
13344 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 11, NOVEMBER 2023

Transfer Learning in Deep Reinforcement Learning:
A Survey

Zhuangdi Zhu , Kaixiang Lin , Anil K. Jain , and Jiayu Zhou , Member, IEEE

(Survey Paper)

Abstract—Reinforcement learning is a learning paradigm for
solving sequential decision-making problems. Recent years have
witnessed remarkable progress in reinforcement learning upon the
fast development of deep neural networks. Along with the promis-
ing prospects of reinforcement learning in numerous domains such
as robotics and game-playing, transfer learning has arisen to tackle
various challenges faced by reinforcement learning, by transferring
knowledge from external expertise to facilitate the efficiency and ef-
fectiveness of the learning process. In this survey, we systematically
investigate the recent progress of transfer learning approaches in
the context of deep reinforcement learning. Specifically, we provide
a framework for categorizing the state-of-the-art transfer learning
approaches, under which we analyze their goals, methodologies,
compatible reinforcement learning backbones, and practical appli-
cations. We also draw connections between transfer learning and
other relevant topics from the reinforcement learning perspective
and explore their potential challenges that await future research
progress.

Index Terms—Transfer learning, reinforcement learning, deep
learning, survey.

I. INTRODUCTION

R EINFORCEMENT Learning (RL) is an effective frame-
work to solve sequential decision-making tasks, where a

learning agent interacts with the environment to improve its per-
formance through trial and error [1]. Originated from cybernetics
and thriving in computer science, RL has been widely applied
to tackle challenging tasks which were previously intractable.
Traditional RL algorithms were mostly designed for tabular
cases, which provide principled solutions to simple tasks but face
difficulties when handling highly complex domains, e.g., tasks
with 3D environments. With the recent advances in deep learning
research, the combination of RL and deep neural networks is
developed to address challenging tasks. The combination of deep
learning with RL is hence referred to as Deep Reinforcement
Learning (DRL) [2], which learns powerful function approx-
imators using deep neural networks to address complicated

Manuscript received 1 February 2022; revised 25 May 2023; accepted 23
June 2023. Date of publication 4 July 2023; date of current version 3 October
2023. This work was supported in part by the National Science Foundation
under Grants IIS-2212174 and IIS-1749940, in part by the National Institute of
Aging under Grant IRF1AG072449, and in part by the Office of Naval Research
under Grant N00014-20-1-2382. Recommended for acceptance by M. White.
(Corresponding authors: Zhuangdi Zhu; Jiayu Zhou.)

The authors are with the Department of Computer Science and En-
gineering, Michigan State University, East Lansing, MI 48824 USA (e-
mail: zhuzhuan@msu.edu; kaixianglin.cs@gmail.com; jain@msu.edu; ji-
ayuz@msu.edu).

Digital Object Identifier 10.1109/TPAMI.2023.3292075

domains. DRL has achieved notable success in applications such
as robotics control [3], [4] and game playing [5]. It also thrives in
domains such as health informatics [6], electricity networks [7],
intelligent transportation systems [8], [9], to name just a few.

Besides its remarkable advancement, RL still faces intriguing
difficulties induced by the exploration-exploitation dilemma [1].
Specifically, for practical RL problems, the environment dynam-
ics are usually unknown, and the agent cannot exploit knowledge
about the environment until enough interaction experiences are
collected via exploration. Due to the partial observability, sparse
feedbacks, and the high complexity of state and action spaces,
acquiring sufficient interaction samples can be prohibitive or
even incur safety concerns for domains such as automatic-
driving and health informatics. The abovementioned challenges
have motivated various efforts to improve the current RL proce-
dure. As a result, transfer learning (TL), or equivalently referred
as knowledge transfer, which is a technique to utilize external
expertise to benefit the learning process of the target domain,
becomes a crucial topic in RL.

While TL techniques have been extensively studied in su-
pervised learning [10], it is still an emerging topic for RL.
Transfer learning can be more complicated for RL, in that
the knowledge needs to transfer in the context of a Markov
Decision Process. Moreover, due to the delicate components
of the Markov decision process, expert knowledge may take
different forms that need to transfer in different ways. Noticing
that previous efforts on summarizing TL in the RL domain did
not cover research of the last decade [11], [12], during which
time considerate TL breakthroughs have been achieved empow-
ered with deep learning techniques. Hence, in this survey, we
make a comprehensive investigation of the latest TL approaches
in RL.

The contributions of our survey are multifold: 1) we inves-
tigated up-to-date research involving new DRL backbones and
TL algorithms over the recent decade. To the best of our knowl-
edge, this survey is the first attempt to survey TL approaches
in the context of deep reinforcement learning. We reviewed
TL methods that can tackle more evolved RL tasks, and also
studied new TL schemes that are not deeply discussed by prior
literatures, such as representation disentanglement (Sec V-E)
and policy distillation (Sec V-C). 2) We provided systematic
categorizations that cover a broader and deeper view of TL
developments in DRL. Our main analysis is anchored on a
fundamental question, i.e., what is the transferred knowledge in

0162-8828 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 18,2024 at 15:01:17 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-7418-731X
https://orcid.org/0000-0002-8626-8934
https://orcid.org/0000-0002-6369-6995
https://orcid.org/0000-0003-4336-6777
mailto:zhuzhuan@msu.edu
mailto:kaixianglin.cs@gmail.com
mailto:jain@msu.edu
mailto:jiayuz@msu.edu
mailto:jiayuz@msu.edu


ZHU et al.: TRANSFER LEARNING IN DEEP REINFORCEMENT LEARNING: A SURVEY 13345

RL, following which we conducted more refined analysis. Most
TL strategies, including those discussed in prior surveys are
well suited in our categorization framework. 3) Reflecting on the
developments of TL methods in DRL, we brought new thoughts
on its future directions, including how to do reasoning over
miscellaneous knowledge forms and how to leverage knowledge
in more efficient and principled manner. We also pointed out the
prominent applications of TL for DRL and its opportunities to
thrive in the future era of AGI.

The rest of this survey is organized as follows: In Section II
we introduce RL preliminaries, including the recent key de-
velopment based on deep neural networks. Next, we discuss
the definition of TL in the context of RL and its relevant
topics (Section II-D). In Section III, we provide a framework to
categorize TL approaches from multiple perspectives, analyze
their fundamental differences, and summarize their evaluation
metrics (Section III-C). In Section V, we elaborate on dif-
ferent TL approaches in the context of DRL, organized by
the format of transferred knowledge, such as reward shaping
(Section V-A), learning from demonstrations (Section V-B), or
learning from teacher policies (Section V-C). We also investigate
TL approaches by the way that knowledge transfer occurs, such
as inter-task mapping (Section V-D), or learning transferrable
representations (Section V-E), etc. We discuss contemporary ap-
plications of TL in the context of DRL in Section VI and provide
some future perspectives and open questions in Section VII.

II. DEEP REINFORCEMENT LEARNING AND TRANSFER

LEARNING

A. Reinforcement Learning Basics

Markov Decision Process: A typical RL problem can be
considered as training an agent to interact with an environment
that follows a Markov Decision Process (MPD) [13]. The agent
starts with an initial state and performs an action accordingly,
which yields a reward to guide the agent actions. Once the action
is taken, the MDP transits to the next state by following the
underlying transition dynamics of the MDP. The agent accu-
mulates the time-discounted rewards along with its interactions.
A subsequence of interactions is referred to as an episode. The
above-mentioned components in an MDP can be represented
using a tuple, i.e., M = (μ0,S,A, T , γ,R), in which:
� μ0 is the set of initial states.
� S is the state space.
� A is the action space.
� T : S ×A× S → R is the transition probability distribu-

tion, where T (s′|s, a) specifies the probability of the state
transitioning to s′ upon taking action a from state s.

� R : S ×A× S → R is the reward distribution, where
R(s, a, s′) is the reward that an agent can get by taking
action a from state s with the next state being s′.

� γ is a discounted factor, with γ ∈ (0, 1].
A RL agent behaves in M by following its policy π, which is

a mapping from states to actions: π : S → A . For a stochastic
policy π, π(a|s) denotes the probability of taking action a from
state s. Given an MDP M and a policy π, one can derive a value
function V π

M(s), which is defined over the state space: V π
M(s) =

IE[r0 + γr1 + γ2r2 + . . . ;π, s], where ri = R(si, ai, si+1) is

the reward that an agent receives by taking action ai in the i-th
state si, and the next state transits to si+1. The expectation IE is
taken over s0 ∼ μ0, ai ∼ π(·|si), si+1 ∼ T (·|si, ai). The value
function estimates the quality of being in state s, by evaluating
the expected rewards that an agent can get from s following
policy π. Similar to the value function, a policy also carries a
Q-function, which estimates the quality of taking action a from
state s: Qπ

M(s, a) = IEs′∼T (·|s,a)[R(s, a, s′) + γV π
M(s′)].

Reinforcement Learning Goals: Standard RL aims to learn
an optimal policy π∗

M with the optimal value and Q-function,
s.t.∀s ∈ S, π∗

M(s) = argmax
a∈A

Q∗
M(s, a), where Q∗

M(s, a) =

sup
π

Qπ
M(s, a). The learning objective can be reduced as maxi-

mizing the expected return:

J(π) := IE(s,a)∼μπ(s,a)

[∑
t

γtrt

]
,

where μπ(s, a) is the stationary state-action distribution in-
duced by π [14].

Built upon recent progress of DRL, some literature has ex-
tended the RL objective to achieving miscellaneous goals un-
der different conditions, referred to as Goal-Conditional RL
(GCRL). In GCRL, the agent policy π(·|s, g) is dependent
not only on state observations s but also the goal g being
optimized. Each individual goal g ∼ G can be differentiated by
its reward function r(st, at, g), hence the objective for GCRL
becomes maximizing the expected return over the distribution of
goals: J(π) := IE(st,at)∼μπ,g∼G [

∑
t γ

tr(s, a, g)] [15]. A proto-
type example of GCRL can be maze locomotion tasks, where
the learning goals are manifested as desired locations in the
maze [16].

Episodic Versus Non-episodic Reinforcement Learning: In
episodic RL, the agent performs in finite episodes of length
H , and will be reset to an initial state ∈ μ0 upon the episode
ends [1]. Whereas in non-episodic RL, the learning agent con-
tinuously interacts with the MDP without any state reset [17]. To
encompass the episodic concept in infinite MDPs, episodic RL
tasks usually assume the existence of a set of absorbing states
S0, which indicates the termination of episodic tasks [18], [19],
and any action taken upon an absorbing state will only transit to
itself with zero rewards.

B. Reinforcement Learning Algorithms

There are two major methods to conduct RL: Model-Based
and Model-Free. In model-based RL, a learned or provided
model of the MDP is used for policy learning. In model-free
RL, optimal policy is learned without modeling the transition
dynamics or reward functions. In this section, we start intro-
ducing RL techniques from a model-free perspective, due to its
relatively simplicity, which also provides foundations for many
model-based methods.

Prediction and Control: an RL problem can be disassembled
into two subtasks: prediction and control [1]. In the prediction
phase, the quality of the current policy is being evaluated. In
the control phase or the policy improvement phase, the learning
policy is adjusted based on evaluation results from the prediction

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 18,2024 at 15:01:17 UTC from IEEE Xplore.  Restrictions apply. 



13346 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 11, NOVEMBER 2023

step. Policies can be improved by iterating through these two
steps, known as policy iteration.

For model-free policy iterations, the target policy is optimized
without requiring knowledge of the MDP transition dynam-
ics. Traditional model-free RL includes Monte-Carlo methods,
which estimates the value of each state using samples of episodes
starting from that state. Monte-Carlo methods can be on-policy
if the samples are collected by following the target policy, or
off-policy if the episodic samples are collected by following a
behavior policy that is different from the target policy.

Temporal Difference (TD) Learning is an alternative to Monte-
Carlo for solving the prediction problem. The key idea behind
TD-learning is to learn the state quality function by bootstrap-
ping. It can also be extended to solve the control problem
so that both value function and policy can get improved si-
multaneously. Examples of on-policy TD-learning algorithms
include SARSA [20], Expected SARSA [21], Actor-Critic [22],
and its deep neural network extension called A3C [23]. The off-
policy TD-learning approaches include SAC [24] for continuous
state-action spaces, andQ-learning [25] for discrete state-action
spaces, along with its variants built on deep-neural networks,
such as DQN [26], Double-DQN [26], Rainbow [27], etc. TD-
learning approaches focus more on estimating the state-action
value functions.

Policy Gradient, on the other hand, is a mechanism that
emphasizes on direct optimization of a parameterizable pol-
icy. Traditional policy-gradient approaches include REIN-
FORCE [28]. Recent years have witnessed the joint presence
of TD-learning and policy-gradient approaches. Representative
algorithms along this line include Trust region policy optimiza-
tion (TRPO) [29], Proximal Policy optimization (PPO) [30],
Deterministic policy gradient (DPG) [31] and its extensions such
as DDPG [32] and Twin Delayed DDPG [33].

Unlike model-free methods that learn purely from trial-and-
error, Model-Based RL (MBRL) explicitly learns the transition
dynamics or cost functions of the environment. The dynam-
ics model can sometimes be treated as a black-box for better
sampling-based planning. Representative examples include the
Monte-Carlo method dubbed random shooting [34] and its
cross-entropy method (CEM) variants [35], [36]. The modeled
dynamics can also facilitate learning with data generation [37]
and value estimation [38]. For MBRL with white-box modeling,
the transition models become differentiable and can facilitate
planning with direct gradient propogation. Methods along this
line include differential planning for policy gradient [39] and
action sequences search [40], and value gradient methods [41],
[42]. One advantage of MBRL is its higher sample efficiency
than model-free RL, although it can be challenging for complex
domains, where it is usually more difficult to learn the dynamics
than learning a policy.

C. Transfer Learning in the Context of Reinforcement
Learning

Remark 1: Without losing clarify, for the rest of this survey,
we refer to MDPs, domains, and tasks equivalently.

