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BPS INVARIANTS OF SYMPLECTIC LOG CALABI-YAU

FOURFOLDS

MOHAMMAD FARAJZADEH-TEHRANI

Abstract. Using the Fredholm setup of Farajzadeh-Tehrani [Peking Math.
J. (2023), https://doi.org/10.1007/s42543-023-00069-1], we study genus
zero (and higher) relative Gromov-Witten invariants with maximum tangency
of symplectic log Calabi-Yau fourfolds. In particular, we give a short proof
of Gross [Duke Math. J. 153 (2010), pp. 297–362, Cnj. 6.2] that expresses
these invariants in terms of certain integral invariants by considering generic
almost complex structures to obtain a geometric count. We also revisit the
localization calculation of the multiple-cover contributions in Gross [Prp. 6.1]
and recalculate a few terms differently to provide more details and illustrate
the computation of deformation/obstruction spaces for maps that have com-
ponents in a destabilizing (or rubber) component of the target. Finally, we
study a higher genus version of these invariants and explain a decomposition
of genus one invariants into different contributions.
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1. Introduction

1.1. Notation and setup. Suppose (X,ω) is a smooth closed symplectic manifold,
D⊂X is a smooth symplectic divisor, and J is an ω-tame almost complex structure
on X preserving TD (i.e., JTD = TD). Then, for every genus g J-holomorphic
map u :Σ−→X with a smooth domain that is not mapped into D and represents
the homology class A∈H2(X,Z), there is a finite (possibly empty) set of positive
integers

s ≡ (s1, . . . , sk) ∈ Zk
+,

k∑

i=1

si = A ·D ≥ 0,

such that u−1(D)={z1, . . . , zk}⊂Σ and u has a well-defined tangency of order sa
at za with D as in the holomorphic case. We usually require za to be (ordered)
marked points on Σ. Furthermore, we may consider extra classical marked points
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za on Σ and define sa = 0 for them. Then, u−1(D)⊂{z1, . . . , zk} and s ∈ Nk. This
way, we do not need to distinguish between the classical and contact marked points
as each non-negative integer sa determines the type of the marked point za.
Two marked J-holomorphic maps

(
u,C ≡ (Σ, z1, . . . , zk))

)
and

(
u′, C ′ ≡ (Σ′, z′1, . . . , z

′
k)
)

are equivalent if there exists a holomorphic identification h : C
∼=
−→ C ′ of the marked

domains C and C ′ such that u = u′◦h. Following the terminology of [12], we denote
the space of the equivalence classes of k-marked genus g J-holomorphic maps of
contact type s with D by Mg,s(X,D,A). Note that Mg,s(X,D,A) is simply the
virtually-main open stratum of a suitable compactification that will be described in
Section 3.2. By [13, (1.7)], the real expected dimension of Mg,s(X,D,A) is

(1.1) 2
(
〈c1(TX(− logD)), A〉+ (1− g)(dimC X − 3) + k

)
,

where TX(− logD) is the logarithmic tangent bundle constructed in [15]. In Sec-
tion 2, we will review the construction and properties of the logarithmic tangent
bundle TX(− logD).
This paper concerns the case where c1(TX(− logD)) = 0, dimC X = 2, and k = 1.
Consequently, by (1.1), dimC Mg,s(X,D,A) = g. The focal point of this pa-
per, as articulated in Theorems 1.5 and 1.7, concerns genus zero curves where
dimC M0,s(X,D,A) = 0. Notably, integer invariants are derived by enumerating
the elements of M0,s(X,D,A) where s = (s1 = A ·D).

Remark 1.1. For any finite set S, with s ∈ (NS)k instead of Nk, the definition of
the moduli space Mg,s(X,D,A) above and the formula (1.1) naturally extend to
the case where D =

⋃
i∈S Di is a simple normal crossings symplectic divisor in the

sense of [14, Dfn. 2]; see [12]. However, the classical relative compactification does
not generalize easily. There are different approaches in the algebraic and symplectic
categories to construct a well-behaved compact moduli space; for instance see [8,9,
12, 25, 28, 36, 39].

