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ABSTRACT

The approximate stabilizer rank of a quantum state is the minimum

number of terms in any approximate decomposition of that state

into stabilizer states. Bravyi and Gosset showed that the approxi-

mate stabilizer rank of a so-called “magic” state like |) ⟩⊗= , up to

polynomial factors, is an upper bound on the number of classical

operations required to simulate an arbitrary quantum circuit with

Cli�ord gates and = number of ) gates. As a result, an exponential

lower bound on this quantity seems inevitable. Despite this intu-

ition, several attempts using various techniques could not lead to

a better than a linear lower bound on the “exact” rank of |) ⟩⊗= ,
meaning the minimal size of a decomposition that exactly produces

the state. For the “approximate” rank, which is more realistically

related to the cost of simulating quantum circuits, no lower bound

better than Ω̃(
√
=) has been known. In this paper, we improve the

lower bound on the approximate rank to Ω̃(=2) for a wide range
of the approximation parameters. An immediate corollary of our

result is the existence of polynomial time computable functions

which require a super-linear number of terms in any decomposition

into exponentials of quadratic forms over F2, resolving a question

by Williams. Our approach is based on a strong lower bound on

the approximate rank of a quantum state sampled from the Haar

measure, a step-by-step analysis of the approximate rank of a magic-

state teleportation protocol to sample from the Haar measure, and

a result about trading Cli�ord operations with ) gates.
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1 INTRODUCTION

Is there an e�cient classical algorithm to simulate arbitrary quan-

tum physical systems? This fundamental question plays a vital role

in numerous science and engineering disciplines. For instance, in

quantum chemistry, one may translate this question into the ability

to measure the structural properties of molecules or design new

materials [34]. Alternatively, in condensed matter theory, it is per-

tinent to our ability to predict the phases of quantum materials or

sampling from thermal distributions [6]. Interestingly, this ques-

tion also plays a non-trivial role in seemingly unrelated �elds, such

as theoretical computer science, cryptography, or number theory

[21, 27, 44, 46].

In theoretical computer science, this question is formulated as the

relationship between two complexity classes known as “bounded-

error quantum polynomial time” (BQP) and “bounded-error clas-

sical polynomial time” (BPP). Since the early days of quantum

mechanics, it was observed that many-body quantum systems have

exponentially large phase spaces with counter-intuitive dynamics

and unexpected features such as the duality of wave and particle

aspects of subatomic systems (see [52] for some of the historical

remarks). They furthermore demonstrate non-classical correlations

known as entanglement [15]. Hence, the popular belief is that simu-

lation of quantum systems requires exponential classical resources.

This observation indeed motivated the development of quantum

computing initiated by researcher such as Feynman in the 1980s

[16]. Subsequently, a breakthrough result by Shor demonstrated

that an e�cient classical algorithm to simulate arbitrary quantum

computations would also e�ciently factor large numbers. This prob-

lem is crucial to the security of encryption schemes like RSA, for

which no polynomial-time classical algorithm has been discovered

despite centuries of research. It is thus natural to conjecture that

BPP ≠ BQP. However, rigorous proof for this statement seems

unlikely with current complexity theoretic tools since, for example,

a proof of this statement will readily yield a separation of com-

plexity classes such as “polynomial time” P and “polynomial space”

PSPACE, which has been open beside an extensive amount of

research over the past few decades.

Since an unconditional separation of BPP and BQP seems out-

of-reach, it is insightful to ask the question from a complementary

angle: are there restricted but non-trivial family of quantum sys-

tems that can be e�ciently simulated classical computers. It turns

out that there are several examples of classically simulable quantum

circuits. For instance, if the amount of quantum entanglement at

every step of a quantum circuit is limited, the system can be simu-

lated e�ciently [50]. Examples of such circuits include log-depth

one-dimensional quantum circuits. Other classically simulable cir-

cuits based on constrained architecture include constant depth 2D
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random quantum circuits on two-dimensional architectures [37]

or adiabatic computations with large spectral gaps [39]. There is,

however, an important class of quantum circuits known as Cli�ord

circuits, which can generate maximal entanglement and have large

circuit depth but admits e�cient classical simulations through a

well-known theorem due to Gottesmann and Knill [18]. This theo-

rem works by considering quantum states “stabilized” by particular

subgroups of the Pauli group; these states, also known as stabi-

lizer states, were �rst introduced in the context of error-correcting

codes [13] and subsequently found applications in several areas

in quantum information science [29, 41]. The Cli�ord operations

normalize the Pauli group, meaning they keep the group unchanged

under conjugation, and hence, theymap stabilizer states to stabilizer

states. Starting from a stabilizer state, Gottesman-Knill’s algorithm

keeps track of generators of the stabilizer subgroup corresponding

to the quantum state under simulation. This method leads to a

strong simulation of Cli�ord circuits acting on stabilizer states on

a classical computer, meaning that the output amplitudes of such

computations can be computed exactly. Note that several classically

simulable gate sets, such as match gates or the in�nite-dimensional

Gaussian gates, generate large amounts of entanglement and can

be simulated classically e�ciently. These simulation algorithms,

however, capture variants of the Gottesman-Knill theorem for dif-

ferent physical particles known as Bosons [5] or Fermions [48].

In other words, the idea behind the Gottesman-Knill theorem is

fundamental to all of these simulation techniques.

The Cli�ord gate set can only approximate a restricted family of

quantum operations. However, this gate set becomes universal if we

augment this gate set with an additional non-Cli�ord gate known

as ) , or c/4 phase shift. In the context of this universal gate set,

the mentioned BPP vs. BQP question translates to characterizing

the cost of classical simulation in terms of the number of ) gates

in an arbitrary quantum computation compiled into Cli�ord and

) gates. Building on the Gottesman and Knill theorem, several

works [10, 11] provided upper bounds on this classical simulation

cost by developing classical simulation algorithms for quantum

circuits dominated by Cli�ord gates. In particular, Bravi and Gosset

[10] demonstrated that for a constant 2 < 1, a classical computer

could simulate a quantum circuit with = qubits, poly(=) Cli�ord
gates, and < number of ) gates in time poly(=) · 22< . In their

approach, they �rst consider teleportation of the so-called (non-

stabilizer) magic state |) ⟩ =
1√
2
( |0⟩ + 48c/4 |1⟩) to simulate the

e�ect of a) gate at the middle of the circuit using Cli�ord gates and

measurement in the computational basis. This operation converts

a quantum circuit consisting of Cli�ord and ) gates to a Cli�ord

circuit with measurements and inputs |) ⟩⊗< followed by some

zero states. Then, they decompose |) ⟩⊗< as a linear combination

of 22 ·< stabilizer states and use the Gottesman-Knill algorithm

for each stabilizer state in this linear combination in time poly(=).
By the linearity of quantum mechanics, they can �nd the output

of the circuit when the input is |) ⟩⊗< in time poly(=) · 22 ·< . In

this approach, a crucial quantity is the minimum number A such

that there exist stabilizer states |B1⟩ , . . . , |BA ⟩ and complex numbers

21, . . . , 2A such that |) ⟩⊗< = 21 |B1⟩ + . . . + 2A |BA ⟩. We call this

quantity the stabilizer rank of |) ⟩⊗< and denote it by j ( |) ⟩⊗<).
If we are interested in the minimum number of stabilizer states

that approximate the |) ⟩⊗< state within X 2-norm, we arrive at the

de�nition of the approximate rank, which we denote by jX ( |) ⟩⊗<).
For an arbitrary state |k ⟩, we denote its approximate stabilizer rank

with the approximation parameter 0 ≤ X ≤ 1 by jX ( |k ⟩).
In this paper, we study lower bounds on the number of steps the

above simulation technique based on decomposing magic states

into stabilizer states requires. In other words, our goal is to prove a

lower bound on the stabilizer rank for the magic state |) ⟩⊗< . This

question is essential in many ways. First, it gives signi�cant insight

into the relationship between BQP and BPP and why quantum

computations obtain speedup over classical computations by study-

ing a lower bound on BQP against a canonical class of simulation

method on BPP. Similar questions have arisen in computational

complexity, for instance, in the context of the P v.s. NP question,

we know that speci�c restricted subclasses of P known as mono-

tone circuits require an exponential lower bound to solve NP-hard

problems [4, 42, 43].

