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Cascades of DNA strand displacement reactions enable the design of poten-
tially large circuits with complex behaviour. Computational modelling of
such systems is desirable to enable rapid design and analysis. In previous
work, the expressive power of graph theory was used to enumerate reactions
implementing strand displacement across a wide range of complex struc-
tures. However, coping with the rich variety of possible graph-based
structures required enumeration rules with complicated side-conditions.
This paper presents an alternative approach to tackle the problem of
enumerating reactions at domain level involving complex structures by inte-
grating with a geometric constraint solving algorithm. The rule sets from
previous work are simplified by replacing side-conditions with a general
check on the geometric plausibility of structures generated by the enumer-
ation algorithm. This produces a highly general geometric framework for
reaction enumeration. Here, we instantiate this framework to solve geometric
constraints by a structure sampling approach in which we randomly generate
sets of coordinates and check whether they satisfy all the constraints. We
demonstrate this system by applying it to examples from the literature
where molecular geometry plays an important role, including DNA hairpin
and remote toehold reactions. This work therefore enables integration of
reaction enumeration and structural modelling.

1. Introduction

The field of molecular programming aims to design, analyse and build infor-
mation-based circuits at the nanoscale, often using nucleic acids as the
underlying material and information storage medium. Toehold mediated
strand displacement [1,2] has been a key mechanism used to build a variety
of computational nucleic acid nanostructures and circuits using DNA [3-6]
that have great potential for applications in biosensing [7,8], diagnostics [9,10]
and therapeutics [11,12]. As the size and complexity of the circuits that can
be constructed in the laboratory continues to increase [13], automated tools
will become indispensable for carrying out the design tasks required to
construct these molecular circuits, such as identifying spurious reactions that
decrease the performance and scalability of such circuits [14].

A key task in molecular circuit design is that of reaction enumeration, that is,
the problem of determining the set of reactions that could occur given a set of
initial species. This can be thought of as ‘compiling” a structural description of
the circuit components into a kinetic model, which is a necessary step before
analyses such as stochastic or deterministic simulations or model checking
can be carried out. The resulting model is defined by a specification of the com-
pilation process in terms of hand-crafted formal semantic rules. An early
programming language for modelling strand displacement reactions was the
DSD language [15], which was developed by one of us [16] and implemented
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in the associated Visual DSD software tool [17]. Early versions
of this system were restricted to a (nevertheless quite expres-
sive) class of linear heteropolymer structures [18] and a range
of hard-coded compilation semantics [16]. Ad hoc extensions
to model hairpin structures [19] and structures tethered to a
surface [20] enabled data-driven simulation and modelling of
localized circuits on DNA origami nanostructures [21]. To
handle more complex secondary structures, such as branched
or multi-junction structures, a more expressive representation
for the underlying structures of the circuit components was
required. Therefore, in subsequent work, a new version of
DSD was developed based on a strand graph data structure
[22] capable of representing arbitrary secondary structures
including pseudoknots, although the compilation rules in
that paper included side conditions designed to prevent
pseudoknots from forming. More recently, the Logic DSD
system refounded DSD on a logic programming framework
that enables user-defined compilation schemes to be encoded
in a PROLOG-like language that drives the reaction enumerator
[23]. The Logic DSD system has been used to explore the effects
of different assumptions about leak reactions on the behaviour
of feedback control circuits [14]. This approach, and similar
approaches [24], means that all reactions of a similar kind are
either permitted or omitted from output models, without any
further considerations as to their geometric plausibility, as the
approach is purely syntactic in nature.

However, as the scope of experimental work in DNA
nanotechnology expanded to cover more complex structures,
using graph-based structure representations [22,24], the
number of ‘corner cases’ tended to increase, meaning that
the complexity of the rules also tended to increase to prevent
unphysical reactions being returned by the algorithm while
continuing to make decisions based solely on the syntax of
the underlying structural representation. This has produced
rule sets that can be hard for the user to understand in full
detail and which may be in certain cases overly restrictive
[22], preventing certain classes of reactions from being
included in the model even though they might be biophysi-
cally plausible in practice. Here, we seek to address this
issue via a more nuanced treatment of molecular geometry
in the reaction enumeration algorithm.

Specifically, we take an alternative approach to reaction
enumeration in DNA strand displacement-based molecular
computing systems. Our goal is to simplify the rule set
used in reaction enumeration as far as possible while also
eliminating unrealistic reactions. To achieve this, we note
that the purpose of the complex rule sets such as those
found in previous work [22] is to produce a syntactic approxi-
mation to the set of interactions that is possible given the
geometric constraints imposed by the biophysics of the
DNA components that make up the system. Therefore, our
approach is to integrate a geometric solver into our reaction
enumeration algorithm so that much of that complexity is
pushed out of the reaction enumeration rule set itself and
into the constraint solving system. Furthermore, since this
solver directly encodes the problem in question, rather than
seeking an approximation to it via syntactic approaches, the
definition of this solver can also be relatively simple to com-
prehend. This work thus offers a new and simple approach to
reaction enumeration in DNA strand displacement systems.
To our knowledge, this paper is the first work to incorporate
automatic analysis of structural geometry into the reaction
enumeration process.

Figure 1 illustrates this fundamental difference between
the purely syntactic approach and our new approach via
the example of a domain binding to its complement which
is located within a loop. This will serve as a running example
throughout this paper. In previous work, all such interactions
would be omitted from the model based on syntactic analysis
of the product structure, as such reactions would introduce a
new bond within a loop and are thus forbidden on the basis
that most such loops in practice tend to be too small to permit
such interactions. By contrast, in our work, we carry out a
geometry analysis to determine whether this is in fact the
case, which may result in this reaction being included
within the generated model if the loop is large enough to
accommodate the bound domain. While our approach is
general-purpose, in this paper, we will focus on examples
that illustrate situations in which geometric considerations
play a key role, such as hairpin-based examples and remote
toehold strand displacement reactions [25], both of which
are depicted in figure 1. Our approach is also very relevant
to surface-bound localized DNA circuits [21,26], which
could be explored in future work. As we shall show, our
approach also allows undesired spurious binding into
loops, for example, via unreacted fuel hairpins [21], to be
eliminated based on similar geometrical considerations.

2. The strand graph structural model

Modelling and analysis are important precursors to any
experimental work. This involves formally defining the
syntax and semantics of the system. Here, syntax refers to
precisely representing DNA structures and semantics refers
to the interaction between these DNA structures in the
system. In this section, we describe the ‘strand graph’ struc-
tural model of domain-level devices that we use as our
basis in this work that was reported in previous work [22].

In the strand graph model, each individual DNA strand is
represented by a vertex which we refer to by a natural
number index; the set of such vertices is V. For convenience,
we assume that the vertices are indexed sequentially, starting
from zero (this is a minor departure from previous work [22],
which indexed starting from one). The colour function maps
each vertex v to a natural number index, referred to as a
colour following previous work [22], which tracks the kind of
DNA strand that vertex represents. For each vertex, there is
an associated length, length(v), which is the number of domains
present in the strand: each of these is represented as a ‘site’ on
the vertex in the strand graph model. These sites are ordered as
per the sequence of domains in the strand, moving from the 5’
end of the strand to the 3" end. Thus, each domain in the system
is represented as a pair (v, s) where v is the index of the vertex
corresponding to the strand it is on and s is the index of the cor-
responding site within that vertex, such that 0 < s < length(v);
the set of such sites is referred to in [22] as the set of legal sites
for the strand graph.

