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ABSTRACT

The approximate stabilizer rank of a quantum state is the minimum
number of terms in any approximate decomposition of that state
into stabilizer states. Bravyi and Gosset showed that the approxi-
mate stabilizer rank of a so-called “magic” state like |T)®", up to
polynomial factors, is an upper bound on the number of classical
operations required to simulate an arbitrary quantum circuit with
Clifford gates and n number of T gates. As a result, an exponential
lower bound on this quantity seems inevitable. Despite this intu-
ition, several attempts using various techniques could not lead to
a better than a linear lower bound on the “exact” rank of |T)®",
meaning the minimal size of a decomposition that exactly produces
the state. For the “approximate” rank, which is more realistically
related to the cost of simulating quantum circuits, no lower bound
better than Q(+/n) has been known. In this paper, we improve the
lower bound on the approximate rank to Q(n?) for a wide range
of the approximation parameters. An immediate corollary of our
result is the existence of polynomial time computable functions
which require a super-linear number of terms in any decomposition
into exponentials of quadratic forms over Fp, resolving a question
by Williams. Our approach is based on a strong lower bound on
the approximate rank of a quantum state sampled from the Haar
measure, a step-by-step analysis of the approximate rank of a magic-
state teleportation protocol to sample from the Haar measure, and
a result about trading Clifford operations with T gates.
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1 INTRODUCTION

Is there an efficient classical algorithm to simulate arbitrary quan-
tum physical systems? This fundamental question plays a vital role
in numerous science and engineering disciplines. For instance, in
quantum chemistry, one may translate this question into the ability
to measure the structural properties of molecules or design new
materials [34]. Alternatively, in condensed matter theory, it is per-
tinent to our ability to predict the phases of quantum materials or
sampling from thermal distributions [6]. Interestingly, this ques-
tion also plays a non-trivial role in seemingly unrelated fields, such
as theoretical computer science, cryptography, or number theory
[21, 27, 44, 46].

In theoretical computer science, this question is formulated as the
relationship between two complexity classes known as “bounded-
error quantum polynomial time” (BQP) and “bounded-error clas-
sical polynomial time” (BPP). Since the early days of quantum
mechanics, it was observed that many-body quantum systems have
exponentially large phase spaces with counter-intuitive dynamics
and unexpected features such as the duality of wave and particle
aspects of subatomic systems (see [52] for some of the historical
remarks). They furthermore demonstrate non-classical correlations
known as entanglement [15]. Hence, the popular belief is that simu-
lation of quantum systems requires exponential classical resources.
This observation indeed motivated the development of quantum
computing initiated by researcher such as Feynman in the 1980s
[16]. Subsequently, a breakthrough result by Shor demonstrated
that an efficient classical algorithm to simulate arbitrary quantum
computations would also efficiently factor large numbers. This prob-
lem is crucial to the security of encryption schemes like RSA, for
which no polynomial-time classical algorithm has been discovered
despite centuries of research. It is thus natural to conjecture that
BPP # BQP. However, rigorous proof for this statement seems
unlikely with current complexity theoretic tools since, for example,
a proof of this statement will readily yield a separation of com-
plexity classes such as “polynomial time” P and “polynomial space”
PSPACE, which has been open beside an extensive amount of
research over the past few decades.

Since an unconditional separation of BPP and BQP seems out-
of-reach, it is insightful to ask the question from a complementary
angle: are there restricted but non-trivial family of quantum sys-
tems that can be efficiently simulated classical computers. It turns
out that there are several examples of classically simulable quantum
circuits. For instance, if the amount of quantum entanglement at
every step of a quantum circuit is limited, the system can be simu-
lated efficiently [50]. Examples of such circuits include log-depth
one-dimensional quantum circuits. Other classically simulable cir-
cuits based on constrained architecture include constant depth 2D
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random quantum circuits on two-dimensional architectures [37]
or adiabatic computations with large spectral gaps [39]. There is,
however, an important class of quantum circuits known as Clifford
circuits, which can generate maximal entanglement and have large
circuit depth but admits efficient classical simulations through a
well-known theorem due to Gottesmann and Knill [18]. This theo-
rem works by considering quantum states “stabilized” by particular
subgroups of the Pauli group; these states, also known as stabi-
lizer states, were first introduced in the context of error-correcting
codes [13] and subsequently found applications in several areas
in quantum information science [29, 41]. The Clifford operations
normalize the Pauli group, meaning they keep the group unchanged
under conjugation, and hence, they map stabilizer states to stabilizer
states. Starting from a stabilizer state, Gottesman-Knill’s algorithm
keeps track of generators of the stabilizer subgroup corresponding
to the quantum state under simulation. This method leads to a
strong simulation of Clifford circuits acting on stabilizer states on
a classical computer, meaning that the output amplitudes of such
computations can be computed exactly. Note that several classically
simulable gate sets, such as match gates or the infinite-dimensional
Gaussian gates, generate large amounts of entanglement and can
be simulated classically efficiently. These simulation algorithms,
however, capture variants of the Gottesman-Knill theorem for dif-
ferent physical particles known as Bosons [5] or Fermions [48].
In other words, the idea behind the Gottesman-Knill theorem is
fundamental to all of these simulation techniques.

The Clifford gate set can only approximate a restricted family of
quantum operations. However, this gate set becomes universal if we
augment this gate set with an additional non-Clifford gate known
as T, or i /4 phase shift. In the context of this universal gate set,
the mentioned BPP vs. BQP question translates to characterizing
the cost of classical simulation in terms of the number of T gates
in an arbitrary quantum computation compiled into Clifford and
T gates. Building on the Gottesman and Knill theorem, several
works [10, 11] provided upper bounds on this classical simulation
cost by developing classical simulation algorithms for quantum
circuits dominated by Clifford gates. In particular, Bravi and Gosset
[10] demonstrated that for a constant ¢ < 1, a classical computer
could simulate a quantum circuit with n qubits, poly(n) Clifford
gates, and m number of T gates in time poly(n) - 2. In their
approach, they first consider teleportation of the so-called (non-
stabilizer) magic state |T) = i2(|0) + ei7/*]1)) to simulate the
effect of a T gate at the middle of the circuit using Clifford gates and
measurement in the computational basis. This operation converts
a quantum circuit consisting of Clifford and T gates to a Clifford
circuit with measurements and inputs |T)®™ followed by some
zero states. Then, they decompose |T)®™ as a linear combination
of 2¢™ stabilizer states and use the Gottesman-Knill algorithm
for each stabilizer state in this linear combination in time poly(n).
By the linearity of quantum mechanics, they can find the output
of the circuit when the input is [T)®™ in time poly(n) - 2¢™. In
this approach, a crucial quantity is the minimum number r such
that there exist stabilizer states [s1), ..., |s;) and complex numbers
ci,...,cr such that [TY®™ = ¢q|s1) + ... + ¢ |s;). We call this
quantity the stabilizer rank of |T)®™ and denote it by y(|T)®™).
If we are interested in the minimum number of stabilizer states
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that approximate the |T)®™ state within § 2-norm, we arrive at the
definition of the approximate rank, which we denote by ys5(|T)®™).
For an arbitrary state |{/), we denote its approximate stabilizer rank
with the approximation parameter 0 < § < 1 by ys(|¥)).