Definition 1.2. We say

•
[
u,Σ, (z1, . . . , zk)

]
∈ Mg,s(X,D,A) has maximal tangency with D if

s1=sA≡ A ·D>0 (and si = 0 ∀i > 1);

• ((X,ω), D) is a symplectic log Calabi-Yau pair if

(1.2) c1(TX(− logD)) = c1(TX)− PDX(D) = 0,

where PDX(D)∈H2(X,Z) is the Poincare dual of D in X;
• ((X,ω), D) is a symplectic log Calabi-Yau (or CY) fourfold if dimR X=4.

Let Symplog(X,D) denote the space of symplectic structures ω on X such that D
is a symplectic submanifold and ((X,ω), D) is a symplectic log CY pair. To drop ω

from the notation, we say (X,D) is a symplectic log CY pair if Symplog(X,D) += ∅.
It is worth noting that if (X,D) is a symplectic log CY fourfold, by (1.2) and the
adjunction formula, D will be a symplectic 2-torus.
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1.2. Integrality conjecture. As mentioned after (1.1), for the main result of this
paper, we are interested in the case where (X,D) is a symplectic log Calabi-Yau
fourfold, Σ has genus 0 (i.e., Σ=P1) and one marked point z1, and u has maximal
tangency of order sA with D at z1. In this case dimM0,(sA)(X,D,A) = 0 and
we study the rational invariants NA ≡ N0,A arising from the so-called relative

compactification M
rel

0,(sA)(X,D,A) of M0,(sA)(X,D,A). Furthermore, for g > 0,
in Section 4, we study an invariant Ng,A arising from the integration of the degree

2g “Hodge class” λg against the “virtual fundamental class” of M
rel

g,(sA)(X,D,A).

Under similar assumptions in the algebraic category, Conjecture 6.2 in [24] (which is
equivalent to a conjecture of Kontsevich and Soibelman in [31]) makes the following
predictions.

Conjecture 1.3. Suppose (X,D) is a log Calabi-Yau surface.1 Let NA denote
virtual count of the degree A rational curves in X that have maximal tangency with
D at one point. Then genus zero invariants nA formally derived from NA by the
formula

(1.3) NA =
∑

B∈H2(X,Z)
dB=A,d>0

d−2

(
d(sB − 1)− 1

d− 1

)
nB ∀A ∈ H2(X,Z)

are integer.

Similarly to the BPS or Gopakumar-Vafa formula for the genus zero Gromov-Witten
(or GW) invariants of symplectic CY sixfolds, this conjecture predicts that by
taking into account the contribution of multiple-cover maps we obtain an integral
invariant which we call the genus zero relative/log BPS invariants of (X,D). In this
paper, we present a direct geometric proof utilizing J-holomorphic curve techniques
that aligns with the Ionel-Parker’s proof [30] of the integrality of BPS numbers in
the context of compact symplectic Calabi-Yau sixfolds. More specifically, the last
statement of Theorem 1.5 shows that these BPS numbers can be realized as a
geometric count of finitely many “logarithmically-rigid” curves.
A proof of Conjecture 1.3 has been given by Bousseau-Brini-van Garrel [5], em-
ploying a somewhat indirect argument that leads to quiver Donaldson-Thomas
invariants. Conjecture 4.1 in Section 4, due to P. Bousseau, extends the conjec-
ture above to a higher-genus statement concerning the integrality of coefficients
of a potential function. This function is defined in terms of Ng,A and a quntum
parameter q after undergoing some rearrangements, akin to (1.3). Conjecture 4.10
in Section 4 provides a direct generalization of Conjecture 1.3 to the case of genus
one invariants.