Domains can be free or bound and may either be short
toehold domains ¢ (typically having a length of 5-8 nucleo-
tides) or long domains. We assume that nucleotide
sequences are assigned so that each domain d will only
bind to the complementary domain d*. Bonds between
domains are modelled by edges between sites: the set A in
the strand graph is the set of all possible edges that could
be formed between complementary domains. These edges
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Figure 1. Fundamental differences between our geometric approach to reaction enumeration in DNA-based molecular systems and previous syntactic approaches,
illustrated using examples from the literature. (a) A single-stranded oligonucleotide y attempts to bind with its complement y* that is located within the loop of a
hairpin structure. In previous work [22,24], where entire classes of reactions are eliminated based on syntactic considerations, this reaction is never permitted because
binding with a loop is never allowed. In the case here when s; and s, are so short that the loop contains insufficient slack to accommodate a rigid duplex formed
when y and y* bind, the result from previous work tallies with the expected behaviour given the geometry of the system. (b) However, if s; and s, are lengthened
so that the loop is large enough to accommodate the binding of y and y*, as shown here, the results obtained from previous work diverge from the expected
behaviour given the geometry. In this work, we present a reaction enumeration system that accounts for geometric considerations such as these and can thus
enumerate reactions intelligently depending on whether the biophysics of the system would actually permit those reactions to proceed. (c) A remote toehold
strand displacement reaction [25], with a single-stranded spacer on the invader strand and a double-stranded spacer on the incumbent gate complex. In previous
work, this reaction would either be permitted or denied again on syntactic considerations, without determining whether the reaction is geometrically feasible given
the domain lengths. In the case when s, is too short compared with s,, as shown here, the strand displacement reaction should not be allowed to proceed and our
geometric approach will rule it out. (d) By contrast, if s, is made long enough to reach across the s, domain, as shown here, our geometric approach can detect this

and include the strand displacement reaction in the enumerated reaction network.

are known as the admissible edges and are stored as pairs of
(vertex,site) pairs. The set E records the set of current edges,
that is, the subset of admissible edges that are actually
formed in the current state of the strand graph. It is assumed
that toehold domain bindings are not strong, so they can
spontaneously bind and unbind, but long domains bind irre-
versibly. The toehold(a) predicate defined in the strand graph
maps every admissible edge to True if that edge represents a
bond between toehold domains and False otherwise. Thus,
the full definition of a strand graph G consists of the elements
G = (V, length, colour, A, toehold, E), as outlined above. The
formal definition after Petersen et al. [22], specifically, defi-
nition 4 of that paper, is reproduced in the electronic
supplementary material, for reference.

Strand graph representations for the structures intro-
duced in figure 1 are presented in figure 2 to illustrate the
encoding, depicting the initial and final states for each
example. Transformations of the strand graphs correspond-
ing to reactions are modelled by simply transforming the
edges between the vertices: edges are removed from E to rep-
resent breaking bonds between domains and added to
represent the formation of new bonds between complemen-
tary domains. As we shall see below, these transformations
can be specified using reduction rules that change the form
of the strand graph. The examples in figure 2 also show a rep-
resentation of each strand graph in the so-called ‘process

calculus syntax’ introduced in [22]. This is a text-based rep-
resentation of the strand graph where each strand is
presented as an ordered sequence of domains within angle-
brackets, with the formed bonds given names and preceded
by an exclamation mark. The notation d!i thus refers to
domain 4 which forms one side of the bond named i; for
well-formedness the other side of that bond must thus be
d*!i and the bond name i can only appear twice. For example,
in figure 24, the hairpin strand is represented by the process
calculus syntax (x!i; s; y* s, x*!i), with the bond i; represent-
ing the stem of the hairpin. Here and henceforth, we will use
the process calculus syntax as a convenient means to
represent strand graphs in text and figures.

We note that, in our implementation, we also store the
length of each domain in nucleotides; this was not necessary
in the previous work but here we will need it to calculate the
biophysical constraints imposed by the lengths of domains
and the bonds that are formed within the structure. In
addition, to rule out the unphysical corner case of a double
helix that can form a ‘hairpin’ with a loop length of zero
nucleotides, we statically rule out any system in which a
domain and its complement are immediately adjacent on a
strand: there must be some other domain (having non-zero
length) in between. In the strand graph parlance, this means
that there can be no admissible edge of the form {(v, n),
(v, n+ 1)} between two directly adjacent sites on any vertex.
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Figure 2. Strand graph examples. (a) The initial state of the hairpin binding example from figure 1a,b, with the complementary single strand unbound from the
hairpin, rendered as a strand graph. The visualization of the strand graph, styled after previous work [22], with the nodes representing the vertices of the strand
graph and the small discs on the vertices representing sites, numbered in order from 5’ to 3'. The individual sites are coloured to correspond to the colours of the
domains in the graphical representation of the system. The number on the node represents its index from the set V. The shading colours within the nodes represent
their colours, colour(V/). Solid lines between sites represent admissible edges between non-toehold domains while broken lines between sites represent admissible
edges between toehold domains. Light-coloured edges are those that are admissible but the corresponding bonds are not actually formed (i.e. in A but not in £);
dark-coloured edges represent bonds that are actually formed (i.e. members of £). The visualization is accompanied by a formal statement of the components of a
corresponding strand graph G = (V, length, colour, A, toehold, E). Following previous work [22], a more convenient text-based ‘process calculus’ representation of
the strand graph is included below the strand graph representation here and below, with strand colours represented as highlighting behind the process calculus
syntax. (b) Strand graph example corresponding to the post-reaction bound state of the hairpin-binding system, as illustrated in figure 1b. In this case, the only
change is the formation of the bond between the y and y* domains. The structure of the strand graph remains largely the same (unchanged parts of the definition
are rendered in light grey); the only thing that changes is the set of current bonds £ which sees the additional bond added. (c) Strand graph rendering of the pre-
reaction state of the remote toehold strand displacement example from figure 1¢,d, following the graphical and notational conventions outlined above. (d) Strand
graph rendering of the post-reaction state of the remote toehold example shown in figure 1d.

3. A general-purpose framework for geometric
reaction enumeration

Semantic rules allow the automatic computation of inter-
actions between strands which are applied to a collection of
DNA nanostructures in a given context. To this end, our first
step is to define our reaction enumerator at a high level. Our
goal here is to show how the use of a geometric predicate
can greatly simplify the complexity of semantic rules for
deriving physically realistic chemical reaction networks from
syntactic descriptions of DNA strand displacement systems.
As such, we do not commit ourselves to any particular
biophysical model of molecular geometry nor to any specific
algorithm for solving constraints over structures. We therefore
present a minimal rule set which can be specialized to
particular choices of biophysical model and constraint
solving system; we present one such specialization below.
The general-purpose rules are presented in figure 3.

The goal of these rules is to simplify the enumerator
definition (and implementation) by removing the complex

side-condition predicates that produce many of the corner
cases that make strand graph systems hard to reason about,
e.g. the hidden and anchored side conditions from our previous
work [22]. The only external predicates required by the defi-
nition in figure 3 are sameSpecies and plausible. As mentioned
above, plausible could be defined in a number of different
ways; therefore, the set of rules from figure 3 defines a gen-
eral framework for implementing geometrically aware
algorithms for reaction enumeration.

A ‘species’ in a strand graph is defined as a connected
component of the graph; the predicate sameSpecies(s, s', G)
returns True if the two sites s and s’ occur in the same
connected component of the strand graph G and False
otherwise. This predicate can be implemented via strand
graph traversal. In addition, the 3pr(s) function returns the
domain located directly adjacent to domain s in the 3’
direction, if it exists.