In this paper, we study lower bounds on the number of steps the
above simulation technique based on decomposing magic states
into stabilizer states requires. In other words, our goal is to prove a
lower bound on the stabilizer rank for the magic state |T)®™. This
question is essential in many ways. First, it gives significant insight
into the relationship between BQP and BPP and why quantum
computations obtain speedup over classical computations by study-
ing a lower bound on BQP against a canonical class of simulation
method on BPP. Similar questions have arisen in computational
complexity, for instance, in the context of the P v.s. NP question,
we know that specific restricted subclasses of P known as mono-
tone circuits require an exponential lower bound to solve NP-hard
problems [4, 42, 43].

Secondly, this question is conceptually an intriguing one. The
complexity of classical simulation for quantum circuits is about
counting the minimal number of computational steps that success-
fully simulate an “exponentially-sized" family of problems. In con-
trast, the problem of computing the stabilizer rank is “one counting
problem” about “one” functional structure. It is counter-intuitive
that the latter, which can be viewed as a question in functional anal-
ysis, would give non-trivial information about the former. Third,
as we will highlight in Section 1.3, a lower bound on the (approxi-
mate) stabilizer rank organically connects with several interesting
structural questions about complexity classes. For instance, we can
show that if the exact rank is r, then P*P ¢ TIME(poly(n) - r)/r;
here TIME(poly(n) - r)/r means a computation which runs in time
poly(n) - r and has access to O(r) bits of advice providing the
description of the stabilizer decomposition. One of the immediate
implications of the result of Bravyi and Gosset [10] is that assuming
a polynomial upper bound on the approximate rank with approx-
imation parameter § implies that sampling within total variation
distance O(8) from arbitrary quantum circuits can be done in BPP;
recent progress in quantum complexity theory has demonstrated
that assuming plausible conjectures about the average-case hard-
ness of specific approximate counting problems, sampling within
total variation distance from quantum computers using BPP im-
plies the collapse of the polynomial hierarchy (see for example
(1,7, 12]).

1.1 Overview of the Main Results

Even though we expect the exact stabilizer rank y(|T)®™) to grow
exponentially with m, the best-known lower bound has been Q(m)
due to three different groups [30, 32, 40]. As we will explain in
Section 1.4, these three results use three different proof techniques,
but they all stop at a linear lower bound. The situation with ap-
proximate stabilizer rank is slightly worse because the best-known
lower bound for this quantity is v/m up to poly-logarithmic factors.
An immediate conjecture is whether we can prove a super-linear
lower bound on either the exact or approximate ranks.

In this paper, we resolve this conjecture by proving a nearly
quadratic lower bound for the |T)®™ state.
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Theorem 1.1 (Informal statement of the main result). Let0 < § <

2
1, then ys(|T)®™) = %

As the above theorem indicates, our result works for a wide
range of error parameters. The T state a magic state in the second
level of the Clifford hierarchy, meaning the group of operators that
preserve the Clifford under conjugation; the third level is the group
of operations that preserve the second level, and so on. Obviously,
our result holds for quantum states that are Clifford equivalent to
the T state but does not hold for arbitrary magic states. We remark
that for § = 0, our result holds for any magic state.

Proor SKETCH. Our method is a probabilistic one and has three
main steps. As the first step, we show that for a random quantum
state |¢) with n qubits sampled from the Haar measure, the approx-
imate rank satisfies the following strong concentration bound

Priys(14)) < M] < " M-Q2") 0

for any § < 1. As a result, we conclude that for all quantum states
except for an exponentially small measure, the rank is at least
2n—o(1) .

Second, we show we can sample from the Haar measure with
exponentially small error using |T)®™ for m ~ n2"/% and m adap-
tive measurement. We know that arbitrary quantum states can be
implemented using O(2") number of T gates. However, by adding
extra ancilla states initially in zeros and trading T gates with Clif-
ford operations, we can implement arbitrary quantum states using
(3(2"/ 2); this result is due to [33]. The third step is to show that the
adaptive measurements do not increase the approximate rank of
the T states. We remark that this step of the analysis, in its current
form, relies critically on the structure of the state and works only
for the T state due to its balanced structure, i.e., [(0]T)|? = |(1|T)|?,
and not arbitrary magic states. Putting these three steps together,

2
and by rescaling m = n2"/2 we obtain ﬂ# lower bound on
polylog(m)

the approximate rank of |T)®™.

The main bottleneck for going beyond the quadratic lower bound
is that we need at least Q(2"/2) T states to sample with high preci-
sion from the Haar measure; see [33] to see why this lower bound
holds. We may wonder if we can use, instead of the Haar measure,
pseudo-random quantum states such as approximate t-designs,
which approximate the first t moments of the Haar measure and
use < 2"/2 T gates. It turns out the bound in Equation 1 relies on
almost all moments of the Haar measure. For instance, the main
strength of this bound is due to the 2" factor in the tail. For #-designs
we only get tails like en'M-Q(1)

m]

Next, we study the relationship between circuit complexity and
approximate stabilizer rank. As shown above, we obtain a quadratic
lower bound on the approximate rank of a simple state like |T)®™,
which has linear circuit complexity. More generally, our result
implies the following

Theorem 1.2 (Stabilizer rank and circuit complexity). For any
number d there exists a quantum state with circuit complexity at
most n®poly log(n) and stabilizer rank at least n?.
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We note that based on [8, 22] except for an exponentially small
fraction, almost all quantum states from random quantum circuits
of size s may not have circuit complexity less than s1/5_ This gives
insight into why proving an exponential lower bound on the stabi-
lizer rank of |T)®" might be a difficult task; likely |T)®" appears as
one of the rare states whose circuit complexity may be compressed
and the probabilistic method may not work anymore. As we will
show in Section 4 a weaker version of this result can be deduced
from the properties of t designs. In particular, we show that a quan-
tum state of circuit complexity at most 0(n5?) and stabilizer rank
at least n? exists. However, if the dependency on the number of
T gates used in [23] is improved to linear, we obtain exactly the
result of Theorem 1.2. Alternatively, this result can be obtained
from constructions of unitary t-designs based on random quantum
circuits in time O(t5+"(1))poly(n) in [8, 22]. As indicated in [26],
the bound on ¢ can likely be improved to linear. In that case, we
again obtain Theorem 1.2.

We raise the following conjecture:

Conjecture 1.3 (Stabilizer rank and circuit complexity). For any
constantsd < d’, there exists a quantum state with circuit complexity

at most n® and stabilizer rank at least n% .