1.3. Compactification and transversality statements. The moduli spaces

Mg,s(X,D,A)

are often not compact. We need more conditions on J along D to construct a com-
pactification; see [12, Sec. 1]. For (ω, J) in a suitable space AK(X,D) of almost
Kähler structures as in [12, Thm. 1.4 or Rmk. 1.5], we can use the relative compact-

ification M
rel

g,s(X,D,A) studied in [18, 29, 32, 33] or the (analytical) log compacti-

fication M
log

g,s(X,D,A) constructed in [12]. In general (assuming the smoothness

1i.e., complex dimension 2.
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of D), the relative compactification M
rel

g,s(X,D,A) includes nodal maps with com-

ponents either in X or in an expanded degeneration2 of that so that the contact
order s remains well-defined. The irreducible components of a relative map are or-
dered such that the order 0 maps have their image in X (intersecting D discretely),
while the higher-order components have their image in a rubber component-a fixed

P1-bundle over D. The elements of M
rel

g,s(X,D,A) will be called relative curves.
Further details can be found in Section 3.2; expanded degenerations are defined in
(3.4), relative maps are defined in Definition 3.2 and illustrated in Figure 1. The log
compactification is essentially derived by considering a partial order in lieu of the

total order. The elements of M
log

g,s(X,D,A) will be called log curves. Consequently,
the log compactification is slightly smaller than the relative compactification in the
sense that there is a surjective map

M
rel

g,s(X,D,A) −→ M
log

g,s(X,D,A);

see [12, Prp 4.5]. Nevertheless, the Fredholm theory developed in [13] applies to

both M
rel

g,s(X,D,A) and M
log

g,s(X,D,A) with slight changes. Necessary details are
provided in Section 2 and 3.

The log compactification M
log

g,s(X,D,A) in [12] is expected to be related to the al-
gebraic log compactification of Gross-Siebert and Abramovich-Chen [8,9,25]. Nev-
ertheless, Conjecture 1.3 and this paper concern Gromov-Witten invariants arising
from the relative compactification. An essential consideration to keep in mind is
that, in Theorem 1.5 and various other instances, the specific choice of the compact-
ification is not important. To be more specific, Theorem 1.5 is applicable to both
choices of compactification, with the distinction only manifesting in the multiple
cover moduli spaces of P1; see Remark 1.6. The latter are well-understood smooth
orbifolds. Therefore, for the sake of simplicity in notation, in such cases, we omit
the superscript and represent the compactified moduli space as M0,s(X,D,A).

Remark 1.4. In the symplectic category, there are diverse approaches to defin-
ing Gromov-Witten invariants from moduli spaces of pseudoholomorphic curves.
Specifically, when certain positivity conditions hold for the symplectic manifold
(X,ω), in the classical case (c.f. [34, Thm. 3.15, 6.6.1]), and for a pair ((X,ω), D),
in the relative context (c.f. [18, Dfn. 4.7]), one can define genus zero Gromov-
Witten invariants as certain signed count of J-holomorphic curves. This count
is computed over a generic selection of J , and the approach can be extended to
“semi-positive” cases by perturbing the Cauchy-Riemann equation (2.1), particu-
larly within the stable domain range where 2g + k ≥ 3; c.f. [41, Thm 3.16, Prp
3.21] and [13, Crl. 1.8]. However, in general, for cases beyond the aforementioned
scenarios, one would need to provide a round about or construct a virtual funda-
mental class. The Gromov-Witten invariants are then defined through integration
against or intersection with the virtual fundamental class. For relative moduli

spaces M
rel

g,s(X,D,A), such virtual treatments can be found in [11] and [37]. The
former is in the more general case of pseudoholomorphic curves with boundary
on a Lagrangian and the latter happens in the category of “exploded manifolds”.
The Calabi-Yau fourfolds considered in this paper are semi-positive. When g = 0,

2This degeneration is a normal crossings variety composed of X and finite copies of the P1-
bundle PXD ≡ P(NXD ⊕ C) over D.
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Theorems 1.5 and 1.7 show that Gromov-Witten invariants can be defined as a
geometric count.

A stable 1-marked genus zero J-holomorphic map (u, (Σ, z1)) with a genus zero
nodal domain Σ is simple3 if the restriction uv of u to each irreducible component
Σv of Σ is not multiply-covered (or equally it is somewhere injective) whenever uv

is not constant, and the images of two such components in X are distinct; see [34,
Sec. 2.5]. An element of M0,(sA)(X,D,A) is called simple if the underlying stable
map in the classical genus zero 1-marked degree A stable map compactification
M0,1(X,A) is simple. Let

M
!