Remark 2: [Transfer Learning in the Context of RL]Given
a set of source domains Ms = {Ms|Ms ∈ Ms} and a target

domain Mt, Transfer Learning aims to learn an optimal policy
π∗ for the target domain, by leveraging exterior information Is
from Ms as well as interior information It from Mt:

π∗ = arg maxπIEs∼μt
0,a∼π[Q

π
M(s, a)],

where π = φ(Is ∼ Ms, It ∼ Mt) : St → At is a policy
learned for the target domain Mt based on information from
both It and Is.

In the above definition, we use φ(I) to denote the learned
policy based on information I, which is usually approximated
with deep neural networks in DRL. For the simplistic case,
knowledge can transfer between two agents within the same do-
main, resulting in |Ms| = 1, and Ms = Mt. One can consider
regular RL without TL as a special case of the above definition,
by treating Is = ∅, so that a policy π is learned purely on the
feedback provided by the target domain, i.e., π = φ(It).

D. Related Topics

In addition to TL, other efforts have been made to benefit RL
by leveraging different forms of supervision. In this section, we
briefly discuss other techniques that are relevant to TL by ana-
lyzing the differences and connections between transfer learning
and these relevant techniques, which we hope can further clarify
the scope of this survey.

Continual Learning is the ability of sequentially learning
multiple tasks that are temporally or spatially related, without
forgetting the previously acquired knowledge. Continual Learn-
ing is a specialized yet more challenging scenario of TL, in that
the learned knowledge needs to be transferred along a sequence
of dynamically-changing tasks that cannot be foreseen, rather
than learning a fixed group of tasks. Hence, different from most
TL methods discussed in this survey, the ability of automatic
task detection and avoiding catastrophic forgetting is usually
indispensable in continual learning [43].

Hierarchical RL has been proposed to resolve complex real-
world tasks. Different from traditional RL, for hierarchical
RL, the action space is grouped into different granularities to
form higher-level macro actions. Accordingly, the learning task
is also decomposed into hierarchically dependent sub-goals.
Well-known hierarchical RL frameworks include Feudal learn-
ing [44], Options framework [45], Hierarchical Abstract Ma-
chines [46], and MAXQ [47]. Given the higher-level abstraction
on tasks, actions, and state spaces, hierarchical RL can facilitate
knowledge transfer across similar domains.

Multi-Task RL learns an agent with generalized skills across
various tasks, hence it can solve MDPs randomly sampled
from a fixed yet unknown distribution [48]. A larger concept
of multi-task learning also incorporates multi-task supervised
learning and unsupervised learning [49]. Multi-task learning is
naturally related to TL, in that the learned skills, typically man-
ifested as representations, need to be effectively shared among
domains. Many TL techniques later discussed in this survey
can be readily applied to solve multi-task RL scenarios, such
as policy distillation [50], and representation sharing [51]. One
notable challenges in multi-task learning is negative transfer,
which is induced by the irrelevance or conflicting property for
learned tasks. Hence, some recent work in multi-task RL focused

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 18,2024 at 15:01:17 UTC from IEEE Xplore.  Restrictions apply. 



ZHU et al.: TRANSFER LEARNING IN DEEP REINFORCEMENT LEARNING: A SURVEY 13347

on a trade-off between sharing and individualizing function
modules [52], [53], [54].

Generalization in RL refers to the ability of learning agents to
adapt to unseen domains. Generalization is a crucial property for
RL to achieve, especially when classical RL assumes identical
training and inference MDPs, whereas the real world is con-
stantly changing. Generalization in RL is considered more chal-
lenging than in supervised learning due to the non-stationarity
of MDPs, where the latter has provided inspirations for the
former [55]. Meta-learning is an effective direction towards
generalization, which also draws close connections to TL. Some
TL techniques discussed in this survey are actually designed for
meta-RL. However, meta-learning is particularly focused on the
learning methods that lead to fast adaptation to unseen domains,
whereas TL is a broader concept and covers scenarios where
the target environment can be (partially) observable. To tackle
unseen tasks in RL, some meta-RL methods focused on training
MDPs generation [56] and variations estimation [57]. We refer
readers to [58] for a more focused survey on meta RL.

III. ANALYZING TRANSFER LEARNING

In this section, we discuss TL approaches in RL from different
angles. We also use a prototype to illustrate the potential variants
residing in knowledge transfer among domains, then summarize
important metrics for TL evaluation.

A. Categorization of Transfer Learning Approaches

TL approaches can be organized by answering the following
key questions:

1) What knowledge is transferred: Knowledge from the
source domain can take different forms, such as ex-
pert experiences [59], the action probability distribution
of an expert policy [60], or even a potential function
that estimates the quality of demonstrations in the target
MDP [61]. The divergence in representations and gran-
ularities of knowledge fundamentally influences how TL
is performed. The quality of the transferred knowledge,
e.g., whether it comes from an oracle [62] or a suboptimal
teacher [63] also affects the way TL methods are designed.

2) What RL frameworks fit the TL approach: We can rephrase
this question into other forms, e.g., is the TL approach
policy-agnostic, or only applicable to certain RL back-
bones, such as the Temporal Difference (TD) methods?
Answers to this question are closely related to the repre-
sentaion of knowledge. For example, transferring knowl-
edge from expert demonstrations are usually policy-
agnostic (see Section V-B), while policy distillation, to
be discussed in Section V-C, may not be suitable for DQN
backbone which does not explicitly learn a policy function.

3) What is the difference between the source and the target
domain: Some TL approaches fit where the source domain
Ms and the target domain Mt are equivalent, whereas
others are designed to transfer knowledge between differ-
ent domains. For example, in video gaming tasks where
observations are RGB pixels, Ms and Mt may share
the same action space (A) but differs in their observation

spaces (S). For goal-conditioned RL [64], the two domains
may differ only by the reward distribution: Rs 	= Rt.

4) What information is available in the target domain: While
knowledge from source domains is usually accessible, it
can be prohibitive to sample from the target domain, or the
reward signal can be sparse or delayed. Examples include
adapting an auto-driving agent pre-trained in simulated
platforms to real environments [65], The accessibility of
information in the target domain can affect the way that
TL approaches are designed.

5) How sample-efficient the TL approach is: TL enables the
RL with better initial performance, hence usually requires
fewer interactions compared with learning from scratch.
Based on the sampling cost, we can categorize TL ap-
proaches into the following classes: (i) Zero-shot transfer,
which learns an agent that is directly applicable to the
target domain without requiring any training interactions;
(ii) Few-shot transfer, which only requires a few samples
(interactions) from the target domain; (iii) Sample-efficient
transfer, where an agent can benefit by TL to be more
sample efficient compared to normal RL.

B. Case Analysis of Transfer Learning in the Context of
Reinforcement Learning

We now use HalfCheetah1 as a working example to illustrate
how TL can occur between the source and the target domain.
HalfCheetah is a standard DRL benchmark for solving physical
locomotion tasks, in which the objective is to train a two-leg
agent to run fast without losing control of itself.

1) Potential Domain Differences: During TL, the differences
between the source and target domain may reside in any com-
ponent of an MDP:
� S (State-space): domains can be made different by ex-

tending or constraining the available positions for the
HalfCheetah agent to move.

� A (Action-space): can be adjusted by changing the range
of available torques for the thigh, shin, or foot of the agent.

� R (Reward function): a domain can be simplified by using
only the distance moved forward as rewards or be perplexed
by using the scale of accelerated velocity in each direction
as extra penalty costs.

� T (Transition dynamics): two domains can differ by fol-
lowing different physical rules, leading to different transi-
tion probabilities given the same state-action pairs.

� μ0 (Initial states): the source and target domains may have
different initial states, specifying where and with what
posture the agent can start moving.

� τ (Trajectories): the source and target domains may allow
a different number of steps for the agent to move before a
task is done.

2) Transferrable Knowledge: Without losing generality, we
list below some transferrable knowledge assuming that the
source and target domains are variants of HalfCheetah:

1https://gym.openai.com/envs/HalfCheetah-v2/

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 18,2024 at 15:01:17 UTC from IEEE Xplore.  Restrictions apply. 



13348 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 11, NOVEMBER 2023

� Demonstrated trajectories: the target agent can learn from
the behavior of a pre-trained expert, e.g., a sequence of
running demonstrations.

� Model dynamics: the RL agent may access a model of the
physical dynamics for the source domain that is also partly
applicable to the target domain. It can perform dynamic
programming based on the physical rules, running fast
without losing its control due to the accelerated velocity.

� Teacher policies: an expert policy may be consulted by
the learning agent, which outputs the probability of taking
different actions upon a given state example.

� Teacher value functions: besides teacher policy, the learn-
ing agent may also refer to the value function derived by
a teacher policy, which implies the quality of state-actions
from the teacher’s point of view.

C. Evaluation Metrics

In this section, we present some representative metrics for
evaluating TL approaches, which have also been partly summa-
rized in prior work [11], [66]:
� Jumpstart performance (jp): the initial performance (re-

turns) of the agent.
� Asymptotic performance (ap): the ultimate performance

(returns) of the agent.
� Accumulated rewards (ar): the area under the learning

curve of the agent.
� Transfer ratio (tr): the ratio between asymptotic perfor-

mance of the agent with TL and asymptotic performance
of the agent without TL.

� Time to threshold (tt): the learning time (iterations) needed
for the target agent to reach certain performance threshold.

� Performance with fixed training epochs (pe): the perfor-
mance achieved by the target agent after a specific number
of training iterations.

� Performance sensitivity (ps): the variance in returns using
different hyper-parameter settings.

The above criteria mainly focus on the learning process of
the target agent. In addition, we introduce the following metrics
from the perspective of transferred knowledge, which, although
commensurately important for evaluation, have not been explic-
itly discussed by prior art:
� Necessary knowledge amount (nka): the necessary amount

of the knowledge required for TL in order to achieve certain
performance thresholds. Examples along this line include
the number of designed source tasks [67], the number of
expert policies, or the number of demonstrated interac-
tions [68] required to enable knowledge transfer.

� Necessary knowledge quality (nkq): the guaranteed quality
of the knowledge required to enable effective TL. This
metric helps in answering questions such as (i) Does the
TL approach rely on near-oracle knowledge, such as expert
demonstrations/policies [69], or (ii) is the TL technique
feasible even given suboptimal knowledge [63]?

TL approaches differ in various perspectives, including the
forms of transferred knowledge, the RL frameworks utilized
to enable such transfer, and the gaps between the source and

the target domain. It maybe biased to evaluate TL from just
one viewpoint. We believe that explicating these TL related
metrics helps in designing more generalizable and efficient TL
approaches.

In general, most of the abovementioned metrics can be con-
sidered as evaluating two abilities of a TL approach: the mastery
and generalization. Mastery refers to how well the learned agent
can ultimately perform in the target domain, while generaliza-
tion refers to the ability of the learning agent to quickly adapt to
the target domain.

IV. RELATED WORK

There are prior efforts in summarizing TL research in RL.
One of the earliest literatures is [11]. Their main categorization
is from the perspective of problem setting, in which the TL
scenarios may vary in the number of domains involved, and
the difference of state-action space among domains. Similar
categorization is adopted by [12], with more refined analysis
dimensions including the objective of TL. As pioneer surveys
for TL in RL, neither [11] nor [12] covered recent research
over the last decade. For instance, [11] emphasized on different
task-mapping methods, which are more suitable for domains
with tabular or mild state-action space dimensions.

There are other surveys focused on specific subtopics that
interplay between RL and TL. For instance, [70] consolidated
sim-to-real TL methods. They explored work that is more tai-
lored for robotics domains, including domain generalization
and zero-shot transfer, which is a favored application field of
DRL as we discussed in Sec VI. [71] conducted extensive
database search and summarized benchmarks for evaluating TL
algorithms in RL. [72] surveyed recent progress in multi-task
RL. They partially shared research focus with us by studying
certain TL oriented solutions towards multi-task RL, such as
learning shared representations, pathNets, etc. We surveyed TL
for RL with a broader spectrum in methodologies, applications,
evaluations, which naturally draws connections to the above
literatures.

V. TRANSFER LEARNING APPROACHES DEEP DIVE

In this section, we elaborate on various TL approaches and
organize them into different sub-topics, mostly by answering the
question of “what knowledge is transferred”. For each type of
TL approach, we analyze them by following the other criteria
mentioned in Section III and and summarize the key evaluation
metrics that are applicable to the discussed work. Fig. 1 presents
an overview of different TL approaches discussed in this survey.

A. Reward Shaping

We start by introducing the Reward Shaping approach, as it
is applicable to most RL backbones and also largely overlaps
with the other TL approaches discussed later. Reward Shaping
(RS) is a technique that leverages the exterior knowledge to
reconstruct the reward distribution of the target domain to guide
the agent’s policy learning. More specifically, in addition to the

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 18,2024 at 15:01:17 UTC from IEEE Xplore.  Restrictions apply. 



ZHU et al.: TRANSFER LEARNING IN DEEP REINFORCEMENT LEARNING: A SURVEY 13349

Fig. 1. An overview of different TL approaches, organized by the format of transferred knowledge.

environment reward signals, RS learns a reward-shaping func-
tion F : S × S ×A → R to render auxiliary rewards, provided
that the additional rewards contain external knowledge to guide
the agent for better action selections. Intuitively, an RS strat-
egy will assign higher rewards to more beneficial state-actions
to navigate the agent to desired trajectories. As a result, the
agent will learn its policy using the newly shaped rewards R′:
R′ = R+ F , which means that RS has altered the target domain
with a different reward function:

M = (S,A, T , γ,R)) → M′ = (S,A, T , γ,R′). (1)

Along the line of RS, Potential based Reward Shaping (PBRS)
is one of the most classical approaches. [61] proposed PBRS
to form a shaping function F as the difference between two
potential functions (Φ(·)):

F (s, a, s′) = γΦ(s′)− Φ(s), (2)

where the potential function Φ(·) comes from the knowledge
of expertise and evaluates the quality of a given state. It has
been proved that, without further restrictions on the underlying
MDP or the shaping function F , PBRS is sufficient and nec-
essary to preserve the policy invariance. Moreover, the optimal
Q-function in the original and transformed MDP are related by
the potential function: Q∗

M′(s, a) = Q∗
M(s, a)− Φ(s), which

draws a connection between potential based reward-shaping and
advantage-based learning approaches [73].