1.2 Complexity Theoretic Implications

While proving unconditional separations between complexity classes
is difficult, a simpler milestone is finding complexity-theoretic lower

bounds against specific families of simple functions. For instance,

we can consider the problem of representing Boolean functions in

a specific complexity class such as NP as a linear combination of

simple functions. For example, the so-called quadratic uncertainty

principle [17] is the conjecture that in any exact decomposition of

the AND function into

r

Z ¢j(=1)Q (¥1xn)

=

@)

we need r > 220" where Qj are quadratic polynomials over F,
and ¢; € C. The best lower bound on this problem is linear due
to Williams [53]. As observed by [40] Eq. (2) is exactly the over-
lap of sums of stabilizer states with bit strings. Because the AND
function is itself a stabilizer function, it has a stabilizer rank of 1,
and we do not hope to improve this bound based on a stabilizer
lower bound approach. Williams furthermore showed that for any
k > 0 there exists a function f; €NP such that r > Q(n*) for
any decomposition of f; into linear combination }.}_, a;(—-1)9: for
quadratic polynomials Q1, - - - , Qr. An open problem is whether the
same is true for functions in P; specifically, it is an open question
whether there exists a function in P with super-linear r. As an im-
mediate corollary of our result, we resolve this question by proving
a (nearly) quadratic lower bound on the “approximate” rank r for
the function defined in the following corollary (We remark that
while the work of Williams [53] concerns exact decompositions,
Chen and Williams [14] managed to extend some of the results in
[53] to hold for the approximate decompositions as well).

Theorem 1.4. LetM : {0,1}"* — {0, 1} besuch that M(x1,...,xp) =
1iffx1+...4x, =0 mod 8. Then any “approximate” decomposition
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of M into a decomposition Sy (x) like Eq. (2) such that zl" D IM(x) -
Sp(x)|? < 8 requiresr = Q(n?).

ProoF. Our proof is inspired by an observation made in [40]
which implied a “linear” lower bound on the “exact” decomposition
of M into quadratic phases. We use our main result (Theorem 1.1)
to prove a (nearly) “quadratic” lower bound on the number of terms
in any “approximate” decompositions of the Boolean function M
into quadratic phases.

Define T(x1,...,xn) = 2M%(x1...xn |T) = 27(xD/8 where
|x| is the Hamming weight of x. Let Q C Stab, be the set of all
stabilizer states of the form ‘/%7 Zx(—l)Q(x) |x) for a quadratic
polynomial Q : F} — F;. With slight modification, the (nearly)
quadratic lower bound in Theorem 1.2 also applies when we define
the notion of rank with respect to the set Q instead of Stab,,. As a
result, for any string x € [F} and for any decomposition satisfying
2% S IT(x) — 2;21(_1)Q(x)|2 < 8, we have r, = Q(n?), where
d is a constant fixed in advance. T depends only on |x| mod 8

and therefore can be written as T(x) = Z;=o 27 M i(x) such
that M;(x) = 1iff x| = j mod 8. Therefore, using the triangle
inequality, there exists j € {0, 1, ..., 7} such that any decomposition
S, with r terms that satisfies zln Y IMj(x) - Sp(x)|? < /7 implies
r=Q(n?).If j = 0, we are done. If j # 0 we use the following
reduction:

My(1,...,1,x1,.

—_—
J

Suppose there exists a decomposition with r terms S, such that
# Zy’x Moy, .., Yjs X1, .. s Xn) — S(yl,,..,yj,xl,...,xn)l2 <
A therefore Sy (x1,...,xn) =S(y1 =1,...,yj = 1,x1,..., xp) which
has < r terms satisfies ZL" o IMj(x) = S;. (x)]? < 2/ 1. By choosing
A =6/(7-27) we conclude the proof. O

s Xp) = Mj(xy, ..., xn).

Remark 1.5. This result can be viewed as a lower bound for a clas-
sical problem from an upper bound for a quantum synthesis problem,
i.e., minimizing the number of T gates.

1.3 Conditional Lower Bounds on the Exact
Rank

Proving an unconditional exponential lower bound on the approxi-
mate stabilizer rank seems to be a difficult task. Can we prove this
statement assuming plausible conjectures? [9] observed that for
suitably small § (and § = 0 in particular) a polynomial upper-bound
on y5(|TY®™) would imply collapse of complexity classes such as
P = NP or BQP = BPP. In this section, we show that a polynomial

upper bound for § = 0 has the following stronger implication.
Theorem 1.6. The exact rank of the magic state |T)®™
polynomial unless the permanent has polynomial circuits.

is super-

ProorF skeTCH. Here we provide a sketch of the proof. For fur-
ther details, visit [35]. We show that if y(|T)®™) = poly(m), there
exists a polynomial-time algorithm with polynomial advice (and
therefore a polynomial-size circuit) for the problem of computing
the gap of a polynomial-size classical circuit and hence a polynomial-
size circuit for the permanent. In particular, given a polynomial-
size function f : {0,1}" — {0,1}, we print a polynomial-size
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quantum circuit with m = poly(n) many T gates Uf such that
a<0”+1|Uf|0”+l> = gap(f), where a only depends on n (V22" in
particular). Using [9, Eq. (16)], we obtain we can replace T gates
with T states and Clifford operations. In particular, there exists a
polynomial-size Clifford circuit Cy such that

gap(f) = pO™™|Cplo™) © [T)S™ ®3)

where f = V/22"2™M/2_Consider a minimal decomposition of |T)®™:
r

o™ =" ci Isi) (4)
i=1

for r = y(|T)Y®™) and stabilizer states |s;),- - -, |s,). We show that

if r is at most polynomially large in m (and hence in n), then we can
use polynomial in n number bits of advice to represent cy, ..., c,. It
is not immediately clear that polynomial bits of advice that keep
az—mo" precision for ¢;s is sufficient; we prove this in [35]. We
then use polynomial bits of advice storing the variables in equation
4 to expand the expression in 3 and compute each term exactly
using the Gottesman Knill theorem.

O

1.4 Related Works

As we mentioned before, there have been several results achieving
lower bounds on the stabilizer rank prior to this work. Here, we
briefly review some of these results. The first work in this line
of research was [11] where the authors proved a lower bound
of Q(+/n) on the exact stabilizer rank of magic state with proof
techniques similar to ours. More precisely, they constructed an
arbitrary n-qubit quantum state with exact stabilizer rank Q(n),
which can be prepared by O(n?) T gates and Clifford gates. Then,
they used the quantum teleportation idea to show that the exact
stabilizer rank of O(n?) magic states is at least Q(n). The authors
of [9] established an exponential lower bound in a restricted setting
in which we only consider stabilizer states that are tensor products
of |0) and |+) states. They used ultra-metric matrices machinery to
characterize the Gram matrix of such stabilizer states.

In [40] the authors proved a linear lower bound on the exact
stabilizer rank by carefully investigating coefficients in the com-
putational basis of any linear combination of o(n) stabilizer states.
In particular, they showed that there are two vectors in computa-
tion basis |x) and |x”) such that the number of ones in x and x” is
different, but their corresponding coefficients are the same, so it
cannot be associated with appropriate magic states. As a part of
the same study, they also proved a lower bound of Q(+/n) on the
approximate stabilizer rank of magic states using tools from the
polynomial method and an analysis of Boolean functions.

Labib in [30] proved a linear lower bound on exact rank using
tools from higher-order Fourier analysis. He showed that |T)®"
has an exponentially small correlation with a class of functions,
so-called “quadratic non-classical phases” defined in higher-order
Fourier analysis, and are inherently connected to stabilizer states.
Then, he showed that any function written as o(n) of such functions
cannot have such a small correlation with all quadratic non-classical
phases. Finally, among other contributions, the authors of [32]
almost re-derived the results of [40] using a modified version of
a result in number theory on the subset-sum representation of a
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sequence of numbers with exponentially increasing subsequence.
However, their lower bound on exact rank was O(n/log n) instead
of O(n), they handled both exact and approximate using similar
approaches.

