient 
of infiltration was increased by 0.1 following each rain event with 

Fig. 4. a) slope angle, c) soil type, e) land cover within boundaries of the Fish Fire; b) slope angle, d) soil type, f) land cover within boundaries of the Reservoir Fire.  

Table 1 
Model parameters for soil and land cover properties for susceptibility mapping 
of 2019 shallow landslides.  

PROPERTIES VALUE REFERENCES 

Soil Type CL SC or 
SC-SM 

SP USDA (SSURGO) 

ϕ′ (◦ ) 27 32 37 (Terwilliger and 
Waldron, 1991) 

c′ (kPa) 1.0 0.0 0.0 (Wohlgemuth and 
Hubbert, 2008) 

α (1/m) 1.0 1.5 2.3 (Schaap et al., 
2001) 

ks(m/s) 1.4e − 6 4.4e-6 8.75e-5 (Schaap et al., 
2001) 

γs
(
kN/m3)

17.1 17.1 16.4 (Terwilliger and 
Waldron, 1991) 

Land Cover Type Grass/ 
Savanna 

Shrub Needleleaf 
Forest 

MODIS 
(MCD12Q1) 

Root 
Reinforcement 
(kPa)

1.5 1.2 3.0 (Terwilliger, 1988) 

Smax
c (mm) 1.7 1.1 2.2 (Breuer et al., 

2003)  

M. Abdollahi et al.                                                                                                                                                                                                                              



Engineering Geology 335 (2024) 107538

8

cumulative rain of >50 mm. 
Wildfires can lead to a significant reduction in the number, tensile 

strength, and shear strength of roots and the soil-root system, with losses 
ranging from 50% to 80%, as documented in the literature (e.g., Gehring 
et al., 2019; Lei et al., 2022; Masi et al., 2021). The degradation of root 
reinforcement following wildfires is a well-recognized phenomenon (De 
Graff, 2018; Jackson and Roering, 2009; Vergani et al., 2017). However, 
a standardized method for assessing root recovery over time remains 
undeveloped. Studies have shown finer roots may lose strength more 
rapidly after fire compared to thicker roots (Lei et al., 2022). This might 
be because fine roots have a greater specific surface area and, hence, are 

more likely to be degraded by microorganisms in the soil following fire 
damage (Vergani et al., 2017). For the region considered in the current 
study, Rengers (2020) observed that areas burned five years before a 
storm had lower landslide density than those burned three years prior, 
attributing this to the longer period for vegetation and root reinforce
ment recovery, indicating a critical 3–5 year window for hydrologic and 
mechanical recovery. Qualitative indices based on surface conditions 
can be used to assess the roots’ damage and loss (Parsons et al., 2010). 
Abdollahi et al. (2023) evaluated FPAR values and showed a three-year 
recovery window for vegetation regrowth in the study area. In the 
current study, the post-fire root reinforcement is reduced by 50% and 

Fig. 5. Computed safety factors for slopes within a) the Fish Fire and c) the Reservoir Fire; Relative changes in factor of safety compared to no-fire scenario for b) the 
Fish Fire and d) the Reservoir Fire, Purple circles shown in subfigure (a) are cases for which changes in factor of safety is analyzed over a longer period of time. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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80% for moderate and high burn severity areas following wildfire, 
respectively. This assumption is likely conservative as it is expected that 
decay in root reinforcement may occur over time. However, some loss of 
roots from smoldering and incineration is likely as well and could sup
port at least some near-immediate loss of root reinforcement following a 
wildfire. Further, this assumption at least provides quantitative bounds 
on the loss of stability stemming from loss of root reinforcement, 
particularly owing to the absence of field observations on the evolution 
of root behavior in these ecoregions, the multi-year window between the 
fire event, and the observed landslides, uncertainties in the vegetation 
type and its recovery time. The capability of the proposed model to more 
accurately predict the temporal risk of landsliding may significantly be 
improved by efforts to characterize temporal changes in root strength 
following wildfire. 