Secondly, this question is conceptually an intriguing one. The

complexity of classical simulation for quantum circuits is about

counting the minimal number of computational steps that success-

fully simulate an “exponentially-sized" family of problems. In con-

trast, the problem of computing the stabilizer rank is “one counting

problem” about “one” functional structure. It is counter-intuitive

that the latter, which can be viewed as a question in functional anal-

ysis, would give non-trivial information about the former. Third,

as we will highlight in Section 1.3, a lower bound on the (approxi-

mate) stabilizer rank organically connects with several interesting

structural questions about complexity classes. For instance, we can

show that if the exact rank is A , then P#P ⊆ TIME(poly(=) · A )/A ;
here TIME(poly(=) · A )/A means a computation which runs in time

poly(=) · A and has access to $ (A ) bits of advice providing the

description of the stabilizer decomposition. One of the immediate

implications of the result of Bravyi and Gosset [10] is that assuming

a polynomial upper bound on the approximate rank with approx-

imation parameter X implies that sampling within total variation

distance$ (X) from arbitrary quantum circuits can be done in BPP;

recent progress in quantum complexity theory has demonstrated

that assuming plausible conjectures about the average-case hard-

ness of speci�c approximate counting problems, sampling within

total variation distance from quantum computers using BPP im-

plies the collapse of the polynomial hierarchy (see for example

[1, 7, 12]).

1.1 Overview of the Main Results

Even though we expect the exact stabilizer rank j ( |) ⟩⊗<) to grow

exponentially with<, the best-known lower bound has been Ω̃(<)
due to three di�erent groups [30, 32, 40]. As we will explain in

Section 1.4, these three results use three di�erent proof techniques,

but they all stop at a linear lower bound. The situation with ap-

proximate stabilizer rank is slightly worse because the best-known

lower bound for this quantity is
√
< up to poly-logarithmic factors.

An immediate conjecture is whether we can prove a super-linear

lower bound on either the exact or approximate ranks.

In this paper, we resolve this conjecture by proving a nearly

quadratic lower bound for the |) ⟩⊗< state.
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Theorem 1.1 (Informal statement of the main result). Let 0 < X <

1, then jX ( |) ⟩⊗<) = Ω (<2 )
poly log<

.

As the above theorem indicates, our result works for a wide

range of error parameters. The ) state a magic state in the second

level of the Cli�ord hierarchy, meaning the group of operators that

preserve the Cli�ord under conjugation; the third level is the group

of operations that preserve the second level, and so on. Obviously,

our result holds for quantum states that are Cli�ord equivalent to

the ) state but does not hold for arbitrary magic states. We remark

that for X = 0, our result holds for any magic state.

Proof Sketch. Our method is a probabilistic one and has three

main steps. As the �rst step, we show that for a random quantum

state |q⟩ with = qubits sampled from the Haar measure, the approx-

imate rank satis�es the following strong concentration bound

%A [jX ( |q⟩) ≤ "] ≤ 4=
2"−Ω (2= ) (1)

for any X < 1. As a result, we conclude that for all quantum states

except for an exponentially small measure, the rank is at least

2=−> (1) .
Second, we show we can sample from the Haar measure with

exponentially small error using |) ⟩⊗< for< ≈ =2=/2 and< adap-

tive measurement. We know that arbitrary quantum states can be

implemented using $̃ (2=) number of ) gates. However, by adding

extra ancilla states initially in zeros and trading ) gates with Clif-

ford operations, we can implement arbitrary quantum states using

$̃ (2=/2); this result is due to [33]. The third step is to show that the

adaptive measurements do not increase the approximate rank of

the ) states. We remark that this step of the analysis, in its current

form, relies critically on the structure of the state and works only

for the) state due to its balanced structure, i.e., |⟨0|) ⟩|2 = |⟨1|) ⟩|2,
and not arbitrary magic states. Putting these three steps together,

and by rescaling< = =2=/2, we obtain Ω (<2 )
polylog(<) lower bound on

the approximate rank of |) ⟩⊗< .

The main bottleneck for going beyond the quadratic lower bound

is that we need at least Ω̃(2=/2) ) states to sample with high preci-

sion from the Haar measure; see [33] to see why this lower bound

holds. We may wonder if we can use, instead of the Haar measure,

pseudo-random quantum states such as approximate C-designs,

which approximate the �rst C moments of the Haar measure and

use ≪ 2=/2 ) gates. It turns out the bound in Equation 1 relies on

almost all moments of the Haar measure. For instance, the main

strength of this bound is due to the 2= factor in the tail. For C-designs

we only get tails like 4=
2"−Ω (C ) .

□

Next, we study the relationship between circuit complexity and

approximate stabilizer rank. As shown above, we obtain a quadratic

lower bound on the approximate rank of a simple state like |) ⟩⊗< ,

which has linear circuit complexity. More generally, our result

implies the following

Theorem 1.2 (Stabilizer rank and circuit complexity). For any

number 3 there exists a quantum state with circuit complexity at

most =3poly log(=) and stabilizer rank at least =3 .

We note that based on [8, 22] except for an exponentially small

fraction, almost all quantum states from random quantum circuits

of size B may not have circuit complexity less than B1/5. This gives
insight into why proving an exponential lower bound on the stabi-

lizer rank of |) ⟩⊗= might be a di�cult task; likely |) ⟩⊗= appears as

one of the rare states whose circuit complexity may be compressed

and the probabilistic method may not work anymore. As we will

show in Section 4 a weaker version of this result can be deduced

from the properties of C designs. In particular, we show that a quan-

tum state of circuit complexity at most $ (=53 ) and stabilizer rank

at least =3 exists. However, if the dependency on the number of

) gates used in [23] is improved to linear, we obtain exactly the

result of Theorem 1.2. Alternatively, this result can be obtained

from constructions of unitary C-designs based on random quantum

circuits in time $ (C5+> (1) )poly(=) in [8, 22]. As indicated in [26],

the bound on C can likely be improved to linear. In that case, we

again obtain Theorem 1.2.

We raise the following conjecture:

Conjecture 1.3 (Stabilizer rank and circuit complexity). For any

constants 3 ≤ 3′, there exists a quantum state with circuit complexity

at most =3 and stabilizer rank at least =3
′
.

1.2 Complexity Theoretic Implications

While proving unconditional separations between complexity classes

is di�cult, a simpler milestone is �nding complexity-theoretic lower

bounds against speci�c families of simple functions. For instance,

we can consider the problem of representing Boolean functions in

a speci�c complexity class such as NP as a linear combination of

simple functions. For example, the so-called quadratic uncertainty

principle [17] is the conjecture that in any exact decomposition of

the AND function into

A∑

9=1

2 9 (−1)& 9 (G1,...,G= ) (2)

we need A ≥ 2Ω (=) , where & 9 are quadratic polynomials over F2,

and 2 9 ∈ C. The best lower bound on this problem is linear due

to Williams [53]. As observed by [40] Eq. (2) is exactly the over-

lap of sums of stabilizer states with bit strings. Because the AND

function is itself a stabilizer function, it has a stabilizer rank of 1,

and we do not hope to improve this bound based on a stabilizer

lower bound approach. Williams furthermore showed that for any

: > 0 there exists a function 5: ∈NP such that A ≥ Ω(=: ) for
any decomposition of 5: into linear combination

∑A
8=1 U8 (−1)&8 for

quadratic polynomials&1, · · · , &A . An open problem is whether the

same is true for functions in P; speci�cally, it is an open question

whether there exists a function in P with super-linear A . As an im-

mediate corollary of our result, we resolve this question by proving

a (nearly) quadratic lower bound on the “approximate” rank A for

the function de�ned in the following corollary (We remark that

while the work of Williams [53] concerns exact decompositions,

Chen and Williams [14] managed to extend some of the results in

[53] to hold for the approximate decompositions as well).

Theorem1.4. Let" : {0, 1}= → {0, 1} be such that" (G1, . . . , G=) =
1 i� G1 + . . .+G= = 0 mod 8. Then any “approximate” decomposition
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of" into a decomposition (A (G) like Eq. (2) such that 1
2=

∑
G |" (G) −

(A (G) |2 ≤ X requires A = Ω̃(=2).

Proof. Our proof is inspired by an observation made in [40]

which implied a “linear” lower bound on the “exact” decomposition

of" into quadratic phases. We use our main result (Theorem 1.1)

to prove a (nearly) “quadratic” lower bound on the number of terms

in any “approximate” decompositions of the Boolean function "

into quadratic phases.