The idea of PBRS was extended to [74], which formulated
the potential as a function over both the state and the action
spaces. This approach is called Potential Based state-action
Advice (PBA). The potential functionΦ(s, a) therefore evaluates
how beneficial an action a is to take from state s:

F (s, a, s′, a′) = γΦ(s′, a′)− Φ(s, a). (3)

PBA requires on-policy learning and can be sample-costly, as in
Equation (3), a′ is the action to take upon state s is transitioning
to s′ by following the learning policy.

Traditional RS approaches assumed a static potential func-
tion, until [75] proposed a Dynamic Potential Based (DPB)
approach which makes the potential a function of both states
and time: F (s, t, s′, t′) = γΦ(s′, t′)− Φ(s, t). They proved

that this dynamic approach can still maintain policy invari-
ance: Q∗

M′(s, a) = Q∗
M(s, a)− Φ(s, t), where t is the current

tilmestep. [76] later introduced a way to incorporate any prior
knowledge into a dynamic potential function structure, which is
called Dynamic Value Function Advice (DPBA). The rationale
behind DPBA is that, given any extra reward function R+

from prior knowledge, in order to add this extra reward to the
original reward function, the potential function should satisfy:
γΦ(s′, a′)− Φ(s, a) = F (s, a) = R+(s, a).

IfΦ is not static but learned as an extra state-action Value func-
tion overtime, then the Bellman equation for Φ is : Φπ(s, a) =
rΦ(s, a) + γΦ(s′, a′). The shaping rewards F (s, a) is therefore
the negation of rΦ(s, a) :

F (s, a) = γΦ(s′, a′)− Φ(s, a) = −rΦ(s, a). (4)

This leads to the approach of using the negation of R+ as the
immediate reward to train an extra state-action Value function
Φ and the policy simultaneously. Accordingly, the dynamic
potential function F becomes:

Ft(s, a) = γΦt+1(s
′, a′)− Φt(s, a). (5)

The advantage of DPBA is that it provides a framework to allow
arbitrary knowledge to be shaped as auxiliary rewards.

Research along this line mainly focus on designing different
shaping functions F (s, a), while not much work has tackled
the question of what knowledge can be used to derive this
potential function. One work by [77] proposed to use RS to
transfer an expert policy from the source domain Ms to the
target domain Mt. This approach assumed the existence of two
mapping functions MS and MA that can transform the state
and action from the source to the target domain. Another work
used demonstrated state-action samples from an expert policy
to shape rewards [78]. Learning the augmented reward involves
learning a discriminator to distinguish samples generated by
an expert policy from samples generated by the target policy.
The loss of the discriminator is applied to shape rewards to
incentivize the learning agent to mimic the expert behavior.
This work combines two TL approaches: RS and Learning
from Demonstrations, the latter of which will be elaborated in
Section V-B.

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 18,2024 at 15:01:17 UTC from IEEE Xplore.  Restrictions apply. 



13350 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 11, NOVEMBER 2023

TABLE I
A COMPARISON OF REWARD SHAPING APPROACHES

The above-mentioned RS approaches are summarized in
Table I. They follow the potential based RS principle that has
been developed systematically: from the classical PBRS which
is built on a static potential shaping function of states, to PBA
which generates the potential as a function of both states and
actions, and DPB which learns a dynamic potential function
of states and time, to the most recent DPBA, which involves a
dynamic potential function of states and actions to be learned
as an extra state-action Value function in parallel with the
environment Value function. As an effective TL paradigm, RS
has been widely applied to fields including robot training [79],
spoken dialogue systems [80], and question answering [81]. It
provides a feasible framework for transferring knowledge as
the augmented reward and is generally applicable to various RL
algorithms. RS has also been applied to multi-agent RL [82]
and model-based RL [83]. Principled integration of RS with
other TL approaches, such as Learning from demonstrations
(Section V-B) and Policy Transfer (Section V-C) will be an
intriguing question for ongoing research.

Note that RS approaches discussed so far are built upon a con-
sensus that the source information for shaping the reward comes
externally, which coincides with the notion of knowledge trans-
fer. Some RS work also tackles the scenario where the shaped
reward comes intrinsically. For instance, Belief Reward Shaping
was proposed by [84], which utilizes a Bayesian reward shaping
framework to generate the potential value that decays with
experience, where the potential value comes from the critic itself.

B. Learning From Demonstrations

Learning from Demonstrations (LfD) is a technique to assist
RL by utilizing external demonstrations for more efficient ex-
ploration. The demonstrations may come from different sources
with varying qualities. Research along this line usually address
a scenario where the source and the target MDPs are the same:
Ms = Mt, although there has been work that learns from
demonstrations generated in a different domain [85], [86].

Depending on when the demonstrations are used for knowl-
edge transfer, approaches can be organized into offline and online
methods. For offline approaches, demonstrations are either used
for pre-training RL components, or for offline RL [87], [88].
When leveraging demonstrations for pre-training, RL compo-
nents such as the value function V (s) [89], the policy π [90],
or the model of transition dynamics [91], can be initialized by
learning from demonstrations. For the online approach, demon-
strations are directly used to guide agent actions for efficient
explorations [92]. Most work discussed in this section follows

the online transfer paradigm or combines offline pre-training
with online RL [93].

Work along this line can also be categorized depending on
what RL frameworks are compatible: some adopts the policy-
iteration framework [59], [94], [95], some follow a Q-learning
framework [92], [96], while recent work usually follows the
policy-gradient framework [63], [78], [93], [97]. Demonstra-
tions have been leveraged in the policy iterations framework
by [98]. Later, [94] introduced the Direct Policy Iteration with
Demonstrations (DPID) algorithm. This approach samples com-
plete demonstrated rollouts DE from an expert policy πE , in
combination with the self-generated rollouts Dπ gathered from
the learning agent. Dπ ∪DE are used to learn a Monte-Carlo
estimation of the Q-value: Q̂, from which a learning policy can
be derived greedily: π(s) = argmax

a∈A
Q̂(s, a). This policy π is

further regularized by a loss function L(s, πE) to minimize its
discrepancy from the expert policy decision.

Another example is the Approximate Policy Iteration with
Demonstration (APID) algorithm, which was proposed by [59]
and extended by [95]. Different from DPID where both DE

and Dπ are used for value estimation, the APID algorithm
solely applies Dπ to approximate on the Q function. Expert
demonstrations DE are used to learn the value function, which,
given any state si, renders expert actions πE(si) with higher
Q-value margins compared with other actions that are not shown
in DE :

Q(si, πE(si))− max
a∈A\πE(si)

Q(si, a) ≥ 1− ξi. (6)

The term ξi is used to account for the case of imperfect demon-
strations. [95] further extended the work of APID with a different
evaluation loss:

Lπ = IE(s,a)∼Dπ
‖T ∗Q(s, a)−Q(s, a)‖, (7)

where T ∗Q(s, a) = R(s, a) + γIEs′∼p(.|s,a)[max
a′
Q(s′, a′)].

Their work theoretically converges to the optimal Q-function
compared with APID, as Lπ is minimizing the optimal Bellman
residual instead of the empirical norm.

In addition to policy iteration, the following two approaches
integrate demonstration data into the TD-learning framework,
such as Q-learning. Specifically, [92] proposed the DQfD al-
gorithm, which maintains two separate replay buffers to store
demonstrated data and self-generated data, respectively, so that
expert demonstrations can always be sampled with a certain
probability. Their method leverages the refined priority replay
mechanism [99] where the probability of sampling a transition

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 18,2024 at 15:01:17 UTC from IEEE Xplore.  Restrictions apply. 



ZHU et al.: TRANSFER LEARNING IN DEEP REINFORCEMENT LEARNING: A SURVEY 13351

i is based on its priority pi with a temperature parameter α:
P (i) =

pα
i∑

k pα
k
. Another algorithm named LfDS was proposed

by [96], which draws a close connection to reward shaping (Sec-
tion V-A). LfDS builds the potential value of a state-action pair
as the highest similarity between the given pair and the expert
demonstrations. This augmented reward assigns more credits
to state-actions that are more similar to expert demonstrations,
encouraging the agent for expert-like behavior.

Besides Q-learning, recent work has integrated LfD into pol-
icy gradient [63], [69], [78], [93], [97]. A representative work
along this line is Generative Adversarial Imitation Learning
(GAIL) [69]. GAIL introduced the notion of occupancy measure
dπ , which is the stationary state-action distributions derived
from a policy π. Based on this notion, a new reward function
is designed such that maximizing the accumulated new rewards
encourages minimizing the distribution divergence between the
occupancy measure of the current policy π and the expert policy
πE . Specifically, the new reward is learned by adversarial train-
ing [62]: a discriminatorD is learned to distinguish interactions
sampled from the current policy π and the expert policy πE :

JD = max
D:S×A→(0,1)

IEdπ
log[1−D(s, a)] + IEdE

log[D(s, a)]

(8)

SinceπE is unknown, its state-action distributiondE is estimated
based on the given expert demonstrationsDE . The output of the
discriminator is used as new rewards to encourage distribution
matching, with r′(s, a) = − log(1−D(s, a)). The RL process
is naturally altered to perform distribution matching by min-max
optimization:

max
π

min
D

J(π,D) : = IEdπ
log[1−D(s, a)]

+ IEdE
log[D(s, a)].

The philosophy in GAIL of using expert demonstrations for
distribution matching has inspired other LfD algorithms. For
example, [97] extended GAIL with an algorithm called Policy
Optimization from Demonstrations (POfD), which combines the
discriminator reward with the environment reward:

max
θ

= IEdπ
[r(s, a)]− λDJS [dπ||dE ]. (9)

Both GAIL and POfD are under an on-policy RL framework.
To further improve the sample efficiency of TL, some off-policy
algorithms have been proposed, such as DDPGfD [78] which
is built upon the DDPG framework. DDPGfD shares a similar
idea as DQfD in that they both use a second replay buffer for
storing demonstrated data, and each demonstrated sample holds
a sampling priority pi. For a demonstrated sample, its priority pi
is augmented with a constant bias εD > 0 for encouraging more
frequent sampling of expert demonstrations:

pi = δ2i + λ‖∇aQ(si, ai|θQ)‖2 + ε+ εD,

where δi is the TD-residual for transition, ‖∇aQ(si, ai|θQ)‖2
is the loss applied to the actor, and ε is a small positive constant
to ensure all transitions are sampled with some probability.
Another work also adopted the DDPG framework to learn
from demonstrations [93]. Their approach differs from DDPGfD

in that its objective function is augmented with a Behavior
Cloning Loss to encourage imitating on provided demonstra-
tions: LBC =

∑|DE |
i=1 ||π(si|θπ)− ai||2.

To further address the issue of suboptimal demonstrations,
in [93] the form of Behavior Cloning Loss is altered based on
the critic output, so that only demonstration actions with higher
Q values will lead to the loss penalty:

LBC =

|DE |∑
i=1

‖π(si|θπ)− ai‖2 1[Q(si, ai) > Q(si, π(si))].

(10)

There are several challenges faced by LfD, one of which
is the imperfect demonstrations. Previous approaches usually
presume near-oracle demonstrations. Towards tackling subopti-
mal demonstrations, [59] leveraged the hinge-loss function to
allow occasional violations of the property thatQ(si, πE(si))−

max
a∈A\πE(si)

Q(si, a) ≥ 1. Some other work uses regularized ob-

jective to alleviate overfitting on biased data [92], [99]. A differ-
ent strategy is to leverage those sub-optimal demonstrations only
to boost the initial learning stage. For instance, [63] proposed
Self-Adaptive Imitation Learning (SAIL), which learns from
suboptimal demonstrations using generative adversarial training
while gradually selecting self-generated trajectories with high
qualities to replace less superior demonstrations.

Another challenge faced by LfD is covariate drift ([100]):
demonstrations may be provided in limited numbers, which
results in the learning agent lacking guidance on states that are
unseen in the demonstration dataset. This challenge is aggra-
vated in MDPs with sparse reward feedbacks, as the learning
agent cannot obtain much supervision information from the
environment either. Current efforts to address this challenge in-
clude encouraging explorations by using an entropy-regularized
objective [101], decaying the effects of demonstration guidance
by softening its regularization on policy learning over time [102],
and introducing disagreement regularizations by training an
ensemble of policies based on the given demonstrations, where
the variance among policies serves as a negative reward func-
tion [103].

We summarize the above-discussed approaches in Table II. In
general, demonstration data can help in both offline pre-training
for better initialization and online RL for efficient exploration.
During the RL phase, demonstration data can be used together
with self-generated data to encourage expert-like behaviors
(DDPGfD, DQFD), to shape value functions (APID), or to guide
the policy update in the form of an auxiliary objective function
(PID,GAIL, POfD). To validate the algorithm robustness given
different knowledge resources, most LfD methods are evaluated
using metrics that either indicate the performance under limited
demonstrations (nka) or suboptimal demonstrations (nka). The
integration of LfD with off-policy RL backbone makes it natural
to adopt pe metrics for evaluating how learning efficiency can
be further improved by knowledge transfer. Developing more
general LfD approaches that are agnostic to RL frameworks and
can learn from sub-optimal or limited demonstrations would be
the ongoing focus for this research domain.

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 18,2024 at 15:01:17 UTC from IEEE Xplore.  Restrictions apply. 



13352 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 11, NOVEMBER 2023

TABLE II
A COMPARISON OF LEARNING FROM DEMONSTRATION APPROACHES

C. Policy Transfer

Policy transfer is a TL approach where the external knowledge
takes the form of pre-trained policies from one or multiple source
domains. Work discussed in this section is built upon a many-
to-one problem setting, described as below:

Policy Transfer: A set of teacher policies πE1
, πE2

, . . . , πEK

are trained on a set of source domains M1,M2, . . . ,MK ,
respectively. A student policy π is learned for a target domain
by leveraging knowledge from {πEi

}Ki=1.
For the one-to-one scenario with only one teacher policy, one

can consider it as a special case of the above with K = 1. Next,
we categorize recent work of policy transfer into two techniques:
policy distillation and policy reuse.