We used coarse-resolution data on LAI, FPAR, and land cover across 
the burn area to assess the hydraulic and mechanical behavior of the soil 
in the years following a wildfire. Although the coarse resolution may 
limit the characterization in highly heterogeneous post-wildfire envi
ronments, the study area’s prevalent grasslands, savannas, and shrub
lands, which typically do not undergo major post-wildfire vegetation 
type conversion, mitigate this concern. (Meng et al., 2014; Thomas et al., 
2021). 

In this study, we relied on limited existing data and vegetation 
indices to evaluate landscape recovery. We considered a consistent rise 
in the infiltration coefficient after its initial drop, acknowledging studies 
that reported an increase in soil hydraulic conductivity post-fire (Doerr 
et al., 2006; Raymond et al., 2020; Varela et al., 2015). The recovery 
process is influenced by various factors, including fire severity, distur
bance history, post-fire land management, plant composition and 
regrowth, site geology, and climate throughout the post-fire years, 
necessitating site-specific assessments due to the heterogeneity in post- 
fire soil and hydrologic characteristics (Ebel et al., 2022; Wagenbrenner 
et al., 2021). Considering the complexities involved, a unified 
post-wildfire recovery trend cannot be defined for all sites. Instead, the 
post-wildfire recovery trajectories must be assessed on a case-by-case 
basis. Precise quantification of recovery trends across different land
scapes and burn conditions is critical for assessing landslide hazards 
after wildfires in ecoregions where such trajectories have not been 
defined. However, this study presents a physics-based framework that 
would enable one to explore the evolving stability of shallow 
landslide-prone terrain following the fire, demonstrated through the 
assumptions posed herein that certainly could be refined as more data 
becomes available. Furthermore, the proposed framework can be inte
grated in a probabilistic manner as it can provide an objective estimate 
of the probabilistic stability of the slope even with incomplete or 
low-quality datasets, allowing a user to treat all inputs stochastically and 

provide valuable information for risk analyses. 

4. Regional mapping of post-wildfire shallow landslides 

The results of the analysis are illustrated in a post-wildfire shallow 
landslide susceptibility map (Figs. 5a & 5c). The factor of safety of 1.1 is 
considered as a threshold to separate unstable/marginally stable sta
bility grids (shown in red color) from the stable grids. In particular, the 
model shows that 25% (4.5 km2) and 15% (0.7 km2) of the areas affected 
by the Fish and Reservoir Fires are at risk of landslide, respectively. The 
proposed model successfully captures locations of shallow landslides 
within regions deemed unstable, although it overpredicts areas prone to 
failure compared to the proposed inventory. When comparing true 
positives, the model showed an accuracy of 73%. 

The model was also run for a no-fire scenario. In this case, all the 
inputs were the same except for the burn severity, which was set as 
“unburned”. In this simulation, the land cover data and ET rate were 
obtained from a year prior to the fire (2015) in the same time period of 
the year for which the original model was run. The purpose was to better 
understand the extent to which wildfire could affect susceptibility 
(Figs. 5b & 5d). The comparison between the two scenarios shows that 
the landslides within the Fish Fire experience a median relative change 
of 10% in their factor of safety owing to the fire’s effects. The same 
observation can be made for the Reservoir Fire where 95% of the 
landslides happened in regions experiencing a 3% to 16.5% reduction in 
their factor of safety, with a median reduction of 11%. Descriptive sta
tistics of SBS, slope, soil type, and land cover for grids located within the 
observed landslides and the modeled unstable grids are summarized in 
Table 2. 