De�ne ) (G1, . . . , G=) = 2=/2⟨G1 . . . G= |) ⟩ = 482c ( |G | )/8, where
|G | is the Hamming weight of G . Let Q ⊆ Stab= be the set of all

stabilizer states of the form 1√
2=

∑
G (−1)& (G ) |G⟩ for a quadratic

polynomial & : F=2 → F2. With slight modi�cation, the (nearly)

quadratic lower bound in Theorem 1.2 also applies when we de�ne

the notion of rank with respect to the set Q instead of Stab= . As a

result, for any string G ∈ F=2 and for any decomposition satisfying
1
2=

∑
G |) (G) − ∑A=

9=1 (−1)
& (G ) |2 ≤ X , we have A= = Ω̃(=2), where

X is a constant �xed in advance. ) depends only on |G | mod 8

and therefore can be written as ) (G) =
∑7

9=0 4
2c8

9
8"9 (G) such

that "9 (G) = 1 i� |G | = 9 mod 8. Therefore, using the triangle

inequality, there exists 9 ∈ {0, 1, . . . , 7} such that any decomposition

(A with A terms that satis�es 1
2=

∑
G |"9 (G) −(A (G) |2 ≤ X/7 implies

A = Ω̃(=2). If 9 = 0, we are done. If 9 ≠ 0 we use the following

reduction:

"0 (1, . . . , 1︸  ︷︷  ︸
9

, G1, . . . , G=) = "9 (G1, . . . , G=).

Suppose there exists a decomposition with A terms (A such that
1

2=+9
∑

~,G |"0 (~1, . . . , ~ 9 , G1, . . . , G=) − ( (~1, . . . , ~ 9 , G1, . . . , G=) |2 ≤
_ therefore ( ′A (G1, . . . , G=) = ( (~1 = 1, . . . , ~ 9 = 1, G1, . . . , G=) which
has ≤ A terms satis�es 1

2=
∑
G |"9 (G) − ( ′A (G) |2 ≤ 29_. By choosing

_ = X/(7 · 29 ) we conclude the proof. □

Remark 1.5. This result can be viewed as a lower bound for a clas-

sical problem from an upper bound for a quantum synthesis problem,

i.e., minimizing the number of ) gates.

1.3 Conditional Lower Bounds on the Exact

Rank

Proving an unconditional exponential lower bound on the approxi-

mate stabilizer rank seems to be a di�cult task. Can we prove this

statement assuming plausible conjectures? [9] observed that for

suitably small X (and X = 0 in particular) a polynomial upper-bound

on jX ( |) ⟩⊗<) would imply collapse of complexity classes such as

P = NP or BQP = BPP. In this section, we show that a polynomial

upper bound for X = 0 has the following stronger implication.

Theorem 1.6. The exact rank of the magic state |) ⟩⊗< is super-

polynomial unless the permanent has polynomial circuits.

Proof sketch. Here we provide a sketch of the proof. For fur-

ther details, visit [35]. We show that if j ( |) ⟩⊗<) = poly(<), there
exists a polynomial-time algorithm with polynomial advice (and

therefore a polynomial-size circuit) for the problem of computing

the gap of a polynomial-size classical circuit and hence a polynomial-

size circuit for the permanent. In particular, given a polynomial-

size function 5 : {0, 1}= → {0, 1}, we print a polynomial-size

quantum circuit with < = poly(=) many ) gates *5 such that

U ⟨0=+1 |*5 |0=+1⟩ = 60? (5 ), where U only depends on = (
√
22= in

particular). Using [9, Eq. (16)], we obtain we can replace ) gates

with ) states and Cli�ord operations. In particular, there exists a

polynomial-size Cli�ord circuit �5 such that

60? (5 ) = V ⟨0=+<+1 |�5 |0=+1⟩ ⊗ |) ⟩⊗< (3)

where V =

√
22=2</2. Consider a minimal decomposition of |) ⟩⊗< :

|) ⟩⊗< =

A∑

8=1

28 |B8 ⟩ (4)

for A = j ( |) ⟩⊗<) and stabilizer states |B1⟩ , · · · , |BA ⟩. We show that

if A is at most polynomially large in< (and hence in =), then we can

use polynomial in = number bits of advice to represent 21, . . . , 2A . It

is not immediately clear that polynomial bits of advice that keep

a 2−<
$ (1)

precision for 28s is su�cient; we prove this in [35]. We

then use polynomial bits of advice storing the variables in equation

4 to expand the expression in 3 and compute each term exactly

using the Gottesman Knill theorem.

□

1.4 Related Works

As we mentioned before, there have been several results achieving

lower bounds on the stabilizer rank prior to this work. Here, we

brie�y review some of these results. The �rst work in this line

of research was [11] where the authors proved a lower bound

of Ω(
√
=) on the exact stabilizer rank of magic state with proof

techniques similar to ours. More precisely, they constructed an

arbitrary =-qubit quantum state with exact stabilizer rank Ω(=),
which can be prepared by $ (=2) ) gates and Cli�ord gates. Then,

they used the quantum teleportation idea to show that the exact

stabilizer rank of $ (=2) magic states is at least Ω(=). The authors
of [9] established an exponential lower bound in a restricted setting

in which we only consider stabilizer states that are tensor products

of |0⟩ and |+⟩ states. They used ultra-metric matrices machinery to

characterize the Gram matrix of such stabilizer states.

In [40] the authors proved a linear lower bound on the exact

stabilizer rank by carefully investigating coe�cients in the com-

putational basis of any linear combination of > (=) stabilizer states.
In particular, they showed that there are two vectors in computa-

tion basis |G⟩ and |G ′⟩ such that the number of ones in G and G ′ is
di�erent, but their corresponding coe�cients are the same, so it

cannot be associated with appropriate magic states. As a part of

the same study, they also proved a lower bound of Ω̃(
√
=) on the

approximate stabilizer rank of magic states using tools from the

polynomial method and an analysis of Boolean functions.

Labib in [30] proved a linear lower bound on exact rank using

tools from higher-order Fourier analysis. He showed that |) ⟩⊗=
has an exponentially small correlation with a class of functions,

so-called “quadratic non-classical phases” de�ned in higher-order

Fourier analysis, and are inherently connected to stabilizer states.

Then, he showed that any function written as > (=) of such functions
cannot have such a small correlation with all quadratic non-classical

phases. Finally, among other contributions, the authors of [32]

almost re-derived the results of [40] using a modi�ed version of

a result in number theory on the subset-sum representation of a
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sequence of numbers with exponentially increasing subsequence.

However, their lower bound on exact rank was $ (=/log=) instead
of $ (=), they handled both exact and approximate using similar

approaches.

1.5 Discussions and Open Questions

(1) Strengthening the bounds: In this work, we provided a

lower bound of
Ω (=2 )

poly log=
on the approximate stabilizer rank

of |) ⟩⊗= or any state in the second Cli�ord hierarchy. We

suspect that with more careful analysis, one can remove the

poly log(<) factor from our lower bound. We may also be

able to strengthen our result to hold for the approximate rank

of all magic states; right now, the bound works only for the

|) ⟩ state (and its Cli�ord equivalents) and/or exact rank. Nev-
ertheless, obtaining a super-quadratic lower bound using our

approach would be much more challenging. Indeed, with our

proof technique, any deterministic or randomized construc-

tion of quantum states with low “non-Cli�ord complexity”

(de�ned in De�nition 2.1) but high approximate stabilizer

rank is of interest (See also Conjecture 1.3). However, at

least for two natural classes of probability distributions over

quantum states, i.e., the Haar measure and C-designs, it seems

that the non-Cli�ord complexity of a “typical” quantum state

grows at least quadratically with approximate stabilizer rank.

(2) Proving an exponential lower bound: In our approach,

we realize that the instances corresponding to states with

high stabilizer rank and low circuit complexity correspond

to an exponentially small fraction of quantum states. As a

result, we believe that one needs to probe the structure of

the stabilizer states more closely in order to make progress

on this result. Building on the work of Labib [30], we suggest

the following su�cient condition to improve the bound on

stabilizer rank to exponential.

Conjecture 1.7. Let |k ⟩ be a quantum state with stabilizer

rank A , such that � ( |k ⟩) := maxB∈Stab= |⟨B |k ⟩|2 < 1/4Ω (=) ,
then there exists a stabilizer state |B⟩ such that |⟨B |) ⟩⊗= |2 ≥

1
poly(A ) .