1) Transfer Learning Via Policy Distillation: The idea of
knowledge distillation has been applied to the field of RL to
enable policy distillation. Knowledge distillation was first pro-
posed by [104] as an approach of knowledge ensemble from
multiple teacher models into a single student model. Conven-
tional policy distillation approaches transfer the teacher policy
following a supervised learning paradigm [105], [106]. Specifi-
cally, a student policy is learned by minimizing the divergence of
action distributions between the teacher policy πE and student
policy πθ, which is denoted as H×(πE(τt)|πθ(τt)):

min
θ

IEτ∼πE

⎡
⎣ |τ |∑

t=1

∇θH×(πE(τt)|πθ(τt))

⎤
⎦ . (11)

The above expectation is taken over trajectories sampled from
the teacher policy πE , hence this approach is called teacher
distillation. One example along this line is [105], in which N
teacher policies are learned for N source tasks separately, and
each teacher yields a dataset DE = {si, qi}Ni=0 consisting of
observations s and vectors of the corresponding Q-values q,
such that qi = [Q(si, a1), Q(si, a2), . . .|aj ∈ A]. Teacher poli-
cies are further distilled to a single student πθ by minimizing the
KL-Divergence between each teacher πEi

(a|s) and the student
πθ, approximated using the dataset DE : minθ DKL(π

E |πθ) ≈∑|DE |
i=1 softmax(q

E
i

τ ) ln(
softmax(qE

i )

softmax(qθ
i )
).

Another policy distillation approach is student distilla-
tion [51], [60], which is resemblant to teacher distilla-
tion except that during the optimization step, the objec-
tive expectation is taken over trajectories sampled from
the student policy instead of the teacher policy, i.e.,:
minθ IEτ∼πθ

[
∑|τ |

t=1 ∇θH×(πE(τt)|πθ(τt))]. [60] summarized
related work on both kinds of distillation approaches. Although
it is feasible to combine both distillation approaches [100], we
observe that more recent work focuses on student distillation,
which empirically shows better exploration ability compared
to teacher distillation, especially when the teacher policies are
deterministic.

Taking an alternative perspective, there are two approaches
of policy distillation: (1) minimizing the cross-entropy between
the teacher and student policy distributions over actions [51],
[107]; and (2) maximizing the probability that the teacher policy
will visit trajectories generated by the student, i.e.,maxθ P (τ ∼
πE |τ ∼ πθ) [50], [108]. One example of approach (1) is the
Actor-mimic algorithm [51]. This algorithm distills the knowl-
edge of expert agents into the student by minimizing the cross en-
tropy between the student policy πθ and each teacher policy πEi

over actions:Li(θ) =
∑

a∈AEi
πEi

(a|s) logπθ
(a|s), where each

teacher agent is learned using a DQN framework. The teacher
policy is therefore derived from the Boltzmann distributions

over the Q-function output: πEi
(a|s) = e

τ−1QEi
(s,a)

∑
a′∈AEi

e
τ−1QEi

(s,a′) .

An instantiation of approach (2) is the Distral algorithm [50].
which learns a centroid policy πθ that is derived fromK teacher
policies. The knowledge in each teacher πEi

is distilled to the
centroid and get transferred to the student, while both the transi-
tion dynamics Ti and reward distributions Ri for source domain
Mi are heterogeneous. The student policy is learned by maxi-
mizing a multi-task learning objective maxθ

∑K
i=1 J(πθ, πEi

),
where

J(πθ, πEi
) =

∑
t

IE(st,at)∼πθ

[∑
t≥0

γt(ri(at, st)

+
α

β
log πθ(at|st)−

1

β
log(πEi

(at|st)))
]
,

in which both log πθ(at|st) and πθ are used as augmented
rewards. Therefore, the above approach also draws a close

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 18,2024 at 15:01:17 UTC from IEEE Xplore.  Restrictions apply. 



ZHU et al.: TRANSFER LEARNING IN DEEP REINFORCEMENT LEARNING: A SURVEY 13353

TABLE III
A COMPARISON OF POLICY TRANSFER APPROACHES

connection to Reward Shaping (Section V-A). In effect, the
log πθ(at|st) term guides the learning policy πθ to yield ac-
tions that are more likely to be generated by the teacher pol-
icy, whereas the entropy term − log(πEi

(at|st) encourages
exploration. A similar approach was proposed by [107] which
only uses the cross-entropy between teacher and student policy
λH(πE(at|st)||πθ(at|st)) to reshape rewards. Moreover, they
adopted a dynamically fading coefficient to alleviate the effect
of the augmented reward so that the student policy becomes
independent of the teachers after certain optimization iterations.

2) Transfer Learning Via Policy Reuse: Policy reuse directly
reuses policies from source tasks to build the target policy. The
notion of policy reuse was proposed by [109], which directly
learns the target policy as a weighted combination of different
source-domain policies, and the probability for each source
domain policy to be used is related to its expected performance
gain in the target domain:P (πEi

) = exp (tWi)∑K
j=0 exp (tWj)

,where t is a

dynamic temperature parameter that increases over time. Under
a Q-learning framework, the Q-function of the target policy is
learned in an iterative scheme: during every learning episode,
Wi is evaluated for each expert policy πEi

, and W0 is obtained
for the learning policy, from which a reuse probability P is
derived. Next, a behavior policy is sampled from this probability
P . After each training episode, both Wi and the temperature
t for calculating the reuse probability is updated accordingly.
One limitation of this approach is that the Wi, i.e., the expected
return of each expert policy on the target task, needs to be
evaluated frequently. This work was implemented in a tabular
case, leaving the scalability issue unresolved. More recent work
by [110] extended the policy improvement theorem [111] from
one to multiple policies, which is named as Generalized Policy
Improvement. We refer its main theorem as follows:

Theorem [Generalized Policy Improvement (GPI)]: Let
{πi}ni=1 be n policies and let {Q̂πi}ni=1 be their approximated

action-value functions, s.t:
∣∣∣Qπi(s, a)− Q̂πi(s, a)

∣∣∣ ≤ ε ∀s ∈
S, a ∈ A, and i ∈ [n]. Define π(s) = argmax

a
max

i
Q̂πi(s, a),

then: Qπ(s, a) ≥ max
i
Qπi(s, a)− 2

1−γ ε, ∀ s ∈ S, a ∈ A.

Based on this theorem, a policy improvement approach can be
naturally derived by greedily choosing the action which renders
the highestQ-value among all policies for a given state. Another
work along this line is [110], in which an expert policyπEi

is also
trained on a different source domain Mi with reward function
Ri, so that Qπ

M0
(s, a) 	= Qπ

Mi
(s, a). To efficiently evaluate the

Q-functions of different source policies in the target MDP, a
disentangled representationψ(s, a) over the states and actions is
learned using neural networks and is generalized across multiple

tasks. Next, a task (reward) mapper wi is learned, based on
which the Q-function can be derived: Qπ

i (s, a) = ψ(s, a)
Twi.

[110] proved that the loss of GPI is bounded by the difference
between the source and the target tasks. In addition to policy-
reuse, their approach involves learning a shared representation
ψ(s, a), which is also a form of transferred knowledge and will
be elaborated more in Section V-E2.

We summarize the abovementioned policy transfer ap-
proaches in Table III. In general, policy transfer can be real-
ized by knowledge distillation, which can be either optimized
from the student’s perspecive (student distillation), or from the
teacher’s perspective (teacher distillation) Alternatively, teacher
policies can also be directly reused to update the target policy.
Regarding evaluation, most of the abovementioned work has
investigated a multi-teacher transfer scenario, hence the general-
ization ability or robustness is largely evaluated on metrics such
as performance sensitivity(ps) (e.g., performance given different
numbers of teacher policies or source tasks). Performance with
fixed epochs (pe) is another commonly shared metric to evaluate
how the learned policy can quickly adapt to the target domain.
All approaches discussed so far presumed one or multiple expert
policies, which are always at the disposal of the learning agent.
Open questions along this line include How to leverage imperfect
policies for knowledge transfer, or How to refer to teacher
policies within a budget.

D. Inter-Task Mapping

In this section, we review TL approaches that utilize mapping
functions between the source and the target domains to assist
knowledge transfer. Research in this domain can be analyzed
from two perspectives: (1) which domain does the mapping
function apply to, and (2) how is the mapped representation
utilized. Most work discussed in this section shares a common
assumption as below:

Assumption: One-to-one mappings exist between the source
domain Ms and the target domain Mt.

Earlier work along this line requires a given mapping func-
tion [66], [112]. One examples is [66] which assumes that
each target state (action) has a unique correspondence in the
source domain, and two mapping functions XS , XA are pro-
vided over the state space and the action space, respectively,
so that XS(St) → Ss, XA(At) → As. Based on XS and XA,
a mapping function over the Q-values M(Qs) → Qt can be
derived accordingly. Another work is done by [112] which
transfers advice as the knowledge between two domains. In their
settings, the advice comes from a human expert who provides
the mapping function over the Q-values in the source domain

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 18,2024 at 15:01:17 UTC from IEEE Xplore.  Restrictions apply. 



13354 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 11, NOVEMBER 2023

and transfers it to the learning policy for the target domain.
This advice encourages the learning agent to prefer certain
good actions over others, which equivalently provides a relative
ranking of actions in the new task.

More later research tackles the inter-task mapping problem
by learning a mapping function [113], [114], [115]. Most work
learns a mapping function over the state space or a subset of
the state space. In their work, state representations are usually
divided into agent-specific and task-specific representations,
denoted as sagent and senv , respectively. In [113] and [114], the
mapping function is learned on the agent-specific sub state, and
the mapped representation is applied to reshape the immediate
reward. For [113], the invariant feature space mapped from
sagent can be applied across agents who have distinct action
space but share some morphological similarity. Specifically,
they assume that both agents have been trained on the same
proxy task, based on which the mapping function is learned.
The mapping function is learned using an encoder-decoder
structure [116] to largely reserve information about the source
domain. For transferring knowledge from the source agent to a
new task, the environment reward is augmented with a shaped
reward term to encourage the target agent to imitate the source
agent on an embedded feature space:

r′(s, ·) = α
∥∥f(ssagent; θf )− g(stagent; θg)

∥∥ , (12)

where f(ssagent) is the agent-specific state in the source domain,
and g(stagent) is for the target domain.

Another work is [115] which applied the Unsupervised Man-
ifold Alignment (UMA) method [117] to automatically learn the
state mapping. Their approach requires collecting trajectories
from both the source and the target domain to learn such a
mapping. While applying policy gradient learning, trajectories
from the target domain Mt are first mapped back to the source:
τt → τs, then an expert policy in the source domain is applied
to each initial state of those trajectories to generate near-optimal
trajectories

∼
τs, which are further mapped to the target domain:

∼
τs →

∼
τt. The deviation between

∼
τt and τt are used as a loss to be

minimized in order to improve the target policy. Similar ideas
of using UMA for inter-task mapping can also be found in [118]
and [119].

In addition to approaches that utilizes mapping over states or
actions, [120] proposed to learn an inter-task mapping over the
transition dynamics space: S ×A× S . Their work assumes
that the source and target domains are different in terms of
the transition space dimensionality. Transitions from both the
source domain 〈ss, as, s′s〉 and the target domain 〈st, at, s′t〉
are mapped to a latent space Z. Given the latent feature repre-
sentations, a similarity measure can be applied to find a corre-
spondence between the source and target task triplets. Triplet
pairs with the highest similarity in this feature space Z are used
to learn a mapping function X : 〈st, at, s′t〉 = X (〈ss, as, s′s〉).
After the transition mapping, states sampled from the expert
policy in the source domain can be leveraged to render bene-
ficial states in the target domain, which assists the target agent
learning with a better initialization performance. A similar idea
of mapping transition dynamics can be found in [121], which,

however, requires a stronger assumption on the similarity of the
transition probability and the state representations between the
source and the target domains.

As summarized in Table IV, for TL approaches that uti-
lize an inter-task mapping, the mapped knowledge can be (a
subset of) the state space [113], [114], the Q-function [66],
or (representations of) the state-action-sate transitions [120].
In addition to being directly applicable in the target do-
main [120], the mapped representation can also be used as
an augmented shaping reward [113], [114] or a loss objec-
tive [115] in order to guide the agent learning in the target
domain. Most inter-task mapping methods tackle domains with
moderate state-action space dimensions, such as maze tasks
or tabular MDPs, where the goal can be reaching a target
state with a minimal number of transitions. Accordingly, tt has
been used to measure TL performance. For tasks with limited
and discrete state-action space, evaluation is also conducted
with different number of initial states collected in the target
domain (nka).

E. Representation Transfer

This section review approaches that transfer knowledge in the
form of representations learned by deep neural networks. They
are built upon the following consensual assumption:

Assumption [Existence of Task-Invariance Subspace]: The
state space (S), action space (A), or the reward space (R) can be
disentangled into orthogonal subspaces, which are task-invariant
such that knowledge can be transferred between domains on the
universal subspace.

We organize recent work along this line into two subtopics: 1)
approaches that directly reuse representations from the source
domain (Section V-E1), and 2) approaches that learn to dis-
entangle the source domain representations into independent
sub-feature representations, some of which are on the universal
feature space shared by both the source and the target domains
(Section V-E2).

1) Reusing Representations: A representative work of
reusing representations is [122], which proposed the progressive
neural network structure to enable knowledge transfer across
multiple RL tasks in a progressive way. A progressive network
is composed of multiple columns, and each column is a policy
network for one specific task. It starts with one single column
for training the first task, and then the number of columns
increases with the number of new tasks. While training on a
new task, neuron weights on the previous columns are frozen,
and representations from those frozen tasks are applied to the
new column via a collateral connection to assist in learning the
new task.

Progressive network comes with a cost of large network
structures, as the network grows proportionally with the number
of incoming tasks. A later framework called PathNet alleviates
this issue by learning a network with a fixed size [123]. PathNet
contains pathways, which are subsets of neurons whose weights
contain the knowledge of previous tasks and are frozen during
training on new tasks. The population of pathway is evolved
using a tournament selection genetic algorithm [124].