0,(sA)(X,D,A)⊂M0,(sA)(X,D,A)

denote the subspace of simple log/relative curves. Since every log CY fourfold
(X,D) is semi-positive in the sense of [18, Dfn. 4.7] or equally [13, Dfn. 1.6], The-
orem 1.5 is mainly a corollary of [13, Thm. 1.5(2)], [13, Prp. 1.7(2)], Lemma 2.4,
and some classical results. We will explain the proof with details in Section 2.

Theorem 1.5. Suppose (X,D) is a symplectic log Calabi-Yau fourfold. Then, for
every E > 0, there exists a Baire subset AKreg(X,D) ⊂AK(X,D) such that the
forgetful map

AKreg(X,D) −→ Symplog(X,D), (ω, J) −→ ω,

has connected fibers and, for every (ω, J) ∈ AKreg(X,D) and A ∈ H2(X,Z) with
ω(A) < E,

• the moduli space M!

0,(sA)(X,D,A) is cut transversely and consists of finitely

many points4;

• every log/relative curve in M
!

0,(sA)(X,D,A) has a smooth domain, i.e.,

(1.4) M
!

0,(sA)(X,D,A) = M!

0,(sA)(X,D,A);

• and, each multiple-cover map in

Mmc
0,(sA)(X,D,A) ≡ M0,(sA)(X,D,A)−M

!

0,(sA)(X,D,A)

has an irreducible image in X. In particular, M0,(sA)(X,D,A) is a disjoint
union of closed components

(1.5) M0,(sA)(X,D,A) ∼=
∐

B∈H2(X,Z)
dB=A,d∈Z+

M0,(d)

(
P1,∞, [dP1]

)∗
×M!

0,(sB)(X,D,B).

We will explain the meaning of the superscript ∗ on M0,(d)

(
P1,∞, [dP1]

)∗
in Re-

mark 1.6.
To be more precise, we show that for every arbitrary D-compatible almost Kähler
structure (ω, J), each element of the moduli space M0,(sA)(X,D,A) is automati-
cally super-rigid in the sense that M0,(sA)(X,D,A) does not have a sequence of
maps with distinct images accumulating at a multiple-cover map; see [44, Dfn. 2.3].
This statement mainly follows from [26, Thm. 1’] that concerns the injectivity of
all R-linear ∂̄-operator on a line bundle of negative degree. With some effort, The-
orem 1.5 can also be extracted from the automatic transversality results of Wendl

3Note that (Σ, z1) is a unstable; c.f. [13, Dfn. 3.4] for the definition of simple maps in general.
4i.e., it has no accumulation point in M

!

0,(sA)(X,D,A).
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in [43], by viewing X−D as a manifold with a cylindrical end and working with
punctured surfaces. However, our logarithmic Fredholm setup has the advantage
of working with closed surfaces and is more concrete for applications such as lo-
calization calculations. The super-rigidity statement above is similar but more
straightforward than Wendl’s super-rigidity theorem [44, Thm. A] for symplectic
Calabi-Yau sixfolds that holds for some choices of J . In particular, the connectivity
of AKreg(X,D) in Theorem 1.5 does not hold for symplectic Calabi-Yau sixfolds,
resulting in a wall-crossing phenomenon where embedded J-holomorphic curves bi-
furcate when passing through certain real codimension 1 walls in the space of almost
complex structures; see [1,44]. As we explain in Section 4, for dimensional reasons,
the analogy above between the genus zero integral curve counts in compact sym-
plectic Calabi-Yau sixfolds and log Calabi-Yau fourfolds does not naturally extend
to higher genus.

Remark 1.6. As mentioned earlier, Theorem 1.5 is applicable to both log and rel-
ative compactifications, with the distinction only manifesting in the multiple cover
moduli spaces of P1. The relative and log compactifications of M0,(d)

(
P1,∞, [dP1]

)

are slightly different and the difference can potentially5 result in different Gromov-
Witten invariants (i.e., different multiple-cover contributions). Additionally, the set
of relative degree d multiple cover relative maps contributing to (1.5) can be topo-

logically identified with M
rel

0,(d)(P
1,∞, [dP1]); however, if sB > 1, as mentioned in

[24, p. 352], the algebraic moduli structure or the orbifold structure somewhat dif-

fers from the standard structure onM
rel

0,(d)

(
P1,∞, [dP1]

)
and depends on sB; see the

paragraph after (1.7) below. In [24], the correct moduli/orbifold structure is indi-

cated by a superscript ∗; i.e., the moduli space is denoted by M
rel

0,(d)(P
1,∞, [dP1])∗.