The similarity between the modeled and observed landslides is more 
pronounced for the Reservoir Fire. This may be attributed to the smaller 
area affected by the fire and the more uniform distribution of the site 
properties and burn severity. Landslides generally occurred in regions 
with higher burn severities, steeper slopes, weaker soils, and areas 
where grass and shrubs were the dominant vegetation cover. In small 
areas across the affected region where soil deposits consisted of sand, 
gravel, or rock, or where the soil was covered by evergreen forests, 
almost no landslides were observed or modeled. Compared to the 
observed unstable slopes, the unstable regions captured by the model 
have steeper slopes and are mostly co-located where soil burn severity 
was moderate. For example, within the boundaries of the Fish Fire, 80% 
of the modeled unstable grids are burned at moderate burn severity and 
have a mean slope of 44◦ , while these values are 60% and 41◦ for all the 
grids within the observed landslides. This may explain the over
prediction of the model in identifying slope failures in areas where no 
landslides were observed. One possible explanation is insufficient or 

Table 2 
Comparison between characteristics of observed and modeled unstable slopes.   

SBS Slope (◦

) Soil Type Land Cover  

Observed* Model** Observed Model Observed Model Observed Model 

Fish Fire very low: 2% 
Low: 
38% 
moderate: 60% 
severe: 
0% 

very low: 2% 
Low: 
12% 
moderate: 80% 
severe: 
6% 

mean: 41 
STD: 6 
median: 41 

mean: 44 
STD: 4 
median: 43 

CL: 
93% 
SC: 
5% 
Others: < 2% 

CL: 
70% 
SC: 
30% 

grassland: 
56% 
shrublands: 
39% 
Savannas: 
4% 
others: 
<1% 

grassland: 
56% 
shrublands: 
39% 
Savannas: 
4% 
others: 
<1% 

Reservoir very low: 0% 
Low: 
10% 
moderate: 88% 
severe: 
2% 

very low: 3% 
Low: 
10% 
moderate: 83% 
severe: 
4% 

mean: 39 
STD: 5 
median: 39 

mean: 45 
STD: 4 
median: 44 

CL: 
3% 
SC: 
97% 

CL: 
13% 
SC: 
87% 

grassland: 
97% 
shrublands: 
3% 

grassland: 
95% 
shrublands: 
5%  

* Observed in the grids located within the observed landslides. 
** Observed in modeled unstable grids. 
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inaccurate data relating to triggered landslides at a finer scale. SBS is 
usually obtained within days following fire cessation. This may intro
duce inaccuracies. Finally, the most likely reason for overprediction, as 
is common in all physics-based models, is uncertainties with material 
properties at large scales and the coarse temporal and spatial resolution 
of input parameters. 

The primary consequences of wildfire on shallow landslides are the 
removal of vegetation, decay of root strength, decrease in canopy 
interception, and decrease in infiltration capacity of the ground. Such 
changes affect soil strength and the flow of water over and through the 
soil, consequently governing the factor of safety of rainfall-triggered 
shallow landslides. For the five locations marked in Fig. 5a, we deter
mined changes in the factor of safety and soil suction at the soil-bedrock 
interface from June 2016, post-wildfire, to January 2019, when wide
spread shallow landslides occurred (Fig. 6). The properties associated 
with these five points are summarized in Table 3. 

Following the wildfire, there was a noticeable decrease in soil suction 
values, as depicted in Fig. 6b, likely due to diminished transpiration 
rates. This reduction was observed after each rainfall, with the most 
significant drop happening in the third year, aligning with the full re
covery of soil infiltration capabilities. Specifically, Point 1 exhibited 
lower suction than the rest, a condition attributed to its slope being 
covered by coarser soil particles. The factor of safety (Fig. 6a) decreases 
significantly owing to wildfire-induced decreases in root reinforcement, 

root water uptake and the consequent decrease in soil suction. The 
following decreases in the factor of safety are associated with the three 
rainy seasons following the fire (Fig. 3). During the first rainstorm, no 
landslides were reported to occur in the study area. However, multiple 
debris flows were observed in the time window between 16 December 
2016 and 18 February 2017 (Tang et al., 2019). This can be attributed to 
the significant drop in the ground infiltration capacity following the fire 
(Ebel and Moody, 2020; Tang et al., 2019), forcing the water to flow 
over the surface rather than infiltrate the soil. The accelerated overland 
flow, coupled with an increase in sediment generation, resulted in a 
series of debris flows. The increased sediment stems from different 
processes such as ravel, enhanced raindrop-driven sediment transport, 
or flow-driven sediment detachment. The second rainstorm was not 