For instance, we know that � ( |) ⟩=) = cos(c/8)2= [9]; how-

ever, the best bound we can prove for the largest overlap

is 1/4A , which fails at giving a super-linear lower bound.

Our intuition is that to improve this bound, we need to �nd

sharp bounds on the geometry of stabilizer states, e.g., given

a stabilizer state, �nd how many stabilizer states there are

that have at least 1 − n �delity with that stabilizer state.

Another venue for going beyond quadratic lower bounds

is by lower bounding the stabilizer rank of |k ⟩ ⊗ |q⟩ when
|k ⟩ and |q⟩ are =/2 qubit states sampled from the Haar mea-

sure. In particular, if we can show that jX ( |k ⟩ ⊗ |q⟩) >

(jX ( |k ⟩)jX ( |q⟩))1/2+2 for some constant 2 > 0 and X =

1/2poly(=) , then we can improve the quadratic lower bound

on the stabilizer rank to possibly even exponential. The in-

tuition is that in order to prepare |k ⟩ ⊗ |q⟩ we quadratically
have fewer number of |) ⟩ states than a = qubit state sam-

pled from the Haar measure. We note that we can show

jX ( |k ⟩ ⊗ |q⟩) ≈ jX ( |k ⟩)jX ( |q⟩) for X = 1/22Ω (=)
which is

not su�cient for our purpose.

(3) Strong lower bounds on exact rank from weak lower

bounds on approximate ranks: Another interesting ques-

tion is whether our lower bound on approximate stabilizer

rank has any implications for exact stabilizer rank. LemmaA.5

shows that in general, we cannot get a super-quadratic lower

bound on exact stabilizer rank from only knowing that the

approximate stabilizer rank is Ω(<2/poly log(<)). However,
we might be able to use some additional structures of magic

states to improve the lower bound.

(4) Complexity theoretic connections: A natural open ques-

tion is whether either of the ideas used in this paper can be

utilized to prove the quadratic uncertainty principle for the

AND function; see Section 1.2. Our main theorem implies a

lower bound on the decomposition of the Boolean function

" (G) = 1 i� |G | = 0 mod 8. Rather surprisingly, this result

can be viewed as a lower bound on a classical problem from

an upper bound on a quantum state synthesis problem. Un-

derstanding the full capabilities of this approach for classical

problems is an interesting future direction.

Can we strengthen Theorem 1.6? Sampling one bit from the

output distribution of stabilizer circuits is complete for the

complexity class ⊕L [3], which is the class of problems that

are solvable on a non-deterministic logspace machine which

the even parity of a non-deterministic path is an indication

of acceptance. Hence, we suspect that the full power of P is

not necessary to prove Theorem 4.3 and we might be able

to replace P with a weaker class such as ⊕L. However, to
show this, we need to show that strong simulation of sta-

bilizer circuits is also possible in ⊕L. More realistically, we

suspect a strong simulation of Cli�ord circuits is possible

in gapL = DET, the same way a strong simulation of BQP

is possible in gapP. How about approximate rank? A poly-

nomial upper bound of on the X approximate rank of the

magic states implies sampling within total variation distance

$ (X) from quantum circuits in polynomial time. Assuming

conjectures about hardness of approximate counting for spe-

ci�c functions implies a super-polynomial lower bound on

the approximate rank assuming the collapse of polynomial

hierarchy [1, 7, 12]. Can we improve this result by basing

the lower bound merely on the non-collapse of the poly-

nomial hierarchy? We remark that unlike results such as

[1, 2, 7, 12], we can allow any structured circuit (which, e.g.,

would permit error correction).

2 PRELIMINARIES

Let F2 be the �nite �eld of order two. F=2 is a vector space over

F2. An a�ne subspace of F=2 is a linear subspace shifted by an

arbitrary vector. A quadratic function over F=2 is of the form G ↦→
G)�G + 0) G where ) is an = × = matrix and 0 ∈ F=2 . The Hilbert
space corresponding to an =-qubit system is (C2)⊗= . We identify

the computational basis for this Hilbert space by elements of G ∈ F=2 .
Let �2 be the identity function on C2. LetH be a �nite-dimensional

Hilbert space in the following de�nitions. Let * (H) denote all

unitaries acting on H . Let Proj(H , ") denote all the orthogonal
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projections acting on H and rank at most" . For a linear operator

� : H → H , ∥�∥ denotes the operator norm of � de�ned as

∥�∥ := sup
|q ⟩∈H\{0}

∥� |q⟩∥
∥ |q⟩∥ . (5)

Is the largest singular value of � and is the same as the in�nite

Schatten norm. Here, by ∥ |E⟩ ∥ we mean the 2-norm of the vector

|E⟩. We also denote the trace-norm of� by ∥�∥1 = tr
√
��†. A quan-

tum channel is a linear super-operator that is trace-preserving and

completely positive. The diamond distance between two quantum

channels Φ and Ψ for a Hilbert space H is de�ned as

sup
3≥0

sup
- ∈H⊗C3

∥(Φ ⊗ id3 (- ) − Ψ ⊗ id3 (- ))∥1
∥- ∥1

, (6)

where id3 is the identity channel on C3 .

2.1 Quantum Circuits

A quantum circuit on = qubits is a unitary operation over (C2)⊗= .
In most cases, we represent a quantum circuit as a product of<

unitaries +1, · · · ,+< where each +8 is a unitary acting on a subset

of qubits (typically of size one, two, or three). The unitaries acting

on a smaller number of qubits are called quantum gates, and the

set of all allowed gates is called a gate set. A gate set is universal if

one can approximate any unitary on = qubits within an arbitrary

error using a sequence of gates from the gate set. We know that

the gate set {�,�#$), (,) } is universal where

� =
1
√
2

[
1 1

1 −1

]
, ( =

[
1 0

0 8

]
,

�#$) =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



, ) =

[
1 0

0 48c/4

]
.

(7)

Finally, we de�ne a notion of “non-Cli�ord complexity,” quan-

tifying how many non-Cli�ord resources we need to prepare a

quantum state.

De�nition 2.1. Let |q⟩ be an = qubit state. gn ( |q⟩) is the smallest :

such that there exists a quantum circuit + , acting on = + _ qubits for

_ > 0, consisting of arbitrary number of Cli�ord gates and : number

of ) gates such that ∥ |q⟩
���0_

〉
−+ ( |0=⟩

���0_
〉
)∥ ≤ n .

2.2 Stabilizer Formalism

We brie�y review stabilizer formalism here (see [38] for details).

Let P= be the Pauli group acting on = qubits. The Cli�ord group

on = qubits, denoted by C= , is the normalizer of P= in the unitary

group modulo a phase. We denote by Stab= the set of all stabilizer

states, which can be written of the form [49]

1√
|�|

∑

G∈�
8ℓ (G ) (−1)& (G ) |G⟩ , (8)

where � ⊂ F=2 is an a�ne subspace of F=2 (� = {!~ + E : ~ ∈ F<2 },
where ! ∈ F=×<2 , + ∈ F=2 ), ℓ : F=2 → F2 is a linear function, and

& : F=2 → F2 is a quadratic function. Here are some known facts

about stabilizer states.

Lemma 2.2. The following are true

(1) For any Cli�ord unitrary � ∈ C= and any stabilizer state

|B⟩ ∈ Stab= , we have � |B⟩ ∈ Stab= .

(2) Let |B⟩ be an =-qubit stabilizer state and 1 ∈ F2. Then, �⊗=−12 ⊗
⟨1 | |B⟩ is either zero or proportional to a state in Stab=−1.

(3) |Stab= | ≤ 40.54=
2
for = ≥ 6 [31].

We next de�ne the (approximate) stabilizer rank of a quan-

tum state. Let |q⟩ be an =-qubit state. We denote by j ( |q⟩) the
stabilizer rank of |q⟩ de�ned as the minimum " > 0 such that

there exists 21, · · · , 2" ∈ C and |B1⟩ , · · · , |B" ⟩ ∈ Stab= such that

|q⟩ = ∑"
8=1 28 |B8 ⟩. We also de�ne jX ( |q⟩) as

min
|k ⟩:∥ |q ⟩− |k ⟩ ∥≤X

j ( |k ⟩), (9)

where |k ⟩ does not need to be normalized. We remark that the

stabilizer rank is operationally relevant to the cost of classical sim-

ulation. We may choose other measures of closeness to the set of

stabilizer states which we will review in Appendix A.