1.5
1)

@

Discussions and Open Questions
Strengthening the bounds: In this work, we provided a

2
lower bound of Q)
polylogn

of |TY®" or any state in the second Clifford hierarchy. We
suspect that with more careful analysis, one can remove the
poly log(m) factor from our lower bound. We may also be
able to strengthen our result to hold for the approximate rank
of all magic states; right now, the bound works only for the
|T) state (and its Clifford equivalents) and/or exact rank. Nev-
ertheless, obtaining a super-quadratic lower bound using our
approach would be much more challenging. Indeed, with our
proof technique, any deterministic or randomized construc-
tion of quantum states with low “non-Clifford complexity”
(defined in Definition 2.1) but high approximate stabilizer
rank is of interest (See also Conjecture 1.3). However, at
least for two natural classes of probability distributions over
quantum states, i.e., the Haar measure and t-designs, it seems
that the non-Clifford complexity of a “typical” quantum state
grows at least quadratically with approximate stabilizer rank.
Proving an exponential lower bound: In our approach,
we realize that the instances corresponding to states with
high stabilizer rank and low circuit complexity correspond
to an exponentially small fraction of quantum states. As a
result, we believe that one needs to probe the structure of
the stabilizer states more closely in order to make progress
on this result. Building on the work of Labib [30], we suggest
the following sufficient condition to improve the bound on
stabilizer rank to exponential.

on the approximate stabilizer rank

Conjecture 1.7. Let |{) be a quantum state with stabilizer
rank r, such that F(|¢)) = maXgestab,, [(s|yy)? < 1/eRm),
then there exists a stabilizer state |s) such that |{s|T)®"|? >

1
poly(r)*

For instance, we know that F(|T)") = cos(r/8)%" [9]; how-
ever, the best bound we can prove for the largest overlap
is 1/4", which fails at giving a super-linear lower bound.
Our intuition is that to improve this bound, we need to find
sharp bounds on the geometry of stabilizer states, e.g., given
a stabilizer state, find how many stabilizer states there are
that have at least 1 — € fidelity with that stabilizer state.

Another venue for going beyond quadratic lower bounds
is by lower bounding the stabilizer rank of |¢) ® |¢) when
|¢) and |¢) are n/2 qubit states sampled from the Haar mea-
sure. In particular, if we can show that ys5(|y) ® |¢)) >
()(5(|¢)))(5(|<;5)))1/2+C for some constant ¢ > 0 and § =
1/2P°Y (") then we can improve the quadratic lower bound
on the stabilizer rank to possibly even exponential. The in-
tuition is that in order to prepare |¢/) ® |¢) we quadratically
have fewer number of |T) states than a n qubit state sam-
pled from the Haar measure. We note that we can show
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Q(n) . .
™ which is

x5(19) @ 18)) ~ x5(19)) xs (1)) for & = 1/22
not sufficient for our purpose.

(3) Strong lower bounds on exact rank from weak lower
bounds on approximate ranks: Another interesting ques-
tion is whether our lower bound on approximate stabilizer
rank has any implications for exact stabilizer rank. Lemma A.5
shows that in general, we cannot get a super-quadratic lower
bound on exact stabilizer rank from only knowing that the
approximate stabilizer rank is Q(m? /poly log(m)). However,
we might be able to use some additional structures of magic
states to improve the lower bound.

(4) Complexity theoretic connections: A natural open ques-

tion is whether either of the ideas used in this paper can be
utilized to prove the quadratic uncertainty principle for the
AND function; see Section 1.2. Our main theorem implies a
lower bound on the decomposition of the Boolean function
M(x) = 1iff x| =0 mod 8. Rather surprisingly, this result
can be viewed as a lower bound on a classical problem from
an upper bound on a quantum state synthesis problem. Un-
derstanding the full capabilities of this approach for classical
problems is an interesting future direction.
Can we strengthen Theorem 1.6? Sampling one bit from the
output distribution of stabilizer circuits is complete for the
complexity class ®L [3], which is the class of problems that
are solvable on a non-deterministic logspace machine which
the even parity of a non-deterministic path is an indication
of acceptance. Hence, we suspect that the full power of P is
not necessary to prove Theorem 4.3 and we might be able
to replace P with a weaker class such as ®L. However, to
show this, we need to show that strong simulation of sta-
bilizer circuits is also possible in ®@L. More realistically, we
suspect a strong simulation of Clifford circuits is possible
in gapL = DET, the same way a strong simulation of BQP
is possible in gapP. How about approximate rank? A poly-
nomial upper bound of on the § approximate rank of the
magic states implies sampling within total variation distance
O(6) from quantum circuits in polynomial time. Assuming
conjectures about hardness of approximate counting for spe-
cific functions implies a super-polynomial lower bound on
the approximate rank assuming the collapse of polynomial
hierarchy [1, 7, 12]. Can we improve this result by basing
the lower bound merely on the non-collapse of the poly-
nomial hierarchy? We remark that unlike results such as
[1, 2,7, 12], we can allow any structured circuit (which, e.g.,
would permit error correction).

2 PRELIMINARIES

Let [F; be the finite field of order two. [F} is a vector space over
[Fy. An affine subspace of F} is a linear subspace shifted by an
arbitrary vector. A quadratic function over F7 is of the form x —
xT Ax + a’ x where T is an n x n matrix and a € F7. The Hilbert
space corresponding to an n-qubit system is (C?)®", We identify
the computational basis for this Hilbert space by elements of x € F7.
Let I be the identity function on C2. Let H be a finite-dimensional
Hilbert space in the following definitions. Let U(H) denote all
unitaries acting on H. Let Proj(H, M) denote all the orthogonal
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projections acting on H and rank at most M. For a linear operator
A:H — H, ||A|| denotes the operator norm of A defined as

A1l
Ipyeri(oy M
Is the largest singular value of A and is the same as the infinite
Schatten norm. Here, by || |v) || we mean the 2-norm of the vector
[0). We also denote the trace-norm of A by ||A||; = tr VAAT. A quan-
tum channel is a linear super-operator that is trace-preserving and

completely positive. The diamond distance between two quantum
channels ® and ¥ for a Hilbert space H is defined as

(@ ®idg(X) - ¥ ®@idg(X))[l1

Al =

O

sup sup , (6)
d>0 Xe H®Cd X1l

where id is the identity channel on cd,

2.1 Quantum Circuits

A quantum circuit on n qubits is a unitary operation over (C2)®".

In most cases, we represent a quantum circuit as a product of m
unitaries Vi, - - -, Vi, where each V; is a unitary acting on a subset
of qubits (typically of size one, two, or three). The unitaries acting
on a smaller number of qubits are called quantum gates, and the
set of all allowed gates is called a gate set. A gate set is universal if
one can approximate any unitary on n qubits within an arbitrary
error using a sequence of gates from the gate set. We know that
the gate set {H, CNOT, S, T} is universal where
) el
V2 1 -1 0 i

0

o100 L[ o ®
cNOT= | o o 4l T=[O ei,[/4].
00 10

Finally, we define a notion of “non-Clifford complexity,” quan-
tifying how many non-Clifford resources we need to prepare a
quantum state.