Fig. 6. Changes in a) factor of safety, b) suction of five selected slopes following the wildfire.  

Table 3 
Characteristics of individual studied slopes.  

Point 
Number 

SBS Slope 
(

◦

)

Soil 
Type 

Land 
Cover 

Soil layer Thickness 
(cm) 

1 3 44 SC Grassland 50 
2 3 42 CL Shrubland 50 
3 3 43 CL Shrubland 50 
4 3 51 CL Shrubland 50 
5 4 44 CL Grassland 50  
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intense enough to generate landslides. At this point, the ground infil
tration capacity is not fully recovered. Intense rainstorms in the third 
rainy season dropped the factor of safety of the slopes below 1.1. The 
model could capture the approximate timing of the landslide initiation 
on 17 January 2019 when a rainfall event of 115 mm in one day 
occurred over the area. Within the studied location, point 4 has the most 
sensitivity to rainfall events, attributed to the steep slopes in this loca
tion (mean slope of 51◦ ). Point 5, which had severe soil burn severity, 
shows more rapid changes in the factor of safety compared to other lo
cations. The lower factor of safety at point 5 compared to point 2 can be 
attributed to its steeper slope and higher burn severity, which resulted in 
a lower transpiration rate and more reduction to root reinforcement. 

It is also observed that the factor of safety on sandy loam hillslopes is 
slightly more affected by fire compared to loamy hillslopes. Due to the 
shallow depth of the soil cover in the study area, soil cohesion is a strong 
control of slope stability. The effect of fire is slightly more pronounced in 
sandy loam, where cohesive strength sources from root reinforcement. 
Finally, no noticeable difference is observed between burned areas 
covered by grass or those covered by shrubs, potentially owing to similar 
root reinforcement of these vegetation types. 

5. Sensitivity analysis: impact of root strength decay 

The impact of wildfire on root strength and the subsequent rate of 
root strength loss were not directly measured, making these factors 
difficult to quantify. Given the shallow soil cover, roots play a crucial 
role in maintaining slope stability. In the absence of direct observations, 
we conducted sensitivity analyses to understand how variations in root 
reinforcement reduction post-fire affect safety factors and landslide 
susceptibility at five points of interest. Several previous studies (e.g., 
Sidle, 1991; Lei et al., 2022) suggest root strength declines exponentially 
post-mortem across different species. Therefore, we employed the 
following exponential function to model root strength attenuation over 
time post-wildfire: 

cr = cr0 × e−ωt (25)  

where cr0 is the initial root reinforcement before the fire, and ω is the 
empirical constant. For each location, we ran 1000 realizations for 
which ω were randomly assigned a value between 0 and 0.25 (root loss 
between 0 and 50% over 3 years) and 0–0.5 (root loss between 0 and 
80% over 3 years) for moderately and severely burned slopes respec
tively. Box plots in Fig. 7 show the variation in the factor of safety of 
these five slopes upon January 2019 rainstorm for assuming different 
rates of root reinforcement loss. As seen, for all the cases examined, the 