The ‘BIND’ rule requires that the new edge being formed
(@) is a legal edge that could be formed (i.e. in the set A of
admissible edges) but not already formed (i.e. not in the set
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Figure 3. Inference rules defining a geometrically aware transition relation (—) between strand graphs.

E of current edges). In addition, neither of the sites involved
should already be bound to anything else, which is enforced
by the requirement that a N sites(E) = (), which says that
none of the sites involved in a are part of an edge from the
set E of current edges. The ‘UNBIND’ rule requires that
the edge being removed (1) must be a toehold edge. In
addition, spontaneous unbinding of toeholds within a species
is prevented by the requirement that the two sites s; and s,
initially joined by a must be in different species in the new
strand graph G'. The ‘MIGrRaTE3’ rule allows site s’ to be
replaced by s” in being bound to s, provided that s and s”
are in the same species in the initial graph G and provided
that s” is not already involved in any other bonds. The new
edge a must be admissible but cannot already be formed
(i.e. in A but not in E). Finally, the ‘MiGraTE4" rule allows
four bonds directly around a four-way junction to swap
binding partners in a four-way migration reaction, removing
the bonds {e,, es} and replacing them with {a;, a5}. The two
new bonds must be admissible, (i.e. in A); this enforces the
requirement that the domains around the junction must
be of the correct domains and complementarities to be able
to swap binding partners in this manner. Importantly, all
of these reaction rules are predicated on the product species
all being physically plausible as per our geometric constraint
satisfiability checking algorithm of choice.

In our previous work [22], similarly named rewriting
rules were defined. To specify these rules, however, auxiliary
predicates were defined that examine the surrounding con-
text in the strand graph structure to serve as side-conditions
limiting whether that rule could be applied. The two key
auxiliary predicates were hidden and anchored: the predicate
hidden(e, E) is True if one end of the new edge e would be
contained within a closed loop given the set E of existing
bonds; this prevents binding into a hairpin. The predicate
anchored(e, E) is True if edge e connects sites that are held
closely together, either by directly adjacent bound domains
or by an n-way junction. This prevents spontaneous unbind-
ing of toeholds within a structure and also requires an
invader strand to bind via a nucleation site for strand

displacement to take place. If these conditions are satisfied,
then the rule can be applied to infer a strand graph transition.
Importantly, these auxiliary predicates were based on match-
ing the context and required graph traversal to determine
whether the rules may be applied. As the complexity of the
structure increases, these auxiliary functions become expens-
ive to compute; they are also complex to state and
understand. In this work, we remove these auxiliary func-
tions and introduce the geometric features from our work
on localized circuits to determine whether a given reaction
is plausible or not.

We adopt a similar chemical reaction semantics to that
used in our previous work [22] to convert these transitions
between strand graphs into either unimolecular or bimolecu-
lar chemical reactions in a compiled chemical reaction
network (CRN). As the technical contribution of this paper
is in the derivation of the individual transitions based on geo-
metric considerations, we re-use the CRN semantics from that
paper directly and thus do not reproduce those definitions
here; we refer the interested reader to section 3.4 of Petersen
et al. [22] for the details. In addition, following the approach
of that paper, here we also consider the merging of reactions
based on separation of time scales to fall outside the scope of
our immediate technical contribution. This is an important
topic, which has been dealt with in existing tools such as Pep-
percorn [24] and the DSD system [16,23], whose approaches
to merging are separate from the enumeration of the under-
lying state transitions and reactions themselves. As reaction
enumeration is our central object of interest, we do not
merge reactions here, although there is no reason why a reac-
tion enumeration approach such as ours could not be
combined with a separate reaction merging algorithm.

4. A structure sampling approach to geometric
reaction enumeration

The logical rules from figure 3 define a highly general frame-
work for enumerating reactions with a geometric component.
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Implementing this framework essentially reduces to provid-
ing an implementation of the plausible predicate over strand
graphs, which tests whether a given product strand graph
is geometrically plausible and thus whether a candidate
reaction can proceed when geometric considerations are
incorporated into the reaction enumerator. While there are a
number of different ways these constraints might be solved,
here, we adopt a straightforward probabilistic approach
based on generating candidate physical structures for the
strand graph at random using a simplified biophysical
model. This approach, outlined in this section, builds upon
and generalizes our previous work on structure sampling
that was restricted to simple linear chain structures [27]. We
first outline the assumptions in our biophysical model before
describing the data structures and transformations that we
use to define the sampling procedure, which produces an
approximate decision procedure for this constraint problem.

4.1. Biophysical model

The mechanical properties of DNA, such as stiffness or flexi-
bility, play an important role in the biophysics of DNA
nanostructures; the stiffness of double-stranded DNA pro-
vides the basic shape of a DNA structure and the flexibility
of single-stranded DNA allows any joints to move freely.
Here, we adopt a very simple model of the biophysics of
DNA, inherited from our previous work [28].

We assume that double-stranded domains behave as rigid
rods of fixed length, as they are assumed to be much shorter
than the persistence length of double-stranded DNA. We
assume that single-stranded domains are flexible freely
jointed chains and may thus be oriented in any direction
and take on any length between zero and their maximum
possible length value. We also disregard the width of the
DNA duplex in our geometric model, so that the 5" end of
one strand in a duplex is located at the same coordinates as
the 3" end of the other strand. We assume that nicks between
double-stranded domains are infinitely flexible.

To solve the constraints required for our reaction enumer-
ator, knowledge of the physical lengths of domains is required
to determine the fixed or maximum distance between different
parts of the DNA structure. This physical distance is depen-
dent on the number of nucleotides in the domain and the
physical length per nucleotide. We assume a function
domainLength that maps each domain (and thus site in the
strand graph) to the number of nucleotides in the correspond-
ing domain sequence. (Note that we do not consider sequence
effects in our model.) To convert into length units, we assume
the physical length per nucleotide to be 0.68 nm for a single-
stranded and 0.34 nm for double-stranded DNA; the values
were taken from the literature [19,25,28].

The choices we have made here will affect the results from
our model and will also impact our ability to easily solve the
underlying constraints: a more complex model would require
greater computational resources to solve, with the ultimate
limit being all-atom simulations of the underlying DNA
nanostructures. We anticipate that these simplifications may
impact results quantitatively at the margins but should not
qualitatively affect the predicted behaviour of the system.
Notably, we neglect the width of the DNA double helix,
which is around 2 nm in reality. This may mean that hairpin
loops would actually be slightly more permissive to binding
than we predict here, as the additional width of the double

helix would mean that a loop of given size would not need
to be quite so tightly curved to close the loop successfully.
Since we are neglecting the width of the double helix, it
also makes sense to ignore helical twist, as the additional dis-
tance a strand would need to reach ‘across’ the double helix
to bind with a complementary strand would only be a nano-
metre or so. Given that domain-level CRN models of DNA
systems make a number of other simplifying assumptions,
including the all-or-nothing interaction behaviour of
domains, we believe that any inaccuracies caused by our
simplified biophysical model will be minor.

4.2. A data structure for structure sampling

The first step towards implementing our structure sampling
approach to geometric constraint satisfaction is to define a suit-
able data structure over which to sample. The strand graph data
structure is well suited to domain-level reaction enumeration
because it uses sites to represent domains directly. However,
for structure sampling, we are primarily interested in the coor-
dinates not of the domains themselves but of the boundaries
between regions of either single- or double-stranded DNA, as
these are where the structure may bend or flex as required to
satisfy the geometric constraints. Thus, here we outline the
conversion of strand graphs into region graphs, an intermediate
data structure that we will use to define the set of geometric
constraints arising from a particular strand graph; this overall
workflow is summarized in figure 4a. The key idea behind
the region graph is to convert into a graph structure where
the vertices represent the locations for which we need to find
satisfying coordinates, with the edges representing the connec-
tions between these, which could represent regions of either
single- or double-stranded DNA.