Definition 2.1. Let |¢) be an n qubit state. 7 (|¢p)) is the smallest k
such that there exists a quantum circuit V, acting on n + A qubits for
A > 0, consisting of arbitrary number of Clifford gates and k number

of T gates such that |||¢) )0’1> - V(]jo™) 0’1>)|| <e.

2.2 Stabilizer Formalism

We briefly review stabilizer formalism here (see [38] for details).
Let #p, be the Pauli group acting on n qubits. The Clifford group
on n qubits, denoted by Cy, is the normalizer of #,, in the unitary
group modulo a phase. We denote by Stab,, the set of all stabilizer
states, which can be written of the form [49]

1
_— Z i) (21)Q0) |xy,
\{ |A| xX€A
where A C F] is an affine subspace of ) (A = {Ly +v : y € F)'},
where L € ngm, Ve Fg’), £ F'Zl — [Fy is a linear function, and
Q : F} — F; is a quadratic function. Here are some known facts
about stabilizer states.

®

Lemma 2.2. The following are true
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(1) For any Clifford unitrary C € Cp and any stabilizer state
|s) € Stab,,, we have C |s) € Stab,,.

(2) Let |s) be an n-qubit stabilizer state and b € Fy. Then, 1‘28"_1 ®
(b| |s) is either zero or proportional to a state in Stab,_.

(3) |Stabp| < €54 forn > 6 [31].

We next define the (approximate) stabilizer rank of a quan-
tum state. Let |¢) be an n-qubit state. We denote by y(|¢)) the
stabilizer rank of |¢) defined as the minimum M > 0 such that
there exists ¢1,- -+ ,cp € Cand [s1), -, |sp) € Stab, such that
l¢) = Z?ﬁl ci |si). We also define ys5(|¢)) as

min s
[¥):1l |¢>-|¢/)|IS5X(|¢>)

where |/) does not need to be normalized. We remark that the
stabilizer rank is operationally relevant to the cost of classical sim-
ulation. We may choose other measures of closeness to the set of
stabilizer states which we will review in Appendix A.

©)

2.3 Haar Measure and t-Designs

Let H be a finite-dimensional Hilbert space. The Haar measure
over H is the unique probability distribution on the unit vectors in
H invariant under the action of any unitary in U (). We shall use
the following concentration of measure result for the Haar measure
over finite-dimensional Hilbert spaces known as Lévy’s theorem
[51, Theorem 7.37].

Theorem 2.3 (Lévy’s concentration). Let H be a d-dimensional
Hilbert space and |§) be distributed according to the Haar measure
in H. For any k-Lipschitz function f from the unit sphere in H to R
and € > 0, we have

Pr(f(16)) —E[f(I$)] 2 €] < 2e” Fn? (10)
A function is «-Lipschitz if |f($)) = f(I¥))| < «[[[) = ) I

We use the following property of Haar measure, whose proof is
similar to that of [51, Lemma 7.2].

Lemma 2.4. Let H be a d-dimensional Hilbert space and P be a
projection on H of rank M. Let |¢) be distributed according to the
Haar measure in H. Then,

M) Mt-1) - M+ DM

(d+t-1)---(d+1)d ~
(11)
The Haar measure over U () is the unique probability distribu-
tion invariant under left or right multiplication by any unitary in
U(H). While preparing a unitary according to the Haar measure
requires an exponential amount of resources [28], unitary ¢-designs,
which we formally define here, mimic the Haar measure up to the

t-th moment and can be efficiently prepared for ¢ small enough.

e (PP'E[(19) (4D®']) =

(1)

Definition 2.5. Denote for a distribution v over U(H)

MY (p) 5= / U (U dy, (12)

which is a quantum channel. We call v an e-approximate t-design if
lMy - M|, < e

There are several constructions of approximate t-designs [8,
22-24, 36]. We state here two constructions: one that has a close
connection to stabilizer formalism and one using random circuits.
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Theorem 2.6 ([23]). There exists constant C1 and Cy such that for
all e, n, and t withn > Cat? the following holds. There exists an
e-approximate t-design v such that any unitary in the support of
v consists of Clifford gates and at most C1 log?(t) (t* + tlog(1/€))
number of T gates.

Theorem 2.7 ([22]). Forn > 2log(4t) + 1.5+/log(4t), there exists

an e-approximate t-design for n qubits such that each unitary in
+3—L

Viee(®) (2nt + log(1/€))

4
the support of v is composed of CnIn® (1)t
two-qubit gates for absolute constant C > 0.

We also state a conjecture on the optimal number of non-Clifford
gates in any t-design when t scales with n. The intuition behind
this conjecture is that by [8, Proposition 8], we need Q(nt) gates to
get a t-design for n-qubits, and we expect that most of these gates

should be non-Clifford.

Conjecture 2.8. Let v be a distribution supported on quantum cir-
cuits with an arbitrary number of Clifford gates and k number of T
gates. If v is an e-approximate t-design fort = w(1), then k = Q(t).

3 LOWER BOUNDS ON APPROXIMATE
STABILIZER RANK OF MAGIC STATES

In this section, we state and prove our main result, which is a lower
bound on the approximate stabilizer rank of |T)®".

)

We prove the above result using three ingredients.

Theorem 3.1. Let1 > & > 0. We have
(1 _ 52)27712

poly log(m) (13

s (ITYE™) = Q(

(1) In Section 3.1, we show that for each n and § there exists an
arbitrary n-qubit quantum state with an approximate stabi-
lizer rank Q(2"/n?) (Lemma 3.2). To prove this result, we
consider the approximate stabilizer rank of a random n-qubit
state distributed according to the Haar measure. For each
choice of Q(2"/n?) number of stabilizer states, we obtain
a doubly exponential upper bound on the probability that
we can estimate the random state as a linear combination
of those stabilizer states. We then use the union bound to
obtain an upper bound on the probability that a random state
has approximate stabilizer rank Q(2"/n?).

In Section 3.2, we state a result of [33] that shows every
n-qubit state can be approximated using Clifford gates and

@

at most O(poly(nZ”/z) number of T gates and many ancilla
qubits (Lemma 3.5).

In Section 3.3, we finally use the ideas in gadget-based imple-
mentation of T gates to show that the approximate stabilizer
rank of the output of state is upper bounded by stabilizer
rank of |T)®™ (Lemma 3.6).

Having these ingredients, we prove Theorem 3.1 in Section 3.4,
but provide the high-level argument here. Fixing m, we choose n
such that poly(n)zn/2
2?’!/2

®)

m, which implies that n ~ 2logm and

=~

m/poly log(m). We then choose quantum state |¢) with
n qubits and approximate stabilizer rank Q((1 — §%)227/n?) =
Q((1 - 8%)2m/polylog(m)) according to the first ingredient. Let

V be the quantum circuit according to the second ingredient, i.e.,
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V|0™) ~ |$) and V contains Clifford gates and m = poly(n)Z"/2
number of T gates. Then, using the last ingredient, we obtain
Q((1 - 8%)%m? [polylog(m)) = xs(19)) ~ xs(V(|0") [0*)))
< xs(IMPPI M) < ys(myem).
(14)

See Section 3.4 for details.

3.1 Existence of Quantum States with Large
Approximate Stabilizer Rank

The following lemma provides an upper bound on the likelihood
that a Haar random state of n qubits has a small approximate stabi-
lizer rank.