2.3 Haar Measure and C-Designs

Let H be a �nite-dimensional Hilbert space. The Haar measure

overH is the unique probability distribution on the unit vectors in

H invariant under the action of any unitary in* (H). We shall use

the following concentration of measure result for the Haar measure

over �nite-dimensional Hilbert spaces known as Lévy’s theorem

[51, Theorem 7.37].

Theorem 2.3 (Lévy’s concentration). Let H be a 3-dimensional

Hilbert space and |q⟩ be distributed according to the Haar measure

in H . For any ^-Lipschitz function 5 from the unit sphere in H to R

and n > 0, we have

Pr [5 ( |q⟩) − E [5 ( |q⟩)] ≥ n] ≤ 24
− n23

25c^2 (10)

A function is ^-Lipschitz if |5 ( |q⟩) − 5 ( |k ⟩) | ≤ ^∥ |k ⟩ − |q⟩ ∥.
We use the following property of Haar measure, whose proof is

similar to that of [51, Lemma 7.2].

Lemma 2.4. Let H be a 3-dimensional Hilbert space and % be a

projection on H of rank " . Let |q⟩ be distributed according to the

Haar measure in H . Then,

tr(%⊗CE
[
( |q⟩ ⟨q |)⊗C

]
) =

("+C−1
C

)
(3+C−1

C

) =
(" + C − 1) · · · (" + 1)"
(3 + C − 1) · · · (3 + 1)3 .

(11)

The Haar measure over* (H) is the unique probability distribu-

tion invariant under left or right multiplication by any unitary in

* (H). While preparing a unitary according to the Haar measure

requires an exponential amount of resources [28], unitary C-designs,

which we formally de�ne here, mimic the Haar measure up to the

C-th moment and can be e�ciently prepared for C small enough.

De�nition 2.5. Denote for a distribution a over* (H)

"a
C (d) :=

∫
* ⊗C d (* †)⊗C3a, (12)

which is a quantum channel. We call a an n-approximate C-design if

∥"a
C −"Haar

C ∥⋄ ≤ n.

There are several constructions of approximate C-designs [8,

22–24, 36]. We state here two constructions: one that has a close

connection to stabilizer formalism and one using random circuits.
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Theorem 2.6 ([23]). There exists constant �1 and �2 such that for

all n , =, and C with = ≥ �2C
2 the following holds. There exists an

n-approximate C-design a such that any unitary in the support of

a consists of Cli�ord gates and at most �1 log
2 (C) (C4 + C log(1/n))

number of ) gates.

Theorem 2.7 ([22]). For = ≥ 2 log(4C) + 1.5
√
log(4C), there exists

an n-approximate C-design for = qubits such that each unitary in

the support of a is composed of �= ln5 (C)C
4+3 1√

log(C ) (2=C + log(1/n))
two-qubit gates for absolute constant � > 0.

We also state a conjecture on the optimal number of non-Cli�ord

gates in any C-design when C scales with =. The intuition behind

this conjecture is that by [8, Proposition 8], we need Ω̃(=C) gates to
get a C-design for =-qubits, and we expect that most of these gates

should be non-Cli�ord.

Conjecture 2.8. Let a be a distribution supported on quantum cir-

cuits with an arbitrary number of Cli�ord gates and : number of )

gates. If a is an n-approximate C-design for C = l (1), then : = Ω(C).

3 LOWER BOUNDS ON APPROXIMATE

STABILIZER RANK OF MAGIC STATES

In this section, we state and prove our main result, which is a lower

bound on the approximate stabilizer rank of |) ⟩⊗= .

Theorem 3.1. Let 1 > X > 0. We have

jX ( |) ⟩⊗<) = Ω

(
(1 − X2)2<2

poly log(<)

)
. (13)

We prove the above result using three ingredients.

(1) In Section 3.1, we show that for each = and X there exists an

arbitrary =-qubit quantum state with an approximate stabi-

lizer rank Ω(2=/=2) (Lemma 3.2). To prove this result, we

consider the approximate stabilizer rank of a random =-qubit

state distributed according to the Haar measure. For each

choice of Ω(2=/=2) number of stabilizer states, we obtain

a doubly exponential upper bound on the probability that

we can estimate the random state as a linear combination

of those stabilizer states. We then use the union bound to

obtain an upper bound on the probability that a random state

has approximate stabilizer rank Ω(2=/=2).
(2) In Section 3.2, we state a result of [33] that shows every

=-qubit state can be approximated using Cli�ord gates and

at most $ (poly(=2=/2) number of ) gates and many ancilla

qubits (Lemma 3.5).

(3) In Section 3.3, we �nally use the ideas in gadget-based imple-

mentation of) gates to show that the approximate stabilizer

rank of the output of state is upper bounded by stabilizer

rank of |) ⟩⊗< (Lemma 3.6).

Having these ingredients, we prove Theorem 3.1 in Section 3.4,

but provide the high-level argument here. Fixing<, we choose =

such that poly(=)2=/2 ≈ <, which implies that = ≈ 2 log< and

2=/2 ≈ </poly log(<). We then choose quantum state |q⟩ with
= qubits and approximate stabilizer rank Ω((1 − X2)22=/=2) =

Ω((1 − X2)2</poly log(<)) according to the �rst ingredient. Let

+ be the quantum circuit according to the second ingredient, i.e.,

+ |0=⟩ ≈ |q⟩ and + contains Cli�ord gates and< = poly(=)2=/2
number of ) gates. Then, using the last ingredient, we obtain

Ω((1 − X2)2<2/poly log(<)) = jX ( |q⟩) ≈ jX (+ (
��0=

〉
|0_⟩))

≤ jX ( |) ⟩⊗poly(=)2
=/2 ) ≈ jX ( |) ⟩⊗<) .

(14)

See Section 3.4 for details.

3.1 Existence of Quantum States with Large

Approximate Stabilizer Rank

The following lemma provides an upper bound on the likelihood

that a Haar random state of = qubits has a small approximate stabi-

lizer rank.

Lemma 3.2. Let |q⟩ be a random =-qubit state distributed according

to Haar measure with= ≥ 6. Let" be a positive integer and 0 < X < 1

be such that 1 − X2 − "
2= > 0. We have

Pr [jX ( |q⟩) ≤ "] ≤ 240.54=
2"− (1−X2−"/2= )22=

100c (15)

In particular, for = ≥ 2 log 1
1−X2 + 9, there exists an =-qubit state |q⟩

with jX ( |q⟩) ≥ �
(1−X2 )22=

=2 for an absolute constant � ≥ 1
1000 .

Remark 3.3. A random state distributed according to Haar measure

with probability zero lies inside the span of any 2= −1 stabilizer states.

Therefore, by union bound,

Pr
[
j ( |q⟩) = 2=

]
= 1. (16)

Lemma 3.2 states a robust version of this observation.

To prove the above lemma, we �rst introduce a necessary condi-

tion for the approximate stabilizer rank of an arbitrary state to be

less than" in the following lemma.

Lemma 3.4. Let |q⟩ be an =-qubit state. If jX (q) ≤ " , then

max
(⊂Stab= : |( |="

∥%( |q⟩∥2 ≥ 1 − X2

where %( denotes the orthogonal projection onto the subspace spanned

by the elements of ( .

Proof. Assume that jX (q) ≤ " . It means that there exist com-

plex numbers 21, · · · , 2" and ( = {|B1⟩ , · · · , |B" ⟩} ⊂ Stab= such

that


|q⟩ −∑"

8=1 28 |B8 ⟩


 ≤ X . We also know that

1 = ∥ |q⟩∥2 (0)
= ∥|q⟩ − %( |q⟩∥2 + ∥%( |q⟩∥2

(1 )
≤






|q⟩ −
"∑

8=1

28 |B8 ⟩







2

+ ∥%( |q⟩∥2 ≤ X2 + ∥%( |q⟩∥2

(17)

where (0) follows from Pythagoras Theorem in Hilbert Spaces, and

(1) follows since %( |q⟩ is the closest point to |q⟩ in the subspace

spanned by elements of ( . Therefore, ∥%( |q⟩∥2 ≥ 1 − X2 as desired.