In our previous work [28], we defined a notion of conden-
sing a process calculus representation of a structure by
collapsing adjacent single-stranded or double-stranded
domains so that the domain boundaries became the only
important positions represented in the constraint problem.
In the context of strand graphs, however, this is more of a
challenge to implement because combining two domains
into one requires potentially a large chunk of the entire
strand graph structure to be relabelled to maintain consist-
ency. Therefore, here we propose an alternative definition
(equivalent to the one from our previous work [28]), in
which we instead assign domains to regions that are then
used as the basis for defining the constraint problem. This
approach avoids the need to relabel the strand graph.

We will illustrate the conversion of strand graphs to region
graphs through an example: figure 4b presents an overview of
this conversion for the example of a single-strand binding
within a hairpin loop that was introduced in figure 1b. In this
example, the structure is first shown with an example labelling
of (vertex, site) pairs, as per the strand graph definition. Then,
the parts of the structure that correspond to the vertices in
the region graph representation are shown outlined and
labelled in blue. Intuitively, these correspond to the termini
(either 5" or 3’) of the domains at either end of a contiguous
run of double-stranded or single-stranded domains, grouped
together with any additional domain termini that are either
directly adjacent on the same strand or else directly opposite
at the end of a duplex. The strand graph sites corresponding
to each edge of the region graph are highlighted in red;
due to the nature of this example, each region consists of a
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Figure 4. lllustration of structure sampling over region graphs. (a) Overall workflow for our probabilistic approach to geometric constraint solving. (b) Detail of the

translation from strand graphs into the ‘region graph’ representation for the bound

state of the hairpin-binding example from figure 2b. We show the diagram

annotated first with the corresponding vertex and site indexes, then with the associated vertices and edges of the region graph annotated, before showing the
region graph itself. The vertices of the region graph are labelled g, b, ¢, d and the regions themselves are labelled r;, ry, 13, r4. The vertices of the region graph are
labelled with the strand graph sites and associated ends (5" or 3) that are grouped together into that vertex. (c) Example of structure sampling and constraint
checking for the hairpin-binding example. The algorithm is detailed in the text, but in essence we start at a maximum-degree vertex, set that to be the origin, and
sample coordinates at a randomly chosen neighbouring vertex connected via dsDNA regions preferentially before sampling those connected by ssDNA regions. We
stop when all vertices have coordinates sampled for them. The final step is to check the associated constraints given the sampled coordinates; the constraints
corresponding to the regions that were explicitly sampling should be implicitly satisfied, in theory requiring only the constraints corresponding to any skipped
regions (those that were not directly sampled) to be checked explicitly. In the case of this hairpin-binding example, this checks whether the regions r; and r,
in the graph were sampled so that vertex ¢ ends up close enough to vertex b such that the length constraint on region rq is not violated.

single-stranded domain or single pair of bound double-
stranded domains. We then use these vertices and edges to
create an undirected graph, as shown on the right-hand side
of figure 4b. For an input strand graph G, we write
regiongraph(G) for the associated region graph; this mapping
is defined formally in the electronic supplementary material.
This conversion can be implemented via a straightforward par-
titioning algorithm whereby we form region graph vertices
that each contain a single domain terminus from the strand
graph and repeatedly combine parts of the partition containing
domain termini that should occur together in the same vertex
in the final region graph.

4.3. Forming geometric constraint sets from strand
graphs

We previously reported a geometric constraint solving
approach for tethered molecular devices [28]. Here, we use a
similar approach, whereby each structure is converted into a
set of geometric constraints on the coordinates of different
parts of that structure. If this set of constraints is satisfiable—
that is, if the constraints can all be satisfied simultaneously
by some assignment of coordinates to the variables—then
the structure could form based on geometric considerations.
The first step towards forming the set of geometric
constraints associated with a strand graph G is to form the

associated region graph, regiongraph(G) = (RGV, RGE), as
outlined above and defined formally in the electronic sup-
plementary material. This process implicitly implements the
‘hybridization constraints’ that we used in the previous
work [28], as domains hybridized to each other end up
being collapsed into the same vertices of the region graph
(which is acceptable because we neglect the width of the
DNA double helix in our simplified biophysical model).
Thus, the only constraints that remain to be solved are dis-
tance constraints between the nodes of the region graph.
These may take two different forms:

— dist(N, N') = d, which specifies that the distance between
nodes N and N’ must be precisely equal to d (suitable for
double-stranded regions), and

— dist(N, N’) < d, which specifies that the distance between
nodes N and N’ must be at most d (suitable for single-
stranded regions).

We assume that the input strand graph G has been converted
into the corresponding region graph, regiongraph(G) =
(RGV, RGE). To decide which kind of constraint to use for a
given edge of a region graph, we write dsedges(RGE) for the
subset of edges from the region graph that corresponds to
double-stranded regions and ssedges(RGE) for the subset of
edges from the region graph that corresponds to single-stranded
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Algorithm 1. Heuristic algorithm implementing sampling of a candidate structure for a region graph, with a heuristic that preferentially samples coordinates for

dsDNA regions first.

function sampLECANDIDATESTRUCTURE(rg: region graph object)
sampled_structure = {}

starting_vertex = a maximum-degree vertex, chosen at random with uniform probabilities

sampled_structure[starting_vertex] = (0,0,0)

dsDNANextRegions, ssDNANextRegions = list of dsDNA (resp. ssDNA}) regions from rg connected to starting_vertex

queuedRegions = list of all remaining regions from rg
skippedRegions = ]

while (len(dsDNANextRegions) > 0 & len(ssDNANextRegions) > 0 & len(queuedRegions) > 0)) do

if (len(dsDNANextRegions) > 0) then

edge = a region from dsDNANextRegions, chosen at random with uniform probabilities

else if (len(ssDNANextRegions) > 0) then

edge = a region from ssDNANextRegions, chosen at random with uniform probabilities

end if
if (both vertices connected to edge are already sampled) then
skippedRegions.append(edge)

else if (only one vertex connected to edge is already sampled) then

vertex = the unsampled edge connected to edge
sampled_structure[vertex] = sampleVertex(rg, edge)
nextRegions = list of regions connected to vertex
Remove all regions in nextRegions from queuedRegions

Add all regions in nextRegions to either ssDNANextRegions or dsDNANextRegions, as appropriate

end if
end while
return sampled_structure
end function

regions. We write edgelength(e) for the length in nanometres
associated with the region graph edge e, which corresponds
to the fotal length for double-stranded domains and the maxi-
mum length for single-stranded domains. Then, we can define
the set of constraints, €(G), that corresponds to the strand
graph G, as follows:

€(G) = {dist(N,N") =d | {N, N'} € dsedges(RGE)
A edgelength({N, N'}) =d} U
{dist(N, N') < d | {N, N'} € ssedges(RGE)
A edgelength({N, N'}) = d}

The strand graph structure G is plausible, which we write as
plausible(G), iff there exists a mapping of coordinates to the
region graph vertices such that all of the constraints in €(®)
are satisfied simultaneously.