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 18,2024 at 15:01:17 UTC from IEEE Xplore.  Restrictions apply. 



ZHU et al.: TRANSFER LEARNING IN DEEP REINFORCEMENT LEARNING: A SURVEY 13355

TABLE IV
A COMPARISON OF INTER-TASK MAPPING APPROACHES

Another approach of reusing representations for TL is
modular networks [52], [53], [125]. For example, [52] proposed
to decompose the policy network into a task-specific module and
agent-specific module. Specifically, let π be a policy performed
by any agent (robot) r over the task Mk as a function φ over
states s, it can be decomposed into two sub-modules gk and fr,
i.e.,:

π(s) := φ(senv, sagent) = fr(gk(senv), sagent),

where fr is the agent-specific module and gk is the task-specific
module. Their core idea is that the task-specific module can
be applied to different agents performing the same task,
which serves as a transferred knowledge. Accordingly, the
agent-specific module can be applied to different tasks for the
same agent.

A model-based approach along this line is [125], which learns
a model to map the state observation s to a latent-representation
z. The transition probability is modeled on the latent space
instead of the original state space, i.e., ẑt+1 = fθ(zt, at), where
θ is the parameter of the transition model, zt is the latent-
representation of the state observation, and at is the action
accompanying that state. Next, a reward module learns the value
function as well as the policy from the latent space z using an
actor-critic framework. One potential benefit of this latent repre-
sentation is that knowledge can be transferred across tasks that
have different rewards but share the same transition dynamics.

2) Disentangling Representations: Methods discussed in
this section mostly focus on learning a disentangled represen-
tation. Specifically, we elaborate on TL approaches that are
derived from two techniques: Successor Representation (SR)
and Universal Value Function Approximating (UVFA).

Successor Representations (SR) is an approach to decouple
the state features of a domain from its reward distributions.
It enables knowledge transfer across multiple domains: M =
{M1,M2, . . . ,MK}, so long as the only difference among
them is the reward distributions: Ri 	= Rj . SR was originally
derived from neuroscience, until [126] proposed to leverage it
as a generalization mechanism for state representations in the
RL domain.

Different from the v-value or Q-value that describes states
as dependent on the reward function, SR features a state based
on the occupancy measure of its successor states. Specifically,

SR decomposes the value function of any policy into two in-
dependent components, ψ and R: V π(s) =

∑
s′ ψ(s, s

′)w(s′),
where w(s′) is a reward mapping function that maps states to
scalar rewards, andψ is the SR which describes any state s as the
occupancy measure of the future occurred states when following
π, with 1[S = s′] = 1 as an indicator function:

ψ(s, s′) = IEπ

[ ∞∑
i=t

γi−t1[Si = s′]|St = s

]
.

The successor nature of SR makes it learnable using any
TD-learning algorithms. Especially, [126] proved the feasibility
of learning such representation in a tabular case, in which the
state transitions can be described using a matrix. SR was later
extended by [110] from three perspectives: (i) the feature domain
of SR is extended from states to state-action pairs; (ii) deep
neural networks are used as function approximators to represent
the SR ψπ(s, a) and the reward mapper w; (iii) Generalized
policy improvement (GPI) algorithm is introduced to accelerate
policy transfer for multi-tasks (Section V-C2). These extensions,
however, are built upon a stronger assumption about the MDP:

Assumption [Linearity of Reward Distributions]: The reward
functions of all tasks can be computed as a linear combination
of a fixed set of features: r(s, a, s′) = φ(s, a, s′)�w, where
φ(s, a, s′) ∈ Rd denotes the latent representation of the state
transition, and w ∈ Rd is the task-specific reward mapper.

Based on this assumption, SR can be decoupled from the
rewards when evaluating the Q-function of any policy π in
a task. The advantage of SR is that, when the knowledge of
ψπ(s, a) in the source domain Ms is observed, one can quickly
get the performance evaluation of the same policy in the target
domain Mt by replacing ws with wt: Qπ

Mt
= ψπ(s, a)wt.

Similar ideas of learning SR as a TD-algorithm on a latent
representation φ(s, a, s′) can also be found in [127], [128].
Specifically, the work of [127] was developed based on a weaker
assumption about the reward function: Instead of requiring
linearly-decoupled rewards, the latent spaceφ(s, a, s′) is learned
in an encoder-decoder structure to ensure that the information
loss is minimized when mapping states to the latent space.
This structure, therefore, comes with an extra cost of learning a
decoder fd to reconstruct the state: fd(φ(st)) ≈ st.

An intriguing question faced by the SR approach is: Is there a
way that evades the linearity assumption about reward functions

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 18,2024 at 15:01:17 UTC from IEEE Xplore.  Restrictions apply. 



13356 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 11, NOVEMBER 2023

and still enables learning the SR without extra modular cost? An
extended work of SR [67] answered this question affirmatively,
which proved that the reward functions does not necessarily have
to follow the linear structure, yet at the cost of a looser perfor-
mance lower-bound while applying the GPI approach for policy
improvement. Especially, rather than learning a reward-agnostic
latent feature φ(s, a, s′) ∈ Rd for multiple tasks, [67] aims to
learn a matrixφ(s, a, s′) ∈ RD×d to interpret the basis functions
of the latent space instead, whereD is the number of seen tasks.
Assuming k out ofD tasks are linearly independent, this matrix
forms k basis functions for the latent space. Therefore, for any
unseen task Mi, its latent features can be built as a linear com-
bination of these basis functions, as well as its reward functions
ri(s, a, s

′). Based on the idea of basis-functions for a task’s latent
space, they proposed that φ(s, a, s′) can be approximated as
learning R(s, a, s′) directly, where R(s, a, s′) ∈ RD is a vector
of reward functions for each seen task:

R(s, a, s′) = [r1(s, a, s
′); r2(s, a, s

′), . . . , rD(s, a, s′)] .

Accordingly, learning ψ(s, a) for any policy πi in Mi be-
comes equivalent to learning a collection of Q-functions:

ψπi(s, a) = [Qπi
1 (s, a), Qπi

2 (s, a), . . . , Qπi

D (s, a)] .

A similar idea of using reward functions as features to represent
unseen tasks is also proposed by [129], which assumes the ψ
and w as observable quantities from the environment.

Universal Function Approximation (UVFA) is an alternative
approach of learning disentangled state representations [64].
Same as SR, UVFA allows TL for multiple tasks which dif-
fer only by their reward functions (goals). Different from SR
which focuses on learning a reward-agnostic state representa-
tion, UVFA aims to find a function approximator that is general-
ized for both states and goals. The UVFA framework is built on
a specific problem setting of goal conditional RL:task goals are
defined in terms of states, e.g., given the state space S and the
goal space G, it satisfies that G ⊆ S . One instantiation of this
problem setting can be an agent exploring different locations in
a maze, where the goals are described as certain locations inside
the maze. Under this problem setting, a UVFA module can be
decoupled into a state embedding φ(s) and a goal embedding
ψ(g), by applying the technique of matrix factorization to a
reward matrix describing the goal-conditional task.

One merit of UVFA resides in its transferrable embedding
φ(s) across tasks which only differ by goals. Another benefit is
its ability of continual learning when the set of goals keeps ex-
panding over time. On the other hand, a key challenge of UVFA is
that applying the matrix factorization is time-consuming, which
makes it a practical concern for complex environments with large
state space |S|. Even with the learned embedding networks, the
third stage of fine-tuning these networks via end-to-end training
is still necessary.

UVFA has been connected to SR by [67], in which a set of
independent rewards (tasks) themselves can be used as features
for state representations. Another extended work that combines
UVFA with SR is called Universal Successor Feature Approx-
imator (USFA), which is proposed by [130]. Following the
same linearity assumption, USFA is proposed as a function

over a triplet of the state, action, and a policy embedding
z: φ(s, a, z) : S ×A× Rk → Rd, where z is the output of a
policy-encoding mapping z = e(π) : S ×A → Rk. Based on
USFA, the Q-function of any policy π for a task specified by
w can be formularized as the product of a reward-agnostic
Universal Successor Feature (USF) ψ and a reward mapper w:
Q(s, a,w, z) = ψ(s, a, z)�w. Facilitated by the disentangled
rewards and policy generalization, [130] further introduced a
generalized TD-error as a function over tasks w and policy z,
which allows them to approximate theQ-function of any policy
on any task using a TD-algorithm.

3) Summary and Discussion: We provide a summary of the
discussed work in this section in Table V. Representation transfer
can facilitate TL in multiple ways based on assumptions about
certain task-invariant property. Some assume that tasks are dif-
ferent only in terms of their reward distributions. Other stronger
assumptions include (i) decoupled dynamics, rewards [110],
or policies [130] from the Q-function representations, and (ii)
the feasibility of defining tasks in terms of states [130]. Based
on those assumptions, approaches such as TD-algorithms [67]
or matrix-factorization [64] become applicable to learn such
disentangled representations. To further exploit the effectiveness
of disentangled structure, we consider that generalization ap-
proaches, which allow changing dynamics or state distributions,
are important future work that is worth more attention in this
domain.

Most discussed work in this section tackles multi-task RL
or meta-RL scenarios, hence the agent’s generalization ability
is extensively investigated. For instance, methods of modular
networks largely evaluated the zero-shot performance from the
meta-RL perspective [52], [130]. Given a fixed number of train-
ing epochs (pe), Transfer ratio (tr) is manifested differently
among these methods. It can be the relative performance of a
modular net architecture compared with a baseline, or the accu-
mulated return in modified target domains, where reward scores
are negated for evaluating the dynamics transfer. Performance
sensitivity (ps) is also broadly studied to estimate the robustness
of TL. [110] analyzed the performance sensitivity given varying
source tasks, while [130] studied the performance on different
unseen target domains.

There are unresolved questions in this intriguing research
topic. One is how to handle drastic changes of reward functions
between domains. As discussed in [131], good policies in one
MDP may perform poorly in another due to the fact that ben-
eficial states or actions in Ms may become detrimental in Mt

with totally different reward functions. Learning a set of basis
functions [67] to represent unseen tasks (reward functions), or
decoupling policies from Q-function representation [130] may
serve as a good start to address this issue, as they propose a
generalized latent space, from which different tasks (reward
functions) can be interpreted. However, the limitation of this
work is that it is not clear how many and what kind of sub-tasks
need to be learned to make the latent space generalizable enough.

Another question is how to generalize the representation
learning for TL across domains with different dynamics or
state-action spaces. A learned SR might not be transferrable to
an MDP with different transition dynamics, as the distribution

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 18,2024 at 15:01:17 UTC from IEEE Xplore.  Restrictions apply. 



ZHU et al.: TRANSFER LEARNING IN DEEP REINFORCEMENT LEARNING: A SURVEY 13357

TABLE V
A COMPARISON OF TL APPROACHES OF REPRESENTATION TRANSFER

of occupancy measure for SR may no longer hold. Potential
solutions may include model-based approaches that approxi-
mate the dynamics directly or training a latent representation
space for states using multiple tasks with different dynamics
for better generalization [132]. Alternatively, TL mechanisms
from the supervised learning domain, such as meta-learning,
which enables the ability of fast adaptation to new tasks [133],
or importance sampling [134], which can compensate for the
prior distribution changes [10], may also shed light on this
question.

VI. APPLICATIONS

In this section we summarize recent applications that are
closely related to using TL techniques for tackling RL domains.

Robotics Learning is a prominent application domain of
RL. TL approaches in this field include robotics learning from
demonstrations, where expert demonstrations from humans or
other robots are leveraged [135] Another is collaborative robotic
training [136], [137], in which knowledge from different robots
is transferred by sharing their policies and episodic demonstra-
tions. Recent research focus is this domain is fast and robust
adaptation to unseen tasks. One example towards this goal
is [138], in which robust robotics policies are trained using
synthetic demonstrations to handle dynamic environments. An-
other solution is to learn domain-invariant latent representations.
Examples include [139], which learns the latent representation
using 3D CAD models, and [140], [141] which are derived
based on the Generative-Adversarial Network. Another example
is DARLA [142], which is a zero-shot transfer approach to
learn disentangled representations that are robust against domain
shifts. We refer readers to [70], [143] for detailed surveys along
this direction.

Game Playing is a common test-bed for TL and RL algo-
rithms. It has evolved from classical benchmarks such as grid-
world games to more complex settings such as online-strategy
games or video games with multimodal inputs. One example is

AlphaGo, which is an algorithm for learning the online chess-
board games using both TL and RL techniques [90]. AlphaGo
is first pre-trained offline using expert demonstrations and then
learns to optimize its policy using Monte-Carlo Tree Search. Its
successor, AlphaGo Master [144], even beat the world’s first
ranked human player. TL-DRL approaches are also thriving
in video game playing. Especially, OpenAI has trained Dota2
agents that can surpass human experts [145]. State-of-the-art
platforms include MineCraft, Atari, and Starcraft. [146] de-
signed new RL benchmarks under the MineCraft platform. [147]
provided a comprehensive survey on DL applications in video
game playing, which also covers TL and RL strategies from
certain perspectives. A large portion of TL approaches reviewed
in this survey have been applied to the Atari platforms [148].

Natural Language Processing (NLP) has evolved rapidly
along with the advancement of DL and RL. Applications of RL
to NLP range widely, from Question Answering (QA) [149], Di-
alogue systems [150], Machine Translation [151], to an integra-
tion of NLP and Computer Vision tasks, such as Visual Question
Answering (VQA) [152], Image Caption [153], etc. Many NLP
applications have implicitly applied TL approaches. Examples
include learning from expert demonstrations for Spoken Dia-
logue Systems [154], VQA [152]; or reward shaping for Sequence
Generation [155], Spoken Dialogue Systems [80],QA [81],
[156], and Image Caption [153], or transferring policies for
Structured Prediction [157] and VQA [158].

Large Model Training: RL from human and model-assisted
feedback becomes indispensable in training large models
(LMM), such as GPT4 [159], Sparrow [160], PaLM [161],
LaMDA [162], which have shown tremendous breakthrough
in dialogue applications, search engine answer improvement,
artwork generation, etc. The TL method at the core of them
is using human preferences as a reward signal for model fine-
tuning, where the preference ranking itself is considered as
shaped rewards. We believe that TL with carefully crafted human
knowledge will help better align large models with human intent
and hence achieve trustworthy and de-biased AI.