We will explain these technical details in Section 3.

1.4. Multiple cover contributions and the BPS invariants. For every 1-
marked curve [u,P1, z1] ∈ M0,(sA)(X,D,A), after a reparametrization of the do-

main, we may assume that the contact point with D happens at z1=∞∈P1. If u
is a degree d multiple-cover map, we have

(1.6) u = u ◦ h : P1 = C ∪ {∞} −→ X

such that h(z) is a degree d polynomial in z, and u : P1 −→ X is a degree B
somewhere-injective J-holomorphic map with

A = dB and u−1(D) = ∞ ∈ P1, d ∈ Z+.

The tuple
(
u, (P1,∞)

)
represents an element of M!

0,(sB)(X,D,B) and the tuple

(h, (P1,∞)) represents an element of the open-dense main stratum

M0,(d)

(
P1,∞, [dP1]

)

of the relative/log moduli space M0,(d)

(
P1,∞, [dP1]

)∗
. In the limit, a sequence

of degree d relative holomorphic maps in M0,(d)

(
P1,∞, [dP1]

)
may converge to a

relative/log map h′ with nodal domain. In the relative compactification, h′ is a
map

(1.7) h′ : (Σ, z1) −→ (P1[$],∞) ≡ P1
∞∪0 P

1 · · ·∞∪0 (P
1,∞)︸ ︷︷ ︸

"+1 copies of P1

5The multiple-cover localization calculation is done using the relative compactification.
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with image in a chain (or expanded degeneration) of rational curves such that the
component containing the marked point z1 is mapped to the last P1 and z1 is
mapped to ∞; see Figure 1. Nevertheless, the image of u′=u ◦ h′ will remain the
same irreducible curve image(u).
To explain the second part of Remark 1.6, the set of relative maps (h′, (Σ, z1)) in

(1.7) can be topologically identified with M
rel

0,(d)(P
1,∞, [dP1]). However, the sB-

tangency of u with D forces the tangency orders of maps to the rubber components
of P1[$] to all be divisible by sB. This results in different maps to rubber components
and modified obstruction bundles.
Theorem 1.7 confirms and strengthens Conjecture 1.3.

Theorem 1.7. Suppose (X,D) is a symplectic log Calabi-Yau fourfold. The relative
Gromov-Witten invariants

(1.8) NA ≡ #[M
rel

0,(sA)(X,D,A)]vir ∈ Q ∀A∈H2(X,Z), sA > 0,

can be defined without using virtual techniques (see Remark 1.4) and only depend
on the deformation equivalence class of ω ∈ Symplog(X,D). Furthermore,

(1.9) NA =
∑

B∈H2(X,Z)
dB=A,d∈Z+

mc(d, sB)nB

such that nB∈Z for all 0 += B∈H2(X,Z) and

(1.10) mc(d, sB) = d−2

(
d(sB − 1)− 1

d− 1

)
.

For generic J ,

nA ≡ #M!

0,(sA)(X,D,A)

is a well-defined count of “logarithmically immersed” curves.

The notion of logarithmically immersed curve is defined in Section 2. If sB = 1,
note that

mc(d, 1) = d−2

(
−1

d− 1

)
=

(−1)d−1

d2
.