Lemma 3.2. Let|¢) be a random n-qubit state distributed according
to Haar measure withn > 6. Let M be a positive integer and0 < § < 1
be such that 1 — 8% — ZM,, > 0. We have

(1-8%-Mm/2m)22n
Priys()) < M] < 2054 M- =2 g

In particular, forn > 2log # +9, there exists an n-qubit state |¢)

_852\29n
with ys(|¢)) = C% for an absolute constant C > ﬁ.

Remark 3.3. A random state distributed according to Haar measure
with probability zero lies inside the span of any 2™ —1 stabilizer states.
Therefore, by union bound,

Pr(x(I$)) =2"] = 1.

Lemma 3.2 states a robust version of this observation.

(16)

To prove the above lemma, we first introduce a necessary condi-
tion for the approximate stabilizer rank of an arbitrary state to be
less than M in the following lemma.

Lemma 3.4. Let |¢) be an n-qubit state. If y5(¢) < M, then

max_||Ps [$)]|* > 167

ScStaby:|S|=M
where Ps denotes the orthogonal projection onto the subspace spanned
by the elements of S.

PrOOF. Assume that ys(¢) < M. It means that there exist com-
plex numbers ¢y, - -+ ,cpr and S = {[s1), -+, [sm)} C Stab, such
that ngb) - Z?;Il ci |si)|| < 8. We also know that

1= 1) 1% 2 116) - Ps 1)1 + 1Ps )11

M 2
I$) = > cilsi)
i=1

(b)
< +IPs19)I1* < 8%+ IPs [$)I°

(17)

where (a) follows from Pythagoras Theorem in Hilbert Spaces, and
(b) follows since Ps |¢) is the closest point to |¢) in the subspace
spanned by elements of S. Therefore, ||Ps |$)||?> > 1 — 6% as desired.

O

Proor oF LEMMA 3.2. Before delving into the technical proof,
we sketch the main ideas. Lemma 3.4 helps us to upper bound
the probability that the approximate stabilizer rank of a random
state is less than M in terms of the norm of the projection of the
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random state into several subspaces. We use union bound and
Lévy’s theorem (Theorem 2.3) to upper bound that probability.
Note that

(a)
p <M] <P P 2>1-4° 18
r[xs(1¢)) < M] < r[SCStfblﬁTSl:Mll s P)11° = (18)
(b) ) )
< Pr([IPs|p)]I* = 1-6%]  (19)
ScStaby,:|S|=M
(U)o wlipiR s -2
M Pe
Proj((C2)®",M)
(20)
< |Stab,|M sup  Pr[||P|p)]I* > 1 - 8%
P
Proj((C2€)®",M)
(21)
()
é ¢0-54n°M sup Pr[||P|¢)||2 >1- 52]
P

Proj((C2€)®",M)

(22)
where (a) follows from Lemma 3.4, (b) follows from the union
bound, and (c) follows from Lemma 2.2. We now upper bound
Pr(|IP|$)]|* > 1 &%| for P € Proj((C*)®", M) using Lévy’s theo-
rem (Theorem 2.3).

We take H = (C?)®" and f(|$)) = ||P |$)]|? and show that f is
2-Lipschitz and E[f(|$))] < ZM" First note that for arbitrary unit
vectors |$) and |¢), we have

£ = FUYDT = 1P IO = 1P 1) 1] (23)
= IR IO = WP AP IS + P )1 (24)

< |1P1g) = PIOIAP IO+ P (25)
< @) = IS+ 111D (26)
=2[[1¢) = [P, (27)

which means that f is 2-Lipschitz. By Lemma 2.4, we also have
E[f($))] = mzn—nkp < ZM" Applying Lévy’s theorem, we obtain

(1-8%-M/2m)2n
1007r

Pr[l|IP[p)1* > 1-62] < 2¢”

Combining (22) and (28) yields the first part of Lemma 3.2.

To prove the second part, it is enough to show that for n >
1-6%)%2"
o +9and M = UOLZ priys(lg)) < M] < 1.
By the first part of the lemma, it is enough to show that 0.54n% M—
(1-82—M/2m)%2"

(28)

2log

1007 =-L
We have by direct calculation
M 1-62)2 1
oMy (-0 >(1-8)[1-—]|. (29
2n 1000n? 1000

and therefore

(1-6%—M/2m)22n (1 - 62)2(0.999)22"

0.54n° M— < 0.54n’M —
1007 1007
0.9992
= (1-6%)22"(.00054 — ) < —0.0026(1 — 52)%2",
1007
(30)
which is less than —1 for n > 2log ﬁ +9. |
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3.2 Trading T Gates for Clifford Operations

In the previous section, we showed that, except for an exponentially
small fraction, Haar random quantum states have exponentially
large approximate ranks. Our strategy is to translate this lower
into a lower bound on the approximate stabilizer rank of |[T)®". As
an intermediate step toward this goal, we need to find an upper
bound on the number of T gates necessary to sample from the Haar
measure. This section finds an upper bound on the number of T
gates to construct arbitrary quantum states. One might expect that
an arbitrary quantum state would require Q(2") numbers of T gates
to prepare. It turns out that by allowing ancilla qubits, arbitrary
quantum states may be prepared using O(2"/2) number of T gates
and O(2"/2) ancillae.

Lemma 3.5 (Trading T gates with Clifford operations [33]). Let |¢$)
be an arbitrary n-qubit quantum state then t4-n(|$)) = 2M20(n)
where t¢ is defined in Definition 2.1.

This lemma makes a nontrivial use of anciallae to provide a
quadratic saving on the number of T gates. This nontrivial result
enables us to cross the linear lower-bound barrier on the stabilizer
rank and obtain a quadratic lower bound.

3.3 Approximate Stabilizer Rank and Quantum
Circuits

Lemma 3.6. LetV be a quantum circuit consisting of Clifford gates
and k T gates. Then, y5(V |0)) < )(5(|T)®k).

The proof is based on the idea of teleportation of each T gate
using a magic |T') state. We need the following two technical results
for the measurement required in the teleportation of T gate. We
first show that under certain conditions, the measurement output
has a uniform distribution. This result is implicitly assumed in the
literature, but we provide proof for completeness.

Lemma 3.7. Let |{/) be an n-qubit quantum state. Apply controlled-
not gate on the last qubit of |) ® |T) controlled on one of the qubits
in |) and then measure the last qubit in the computational basis.
Then, the output of the measurement has a uniform distribution.

Proor. Write |§/) = er]gg ax |x). Without loss of generality,
we assume that the CNOT is controlled on the first qubit. The state

imfd)11_
after applying CNOT is er]F;l ax |x)® W. Hence, the

probability that we obtain zero after measuring the last qubit is

2
1) + /41— xp)

" (0) ) axlx)® i

n
x€F]

) (31)

i 1 1
ST/ 1y — 2 _ -,
> <o) =Sl = 2

n
x€F]

as desired. O

The next lemma states that performing a “balance” measurement
on one of the qubits does not increase the approximate stabilizer
rank for at least one outcome.
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Figure 1: Gadget for implementing T gate

Lemma 3.8. Consider measuring the last qubit in an n-qubit state
|¢) in the computational basis. Let py, be the probability that the

measurement output is b and ‘$b> be the post-measurement state
when the output is b. If po = p1, then minp_g Xg(‘$b>) < xs()).