□

Proof of Lemma 3.2. Before delving into the technical proof,

we sketch the main ideas. Lemma 3.4 helps us to upper bound

the probability that the approximate stabilizer rank of a random

state is less than " in terms of the norm of the projection of the
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random state into several subspaces. We use union bound and

Lévy’s theorem (Theorem 2.3) to upper bound that probability.

Note that

Pr [jX ( |q⟩) ≤ "]
(0)
≤ Pr

[
max

(⊂Stab= : |( |="
∥%( |q⟩∥2 ≥ 1 − X2

]
(18)

(1 )
≤

∑

(⊂Stab= : |( |="
Pr

[
∥%( |q⟩∥2 ≥ 1 − X2

]
(19)

≤
(
|Stab= |
"

)
sup
%∈

Proj( (C2 )⊗=,")
Pr

[
∥% |q⟩∥2 ≥ 1 − X2

]

(20)

≤ |Stab= |" sup
%∈

Proj( (C2 )⊗=,")
Pr

[
∥% |q⟩∥2 ≥ 1 − X2

]

(21)

(2 )
≤ 40.54=

2" sup
%∈

Proj( (C2 )⊗=,")
Pr

[
∥% |q⟩∥2 ≥ 1 − X2

]

(22)

where (0) follows from Lemma 3.4, (1) follows from the union

bound, and (2) follows from Lemma 2.2. We now upper bound

Pr
[
∥% |q⟩∥2 ≥ 1 − X2

]
for % ∈ Proj

(
(C2)⊗=, "

)
using Lévy’s theo-

rem (Theorem 2.3).

We takeH = (C2)⊗= and 5 ( |q⟩) = ∥% |q⟩∥2 and show that 5 is

2-Lipschitz and E [5 ( |q⟩)] ≤ "
2= . First note that for arbitrary unit

vectors |q⟩ and |k ⟩, we have

|5 ( |q⟩) − 5 ( |k ⟩) | = | ∥% |q⟩∥2 − ∥% |k ⟩∥2 | (23)

= | ∥% |q⟩∥ − ∥% |k ⟩∥ |(∥% |q⟩∥ + ∥% |k ⟩∥) (24)

≤ ∥% |q⟩ − % |k ⟩∥(∥% |q⟩∥ + ∥% |k ⟩∥) (25)

≤ ∥|q⟩ − |k ⟩∥(∥ |q⟩∥ + ∥|k ⟩∥) (26)

= 2∥|q⟩ − |k ⟩∥, (27)

which means that 5 is 2-Lipschitz. By Lemma 2.4, we also have

E [5 ( |q⟩)] = rank%
2= ≤ "

2= . Applying Lèvy’s theorem, we obtain

Pr
[
∥% |q⟩∥2 ≥ 1 − X2

]
≤ 24−

(1−X2−"/2= )22=
100c . (28)

Combining (22) and (28) yields the �rst part of Lemma 3.2.

To prove the second part, it is enough to show that for = ≥
2 log 1

1−X2 + 9 and" =
(1−X2 )22=
1000=2 , Pr [jX ( |q⟩) ≤ "] < 1.

By the �rst part of the lemma, it is enough to show that 0.54=2"−
(1−X2−"/2= )22=

100c ≤ −1.
We have by direct calculation

1 − X2 − "

2=
= 1 − X2 − (1 − X2)2

1000=2
≥ (1 − X2)

(
1 − 1

1000

)
. (29)

and therefore

0.54=2"− (1 − X2 −"/2=)22=
100c

≤ 0.54=2" − (1 − X2)2 (0.999)22=
100c

= (1 − X2)22= (.00054 − 0.9992

100c
) ≤ −0.0026(1 − X2)22=,

(30)

which is less than −1 for = ≥ 2 log 1
1−X2 + 9. □

3.2 Trading ) Gates for Cli�ord Operations

In the previous section, we showed that, except for an exponentially

small fraction, Haar random quantum states have exponentially

large approximate ranks. Our strategy is to translate this lower

into a lower bound on the approximate stabilizer rank of |) ⟩⊗= . As
an intermediate step toward this goal, we need to �nd an upper

bound on the number of) gates necessary to sample from the Haar

measure. This section �nds an upper bound on the number of )

gates to construct arbitrary quantum states. One might expect that

an arbitrary quantum state would require Ω(2=) numbers of) gates

to prepare. It turns out that by allowing ancilla qubits, arbitrary

quantum states may be prepared using $̃ (2=/2) number of ) gates

and $̃ (2=/2) ancillae.

Lemma 3.5 (Trading) gates with Cli�ord operations [33]). Let |q⟩
be an arbitrary =-qubit quantum state then g4−= ( |q⟩) = 2=/2$ (=)
where gn is de�ned in De�nition 2.1.

This lemma makes a nontrivial use of anciallae to provide a

quadratic saving on the number of ) gates. This nontrivial result

enables us to cross the linear lower-bound barrier on the stabilizer

rank and obtain a quadratic lower bound.

3.3 Approximate Stabilizer Rank and Quantum

Circuits

Lemma 3.6. Let + be a quantum circuit consisting of Cli�ord gates

and : ) gates. Then, jX (+ |0⟩) ≤ jX ( |) ⟩⊗: ).

The proof is based on the idea of teleportation of each ) gate

using a magic |) ⟩ state. We need the following two technical results

for the measurement required in the teleportation of ) gate. We

�rst show that under certain conditions, the measurement output

has a uniform distribution. This result is implicitly assumed in the

literature, but we provide proof for completeness.

Lemma 3.7. Let |k ⟩ be an =-qubit quantum state. Apply controlled-

not gate on the last qubit of |k ⟩ ⊗ |) ⟩ controlled on one of the qubits

in |k ⟩ and then measure the last qubit in the computational basis.

Then, the output of the measurement has a uniform distribution.

Proof. Write |k ⟩ =
∑
G∈F=2 UG |G⟩. Without loss of generality,

we assume that the CNOT is controlled on the �rst qubit. The state

after applying CNOT is
∑
G∈F=2 UG |G⟩ ⊗ |G1 ⟩+48c/4 |1−G1 ⟩√

2
. Hence, the

probability that we obtain zero after measuring the last qubit is








(�⊗=2 ⊗ ⟨0|)

∑

G∈F=2

UG |G⟩ ⊗ |G1⟩ + 48c/4 |1 − G1⟩√
2









2

=
1

2









∑

G∈F=2

4G18c/4UG |G⟩









2

=
1

2
∥k ∥2 = 1

2
,

(31)

as desired. □

The next lemma states that performing a “balance” measurement

on one of the qubits does not increase the approximate stabilizer

rank for at least one outcome.
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|) ⟩

(

Figure 1: Gadget for implementing ) gate

Lemma 3.8. Consider measuring the last qubit in an =-qubit state

|q⟩ in the computational basis. Let ?1 be the probability that the

measurement output is 1 and
���q̃1

〉
be the post-measurement state

when the output is 1. If ?0 = ?1, then min1=0,1 jX (
���q̃1

〉
) ≤ jX ( |q⟩).

Proof. Let jX ( |q⟩) = " and consider 21, · · · , 2" ∈ C and

|B1⟩ , · · · , |B" ⟩ ∈ Stab= such that


|q⟩ −∑"

8=1 28 |B8 ⟩


 ≤ X . We also

de�ne |k ⟩ = ∑"
8=1 28 |B8 ⟩ and decompose |q⟩ = |k0⟩ ⊗ |0⟩ + |q1⟩ ⊗ |1⟩

and |k ⟩ = |k0⟩ ⊗ |0⟩+ |k1⟩ ⊗ |1⟩. Since |0⟩ and |1⟩ are orthogonal, we
have ∥ |q0⟩ − |k0⟩∥2 + ∥|q1⟩ − |k1⟩∥2 ≤ X2. Hence, min1=0,1∥ |q1⟩ −
|k1⟩∥ ≤ X√

2
. Without loss of generality, assume that the minimum

is achieved for 1 = 0. Since the post-measurement state on the �rst

= − 1 qubits is
√
2 |q0⟩ and ∥

���q̃0
〉
−
√
2 |k0⟩∥ ≤ X . Finally, we note

that
√
2 |k0⟩ = (�⊗=−12 ⊗ ⟨0|) |k ⟩ = ∑"

8=1 28 (�
⊗=−1
2 ⊗ ⟨0|) |B8 ⟩ , which

is a linear combination of at most" stabilizer states. This proves

that jX (
���q̃0

〉
) ≤ " as desired. □

Proof of Lemma 3.6. We replace each) gate in the circuit with

the gadget introduced in [19] as in Fig. 1. We index = + : − 8 + 1

the second qubit in the gadget corresponding to the 8Cℎ ) gate in

+ and denote by G8 ∈ {0, 1} the output of the measurement in that

gadget. We note that G = (G1, · · · , G: ) has uniform distribution over

{0, 1}: by Lemma 3.7. We can formally express the equivalence of

gadget-based implementation of as

+
��0=

〉
= 2:/2�G:

:
(�⊗=2 ⊗ ⟨G: |)�G:−1

:−1 (�
⊗=+1
2 ⊗ ⟨G:−1 |)

· · ·�G1
1 (�⊗=+:−12 ⊗ ⟨G1 |)�0

��0=
〉
⊗ |) ⟩⊗: .