4.4. A structure sampling approach to geometric

constraint solving
Having formed the region graph regiongraph(G) and con-
straint set €(G), as outlined above, the second step is to
attempt to find candidate coordinates for the vertices in the
region graph (that is, the junctions between regions) that
satisfy all of the constraints in €(G). We now describe an
algorithm that generalizes our previous work [27] to use

structure sampling over region graphs as a probabilistic
method to approximately decide constraint satisfiability
checking over arbitrary connected strand graphs. This
simple approach generates random structures and tests
them to see whether they actually satisfy the constraints.

When generating such sampled structures, our goal is to
maximize the probability of finding a satisfying sample in
the allotted number of attempts, if one exists. We pick a start-
ing vertex that we call the origin and sample directions and
lengths for regions one at a time, always adding incrementally
to the existing structure. We sample the direction of each
region from a uniform distribution of angles in three-dimen-
sional space by choosing polar and azimuthal angles from a
uniform distribution over the interval [0, 27) and correcting
the polar angles as outlined in our previous work [27]. The
lengths of double-stranded DNA regions are fixed. Single-
stranded DNA regions are assumed to be highly flexible and
we randomly sampled the lengths of the single-stranded
regions from a worm-like chain distribution [29] over lengths
between 0 nm and the maximum possible extension of the
domain in nanometres. This sampling process could be done
in a number of different ways, all of which must essentially
fall back on heuristics to pick the starting point for sampling
and the order in which to sample new coordinates.

Our chosen sampling heuristic is outlined in figure 4c and
summarized in pseudocode form in algorithm 1. This
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heuristic is based on the observation that we want to sample
single-stranded domains as late as possible because they pro-
vide the ‘slack’ that enables the regions to adopt a satisfying
conformation if there is any possibility of constraints being
unsatisfiable, which only arises when a loop forms in the
structure. It is worth noting that the samples we generate
are only candidate structures: in a cycle some vertices will be
constrained from both sides and thus we sample one side
and check the resulting constraint for the other side. By defer-
ring the sampling of single-stranded domains until later,
where possible, we maximize the likelihood that the final
constraint that is only checked is one corresponding to a
single-stranded region. This means it only needs to fall
between distance zero and the maximum possible length
for that region of the coordinate already sampled for the
other end of the region, as illustrated in figure 4c. Conversely,
if the final region were double-stranded, whose length is
fixed, then the probability of sampling a coordinate at pre-
cisely the right distance from the vertex at the other end of
the region would typically be vanishingly small.

Having generated a candidate structure, we next check the
coordinates against the constraints implied by the region graph
to see if that sampled structure satisfies the constraints. Note
that, in forming the region graph, we have already effectively
‘substituted away’ the equality constraints in the former
‘hybridization constraints’, leaving only distance constraints.
These distance constraints are fully specified by the infor-
mation in the region graph, namely, the type of each edge
(ssDNA or dsDNA) and the corresponding length in nano-
metres (which is a maximum length in the ssDNA case and a
fixed length in the dsDNA case). The simplest approach here
is to simply loop over every edge in the region graph, obtain
the sampled coordinates for the two ends, and check that
they are all satisfied. However, as outlined in figure 4c, the
structure sampling process ensures that the constraints are
satisfied by construction for all but those regions which are
not explicitly sampled (i.e. the final regions that serve to
close a loop), meaning that these final constraints are the
only ones that really need to be explicitly checked in practice.

The sampling procedure outlined above can be used to
approximate constraint satisfiability, via the following algor-
ithm which is parametrized by a positive integer n
representing the number of sampling attempts to make
before giving up. The algorithm is presented as algorithm 2
but its core is very simple: repeat the above process n
times; when a structure sampling is found that satisfies the
constraints, return True. If no such sampling is found after
n attempts, return False.

From a qualitative standpoint, the parameter n can be
tuned to trade off the accuracy of the approximation to true
constraint satisfiability against the length of time required. In
particular, larger values of n will be more likely to find struc-
tures that are technically plausible but rare due to only
occurring in a small number of plausible configurations, but
will take longer to reject completely implausible structures.
On the other hand, smaller values of n will run faster in
more normal cases but are more likely to reject some plausible
structures. It is worth noting that, when paired with a reaction
enumeration algorithm, this approach is somewhat robust to
reactions that are theoretically possible but relatively unlikely
to occur. This is because the number of satisfying structures
may be viewed as a proxy for how likely the molecules are
to find a valid structure, when they are the reactants of a

Algorithm 2. Probabilistic implementation of plausible predicate using
repeated application of heuristic algorithm for structure sampling from
algorithm 1. The probability of finding a satisfying set of coordinates, if
one exists, tends to 1 as the number of trials n tends to infinity.

n «— number of trials
function puausiBie(sg: stand graph object)
rg < translate strand graph sg to region graph
fori < 1tondo
coordinates < sampleCandidateStructure(rg)
if constraintsSatisfied(coordinates) then
return True
end if
end for
retum False
end function

candidate reaction. If the number of solutions is small then
the molecules would be relatively unlikely to adopt such con-
formations and thus the reaction should be unlikely to occur.
In general, reaction enumeration algorithms do not consider
the relative likelihoods of different reactions, meaning that
low-probability reactions with low reaction rates, such as
leak reactions, can “pollute’ the resulting CRN with large num-
bers of reactions that may occur infrequently in an actual
simulation. In the sampling approach, the corresponding pro-
duct structures will be less likely to return a satisfying
structure sample in 7 tries and will therefore be less likely to
be included. If these reactions are not likely to occur, the
effect on the results of a simulation is likely to be small,
though it is possible that additional high-priority reactions
could be enabled by an initial low-probability event. We
note also that all domain-level models generated by reaction
enumeration algorithms are simplified models of the true
dynamics of the structure, and yet these models can still be
of great practical utility. Finally, the parameter n also places
an upper bound on the running time of the algorithm,
which is another desirable property for integration into the
inner loop of a reaction enumerator.

5. Prototype implementation

To test our approach, we implemented our structure sampling
algorithm in a Python-based prototype geometric reaction
enumerator based on a strand graph representation of DNA
nanostructures. Our reaction enumerator uses the semantic
rules specified in figure 3 to define the possible transitions.
Our implementation converts the strand graph into a region
graph using a simple algorithm that iterates across the sites
in the strand graph, adding them to a data structure represent-
ing the region graph iteratively merging the nodes of this
graph to produce the final region graph that is then used for
structure sampling. We refer the reader to the electronic sup-
plementary material for a formal definition of the region
graph and pseudocode outlines of the key algorithms associ-
ated with the region mapping and the novel components of
our reaction enumeration algorithm. Open source code for
our prototype implementation is available online."
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Figure 5. lllustration of the randomized structure sampling approach to structure plausibility checking for the example of a strand binding into a hairpin loop.
(a) Cartoon of the possible binding reaction from this running example system, also shown is the process calculus representation of this system. The single-stranded
domain {y) may bind to its complement y*, provided that the spacer domains s; and s, are long enough to accommodate the rigid double helix that would be
formed. (b) Histograms showing the frequency distribution of the number of structure trials required to find a satisfying set of coordinates for the region graph,
following a process similar to that outlined in figure 4c. Distributions are shown for lengths of s, and s, ranging from 6 to 11 nucleotides each; for 5 nt and below,
no satisfying coordinate sets could be found within the allotted 1000 attempts per structure. We take this to mean that any satisfying structure is highly physically
unrealistic or none exists, meaning that geometry forbids the binding reaction in these cases. With shorter spacers we require more attempts on average to find a
solution, which is to be expected given that these structures are closer to the point at which the product structure becomes implausible. Importantly, the line
between plausible and implausible structures is very clear in this case, with an average of 28.44 attempts required to find a plausible structure required in
the 6nt spacer case, but no solution found within 1000 attempts in the cases for 5 nt and below. This suggests that our probabilistic approach can approximate
geometric constraint satisfiability. The total run time for 1000 attempts is shown in each case; for 5 nt spacers the total run time was 641.67s. Further run-time

analysis is presented in figure S7 in the electronic supplementary material.