Proor. Let ys5(|¢)) = M and consider cy,---,cpr € C and
s1), -, lsp) € Staby such that ||l¢) — M. ¢; [s;)|| < 8. We also
define [) = $}, c; [s;) and decompose |$) = [¢p) ®[0)+|¢1) ® 1)
and |¥) = |o) ®]0)+|¢/1) ®|1). Since |0) and |1) are orthogonal, we
have |[|¢o) — [0} [|* + [l1¢1) = [¥1)|I* < 6% Hence, ming_q 1 |l|45) —
[Yp)]l < \% Without loss of generality, assume that the minimum

is achieved for b = 0. Since the post-measurement state on the first
n — 1 qubits is V2 |¢) and |||$0> — V2 |o)|| < 6. Finally, we note

that V2 [fo) = (I @ (0]) [y) = ZM, i (17" @ (0]) Is;) , which
is a linear combination of at most M stabilizer states. This proves

that Xa(’$0>) < M as desired. a

PRrROOF OoF LEMMA 3.6. We replace each T gate in the circuit with
the gadget introduced in [19] as in Fig. 1. We index n + k —i + 1
the second qubit in the gadget corresponding to the i’ ht gate in
V and denote by x; € {0, 1} the output of the measurement in that
gadget. We note that x = (x1, - - - , xg) has uniform distribution over
{0, 1}k by Lemma 3.7. We can formally express the equivalence of
gadget-based implementation of as

\% |0n> = zk/ZC;:k (12®n® <xk|)C]J:]iT (12®n+1 ® (xp_1])

S CPIETR T @ (x1))Co [07) ® |TH K.
(32)

where Cll.’ is a Clifford circuit acting on n + k — i first qubits for
all b € {0,1} and i € [n]. In the beginning, y5(|0") ® |T)®k) =
¥s(IT)®F). By Lemma 3.8, at each measurement, the approximate
stabilizer rank does not increase for one output. As approximate

stabilizer rank is invariant under Clifford operations, we conclude
that for one particular choice of x1,- -+, xn

xs(ITY®F) = x5 (22CF (1P @ ()OI UIS™ @ (g ]) -+
.. cifl (I®n+k—l ® <xl |)C0 |0n> ® |T>®k)

= xs(V[0")).
(33)

]

3.4 Concluding the Proof of Theorem 3.1

Let cn for constant ¢ > 0 be the linear term in the statement of
Lemma 3.5 and C be the constant in the statement of Lemma 3.2.
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Given a positive integer m, we choose the largest n such that
cn2"? < m. By Lemma 3.2, there exists n-qubit state |¢) with

1-(5+477)%)%2"
Xoran(1§)) = C%
O(1). According to Lemma 3.5 and our assumption that cn2™2 < m,
there exists a quantum circuit consisting of Clifford gates and at

most m number of T gates such that |||¢) [0 =V (j0™) [oA))|| < 47"
for some A > 0. Using Lemma 3.6, we have

whennZZlogm+9=

— —n\2\29n
1D = x5 (VI0™)) > sy (1g9) > LDV E

(34)

Since n was largest integer such that cn2™? < m, we have m <
\/Ec(n+1)2"/2. Furthermore, we have 272 < en2™? < m and there-
fore n < 2log(m). Combining these two inequalities, we obtain

that 2" > ngﬂf Hence, substituting n and 2", we get
_ 4ct(1+2log m) \ 2\ 2
Uz @rampyer | (O 7 T L
n? 8¢2(1 +2logm)2 log? m
_§2)2,,2
=Q M . (36)
log*m

Remark 3.9. We proved the result for a fixed §. However, we high-
light the proof works for a sequence {0} m>1 where 6y — 1 slowing
logm
m
our constraint n > 2log 1+n2 + 9 is consistent with our other
—(6m+47")

enough (e.g., 6m = 1—0O(

) is enough). More precisely, as long as

constraint that cn2"/? < m, our argument goes through.

We conclude this section by stating a corollary of our proof
techniques on the existence of quantum states with low circuit
complexity but high approximate stabilizer rank.

Corollary 3.10. Let 8, n, and M be fixed such that M = O((1 —
52)22"n=2). Then, there exists a quantum circuit V consisting of
Mpoly log(M) gates such that ys(V [0™)) > M.

ProoF. Let C be the constant in Lemma 3.2. We choose k the
smallest integer such that C(1 — §%)2 i—lz > M. By Lemma 3.2, there
exists k qubit state |¢/) such that ys(|¢)) > M. By [28, Theo-
rem 3.3], there exists a quantum circuit V consisting of O(k2ky =

Mpoly log(M) two-qubit gates such that V ‘0k> = |¢). Then, V ®

Iég’"_k has the desired properties. O

4 APPROXIMATE STABILIZER RANK OF
t-DESIGNS

This section discusses what happens if we replace the Haar measure
in Lemma 3.2 with a t-design. Initially, we discuss whether we can
expect a bound on the approximate stabilizer rank for ¢-designs.
The following proposition shatters any such hope for t = O(1). We
omit the proofs; for detailed proofs, please refer to [35].

Proposition 4.1. There exist absolute constants C1 > 0 and Cy > 0
such that for all't, n > Cot®, and 1 > € > 0, there exists an e-

approximate unitray t-design for n-qubits where the following holds.
Then, xs(U |0™)) < 21 log? (1) (t*+t10g(£)) 4tk probability one, if U
is sampled according to the t-design.
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This proposition together with Lemma 3.2 imply that when
t = O(1), the approximate stabilizer rank of a ¢-design can range
from O(1) to Q(n~22"). However, we provide a lower bound on the
approximate rank when ¢ grows with n using a similar approach as
in the proof of Lemma 3.2.

Lemma4.2. IfU is distributed according to an n-qubit e-approximate
. ( Mitot )[+e
t-design, then Pr| y5(U |0™)) < M] < ¢0-47 M%.

Next, we provide an upper bound on how many gates we need
to get a state with approximate stabilizer rank poly(n). Perhaps
surprisingly, the bound we obtain using t-designs is weaker than
what we obtain from the Haar measure in Corollary 3.10.

Proposition 4.3. Letd > 1 and 1> § > 0. There exists a quantum
gy V@D
Vien ) gates and ys5(V |0™)) > nd.

circuit V with O(log® (n)n

We finally comment on the possibility of using ¢-design to im-
prove the lower bound on the approximate stabilizer of |T)®™.
Using Lemma 4.2, we should take t = Q(Mn) for a state with ap-
proximate stabilizer state M. Assuming that Conjecture 2.8 is true,
we need at least Q(Mn) T-gates to construct such ¢-design. There-
fore, using our approach, one cannot expect to get a lower bound
better than linear on ys(|T)®™).
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A STABILIZERNESS MEASURES

Approximate and exact stabilizer ranks measure the closeness of
a quantum state to the set of all stabilizer states. Other measures
of stabilizerness have been studied in the literature that might be
mathematically more tractable but are not operationally as relevant
as stabilizer ranks. In this section, we review some of these measures
and also suggest a novel one based on the Gowers norm [20] (See
Definition A.1). Gowers norms are extensively studied in the context
of higher-order Fourier analysis and have found several applications
in different areas of mathematics and theoretical computer science
[25, 47]. In particular, for a polynomial P : F} — F of degree d,
the Gowers norm of degree d of (—1)* is 1. Since stabilizer states
are defined in terms of quadratic phases, the useful properties of
Gowers norm could be exploited to study stabilizerness of arbitrary
quantum states (See Remark A.2). Since some of these measures
are easier to deal with, it is interesting to ask if a bound on one
measure implies any bound on other measures. As an example,
we prove a relation between stabilizer fidelity and stabilizer rank
(Proposition A.3), which immediately implies a linear lower-bound
on y(|T)®") using the results of [9] (Corollary A.4). We summarize
other relations in Table 1 that exist in literature.