(32)

where �1
8 is a Cli�ord circuit acting on = + : − 8 �rst qubits for

all 1 ∈ {0, 1} and 8 ∈ [=]. In the beginning, jX ( |0=⟩ ⊗ |) ⟩⊗: ) =

jX ( |) ⟩⊗: ). By Lemma 3.8, at each measurement, the approximate

stabilizer rank does not increase for one output. As approximate

stabilizer rank is invariant under Cli�ord operations, we conclude

that for one particular choice of G1, · · · , G=
jX ( |) ⟩⊗: ) ≥ jX (2:/2�G:

:
(�⊗=2 ⊗ ⟨G: |)�G:−1

:−1 (�
⊗=+1
2 ⊗ ⟨G:−1 |) · · ·

· · ·�G1
1 (�⊗=+:−1 ⊗ ⟨G1 |)�0

��0=
〉
⊗ |) ⟩⊗: )

= jX (+
��0=

〉
).

(33)

□

3.4 Concluding the Proof of Theorem 3.1

Let 2= for constant 2 > 0 be the linear term in the statement of

Lemma 3.5 and � be the constant in the statement of Lemma 3.2.

Given a positive integer <, we choose the largest = such that

2=2=/2 ≤ <. By Lemma 3.2, there exists =-qubit state |q⟩ with
jX+4−= ( |q⟩) ≥ �

(1−(X+4−= )2 )22=
=2 when = ≥ 2 log 1

1−(X+4−= )2 + 9 =

$ (1). According to Lemma 3.5 and our assumption that 2=2=/2 ≤ <,

there exists a quantum circuit consisting of Cli�ord gates and at

most< number of) gates such that ∥|q⟩ |0_⟩−+ ( |0=⟩ |0_⟩)∥ ≤ 4−=

for some _ > 0. Using Lemma 3.6, we have

jX ( |) ⟩⊗<) ≥ jX (+ |0=+_⟩) ≥ jX+4−= ( |q⟩) ≥ �
(1 − (X + 4−=)2)22=

=2
.

(34)

Since = was largest integer such that 2=2=/2 ≤ <, we have < <√
22 (=+1)2=/2. Furthermore, we have 2=/2 ≤ 2=2=/2 ≤ < and there-

fore = ≤ 2 log(<). Combining these two inequalities, we obtain

that 2= >
<√

22 (2 log<+1) . Hence, substituting = and 2= , we get

�
(1 − (X + 4−=)2)22=

=2
> �

(1 − (X + 424 (1+2 log<)
<2 )2)2

822 (1 + 2 log<)2 log2<
<2 (35)

= Ω

(
(1 − X2)2<2

log4<

)
. (36)

Remark 3.9. We proved the result for a �xed X . However, we high-

light the proof works for a sequence {X<}<≥1 where X< → 1 slowing

enough (e.g., X< = 1−$ ( log<< ) is enough). More precisely, as long as

our constraint = ≥ 2 log 1
1−(X<+4−= )2 + 9 is consistent with our other

constraint that 2=2=/2 ≤ <, our argument goes through.

We conclude this section by stating a corollary of our proof

techniques on the existence of quantum states with low circuit

complexity but high approximate stabilizer rank.

Corollary 3.10. Let X , =, and " be �xed such that " = $ ((1 −
X2)22==−2). Then, there exists a quantum circuit + consisting of

"poly log(") gates such that jX (+ |0=⟩) ≥ " .

Proof. Let � be the constant in Lemma 3.2. We choose : the

smallest integer such that � (1 − X2)2 2:
:2 ≥ " . By Lemma 3.2, there

exists : qubit state |k ⟩ such that jX ( |k ⟩) ≥ " . By [28, Theo-

rem 3.3], there exists a quantum circuit + consisting of $ (:2: ) =
"poly log(") two-qubit gates such that +

���0:
〉
= |k ⟩. Then, + ⊗

�⊗=−:2 has the desired properties. □

4 APPROXIMATE STABILIZER RANK OF

C-DESIGNS

This section discusses what happens if we replace the Haar measure

in Lemma 3.2 with a C-design. Initially, we discuss whether we can

expect a bound on the approximate stabilizer rank for C-designs.

The following proposition shatters any such hope for C = $ (1). We

omit the proofs; for detailed proofs, please refer to [35].

Proposition 4.1. There exist absolute constants �1 > 0 and �2 > 0

such that for all C , = ≥ �2C
2, and 1 > n > 0, there exists an n-

approximate unitray C-design for =-qubits where the following holds.

Then, jX (* |0=⟩) ≤ 2�1 log
2 (C ) (C4+C log( 1

n
) ) with probability one, if*

is sampled according to the C-design.
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This proposition together with Lemma 3.2 imply that when

C = $ (1), the approximate stabilizer rank of a C-design can range

from$ (1) to Ω(=−22=). However, we provide a lower bound on the

approximate rank when C grows with = using a similar approach as

in the proof of Lemma 3.2.

Lemma4.2. If* is distributed according to an=-qubit n-approximate

C-design, then Pr [jX (* |0=⟩) ≤ "] ≤ 40.54=
2"

(
"+C−1
2=+C−1

)C
+n

(1−X2 )C .

Next, we provide an upper bound on how many gates we need

to get a state with approximate stabilizer rank poly(=). Perhaps
surprisingly, the bound we obtain using C-designs is weaker than

what we obtain from the Haar measure in Corollary 3.10.

Proposition 4.3. Let 3 ≥ 1 and 1 > X > 0. There exists a quantum

circuit + with $ (log5 (=)=
3+53+ 3

√
(3+1)√
log= ) gates and jX (+ |0=⟩) ≥ =3 .

We �nally comment on the possibility of using C-design to im-

prove the lower bound on the approximate stabilizer of |) ⟩⊗< .

Using Lemma 4.2, we should take C = Ω("=) for a state with ap-

proximate stabilizer state " . Assuming that Conjecture 2.8 is true,

we need at least Ω("=) ) -gates to construct such C-design. There-

fore, using our approach, one cannot expect to get a lower bound

better than linear on jX ( |) ⟩⊗<).
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A STABILIZERNESS MEASURES

Approximate and exact stabilizer ranks measure the closeness of

a quantum state to the set of all stabilizer states. Other measures

of stabilizerness have been studied in the literature that might be

mathematically more tractable but are not operationally as relevant

as stabilizer ranks. In this section, we review some of thesemeasures

and also suggest a novel one based on the Gowers norm [20] (See

De�nitionA.1). Gowers norms are extensively studied in the context

of higher-order Fourier analysis and have found several applications

in di�erent areas of mathematics and theoretical computer science

[25, 47]. In particular, for a polynomial % : F=2 → F2 of degree 3 ,
the Gowers norm of degree 3 of (−1)% is 1. Since stabilizer states

are de�ned in terms of quadratic phases, the useful properties of

Gowers norm could be exploited to study stabilizerness of arbitrary

quantum states (See Remark A.2). Since some of these measures

are easier to deal with, it is interesting to ask if a bound on one

measure implies any bound on other measures. As an example,

we prove a relation between stabilizer �delity and stabilizer rank

(Proposition A.3), which immediately implies a linear lower-bound

on j ( |) ⟩⊗=) using the results of [9] (Corollary A.4). We summarize

other relations in Table 1 that exist in literature.

De�nitionA.1 (Stabilizernessmeasures). Consider the=-qubit state

|q⟩ = 1
2=/2

∑
G∈F=2 5 (G) |G⟩. We consider the following quantities.