In [24, Prp. 6.1], the coefficients mc(d, sB) are calculated using the relative lo-

calization. As mentioned in [24, p. 352], the moduli space M
rel

0,(d)(P
1,∞, [dP1])∗

is a nonsingular Deligne-Mumford stack or complex orbifold of complex dimension
d−1. The contribution mc(d, sB) of d-fold multiple-covers of a somewhere injective
degree B map u to NdB is

(1.11) mc(d, sB) =

∫

M
rel
0,(d)

(
P1,∞,[dP1]

)
∗
ctop

(
Ob(d, sB)

)
,

where Ob(d, sB) is the obstruction bundle of rank d − 1. Recall from Remark 1.6
that the relative moduli space of multiple covers of P1 and thus the obstruction
bundle depends on sB. In order to compute (1.11), one needs to explicitly describe
Ob(d, sB) and choose a suitable lift of the natural C∗-action on P1 to the (logarith-
mic) normal bundle of u. The latter determines the lift of the action to Ob(d, sB).
When sB = 1, this is done in the proof of [7, Thm. 5.1]. For sB > 1, the proper
choice of the lift is provided in the proof of [24, Prp. 6.1] and the justification is
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mostly left to the reader. In the second half of Section 3, we review the efficient ar-
gument of [24] and describe an alternative approach that involves different weights6

and is closer to the realm of [22]. While the latter approach is computationally cum-
bersome, it illustrates how the analytic description of the deformation-obstruction
spaces in this paper works for relative maps that have components in the rubber
components of the target.

1.5. Concluding remarks and an example. From the algebraic perspective,
[24, Cnj. 6.2] is proved for toric del Pezzo surfaces in [21]. There are several other
recent works such as [10] and [20] that address [24, Cnj. 6.2] or a variation of
that from the algebraic or tropical perspectives. The (expected) relation of these
invariants to certain count of J-holomorphic disks in X−D, mirror symmetry,
loop quiver Donaldson-Thomas invariants, and local CY threefold invariants are
explained in [10], [5], and other recent works. We do not know of any other work
that approaches these invariants from a purely symplectic/analytic perspective.
In Section 4, following [4], we will discuss a natural higher genus version of the
relative invariants (1.8) and provide an explicit decomposition of the genus one
invariants into contributions of genus-zero curves and “conjecturally integral” “re-
duced” genus one invariants.
In the algebraic geometry literature, it is shown that the genus 0 relative GW invari-
ants NA and their higher genus variants are explicitly related to the GW invariants
of the local CY threefold KX , where KX is the total space of the canonical bundle
ofX; see [6]. The integral invariants can then be defined using the Gopakumar-Vafa
formula for CY threefolds. It is shown in [21, Lmm. 12] that these integral invari-
ants are related by an integral matrix with an integral inverse that has a natural
interpretation in terms of Donaldson-Thomas invariants of loop quivers. Therefore,
the integrality of the two definitions of BPS invariants are equivalent.

Example 1.8. LetX = P2, D be a cubic curve, $ denote the line class inH2(P
2,Z).

The first row of the table below7 contains the relative GW invariants Nd ≡ Nd" for
1 ≤ d ≤ 6 and the second row contains the BPS numbers nd in the same degree
range.

d 1 2 3 4 5 6
Nd 9 135/4 244 36999/16 635634/25 307095
nd 9 27 234 2232 25380 305829

For instance, the number n2 of maximally tangent conics can be calculated in the
following way. Let C be a conic in P2 that is maximally tangent to the cubic curve
D at a point P ∈ D. Then,

OD(6P ) = O(2)|D,

where OD(6P ) is the degree 6 line bundle on the elliptic curve D corresponding to
the divisor 6P and O(2) is the degree 2 line bundle on P2. Thus, the set of such
points P is the fiber over O(2)|D ∈ Pic6(D) of the map

D ∼= Pic1(D) −→ Pic6(D), L −→ L⊗6,

6It corresponds to infinitesimally extending the action to a neighborhood of the contributing
curve in X.

7Borrowed from [23, Table 7.1-7.2].
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between the degree 1 and 6 Picard groups. The latter is a 36:1 covering map, so
there are 36 such points in the pre-image of O(2)|D. Moreover, for each of these
points, the totally tangent conic is unique. However, for a similar reason, 9 of these
36 points correspond to double of maximally tangent lines. Therefore, n2 = 27. For
higher degree curves, the author is uncertain about whether the standard complex
structure on P2 is regular in the sense of Theorem 1.5 when considering a generic
choice of an elliptic curve D. It is noteworthy that the relative Gromov-Witten
invariants Nd can be computed using Andreas Gathmann’s GROWI software.