6. Examples

We tested our system by enumerating reaction networks for
several examples from the literature, with a focus on systems
where geometric considerations are important. First, we
studied the simple example of a strand binding inside a
loop, introduced in figure 1. We then consider several
remote toehold reactions [25], also introduced in figure 1.
These results show that incorporating our geometric solving
approach can enumerate the reactions in these systems such
that certain reactions are included or omitted based on
geometric considerations, as one would expect. All tests
were carried out on a 2017 Apple MacBook Pro with a 2.3
GHz Intel Core i5 processor and 8 GB of RAM. Example
output from our prototype implementation is included as
figures S1-5S6 in the electronic supplementary material.

6.1. Binding within a hairpin loop

To test the geometric features of our system, we first designed a
simple example where a domain binds to its complement
within a hairpin loop. We have used this system as a running
example in figures 1, 2 and 4. Here, we note that whether or not
the (y) strand can successfully bind to its complementary

domain (y*) in the hairpin loop is a function of the domain
lengths, including not just the length of the y domain itself
but also the lengths of the spacer domains s; and s,. Here,
we aimed to show that the different cases can be distinguished
by our geometric reaction enumerator by providing different
combinations of the lengths of the 1, s; and s, domains and
using our geometric solver to check if the product structure
is feasible or not, using structure sampling. That is, the
system checked whether the reaction illustrated in figure 5a
can occur or not. For simplicity of conducting experiments
and displaying the results, the lengths of the s; and s,
domain were varied together in each case. The lengths of the
x and y domains were not changed so that we could analyse
the effect of varying the lengths of the spacer domains s; and s,.

The results from these tests are summarized in figure 5,
which uses histograms to illustrate the number of sampling
trials required to find a plausible configuration for the
product structure for various lengths of the spacer domains
(s; and s) in nucleotides. In these tests, the lengths of the x
and y domains were both 20 nucleotides and the lengths of
s; and s, domains were varied starting from 11 nucleotides
and counting down to 0 nucleotides (i.e. no spacer domain
at all). Our goal was to gain some insight into the probabilis-
tic behaviour of our randomized structure sampling
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algorithm. Therefore, we carried out 1000 structure sampling
tests in each case and counted the number of successes and
failures, as well as the number of sampling trials required
to find a plausible structure in the successful runs. Failure
was defined as failure to find any satisfying coordinates for
the resulting structure in 1000 attempts.

When the spacer domains were long enough, the binding
reaction was always possible. The longer the domains, fewer
sampling trials were required to find a solution; this is
reported as the average number of failures before a solution
was found. This is as expected given that longer domains
have more ‘slack’ in the structure, which means that there
is likely to be a larger set of satisfying coordinates from
which to choose. As the spacers shorten and approach the
point at which the structure becomes implausible, the
number of trials required increases as the solution space
shrinks. Eventually, when the length of spacer domains
becomes too short, the sampling algorithm was unable to
find any satisfying solution in the allotted 1000 attempts,
meaning that our algorithm decides that the binding reaction
was not possible. In this particular scenario, when the spacer
domain lengths were each 5 nucleotides or shorter, for a total
of 10 nt for the two spacer domains (with the domain length
of y fixed at 20 nt), the solver could not find any solution.
This factor of two derives from the difference in the assumed
lengths per nucleotide between single-stranded and double-
stranded DNA, as outlined above. In all cases, a solution
was either found in all 1000 trials or not found at all, that
is, there were no structures for which a plausible structure
was found in some runs but not all. This is a promising
result as the clear and sharp dividing line between the plaus-
ible and implausible structures as determined via our
structure sampling approach suggests that it provides a
good approximation to the underlying notion of constraint
satisfiability.

(We note that there is actually a solution to the constraint
problem for the 5 nt spacer case, where the double-stranded
domain is exactly the same length as the spacers, producing
the highly unrealistic structure in which the double-stranded
domain is exactly parallel to the two spacers and essentially
lies on top of them to complete the loop. This requires the
angles between the spacer domains and the double-stranded
domain to be precisely 180°. Sampling a single real number
from the corresponding interval in this manner has prob-
ability zero, therefore, it is not a significant problem that
our sampling procedure fails to find such solutions, which
are already at the very limit of physical plausibility.)

The total run time is also presented in figure 5b for each
set of 1000 attempts. We note that, for the satisfiable struc-
tures, the easier it is to find a solution, the shorter the
run time. For a case where no satisfying samples can be
found, such as the 5 nt spacer case, the total run time was
much longer as the solver had to attempt 1000 failed sam-
plings 1000 times before giving up and declaring the
constraints unsatisfiable. We note that the run time quoted
in figure 5b for the 5 nt spacer case (641.67s) is for 1000
repeated attempts, so in an actual reaction enumeration appli-
cation the actual time taken to decide that this structure is
implausible would be just 0.641s. Further analysis of the
run time of the successful examples from above is presented
in figure S7 in the electronic supplementary material.

The time required for our system to determine that a
structure is unsatisfiable could be reduced by setting a

smaller number of attempts than 1000 or by re-implementing
our prototype in a language more performant than Python.
Reducing the number of attempts should improve total
run time, by attempting fewer samplings overall, at the cost
of increasing the probability of missing some satisfying sol-
utions that might have been found if more samplings had
been attempted. This would largely be an issue for more
highly constrained systems where there are relatively few
satisfying structures.

6.2. Remote toehold reactions

Molecular geometry can also affect strand displacement reac-
tions in the sense that geometry may prohibit or allow the
reaction to occur, in particular, in the case of remote toehold
reactions. In a remote toehold reaction, a spacer is introduced
between toehold and displacement domain on the invader
strand and/or incumbent gate complex, and it has been
experimentally demonstrated that modulating the nature of
these spacers affects the strand displacement reaction [25].
Here, we show that our geometric solver can automatically
determine whether or not branch migration and strand dis-
placement can occur, depending on the kinds and lengths
of spacer domains involved. Specifically, in the examples
from figure 6, we seek to determine whether strand displace-
ment across the (y) domain occurs, depending on the relative
lengths of distinct spacers on the invading and substrate
strand (s; and s,) domains and whether the spacer domains
are single- or double-stranded. These results determine
whether the enumerated chemical reaction network (CRN)
contains just the toehold binding and unbinding reactions
or the additional step of strand displacement via three-way
branch migration.

Figure 6 presents the results of reaction enumeration for
remote toehold systems when the length and nature of each
of the spacer domains is modulated. The four panels enumer-
ate the possible choices for the nature of the spacers on the
gate complex or the invader strand, which may both be
either single-stranded or double-stranded. The lengths of
the spacers were varied from 0 nt to 25 nt. In each panel,
the CRN representation of the reaction is shown on the left-
hand side and a heatmap illustrating the reaction enumer-
ation results is shown on the right-hand side. We define
‘CRN 1’ as the toehold binding and unbinding reactions
only and ‘CRN 2’ as containing those reactions plus the sub-
sequent strand displacement reaction. In the heatmaps, the
combinations of spacer lengths for which only CRN 1 was
found to be feasible correspond to the blue region, whereas
the pink region corresponds to those spacer lengths for
which the whole of CRN 2 was enumerated.