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 18,2024 at 15:01:17 UTC from IEEE Xplore.  Restrictions apply. 



13358 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 11, NOVEMBER 2023

Health Informatics: RL has been applied to various healthcare
tasks [163], including automatic medical diagnosis [164], [165],
health resource scheduling [166], and drug discovery and devel-
opment, [167], [168], etc. Among these applications we observe
emerging trends of leveraging prior knowledge to improve the
RL procedure, especially given the difficulty of accessing large
amounts of clinical data. Specifically, [169] utilized Q-learning
for drug delivery individualization. They integrated the prior
knowledge of the dose-response characteristics into their Q-
learning framework to avoid random exploration. [170] applied
a DQN framework for prescribing effective HIV treatments,
in which they learned a latent representation to estimate the
uncertainty when transferring a pertained policy to the unseen
domains. [171] studied applying human-involved interactive
RL training for health informatics.

Others: RL has also been utilized in many other real-life
applications. Applications in the Transportation Systems have
adopted RL to address traffic congestion issues with better
traffic signal scheduling and transportation resource alloca-
tion [8], [9], [172], [173]. We refer readers to [174] for a
review along this line. Deep RL are also effective solutions to
problems in Finance, including portfolio management [175],
[176], asset allocation [177], and trading optimization [178].
Another application is the Electricity Systems, especially the
intelligent electricity networks, which can benefit from RL
techniques for improved power-delivery decisions [179], [180]
and active resource management [181]. [7] provides a de-
tailed survey of RL techniques for electric power system
applications.

VII. FUTURE PERSPECTIVES

In this section, we present some open challenges and future
directions in TL that are closely related to the DRL domain,
based on both retrospectives of the methods discussed in this
survey and outlooks to the emerging trends of AI.

Transfer Learning From Black-Box: Ranging from exterior
teacher demonstrations to pre-trained function approximators,
black-box resource is more accessible and predominant than
well-articulated knowledge. Therefore, leveraging such black-
box resource is indispensable for practical TL in DRL. One
of its main challenges resides in estimating the optimality of
black-box resource, which can be potentially noisy or biased.
We consider that efforts can be made from the following per-
spectives:

1) Inferring the reasoning mechanism inside the black-box.
Resemblant ideas have been explored in inverse RL and
model-based RL, where the goal is to approximate the
reward function or to learn the dynamics model under
which the demonstrated knowledge becomes reasonable.

2) Designing effective feedback schemes, including leverag-
ing domain-provided rewards, intrinsic reward feedback,
or using human preference as feedback.

3) Improving the interpretability of the transferred knowl-
edge [182], [183], which benefits in evaluating and ex-
plaining the process of TL from black-box. It can also al-
leviate catastrophic decision-making for high-stake tasks
such as auto-driving.

Knowledge Disentanglement and Fusion are both towards
better knowledge sharing across domains. Disentangling knowl-
edge is usually a prerequisite for efficient knowledge fusion,
which may involve external knowledge from multiple source
domains, with diverging qualities, presented in different modal-
ities, etc. Disentangling knowledge in RL can be interpreted
from different perspectives: i) disentangling the action, state,
or reward representations, as discussed in Sec V-E; 2) decom-
posing complex tasks into multiple skill snippets. The former
is an effective direction in tackling meta-RL and multi-task RL,
although some solutions hinge on strict assumptions of the prob-
lem setting, such as linear dependence among domain dynamics
or learning goals. The latter is relevant to hierarchical RL and
prototype learning from sequence data [184]. It is relatively less
discussed besides few pioneer research [132]. We believe that
this direction is worth more research efforts, which not only
benefits interpretable knowledge learning, but also aligns with
human perception.

Framework-Agnostic Knowledge Transfer: Most contempo-
rary TL approaches are designed for certain RL frameworks.
Some are applicable to RL algorithms designed for the discrete-
action space, while others may only be feasible given a con-
tinuous action space. One fundamental reason behind is the di-
versified development of RL algorithms. We expect that unified
RL frameworks would contribute to the standardization of TL
approaches in this field.

Evaluation and Benchmarking: Variant evaluation metrics
have been proposed to measure TL from different but comple-
mentary perspectives, although no single metric can summarize
the efficacy of a TL approach. Designing a set of generalized,
novel metrics is beneficial for the development of TL in DRL.
Moreover, with the effervescent development of large-scale
models, it is crucial to standardize evaluation from the perspec-
tives of ethics and groundedness. The appropriateness of the
transferred knowledge, such as potential stereotypes in human
preference, and the bias in the model itself should also be
quantified as metrics.

Knowledge Transfer to and From Pre-Trained Large Mod-
els: By the time of this survey being finalized, unprecedented
DL breakthroughs have been achieved in learning large-scale
models built on massive computation resource and attributed
data. One representative example is the Generative Pre-trained
Transformer (GPT) [159]. Considering them as complete knowl-
edge graphs whose training process maybe inaccessible, there
are more challenges in this direction besides learning from a
black-box, which are faced by a larger AI community including
the RL domain. We briefly point out two directions that are worth
ongoing attention:

1) Efficient model fine-tuning with knowledge distillation:
One important method for fine-tuning large models is RL
with human feedback, in which the quantity and quality
of human ratings are critical for realizing a good reward
model. We anticipate other forms of TL methods in RL
to be explored to further improve the efficiency of fine-
tuning, such as imitation learning with adversarial training
to achieve human-level performance.

2) Principled prompt-engineering for knowledge extraction:
More often the large model itself cannot be accessed,

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 18,2024 at 15:01:17 UTC from IEEE Xplore.  Restrictions apply. 



ZHU et al.: TRANSFER LEARNING IN DEEP REINFORCEMENT LEARNING: A SURVEY 13359

but only input and output of models are allowed. Such
inference based knowledge extraction requires delicate
prompt designs. Some efficacious efforts include design-
ing prompts with mini task examples as one-shot learning,
decomposing complex tasks into architectural, contextual
prompts. Prompt engineering is being proved an important
direction for effective knowledge extraction, which with
proper design, can largely benefit downstream tasks that
depend on large model resources.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[2] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “A
brief survey of deep reinforcement learning,” 2017, arXiv: 1708.05866.

[3] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of
deep visuomotor policies,” J. Mach. Learn. Res., vol. 17, pp. 1334–1373,
2016.

[4] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning
hand-eye coordination for robotic grasping with deep learning and large-
scale data collection,” Int. J. Robot. Res., vol. 37, pp. 421–436, 2018.

[5] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade
learning environment: An evaluation platform for general agents,” J. Artif.
Intell. Res., vol. 47, pp. 253–279, 2013.

[6] M. R. Kosorok and E. E. Moodie, Adaptive TreatmentStrategies in
Practice: Planning Trials and Analyzing Data for Personalized Medicine.
Philadelphia, PA, USA: SIAM, 2015.

[7] M. Glavic, R. Fonteneau, and D. Ernst, “Reinforcement learning for
electric power system decision and control: Past considerations and
perspectives,” IFAC-PapersOnLine, vol. 50, pp. 6918–6927, 2017.

[8] S. El-Tantawy, B. Abdulhai, and H. Abdelgawad, “Multiagent rein-
forcement learning for integrated network of adaptive traffic signal
controllers (MARLIN-ATSC): Methodology and large-scale application
on downtown toronto,” IEEE Trans. Intell. Transp. Syst., vol. 14, no. 3,
pp. 1140–1150, Sep. 2013.

[9] H. Wei, G. Zheng, H. Yao, and Z. Li, “Intellilight: A reinforcement
learning approach for intelligent traffic light control,” in Proc. ACM
SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2018, pp. 2496–2505.

[10] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans.
Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2009.

[11] M. E. Taylor and P. Stone, “Transfer learning for reinforcement learning
domains: A survey,” J. Mach. Learn. Res., vol. 10, pp. 1633–1685, 2009.

[12] A. Lazaric, Transfer in Reinforcement Learning: A Framework and a
Survey. Berlin, Germany: Springer, 2012.

[13] R. Bellman, “A Markovian decision process,” J. Math. Mechanics,
vol. 1957, pp. 679–684, 1957.

[14] M. G. Bellemare, W. Dabney, and R. Munos, “A distributional perspective
on reinforcement learning,” in Proc. Int. Conf. Mach. Learn., PMLR,
2017, pp. 449–458.

[15] M. Liu, M. Zhu, and W. Zhang, “Goal-conditioned reinforcement learn-
ing: Problems and solutions,” 2022, arXiv:2201.08299.

[16] C. Florensa, D. Held, X. Geng, and P. Abbeel, “Automatic goal generation
for reinforcement learning agents,” in Proc. Int. Conf. Mach. Learn.,
PMLR, 2018, pp. 1515–1528.

[17] Z. Xu and A. Tewari, “Reinforcement learning in factored MDPs:
Oracle-efficient algorithms and tighter regret bounds for the non-episodic
setting,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2020, pp. 18 226–18
236.

[18] C. Yu et al., “The surprising effectiveness of PPO in cooperative multi-
agent games,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2022, pp. 24
611–24 624.

[19] I. Kostrikov, K. K. Agrawal, D. Dwibedi, S. Levine, and J. Tompson,
“Discriminator-actor-critic: Addressing sample inefficiency and reward
bias in adversarial imitation learning,” 2018, arXiv: 1809.02925.

[20] G. A. Rummery and M. Niranjan, On-Line Q-Learning Using Con-
nectionist Systems. Cambridge, U.K.: Univ. Cambridge, Department of
Engineering Cambridge, 1994.

[21] H. Van Seijen, H. Van Hasselt, S. Whiteson, and M. Wiering, “A theo-
retical and empirical analysis of Expected Sarsa,” in Proc. IEEE Symp.
Adaptive Dynamic Program. Reinforcement Learn., 2009, pp. 177–184.

[22] V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” in Proc. Int. Conf.
Neural Inf. Process. Syst., 2000, pp. 1008–1014.

[23] V. Mnih et al., “Asynchronous methods for deep reinforcement learning,”
in Proc. Int. Conf. Mach. Learn., 2016, pp. 1928–1937.

[24] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in Proc. Int. Conf. Mach. Learn., 2018, pp. 1861–1870.

[25] C. J. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8,
pp. 279–292, 1992.

[26] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, pp. 529–533, 2015.

[27] M. Hessel, “Rainbow: Combining improvements in deep reinforce-
ment learning,” in Proc. Conf. Assoc. Advance. Artif. Intell., 2018,
pp. 3215–3222.

[28] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Mach. Learn., vol. 8, pp. 229–256,
1992.

[29] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in Proc. Int. Conf. Mach. Learn., 2015,
pp. 1889–1897.

[30] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” 2017, arXiv: 1707.06347.

[31] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in Proc. Int. Conf. Mach.
Learn., 2014, pp. 387–395.

[32] T. P. Lillicrap et al., “Continuous control with deep reinforcement learn-
ing,” 2015, arXiv:1509.02971.

[33] S. Fujimoto, H. Van Hoof, and D. Meger, “Addressing function approx-
imation error in actor-critic methods,” 2018, arXiv: 1802.09477.

[34] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural network
dynamics for model-based deep reinforcement learning with model-
free fine-tuning,” in Proc. IEEE Int. Conf. Robot. Automat., 2018,
pp. 7559–7566.

[35] Z. I. Botev, D. P. Kroese, R. Y. Rubinstein, and P. L’Ecuyer, “The cross-
entropy method for optimization,” in Handbook of Statistics, vol. 31.
Amsterdam, The Netherlands: Elsevier, 2013, pp. 35–59.

[36] K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep reinforcement
learning in a handful of trials using probabilistic dynamics models,” in
Proc. Int. Conf. Neural Inf. Process. Syst., 2018, pp. 4759–4770.

[37] R. S. Sutton, “Integrated architectures for learning, planning, and reacting
based on approximating dynamic programming,” in Proc. Conf. Mach.
Learn., Elsevier, 1990, pp. 216–224.

[38] V. Feinberg, A. Wan, I. Stoica, M. I. Jordan, J. E. Gonzalez, and S. Levine,
“Model-based value estimation for efficient model-free reinforcement
learning,” 2018, arXiv: 1803.00101.

[39] S. Levine and V. Koltun, “Guided policy search,” in Proc. Int. Conf. Mach.
Learn., PMLR, 2013, pp. 1–9.

[40] H. Bharadhwaj, K. Xie, and F. Shkurti, “Model-predictive control via
cross-entropy and gradient-based optimization,” in Proc. Learn. Dyn.
Control, PMLR, 2020, pp. 277–286.

[41] M. Deisenroth and C. E. Rasmussen, “PILCO: A model-based and data-
efficient approach to policy search,” in Proc. 28th Int. Conf. Mach. Learn.,
2011, pp. 465–472.

[42] Y. Gal, R. McAllister, and C. E. Rasmussen, “Improving PILCO with
Bayesian neural network dynamics models,” in Proc. Data-efficient
Mach. Learn. Workshop, 2016, Art. no. 25.

[43] C. H. Lampert, H. Nickisch, and S. Harmeling, “Learning to detect unseen
object classes by between-class attribute transfer,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2009, pp. 951–958.

[44] P. Dayan and G. E. Hinton, “Feudal reinforcement learning,” in Proc. Int.
Conf. Neural Inf. Process. Syst., 1993, pp. 271–278.

[45] R. S. Sutton, D. Precup, and S. Singh, “Between MDPs and semi-MDPs:
A framework for temporal abstraction in reinforcement learning,” Artif.
Intell., vol. 112, pp. 181–211, 1999.

[46] R. Parr and S. J. Russell, “Reinforcement learning with hierarchies
of machines,” in Proc. Int. Conf. Neural Inf. Process. Syst., 1998,
pp. 1043–1049.

[47] T. G. Dietterich, “Hierarchical reinforcement learning with the MAXQ
value function decomposition,” J. Artif. Intell. Res., vol. 13, pp. 227–303,
2000.