median value of factor of safety falls below 1.1. A relatively low dif
ference between the first and third quartile for all cases suggests low 
sensitivity of the results to the drop rate of the roots strength. As dis
cussed before, the slopes were shallow and steep and on the verge of 
failure upon saturation, where slight changes in the root reinforcement 
could make them unstable. Slope 4 showed instability across all sce
narios, attributed to its steep angle, making it insensitive to the rate of 
root strength loss. For the higher severity burned slopes (Point 5), the 
median factor of safety is considerably lower compared to other similar 
slopes (i.e., Points 1, 2, and 3). Finally, the sensitivity analysis showed 
that the probability of failure for Points 1, 2, 3, 4, and 5 were 58, 52, 78, 
100, and 87%, respectively. The median factory of safety values for 
Slopes 1–5 shown in Fig. 7 largely coincide with the minimum factory of 
safety values observed in Fig. 6 for the January storm, suggesting that 
while decay is an important factor, these hillslopes were still sensitive to 
loss of vegetation and root reinforcement regardless of the timeframes of 
root decay. 

6. Comparison of unburned and burned susceptibility 

The results suggest that the wildfire had a significant impact on the 
stability of the slopes in the study area. Fig. 8a shows the frequency of 
the slopes’ factor of safety for no-fire scenarios and the actual event 
where wildfire effects on soil and land cover properties were modeled. 
The two histograms are normalized to enable us to compare them better. 
It is seen that compared to the no-fire scenario, wildfire shifts the graph 
considerably to the left, where more areas are on the verge of failure. 
This is better shown in Fig. 8b, where the cumulative distribution of the 
two discussed histograms is displayed. Considering the factor of safety of 
1.1 as the marginal stability limit, it is noted that wildfire has more than 
doubled the number of grids that fall below this value from 10% to 22%. 
These changes may seem modest, but are not trivial, especially as they 
relate to the frequency of fires in this ecoregion. These changes highlight 
why the effect of wildfire on susceptibility mapping of rainfall-triggered 
shallow landslides in disturbed areas must be considered. 

7. Conclusions 

This study presented a physics-based framework for analyzing the 
susceptibility of post-wildfire rainfall-triggered shallow landslides at a 
regional scale. The proposed solution incorporates soil burn severity 
mapping, geomorphological and land cover mapping, and meteorolog
ical data into a water flow model in unsaturated soil, a root bundle 
model, and an infinite slope stability equation to investigate the factor of 
safety of the fire-affected slopes. To account for the spatial distribution 
of the input parameters, the proposed model is employed in a GIS 
framework by discretizing the affected area into smaller grids where 
stability analysis is run for each grid. The presented solution is novel in 
the sense that it explicitly addresses the adverse effects of fire on soil 
properties, land cover and canopy interception, root reinforcement, and 
in general, on the surface and near-surface processes, which can lead to 
slope instability in rainy seasons following the fire. The model was used 
to map a series of detected shallow landslides in a 22.0 km2 area located 
in the Angeles National Park in Southern California, which had been 
burned in the San Gabriel Complex Fire. The proposed model was suc
cessful in capturing both the timing and spatial distribution of the 
landslides with a positive accuracy of 73%. Landslides mostly occurred 
in regions where the soil was burned at moderate severity. The fire effect 
was more pronounced in sandy loam slopes where the soil cohesion is 
solely coming from the roots. Almost no landslides occurred in areas 
covered with needle-leaf evergreen forests where roots significantly 
improved slope stability. Out of the 286 shallow landslides, only two 
occurred in gravel and rocky slopes, which implies the main reason for 
the failures was the elimination of soil suction and its contribution to 
slope stability due to an increase in ground infiltration capacity during 
the recovery state of the area following the fire, and reduced 

Fig. 7. Box plots for variation in factor of safety for the five selected slopes with 
variation in Root reinforcement loss rate. 
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transpiration capacity of the roots. In conclusion, the model showed that 
compared to the no-fire scenario, a wildfire could double the number of 
unstable zones within the affected area. This work offers a methodo
logical solution that assists the susceptibility mapping of post-wildfire 
landslide hazards, particularly in mountainous environments, that 
may be used to warn the communities at the wildland-urban interface of 
the danger of disastrous ground movements. 
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