We found that when both the spacers were single-
stranded DNA, then both toehold binding and strand
displacement reactions were always plausible, irrespective
of the choice of domain lengths for the spacers (figure 6a).
Thus, CRN 2 was enumerated in all cases. This is as expected
because, in our biophysical model, single-stranded spacers
are assumed to be highly flexible, and when toehold binding
happens, the internal diffusion takes place and a bulge is
formed which always allows strand displacement to take
place. When one of the spacers was changed to double-
stranded, then the toehold binding reaction was always
feasible, but strand displacement reaction was not plausible
for the case when the length of the single-stranded spacer
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Figure 6. Results of applying geometric reaction enumeration by structure sampling to remote toehold reactions [25]. On the left-hand side of each panel, the
process calculus representation of the input is presented along with a diagram representing the possible reactions. In each case, we use CRN 1 to refer to the toehold
binding and unbinding reactions, which should be possible in all cases. Depending on geometry, a strand displacement reaction may also occur; we define CRN 2 as
including this reaction also. The lengths of the spacers s; and s, and the nature of the spacer domains (single-stranded or double-stranded) determines whether the
strand displacement reaction is possible, and thus whether CRN 1 or (RN 2 is enumerated in each case. The right-hand side of each panel contains a heatmap
showing which CRN is enumerated for all combinations of spacer lengths (written as |s;| and |s;|) between 0 and 25 nudleotides. In total, 1000 attempts at structure
sampling were carried out in all cases. (a) Both spacers are single-stranded. In this case, CRN 2 is enumerated in all cases due to the flexibility of the spacer
domains. (b) Spacer s; on the invading strand is single-stranded whereas spacer s, on the gate complex is double-stranded. In this case, CRN 2 is enumerated
whenever s, is long enough to reach past s, to access the displacement domain y. The slope of the transition between CRN 1 and CRN 2 regions is determined by
the ratio of the lengths assumed for nucleotides in single-stranded and double-stranded domains. (c) Spacer s on the invading strand is double-stranded whereas
spacer s, on the gate complex is single-stranded. In this case, CRN 2 is enumerated whenever s, is long enough to reach past s;; this is the dual of the previous case.
(d) Both spacers are double-stranded. In this case, CRN 2 is enumerated only when both spacers are precisely the same length, because we allow no flexibility at all
in the lengths of double-stranded domains, which are modelled as rigid rods.

in nucleotides was more than twice that of the double-
stranded spacer (figure 6b,c). Again, this is as expected in
that the flexible single-stranded spacer must be long
enough to reach past the fixed-length double-stranded
spacer for the strand displacement reaction to occur. As
above, the factor of two here arises from the fact that we
assume the length in nanometres per nucleotide to be 0.68
nm for single-stranded DNA but only 0.34 nm for double-
stranded DNA. Therefore, CRN 2 was enumerated only for
the cases when double-stranded spacer is twice the length
of single-stranded spacer.

Finally, when both of the spacers were double-stranded,
strand displacement reactions were only plausible when
both the spacer domain lengths were exactly the same

(figure 6d). Toehold binding was plausible in all the cases;
thus, CRN 1 was enumerated in all cases when the spacer
lengths were different, and CRN 2 was enumerated when
they were the same. Again, this is as expected because our
model allowed for no flexibility of double-stranded domains,
and the only way for the product structure of the strand dis-
placement step to be geometrically plausible in this case is for
the two spacers to be the same length and lined up precisely
with each other. (Experimentally, it has been found that the
strand displacement rate was considerably reduced when
one or both spacer domains are double-stranded and that
controlling spacer rigidity could thus be used to activate or
deactivate strand displacement [25].) Thus, the geometric
property of our system was able to capture the interplay of

6S70£207 0T ppa1u) 0S Y o hisi/leumnol/bio0 buiysigndfianosiesos E



Downloaded from https://royalsocietypublishing.org/ on 14 November 2023

nature of spacers and their lengths on the dynamics of the
strand displacement reaction, without any additional
special-case semantic rules. We note, however, that this
work only determines whether a reaction is feasible or not;
as discussed below, it will be interesting to try to use similar
approaches to estimate the rates of the reactions.

7. Related work

Representing molecules using domains, which are contigu-
ous nucleotide sequences assumed to interact (bind and
unbind) as a collective can increase the efficiency of compi-
lation and simulations by providing an abstraction that
allows us to focus on higher level designs without worrying
about details at lower levels. In early work, Nishikawa et al.
used ‘abstract bases’, a concept similar to domains, to
develop the virtual nucleic acid (VNA) simulator [30]. The
Reif group also developed a physically based simulation of
DNA [31] and more recently published a similar graph-
based approach to representing secondary structures and
associated reactions [32]. Coarse-grained models such as
oxDNA [33] provide a far more detailed insight into the be-
haviour of systems at the single-nucleotide level, at the cost
of significant simulation time.

While reaction enumerators are powerful and useful in and
of themselves, their utility is greatly amplified by tight inte-
gration with other tools to enable an integrated workflow.
While the DyNAMIC Workbench [34] was one of the earliest
attempts in this direction, one of the most complete toolkits
has been assembled in recent years by the Winfree group.
Of that work, the most relevant here is Peppercorn [24].
Peppercorn is a domain-based reaction enumerator that deliber-
ately focuses on non-pseudoknotted structures, which means
that molecular geometry need not be considered to enumerate
reactions between species in this class. Given this restriction on
the representable set of structures, a graph-based formalism is
not required and Peppercorn thus uses a dotparen-style nota-
tion called ‘kernel notation” for domain-level secondary
structures, which uses parentheses to represent bound domains.
For example, the representation of the unbound hairpin struc-
ture from our example in figure 22 would be: x (s1 y* s2).
The semantics of the Peppercorn enumerator is defined via a
set of rule patterns that can be matched against structures in
kernel notation to determine possible reactions in a given
system. Peppercorn integrates powerful support for time-scale
separation and condensation of CRN models based on this
time-scale separation, producing reaction networks between
‘resting states’, which are subgraphs of the network containing
only fast time-scale reactions. Peppercorn also provides an
approximate rate model for domain level reactions of DNA
molecules, and this elegant formalism provides a more prin-
cipled treatment of time-scale separation than previous work
on reaction enumerators [16].

Importantly, the Peppercorn enumerator is part of an
integrated toolchain developed by the Winfree group that
also includes the Nuskell CRN-to-DSD compiler [35],
which can convert abstract CRN specifications into DNA
strand displacement implementations via several distinct
encoding schemes and also verify the correctness of the
encoding, the Multistrand simulator [36,37], which
simulates stochastic trajectories of secondary structure
dynamics at the single-base level, and the KinDA tool [38],

which uses Peppercorn in conjunction with Multistrand
and NUPACK [39] to determine the extent to which specific
assignments of sequences to domains behave as per the
assumptions inherent in domain-level design. These tools
are thus perhaps the most powerful and well-integrated
set of design tools for DNA strand displacement circuit
design. Also of note is Piperine [6], a design platform that
is specialized to the design of systems expressed as abstract
CRNs using a four-domain encoding into DNA strand
displacement [40] and which also links to low-level
sequence design tools to enable more rapid experimental
implementation of candidate designs.