Definition A.1 (Stabilizerness measures). Consider the n-qubit state
[p) = # er]pg f(x) |x). We consider the following quantities.
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(1) Stabilizer fidelity: F(|$)) = maX|s>EStabn|(s|¢)|2
(2) Stabilizer extent:
E(¢) = inf{[lel? :c e M
M (37)
,Isw) € Staby < [§) = D cilsi)}.
i=1
(3) Stabilizer rank y(|¢$)) and approximate stabilizer rank y5(|¢$))
as defined in Section 2.2.

(4) Gowers norm:

x,hy, by hy €FY

><f(x+ h] + hz)f(x+ h] + h3)f(x+ hz + h3)f(x + h1 + hz + h3).
(38)

E||31>,...

NG = % FGOf G+ h)f(x+h2) f(x + h3)

Remark A.2. We believe that Gowers norm |||¢)||yy3 is a relevant
measure of stabilizerness because of its relation with the overlap
of a function with quadratic phase functions [25, Theorem 5.3]. In
particular, let |||§) |73 = . Then, the direct part of [25, Theorem 5.3]
implies that for any stabilizer state |s) such that (s|x) # 0 for all
x € F}, we have |(s|¢)| < 6. Furthermore, the converse part of [25,
Theorem 5.3] implies that there exists a stabilizer state |s) such that
[(slp)] = g—clog’ § for a universal constant ¢ > 0. While the direct
and converse theorems do not match, |||¢)||yy3 has a closed expression

unlike F(|¢)).

In the following proposition, we, establish a relation between
F(|¢)) and y(|¢)). We closely follow the proof approach of [30],
but we manage to avoid any tools from the higher-order Fourier
analysis.

Proposition A.3. For any n-qubit state |¢) = \/szn er]Fg f(x) |x),

we have y(|¢)) > %log(ﬁ;“—(zlw)) where a := miny cpn [f(x)| and
B = maxyepn|f(x)].

Before starting the proof, we briefly review the setup for (classi-
cal) Fourier analysis here. Let G be any finite Abelian group. A char-
acter for G is a function y : G — C such that y(g + h) = y(9)y(h).
We denote the set of all characters by G, which is finite and of
the same cardinality as G. For any function f : G — C, there
exists a unique function f G — C such that f= ZY & f y-
Using Pfrseval equality and Cauchy-Schwartz inequality, we have
3,ealf 0] < VIGImaxge|f (9)1.

Let Gy and G2 be two finite Abelian groups. We have m =
{riva:y1 € G1 Y2 € Gz} Fmally, consider the group G = {1, +z}

under multiplication. Then, G = Z4 and the characters are x - x'
for i € Zy.

PROOF OF PROPOSITION A.3. We define the set of functions F} —
C of the form x > if(*) (—1)Q(x> for ¢ linear and Q quadratic as
Q, which is closed under function multiplication. Let ys(|¢)) = M
ie., there existcy, -+ ,cpp € C, Ay, -+ A C IF’; affine subspaces,
Q1,--+,0m € Qsuch that f = Zi\il ¢iQily,. We recursively con-
struct an affine subspace U C F7 with dimension at least n—M such
that 14, is constant on U for all i. (This is a minor improvement to
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Table 1: Known relations among measures of stabilizerness.

x(19))

Open question

Claim 3.3 in [40].). Start with Uy = F}. For each i € [M] let U;—1 be
given such that 14,,---,14,_, are constant on U;—1. If Uj—1 C A;,
then take U; = U;—1 and 14, is one on U;. Otherwise, there is a sub-
space U; of U;_1 with codimension one such that U;—1 N A4; =, i.e,
1 4, is zero on U; (and since U; C Uj—1, 14, -+, 14,_, are constant
on Uj too). We take U = Uy, which has a dimension at least n — M
because the dimension of Uy is n, and in each step, the dimension
is decreased at most by one.

Upon defining § = {i € [M] : 14,|]y = 1}, we have f|y
Diies ¢iQilu- Define G = {1, +i}, which is a group under multipli-
cation. We also define

h:U— G5 x (Qi(%)ies (39)
r:G°—>C ym Zies Cibi Y € Im(ﬁ) (40)
0 Otherwise

for which f(x) = T'(h(x)) Vx € U. Using our discussion before the
proof about Fourier analysis of G5, we can write T = Zyezf I'(y)y
and f(x) = ¥ czs T(1)Qy (x), Vx € U where Qy = [Tjes ol e q.
Therefore,

il =S P = Zr(y)lUl D 0 f ).

xeU xeU

(41)

We consider the stabilizer state |sy> =

\/ﬁ 2ixer Qy(x) [x). 1t

holds that
(dlsy) = «/W >0y f (). (42)
xeU
Combining (41) and (42), we obtain
1
7 2@ =2 T ¢|sy>
x i€eS
which we can upper bound by
= 2"F(19)) _ 1s| 2"F(l¢))
OIN Tk ;;aogr(ym/ 1
14
1s| o [2"FU9)) _  m, [F(I9)
<2@'p U <2"p M
(43)
Combining the above inequality with |—11]| Sf)? = a? com-
pletes the proof. O

Proposition A.3 immediately implies a linear lower bound on
exact stabilizer rank of |T)®™ using F(|T)®™) = cos(%)zm [9].

£(1¢)) x(9)) X5(¢) ),
- [(plw)|® .
{(|¢)) = sup|,y i1+ | Proposition A.3 . Remark A.2
F(l9)) o Thecjreinia‘m» See also [30] Open question [45]
&(lg)) Open question | [9, Theorem 1] | Open question
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Lemma A.5

[32, Lemma 3.5] Open question

Corollary A.4. We have y(|T)®™) > 2 log(cos( ))m > 0.076m.

The next lemma shows that we cannot, in general, control the
gap between approximate and exact rank.

Lemma A.5. Let1 > § > 0, n, and M be given such that 1 <
M < 2". Then, there are two n-qubit quantum states |¢1) and |¢p2)
such that x(1g1)) = x(142)) = OO, xs(Ig) = O 2
xs(l$2)) = 0(1).

ProoF. Let k be the smallest integer such that 28 > M. By
Lemma 3.2, there exists a k qubit state |/1) such that ys(|¢1)) =

K
Q( %2) Furthermore, by a probabilistic argument, we can further

assume that ys(|y1)) = 2k, Taking |¢1) = |1//1)®|0>®"_k has the de-
sired property. Next, using the same argument and [32, Lemma 3.5]

and

implies the existence of |@2). O
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