(1) Stabilizer �delity: � ( |q⟩) = max |B ⟩∈Stab= |⟨B |q⟩|2
(2) Stabilizer extent:

b (q) = inf{∥2 ∥21 :2 ∈ C" :

∃ |B1⟩ , · · · , |B" ⟩ ∈ Stab= : |q⟩ =
"∑

8=1

28 |B8 ⟩}.
(37)

(3) Stabilizer rank j ( |q⟩) and approximate stabilizer rank jX ( |q⟩)
as de�ned in Section 2.2.

(4) Gowers norm:

∥ |q⟩∥8
* 3 =

1

16=

∑

G,ℎ1,ℎ2,ℎ3∈F=2

5 (G) 5 (G + ℎ1) 5 (G + ℎ2) 5 (G + ℎ3)

× 5 (G +ℎ1 +ℎ2) 5 (G +ℎ1 +ℎ3) 5 (G +ℎ2 +ℎ3) 5 (G + ℎ1 + ℎ2 + ℎ3).
(38)

Remark A.2. We believe that Gowers norm ∥|q⟩∥* 3 is a relevant

measure of stabilizerness because of its relation with the overlap

of a function with quadratic phase functions [25, Theorem 5.3]. In

particular, let ∥ |q⟩∥* 3 = X . Then, the direct part of [25, Theorem 5.3]

implies that for any stabilizer state |B⟩ such that ⟨B |G⟩ ≠ 0 for all

G ∈ F=2 , we have |⟨B |q⟩| ≤ X . Furthermore, the converse part of [25,

Theorem 5.3] implies that there exists a stabilizer state |B⟩ such that

|⟨B |q⟩| ≥ 2−2 log
4 1
X for a universal constant 2 > 0. While the direct

and converse theorems do not match, ∥ |q⟩∥* 3 has a closed expression

unlike � ( |q⟩).

In the following proposition, we, establish a relation between

� ( |q⟩) and j ( |q⟩). We closely follow the proof approach of [30],

but we manage to avoid any tools from the higher-order Fourier

analysis.

Proposition A.3. For any =-qubit state |q⟩ = 1√
2=

∑
G∈F=2 5 (G) |G⟩,

we have j ( |q⟩) ≥ 2
3 log

(
U2

V
√
� ( |q ⟩)

)
where U := minG∈F=2 |5 (G) | and

V := maxG∈F=2 |5 (G) |.

Before starting the proof, we brie�y review the setup for (classi-

cal) Fourier analysis here. Let� be any �nite Abelian group. A char-

acter for � is a function W : � → C such that W (6 + ℎ) = W (6)W (ℎ).
We denote the set of all characters by �̂ , which is �nite and of

the same cardinality as � . For any function 5 : � → C, there

exists a unique function 5̂ : �̂ → C such that 5 =
∑
W ∈�̂ 5̂ (W)W .

Using Parseval equality and Cauchy-Schwartz inequality, we have∑
W ∈�̂ | 5̂ (W) | ≤

√
|� |max6∈� |5 (6) |.

Let �1 and �2 be two �nite Abelian groups. We have ��1 ×�2 =

{W1W2 : W1 ∈ �̂1, W2 ∈ �̂2}. Finally, consider the group � = {±1,±8}
under multiplication. Then, �̂ � Z4 and the characters are G ↦→ G8

for 8 ∈ Z4.

Proof of Proposition A.3. Wede�ne the set of functions F=2 →
C of the form G ↦→ 8ℓ (G ) (−1)& (G ) for ℓ linear and & quadratic as

Q, which is closed under function multiplication. Let jX ( |q⟩) = " ,

i.e., there exist 21, · · · , 2" ∈ C, �1, · · · , �" ⊂ F=2 a�ne subspaces,

&1, · · · , &" ∈ Q such that 5 =
∑"
8=1 28&81�8

. We recursively con-

struct an a�ne subspace* ⊂ F=2 with dimension at least =−" such

that 1�8
is constant on * for all 8 . (This is a minor improvement to
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Table 1: Known relations among measures of stabilizerness.

b ( |q⟩) j ( |q⟩) jX (q) ∥ |q⟩∥*3

� ( |q⟩) Z ( |q⟩) = sup |l ⟩
| ⟨q |l ⟩ |2
� ( |l ⟩)

[9, Theorem 4]

Proposition A.3

See also [30]
Open question

Remark A.2

[45]

b ( |q⟩) Open question [9, Theorem 1] Open question

j ( |q⟩) Open question
Lemma A.5

[32, Lemma 3.5]
Open question

Claim 3.3 in [40].). Start with*0 = F
=
2 . For each 8 ∈ ["] let*8−1 be

given such that 1�1
, · · · , 1�8−1 are constant on *8−1. If *8−1 ⊂ �8 ,

then take*8 = *8−1 and 1�8
is one on*8 . Otherwise, there is a sub-

space*8 of*8−1 with codimension one such that *8−1 ∩�8 =, i.e.,

1�8
is zero on*8 (and since*8 ⊂ *8−1, 1�1

, · · · , 1�8−1 are constant

on *8 too). We take * = *" , which has a dimension at least = −"

because the dimension of *0 is =, and in each step, the dimension

is decreased at most by one.

Upon de�ning ( := {8 ∈ ["] : 1�8
|* = 1}, we have 5 |* =∑

8∈( 28&8 |* . De�ne� = {±1,±8}, which is a group under multipli-

cation. We also de�ne

ℎ : * → �( G ↦→ (&8 (G))8∈( (39)

Γ : �( → C ~ ↦→
{∑

8∈( 28~8 ~ ∈ Im(ℎ)
0 Otherwise

(40)

for which 5 (G) = Γ(ℎ(G)) ∀G ∈ * . Using our discussion before the

proof about Fourier analysis of �( , we can write Γ =
∑
W ∈Z(4

Γ̂(W)W
and 5 (G) = ∑

W ∈Z(4
Γ̂(W)&W (G), ∀G ∈ * where&W :=

∏
8∈( &

W8
8 ∈ Q.

Therefore,

1

|* |
∑

G∈*
|5 (G) |2 =

∑

8∈(
Γ̂(W) 1

|* |
∑

G∈*
&W (G) 5 (G) . (41)

We consider the stabilizer state
��BW

〉
:= 1√

|* |
∑
G∈* &W (G) |G⟩. It

holds that
〈
q
��BW

〉
=

1√
|* |2=

∑

G∈*
&W (G) 5 (G) . (42)

Combining (41) and (42), we obtain

1

|* |
∑

G

|5 (G) |2 =
∑

8∈(
Γ̂(W)

√
2=

|* |
〈
q
��BW

〉
,

which we can upper bound by

(
∑

W

|Γ̂(W) |)

√
2=� ( |q⟩)

|* | ≤ 2 |( | max
~∈�(

|Γ(~) |

√
2=� ( |q⟩)

|* |

≤ 2 |( |V

√
2=� ( |q⟩)

|* | ≤ 2"V

√
� ( |q⟩)
2"

.

(43)

Combining the above inequality with 1
|* |

∑
G |5 (G) |2 ≥ U2 com-

pletes the proof. □

Proposition A.3 immediately implies a linear lower bound on

exact stabilizer rank of |) ⟩⊗< using � ( |) ⟩⊗<) = cos( c8 )2< [9].

Corollary A.4. We have j ( |) ⟩⊗<) ≥ 2
3 log

(
1

cos( c8 )

)
< > 0.076<.

The next lemma shows that we cannot, in general, control the

gap between approximate and exact rank.

Lemma A.5. Let 1 > X > 0, =, and " be given such that 1 ≤
" ≤ 2= . Then, there are two =-qubit quantum states |q1⟩ and |q2⟩
such that j ( |q1⟩) = j ( |q2⟩) = Θ("), jX ( |q1⟩) = Ω

(
"

log2 "

)
and

jX ( |q2⟩) = $ (1).

Proof. Let : be the smallest integer such that 2: ≥ " . By

Lemma 3.2, there exists a : qubit state |k1⟩ such that jX ( |k1⟩) =
Ω( 2:

:2 ) . Furthermore, by a probabilistic argument, we can further

assume that jX ( |k1⟩) = 2: . Taking |q1⟩ = |k1⟩⊗ |0⟩⊗=−: has the de-

sired property. Next, using the same argument and [32, Lemma 3.5]

implies the existence of |q2⟩. □
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