[48] A. Lazaric and M. Ghavamzadeh, “Bayesian multi-task reinforcement
learning,” in Proc. 27th Int. Conf. Mach. Learn., Omnipress, 2010,
pp. 599–606.

[49] Y. Zhang and Q. Yang, “A survey on multi-task learning,” IEEE Trans.
Knowl. Data Eng., vol. 34, no. 12, pp. 5586–5609, Dec. 2022.

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 18,2024 at 15:01:17 UTC from IEEE Xplore.  Restrictions apply. 



13360 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 11, NOVEMBER 2023

[50] Y. Teh et al., “Distral: Robust multitask reinforcement learning,” in Proc.
Int. Conf. Neural Inf. Process. Syst., 2017, pp. 4499–4509.

[51] E. Parisotto, J. L. Ba, and R. Salakhutdinov, “Actor-mimic: Deep mul-
titask and transfer reinforcement learning,” in Proc. Int. Conf. Learn.
Representations, 2016.

[52] C. Devin, A. Gupta, T. Darrell, P. Abbeel, and S. Levine, “Learn-
ing modular neural network policies for multi-task and multi-
robot transfer,” in Proc. IEEE Int. Conf. Robot. Automat., 2017,
pp. 2169–2176.

[53] J. Andreas, D. Klein, and S. Levine, “Modular multitask reinforcement
learning with policy sketches,” in Proc. Int. Conf. Mach. Learn., 2017,
pp. 166–175.

[54] R. Yang, H. Xu, Y. Wu, and X. Wang, “Multi-task reinforcement learning
with soft modularization,” in Proc. Int. Conf. Neural Inf. Process. Syst.,
2020, pp. 4767–4777.

[55] T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey, “Meta-learning
in neural networks: A survey,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 44, no. 9, pp. 5149–5169, Sep. 2022.

[56] Z. Jia, X. Li, Z. Ling, S. Liu, Y. Wu, and H. Su, “Improving policy op-
timization with generalist-specialist learning,” in Proc. Int. Conf. Mach.
Learn., PMLR, 2022, pp. 10 104–10 119.

[57] W. Ding, H. Lin, B. Li, and D. Zhao, “Generalizing goal-
conditioned reinforcement learning with variational causal reasoning,”
2022, arXiv:2207.09081.

[58] R. Kirk, A. Zhang, E. Grefenstette, and T. Rocktäschel, “A survey of
zero-shot generalisation in deep reinforcement learning,” J. Artif. Intell.
Res., vol. 76, pp. 201–264, 2023.

[59] B. Kim, A.-M. Farahmand, J. Pineau, and D. Precup, “Learning from
limited demonstrations,” in Proc. Int. Conf. Neural Inf. Process. Syst.,
2013, pp. 2859–2867.

[60] W. Czarnecki et al., “Distilling policy distillation,” in Proc. 22nd Int.
Conf. Artif. Intell. Statist., 2019, pp. 1331–1340.

[61] A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under reward
transformations: Theory and application to reward shaping,” in Proc. Int.
Conf. Mach. Learn., 1999, pp. 278–287.

[62] I. Goodfellow et al., “Generative adversarial nets,” in Proc. Int. Conf.
Neural Inf. Process. Syst., 2014, pp. 2672–2680.

[63] Z. Zhu, K. Lin, B. Dai, and J. Zhou, “Learning sparse rewarded tasks
from sub-optimal demonstrations,” 2020, arXiv: 2004.00530.

[64] T. Schaul, D. Horgan, K. Gregor, and D. Silver, “Universal value function
approximators,” in Proc. Int. Conf. Mach. Learn., 2015, pp. 1312–1320.

[65] C. Finn and S. Levine, “Meta-learning: From few-shot learning to rapid
reinforcement learning,” in Proc. Int. Conf. Mach. Learn., 2019.

[66] M. E. Taylor, P. Stone, and Y. Liu, “Transfer learning via inter-task
mappings for temporal difference learning,” J. Mach. Learn. Res., vol. 8,
pp. 2125–2167, 2007.

[67] A. Barreto et al., “Transfer in deep reinforcement learning using successor
features and generalised policy improvement,” in Proc. Int. Conf. Mach.
Learn., 2018, pp. 501–510.

[68] Z. Zhu, K. Lin, B. Dai, and J. Zhou, “Off-policy imitation learning
from observations,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2020,
pp. 12402–12413.

[69] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in Proc.
Int. Conf. Neural Inf. Process. Syst., 2016, pp. 4572–4580.

[70] W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-real transfer in deep
reinforcement learning for robotics: A survey,” in Proc. IEEE Symp. Ser.
Comput. Intell., 2020, pp. 737–744.

[71] M. Muller-Brockhausen, M. Preuss, and A. Plaat, “Procedural content
generation: Better benchmarks for transfer reinforcement learning,” in
Proc. IEEE Conf. Games, 2021, pp. 01–08.

[72] N. Vithayathil Varghese and Q. H. Mahmoud, “A survey of multi-
task deep reinforcement learning,” Electronics, vol. 9, no. 9, 2020,
Art. no. 1363.

[73] R. J. Williams and L. C. Baird, “Tight performance bounds on greedy
policies based on imperfect value functions,” Northeastern Univ., College
Comput. Sci., Boston, MA, Tech. Rep. NU-CCS-93-14, 1993.

[74] E. Wiewiora, G. W. Cottrell, and C. Elkan, “Principled methods for
advising reinforcement learning agents,” in Proc. Int. Conf. Mach. Learn.,
2003, pp. 792–799.

[75] S. M. Devlin and D. Kudenko, “Dynamic potential-based reward
shaping,” in Proc. Int. Conf. Auton. Agents Multiagent Syst., 2012,
pp. 433–440.

[76] A. Harutyunyan, S. Devlin, P. Vrancx, and A. Nowé, “Expressing arbi-
trary reward functions as potential-based advice,” in Proc. Conf. Assoc.
Advance. Artif. Intell., 2015, pp. 2652–2658.

[77] T. Brys, A. Harutyunyan, M. E. Taylor, and A. Nowé, “Policy transfer
using reward shaping,” in Proc. Int. Conf. Anal. Appl. Math., 2015,
pp. 181–188.

[78] M. Večerík et al., “Leveraging demonstrations for deep reinforce-
ment learning on robotics problems with sparse rewards,” 2017, arXiv:
1707.08817.

[79] A. C. Tenorio-Gonzalez, E. F. Morales, and L. Villasenor-Pineda, “Dy-
namic reward shaping: Training a robot by voice,” in Proc. Adv. Artif.
Intell., 2010, pp. 483–492.

[80] P.-H. Su, D. Vandyke, M. Gasic, N. Mrksic, T.-H. Wen, and S. Young,
“Reward shaping with recurrent neural networks for speeding up on-line
policy learning in spoken dialogue systems,” 2015, arXiv:1508.03391.

[81] X. V. Lin, R. Socher, and C. Xiong, “Multi-hop knowledge graph rea-
soning with reward shaping,” 2018, arXiv: 1808.10568.

[82] S. Devlin, L. Yliniemi, D. Kudenko, and K. Tumer, “Potential-based
difference rewards for multiagent reinforcement learning,” in Proc. Int.
Conf. Anal. Appl. Math., 2014, pp. 165–172.

[83] M. Grzes and D. Kudenko, “Learning shaping rewards in model-based
reinforcement learning,” in Proc. AAMAS Workshop Adaptive Learn.
Agents, 2009, Art. no. 30.

[84] O. Marom and B. Rosman, “Belief reward shaping in reinforcement learn-
ing,” in Proc. Conf. Assoc. Advance. Artif. Intell., 2018, pp. 3762–3769.

[85] F. Liu, Z. Ling, T. Mu, and H. Su, “State alignment-based imitation
learning,” 2019, arXiv: 1911.10947.

[86] K. Kim, Y. Gu, J. Song, S. Zhao, and S. Ermon, “Domain adaptive imi-
tation learning,” in Proc. Int. Conf. Mach. Learn., 2020, pp. 5286–5295.

[87] Y. Ma, Y.-X. Wang, and B. Narayanaswamy, “Imitation-regularized
offline learning,” in Proc. Int. Conf. Artif. Intell. Statist., 2019,
pp. 2956–2965.

[88] M. Yang and O. Nachum, “Representation matters: Offline pretraining
for sequential decision making,” 2021, arXiv:2102.05815.

[89] X. Zhang and H. Ma, “Pretraining deep actor-critic reinforcement learn-
ing algorithms with expert demonstrations,” 2018, arXiv: 1801.10459.

[90] D. Silver et al., “Mastering the game of Go with deep neural networks
and tree search,” Nature, vol. 529, pp. 484–489, 2016.

[91] S. Schaal, “Learning from demonstration,” in Proc. Int. Conf. Neural Inf.
Process. Syst., 1997, pp. 1040–1046.

[92] T. Hester et al., “Deep Q-learning from demonstrations,” in Proc. Conf.
Assoc. Advance. Artif. Intell., 2018, pp. 3223–3230.

[93] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P.
Abbeel, “Overcoming exploration in reinforcement learning with
demonstrations,” in Proc. IEEE Int. Conf. Robot. Automat., 2018,
pp. 6292–6299.

[94] J. Chemali and A. Lazaric, “Direct policy iteration with demonstrations,”
in Proc. Int. Joint Conf. Artif. Intell., 2015, pp. 3380–3386.

[95] B. Piot, M. Geist, and O. Pietquin, “Boosted Bellman residual minimiza-
tion handling expert demonstrations,” in Proc. Joint Eur. Conf. Mach.
Learn. Knowl. Discov. Databases, 2014, pp. 549–564.

[96] T. Brys, A. Harutyunyan, H. B. Suay, S. Chernova, M. E. Taylor, and A.
Nowé, “Reinforcement learning from demonstration through shaping,”
in Proc. Int. Joint Conf. Artif. Intell., 2015, pp. 3352–3358.

[97] B. Kang, Z. Jie, and J. Feng, “Policy optimization with demonstrations,”
in Proc. Int. Conf. Mach. Learn., 2018, pp. 2469–2478.

[98] D. P. Bertsekas, “Approximate policy iteration: A survey and some new
methods,” J. Control Theory Appl., vol. 9, pp. 310–335, 2011.

[99] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” in Proc. Int. Conf. Learn. Representations, 2016.

[100] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proc. Int. Conf.
Artif. Intell. Statist., 2011, pp. 627–635.

[101] Y. Gao et al., “Reinforcement learning from imperfect demonstrations,”
2018, arXiv: 1802.05313.

[102] M. Jing et al., “Reinforcement learning from imperfect demonstrations
under soft expert guidance,” in Proc. Conf. Assoc. Advance. Artif. Intell.,
2020, pp. 5109–5116.

[103] K. Brantley, W. Sun, and M. Henaff, “Disagreement-regularized imitation
learning,” in Proc. Int. Conf. Learn. Representations, 2019.

[104] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” in Proc. Deep Learn. Representation Learn. Workshop, 2014.

[105] A. A. Rusu, “Policy distillation,” 2015, arXiv:1511.06295.
[106] H. Yin and S. J. Pan, “Knowledge transfer for deep reinforcement learning

with hierarchical experience replay,” in Proc. Conf. Assoc. Advance. Artif.
Intell., 2017, pp. 1640–1646.

[107] S. Schmitt et al., “Kickstarting deep reinforcement learning,”
2018, arXiv: 1803.03835.

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 18,2024 at 15:01:17 UTC from IEEE Xplore.  Restrictions apply. 



ZHU et al.: TRANSFER LEARNING IN DEEP REINFORCEMENT LEARNING: A SURVEY 13361

[108] J. Schulman, X. Chen, and P. Abbeel, “Equivalence between policy
gradients and soft Q-learning,” 2017, arXiv: 1704.06440.

[109] F. Fernández and M. Veloso, “Probabilistic policy reuse in a reinforce-
ment learning agent,” in Proc. 5th Int. Joint Conf. Auton. Agents Multia-
gent Syst., 2006, pp. 720–727.

[110] A. Barreto et al., “Successor features for transfer in reinforcement learn-
ing,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2017, pp. 4058–4068.

[111] R. Bellman, “Dynamic programming,” Science, vol. 153, pp. 34–37,
1966.

[112] L. Torrey, T. Walker, J. Shavlik, and R. Maclin, “Using advice to transfer
knowledge acquired in one reinforcement learning task to another,” in
Proc. Eur. Conf. Mach. Learn., 2005, pp. 412–424.

[113] A. Gupta, C. Devin, Y. Liu, P. Abbeel, and S. Levine, “Learning invariant
feature spaces to transfer skills with reinforcement learning,” in Proc. Int.
Conf. Learn. Representations, 2017.

[114] G. Konidaris and A. Barto, “Autonomous shaping: Knowledge transfer
in reinforcement learning,” in Proc. Int. Conf. Mach. Learn., 2006,
pp. 489–496.

[115] H. B. Ammar and M. E. Taylor, “Reinforcement learning transfer via
common subspaces,” in Proc. 11th Int. Conf. Adaptive Learn. Agents,
2012, pp. 21–36.

[116] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A deep con-
volutional encoder-decoder architecture for image segmentation,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 2481–2495,
Dec. 2017.

[117] C. Wang and S. Mahadevan, “Manifold alignment without correspon-
dence,” in Proc. Int. Joint Conf. on Artif. Intell., 2009, Art. no. 3.

[118] B. Bocsi, L. Csató, and J. Peters, “Alignment-based transfer learning for
robot models,” in Proc. Int. Joint Conf. Neural Netw., 2013, pp. 1–7.

[119] H. B. Ammar, E. Eaton, P. Ruvolo, and M. E. Taylor, “Unsupervised
cross-domain transfer in policy gradient reinforcement learning via man-
ifold alignment,” in Proc. Conf. Assoc. Advance. Artif. Intell., 2015,
pp. 2504–2510.

[120] H. B. Ammar, K. Tuyls, M. E. Taylor, K. Driessens, and G. Weiss,
“Reinforcement learning transfer via sparse coding,” in Proc. Int. Conf.
Anal. Appl. Math., 2012, pp. 383–390.