The broad aim of our work is to develop reaction enumer-
ation algorithms that are geometrically aware and can thus be
applied to molecular computing systems in which geometry
plays a key role. Our system can thus be generalized to enu-
merate a large variety of reactions, given the flexbility of the
underlying strand graph data structure. Some early DNA
strand displacement implementations of logic circuits [3]
used metastable fuels for signal restoration reactions [41]
that relied on a geometric constraint to prevent spurious
output release. Perhaps the most direct use of geometry in
molecular computing has been in localized circuits, in
which components are tethered to an underlying surface
such as a DNA origami tile [21,26], as well as molecular
robotics systems [42—44]. While we do not model tethers
directly in this paper, we have modelled them in previous
work using satisfiability modulo theories (SMT) solving to
check satisfiability of the associated geometric constraints
[28], and we anticipate this will be a significant direction
for future research in this area. Finally, other intriguing uses
of geometry hypothesized in molecular computation include
using rigid linkages to actually carry out computation via
mechanical action [45].

8. Discussion

A key aspect of this work was to simplify the reaction rules
compared with previous work on reaction enumeration [22].
We included a test for geometric plausibility, which incorpor-
ates geometric constraints into the system, and which can be
applied uniformly to all candidate reactions. This approach
avoids the potential for corner cases to arise from unintended
consequences of the previous rules by tackling the question of
geometry directly rather than attempting to approximate it via
syntactic predicates on the strand graph structure, which could
lead to reactions being incorrectly ruled out or in.

For example, in figure 5, we enumerated possible reactions
for different domain lengths and found that, when the spacer
domains were long enough, they could accommodate the
binding of a single-stranded domain within the loop. To our
knowledge, no previous work has considered a similar
approach to enumerating binding reactions within hairpin
loops, and this could therefore enable more realistic enumer-
ation of DNA strand displacement reaction network
approaches. In figure 5, we manually modified the domain
lengths to determine the region of the parameter space in
which the reaction could occur; however, such functionality
could be automated to enable users to easily compute the
domain lengths for which a system functions as intended. Fur-
thermore, in reality partial binding into the loop region would
exert a force on the base-pairs near to the top of the stem and
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open them, possibly enabling further binding into the loop, and
so on. In this situation, the domain-based representation might
fail to capture some details of the experimental reality. This is
less an issue with our enumeration system and more an
inherent weakness of the domain-based enumeration approach.
A future iteration of this work might be able to model such
phenomena using a more sophisticated kinetic model of
DNA, which might also incorporate other enhancements to
the biophysics such as an explicit treatment of the width of
the double helix and the helical twist.

Our primary goal in this work was to demonstrate the
integration of geometric constraints into a reaction enumer-
ation system. Therefore, the rules of the system itself are
relatively simple and we used a semantics similar to the
‘Detailed’ reaction semantics of Visual DSD [16]. This seman-
tics does not do any merging of fast reactions, which means
that some examples might not be conveniently enumerated
in our prototype system due to the corresponding blow-up
in the number of enumerated species. However, this would
be largely due to the time-scale separation issue and not
due to our geometric enumeration approach. The issue of
reaction merging is orthogonal to the question of geometri-
cally aware reaction enumeration that we study here and
such a system could be added onto a geometric reaction enu-
merator such as ours, e.g. using an approach based on
‘resting states’, such as that used in the Peppercorn reaction
enumerator [24]. Similarly, relaxing the sameSpecies constraint
on the three-way branch migration rule would incorporate
leak reactions, though we do not address leaks here; this
could be done in future work.

We used a randomized structure sampling algorithm to
try and find a satisfying set of coordinates for each structure,
building upon our previous work on using geometric
sampling to estimate localized reaction rates [27]. This
approach has the benefit of simplicity and is applicable to
any input structure given a reasonable sampling heuristic,
which is a key design criterion: given that we wish to inte-
grate our solver into the inner loop of our reaction
enumeration algorithm, it must be able to run without any
additional user input apart from the input structure. The effi-
ciency of the sampling-based approach outlined here will
depend in part on the number of distinct points in the struc-
ture that could lead to unsatisfiable constraints. These
typically involve loops, so if a structure contains multiple
independent hairpin loops then the sampler would need to
sample each one independently and find a satisfying valua-
tion for all of them in one sampling run. The likelihood of
this succeeding should decrease with the number of separate
hairpins. However, we have carried out some simple tests on
a ‘kissing loop” structure, where two hairpins bind via comp-
lementary sequences within the loops. Interestingly, we
found that our sampling algorithm was able to find satisfying
configurations for this structure quite easily (see figure S6 in
the electronic supplementary material).

Furthermore, we carried out similar analysis on several
pseudoknotted structures, including run times as above, and
found that checking plausibility of multi-loop structures
does require more samplings but seems feasible, at least for
moderately complex examples (see figures S8 and S9 in the
electronic supplementary material). Hence, the problem of
multiple loops in input structures may not be an insurmount-
able problem in practical examples. Nevertheless, future work
on sampling-based approaches could include efficiency

optimizations such as partitioning the strand graph into inde-
pendent sub-graphs, sampling each sub-graph separately,
then combining these solutions in an attempt to produce a sol-
ution for the entire strand graph. Further work might also be to
give stronger guarantees of non-plausibility in the case that
our sampling algorithm fails. Indeed, the results of an initial
random sampling could be used as a starting point for further
numerical optimization, if required.

The advantage of our general-purpose geometric frame-
work for reaction enumeration is that other approaches to
solving geometric constraints could be used instead. For
example, in previous work, we used SMT solving to check
for satisfiability of geometric constraints: while exact SMT
solvers for nonlinear constraints over the reals do exist [46],
their worst-case time complexity meant that run times
proved intractable for some examples that could not easily
be predicted in advance, which was not practical. Therefore,
our earlier work actually used a less exact solver based on
floating-point representations [28]. An alternative approach
would be direct solving of the geometric constraints based
on numerical optimization techniques such as distance
matrix completion [47], although the results of these can be
sensitive to the initial guesses for the parameters, meaning
that multiple attempts might be required, like the sampling-
based approach employed here. Another possibility would
be to try to adapt exact constraint solvers developed for the
fields of mainstream robotics and motion planning [48].
There are intriguing crossovers between those fields and
the geometric analysis of DNA nanostructures, although
the tools from one field may not be directly applicable
to the other: we anticipate that attempting to apply existing
software tools from robotics to biomolecular computing
would be an interesting direction for future research.

In the reaction rules above, every rule application checks
for geometric plausibility. In a more sophisticated implemen-
tation, we could skip some of these checks if certain rules can
be proven to preserve plausibility and the initial species fed
into the system are plausible. For example, the ‘unbind’
rule should preserve plausibility since the only change is
the removal of a bond, which only serves to remove some con-
straints. We might also be able to further optimize the system
by reintroducing special case rules in the interest of efficiency,
for example, in the case of a three-way branch migration
reaction when the next domain is directly adjacent to the dis-
placement domain. Thus, the geometric constraint system
would give a concrete mathematical justification for the
special-case rules.

Finally, our geometric approach to reaction enumeration
lends itself very well to model localized components in a teth-
ered reaction system. We anticipate that an extension of the
system presented here could be used to automatically generate
kinetic models of tethered reaction systems based on DNA
strand displacement [21,26], automatically taking geometry
into account to determine which reactions between tethered
components are actually possible in practice. A further chal-
lenge would be to calculate reasonable estimates of the
local concentrations (and thus reaction rates) for intramolecular
reactions, if we want to model the kinetics of these auto-
matically, building on our previous work [27]. The work
presented here could therefore be a powerful tool for the mod-
elling of localized molecular circuits, which are a promising tool
for the future development of fast and scalable molecular
computing systems.
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