[121] A. Lazaric, M. Restelli, and A. Bonarini, “Transfer of samples in
batch reinforcement learning,” in Proc. Int. Conf. Mach. Learn., 2008,
pp. 544–551.

[122] A. A. Rusu et al., “Progressive neural networks,” 2016,
arXiv:1606.04671.

[123] C. Fernando, “Pathnet: Evolution channels gradient descent in super
neural networks,” 2017, arXiv: 1701.08734.

[124] I. Harvey, “The microbial genetic algorithm,” in Proc. Eur. Conf. Artif.
Life, 2009, pp. 126–133.

[125] A. Zhang, H. Satija, and J. Pineau, “Decoupling dynamics and reward
for transfer learning,” 2018, arXiv: 1804.10689.

[126] P. Dayan, “Improving generalization for temporal difference learn-
ing: The successor representation,” Neural Comput., vol. 5, no. 4,
pp. 613–624, Jul. 1993.

[127] T. D. Kulkarni, A. Saeedi, S. Gautam, and S. J. Gershman, “Deep
successor reinforcement learning,” 2016, arXiv:1606.02396.

[128] J. Zhang, J. T. Springenberg, J. Boedecker, and W. Burgard, “Deep
reinforcement learning with successor features for navigation across
similar environments,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
2017, pp. 2371–2378.

[129] N. Mehta, S. Natarajan, P. Tadepalli, and A. Fern, “Transfer in variable-
reward hierarchical reinforcement learning,” Mach. Learn., vol. 73,
pp. 289–312, 2008.

[130] D. Borsa et al., “Universal successor features approximators,” in Proc.
Int. Conf. Learn. Representations, 2019.

[131] L. Lehnert, S. Tellex, and M. L. Littman, “Advantages and limitations
of using successor features for transfer in reinforcement learning,”
2017, arXiv: 1708.00102.

[132] J. C. Petangoda, S. Pascual-Diaz, V. Adam, P. Vrancx, and J. Grau-
Moya, “Disentangled skill embeddings for reinforcement learning,”
2019, arXiv: 1906.09223.

[133] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” in Proc. Int. Conf. Mach. Learn., 2017,
pp. 1126–1135.

[134] B. Zadrozny, “Learning and evaluating classifiers under sample selection
bias,” in Proc. Int. Conf. Mach. Learn., 2004, Art. no. 114.

[135] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robot. Auton. Syst., vol. 57,
pp. 469–483, 2009.

[136] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, “A survey of research on
cloud robotics and automation,” IEEE Trans. Automat. Sci. Eng., vol. 12,
no. 2, pp. 398–409, Apr. 2015.

[137] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learning
for robotic manipulation with asynchronous off-policy updates,” in Proc.
IEEE Int. Conf. Robot. Automat., 2017, pp. 3389–3396.

[138] W. Yu, J. Tan, C. K. Liu, and G. Turk, “Preparing for the unknown: Learn-
ing a universal policy with online system identification,” 2017, arXiv:
1702.02453.

[139] F. Sadeghi and S. Levine, “CAD2RL: Real single-image flight without a
single real image,” 2016, arXiv:1611.04201.

[140] K. Bousmalis et al., “Using simulation and domain adaptation to improve
efficiency of deep robotic grasping,” in Proc. IEEE Int. Conf. Robot.
Automat., 2018, pp. 4243–4250.

[141] H. Bharadhwaj, Z. Wang, Y. Bengio, and L. Paull, “A data-efficient
framework for training and sim-to-real transfer of navigation policies,”
in Proc. Int. Conf. Robot. Automat., 2019, pp. 782–788.

[142] I. Higgins et al., “DARLA: Improving zero-shot transfer in reinforcement
learning,” in Proc. Int. Conf. Mach. Learn., 2017, pp. 1480–1490.

[143] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics:
A survey,” Int. J. Robot. Res., vol. 32, pp. 1238–1274, 2013.

[144] D. Silver et al., “Mastering the game of Go without human knowledge,”
Nature, vol. 550, pp. 354–359, 2017.

[145] OpenAI, Dotal2 blog, 2019. [Online]. Available: https://openai.com/
blog/openai-five/

[146] J. Oh, V. Chockalingam, S. Singh, and H. Lee, “Control of memory, active
perception, and action in Minecraft,” 2016, arXiv:1605.09128.

[147] N. Justesen, P. Bontrager, J. Togelius, and S. Risi, “Deep learning for
video game playing,” IEEE Trans. Games, vol. 12, no. 1, pp. 1–20,
Mar. 2020.

[148] V. Mnih et al., “Playing Atari with deep reinforcement learning,”
2013, arXiv:1312.5602.

[149] H. Chen, X. Liu, D. Yin, and J. Tang, “A survey on dialogue systems: Re-
cent advances and new frontiers,” ACM SIGKDD Explorations Newslett.,
vol. 19, pp. 25–35, 2017.

[150] S. P. Singh, M. J. Kearns, D. J. Litman, and M. A. Walker, “Reinforcement
learning for spoken dialogue systems,” in Proc. Int. Conf. Neural Inf.
Process. Syst., 2000, pp. 956–962.

[151] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” 2016, arXiv:1611.01578.

[152] R. Hu, J. Andreas, M. Rohrbach, T. Darrell, and K. Saenko, “Learning
to reason: End-to-end module networks for visual question answering,”
in Proc. IEEE Int. Conf. Comput. Vis., 2017, pp. 804–813.

[153] Z. Ren, X. Wang, N. Zhang, X. Lv, and L.-J. Li, “Deep reinforcement
learning-based image captioning with embedding reward,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2017, pp. 1151–1159.

[154] J. Andreas, M. Rohrbach, T. Darrell, and D. Klein, “Learning to compose
neural networks for question answering,” 2016, arXiv:1601.01705.

[155] D. Bahdanau et al., “An actor-critic algorithm for sequence prediction,”
2016, arXiv:1607.07086.

[156] F. Godin, A. Kumar, and A. Mittal, “Learning when not to answer: A
ternary reward structure for reinforcement learning based question an-
swering,” in Proc. Conf. North Amer. Chapter Assoc. Comput. Linguistics
Hum. Lang. Technol., 2019, pp. 122–129.

[157] K.-W. Chang, A. Krishnamurthy, A. Agarwal, J. Langford, and H. Daumé
III, “Learning to search better than your teacher,” in Proc. Int. Conf. Mach.
Learn., 2015, pp. 2058–2066.

[158] J. Lu, A. Kannan, J. Yang, D. Parikh, and D. Batra, “Best of both worlds:
Transferring knowledge from discriminative learning to a generative
visual dialog model,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2017,
pp. 313–323.

[159] “GPT-4 technical report,” 2023, arXiv:2303.08774.
[160] A. Glaese et al., “Improving alignment of dialogue agents via targeted

human judgements,” 2022, arXiv:2209.14375.
[161] A. Chowdhery et al., “PaLM: Scaling language modeling with pathways,”

2022, arXiv:2204.02311.
[162] R. Thoppilan et al., “LaMDA: Language models for dialog applications,”

2022, arXiv:2201.08239.
[163] C. Yu, J. Liu, and S. Nemati, “Reinforcement learning in healthcare: A

survey,” 2019, arXiv: 1908.08796.
[164] A. Alansary et al., “Evaluating reinforcement learning agents for anatom-

ical landmark detection,” Med. Image Anal., vol. 53, pp. 156–164, 2019.
[165] K. Ma et al., “Multimodal image registration with deep context reinforce-

ment learning,” in Proc. Int. Conf. Med. Image Comput. Comput.-Assist.
Intervention, 2017, pp. 240–248.

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 18,2024 at 15:01:17 UTC from IEEE Xplore.  Restrictions apply. 

https://openai.com/blog/openai-five/
https://openai.com/blog/openai-five/


13362 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 11, NOVEMBER 2023

[166] T. T. Gomes, “Reinforcement learning for primary care e appointment
scheduling,” 2017.

[167] A. Serrano, B. Imbernón, H. Pérez-Sánchez, J. M. Cecilia, A. Bueno-
Crespo, and J. L. Abellán, “Accelerating drugs discovery with deep
reinforcement learning: An early approach,” in Proc. Int. Conf. Parallel
Process. Companion, 2018, pp. 1–8.

[168] M. Popova, O. Isayev, and A. Tropsha, “Deep reinforcement learning for
de novo drug design,” Sci. Adv., vol. 4, 2018, Art. no. eaap7885.

[169] A. E. Gaweda, M. K. Muezzinoglu, G. R. Aronoff, A. A. Jacobs, J. M.
Zurada, and M. E. Brier, “Incorporating prior knowledge into Q-learning
for drug delivery individualization,” in Proc. 4th Int. Conf. Mach. Learn.
Appl., 2005, pp. 207–214.

[170] T. W. Killian, S. Daulton, G. Konidaris, and F. Doshi-Velez, “Robust
and efficient transfer learning with hidden parameter Markov deci-
sion processes,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2017,
pp. 6251–6262.

[171] A. Holzinger, “Interactive machine learning for health informatics: When
do we need the human-in-the-loop?,” Brain Inform., vol. 3, pp. 119–131,
2016.

[172] L. Li, Y. Lv, and F.-Y. Wang, “Traffic signal timing via deep reinforcement
learning,” IEEE/CAA J. Automatica Sinica, vol. 3, no. 3, pp. 247–254,
Jul. 2016.

[173] K. Lin, R. Zhao, Z. Xu, and J. Zhou, “Efficient large-scale fleet man-
agement via multi-agent deep reinforcement learning,” in Proc. ACM
SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2018, pp. 1774–1783.

[174] K.-L. A. Yau, J. Qadir, H. L. Khoo, M. H. Ling, and P. Komisarczuk,
“A survey on reinforcement learning models and algorithms for traffic
signal control,” ACM Comput. Surv., vol. 50, pp. 1–38, 2017.

[175] J. Moody, L. Wu, Y. Liao, and M. Saffell, “Performance functions and re-
inforcement learning for trading systems and portfolios,” J. Forecasting,
vol. 17, pp. 441–470, 1998.

[176] Z. Jiang and J. Liang, “Cryptocurrency portfolio management with
deep reinforcement learning,” in Proc. IEEE Intell. Syst. Conf., 2017,
pp. 905–913.

[177] R. Neuneier, “Enhancing Q-learning for optimal asset allocation,” in
Proc. Int. Conf. Neural Inf. Process. Syst., 1998, pp. 936–942.

[178] Y. Deng, F. Bao, Y. Kong, Z. Ren, and Q. Dai, “Deep direct reinforcement
learning for financial signal representation and trading,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 28, no. 3, pp. 653–664, Mar. 2017.

[179] G. Dalal, E. Gilboa, and S. Mannor, “Hierarchical decision making in
electricity grid management,” in Proc. Int. Conf. Mach. Learn., 2016,
pp. 2197–2206.

[180] F. Ruelens, B. J. Claessens, S. Vandael, B. De Schutter, R. Babuška, and
R. Belmans, “Residential demand response of thermostatically controlled
loads using batch reinforcement learning,” IEEE Trans. Smart Grid,
vol. 8, no. 5, pp. 2149–2159, Sep. 2017.

[181] Z. Wen, D. O’Neill, and H. Maei, “Optimal demand response using
device-based reinforcement learning,” IEEE Trans. Smart Grid, vol. 6,
no. 5, pp. 2312–2324, Sep. 2015.

[182] Y. Li, J. Song, and S. Ermon, “InfoGAIL: Interpretable imitation learning
from visual demonstrations,” in Proc. Int. Conf. Neural Inf. Process. Syst.,
2017, pp. 3815–3825.

[183] R. Ramakrishnan and J. Shah, “Towards interpretable explanations for
transfer learning in sequential tasks,” in Proc. AAAI Spring Symp. Ser.,
2016.

[184] E. Choi, M. T. Bahadori, J. Sun, J. Kulas, A. Schuetz, and W. Stewart,
“RETAIN: An interpretable predictive model for healthcare using reverse
time attention mechanism,” in Proc. Int. Conf. Neural Inf. Process. Syst.,
2016, pp. 3512–3520.

Zhuangdi Zhu received the PhD degree from the
Computer Science department of Michigan State Uni-
versity. She is currently a senior data and applied sci-
entist with Microsoft. She has regularly published on
prestigious machine learning conferences including
NeurIPs, ICML, KDD, AAAI, etc. Her research inter-
ests reside in both fundamental and applied machine
learning. Her current research involves reinforcement
learning and distributed machine learning.

Kaixiang Lin received the PhD degree from Michi-
gan State University. He is an applied scientist with
Amazon web services. He has broad research inter-
ests across multiple fields, including reinforcement
learning, human-robot interactions, and natural lan-
guage processing. His research has been published on
multiple top-tiered machine learning and data mining
conferences, such as ICLR, KDD, NeurIPS, etc. He
serves as a reviewer for top machine learning confer-
ences regularly.

Anil K. Jain is a University distinguished professor
with the Department of Computer Science and En-
gineering, Michigan State University. His research
interests include pattern recognition and biometric
authentication. He served as the editor-in-chief of
IEEE Transactions on Pattern Analysis and Machine
Intelligence and was a member of the United States
Defense Science Board. He has received Fulbright,
Guggenheim, Alexander von Humboldt, and IAPR
King Sun Fu awards. He is a member of the National
Academy of Engineering and a foreign fellow of the

Indian National Academy of Engineering and the Chinese Academy of Sciences.

Jiayu Zhou (Member, IEEE) received the PhD de-
gree in computer science from Arizona State Univer-
sity in 2014. He is an associate professor with the
Department of Computer Science and Engineering,
Michigan State University. He has broad research
interests in the fields of large-scale machine learning
and data mining as well as biomedical informatics. He
has served as a technical program committee member
for premier conferences, such as NIPS, ICML, and
SIGKDD. His papers have received the Best Student
Paper Award at the 2014 IEEE International Con-

ference on Data Mining (ICDM), the Best Student Paper Award at the 2016
International Symposium on Biomedical Imaging (ISBI) and the Best Paper
Award at IEEE Big Data 2016.

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 18,2024 at 15:01:17 UTC from IEEE Xplore.  Restrictions apply. 