As the last calculation indicates, for the curves contributing to NA, the tangent
points withD have finite order in the elliptic curveD. Therefore, in the holomorphic
setting, it is possible to refine the invariants NA and nA using the order of the
contact points in D, as is done in [10] and [3]. Since dimC D = 1, every J ∈
AK(X,D) is integrable in a neighborhood of D in X. Therefore, such a refinement
of NA and nA also seems possible from the analytic perspective.

2. Logarithmic Fredholm theory

In this section, we review the Fredholm setup for the deformation-obstruction
theory of relative/log maps in the virtually main stratumMg,s(X,D,A) introduced
in [13]. The main output of this discussion will be the notion of logarithmic normal
bundle (2.17) and the super-rigidity Lemma 2.4. We conclude this section with a
relatively short proof of Theorem 1.5.

2.1. Fredholm setup. Let us start with a brief discussion of the classical Fredholm
setup. Suppose Σ is a smooth closed Riemann surface with the complex structure
j. Let MapA(Σ, X) denote the space of all smooth maps u :Σ−→X that represent
the homology class A, and

EA(Σ, X) −→ MapA(Σ, X)

be the infinite dimensional bundle whose fiber over u is Γ(Σ,Ω0,1
Σ

⊗C u∗TX). The
Cauchy-Riemann (or CR) equation

(2.1) ∂̄u ≡
1

2

(
du+ J du ◦ j)

can be seen as a section ∂̄ : MapA(Σ, X)−→EA(Σ, X). More precisely, we consider a
Sobolev completion of these spaces for the Implicit Function Theorem to apply, but,
by elliptic regularity, every solution of ∂̄u=0 will be smooth; see [34, Appendix B].
The linearization of the ∂̄-section at any J-holomorphic map u is an R-linear map

(2.2) Du∂̄ : Γ(Σ, u
∗TX) −→ Γ(Σ,Ω0,1

Σ
⊗C u∗TX)

that is the sum of a C-linear ∂̄-operator and a compact operator. Therefore, it is a
Fredholm operator and Riemann-Roch applies; i.e., it has finite dimensional kernel
and co-kernel, and

(2.3) dimRDef(u)−dimR Ob(u)=2
(
deg(u∗TX)+dimCX(1−g)

)
,

where

Def(u)=ker(Du∂̄) and Ob(u)=coker(Du∂̄).

The first space corresponds to infinitesimal deformations of u (over the fixed smooth
marked domain) and the second one is the obstruction space for integrating elements
of Def(u) to actual deformations. If Ob(u) = 0, by Implicit Function Theorem
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[34, Thm. A.3.3], in a small neighborhood U of u in MapA(Σ, X), the set of J-
holomorphic maps V = U ∩ ∂̄−1(0) is a smooth manifold of real dimension (2.3), all
the elements of Def(u) are smooth, and TuV ∼= Def(u); see [34, Thm. 3.1.5]. The
manifold V carries a natural orientation.
For (ω, J) ∈ AK(X,D), in [13, Sec. 4], corresponding to every genus g k-marked
relative map in the virtually main stratum,

(2.4) f=[u,C = (Σ, z1, . . . , zk)] ∈ Mg,s(X,D,A),

we derive a logarithmic linearization of the CR operator/section at u, denoted
by

(2.5) Dlog
u ∂̄ : Γ(Σ, u∗TX(− logD)) −→ Γ(Σ,Ω0,1

Σ
⊗C u∗TX(− logD)),

such that TX(− logD) is the logarithmic tangent bundle introduced in [15] and
constructed in detail in [17]. After Remark 2.1, we briefly digress from the main
discussion and recall the construction of TX(− logD) and some of its properties.
Then, we show how Dlog

u ∂̄ can be used to study the deformation-obstruction spaces
of Mg,s(X,D,A) at f .

Remark 2.1. In the symplectic category, moduli spaces of relative maps were first
studied by Ionel-Parker and Li-Ruan in [29] and [33]. In [18], we give a detailed
account of their approaches and streamline some aspects of their construction. The
work of Ionel-Parker does not include a dedicated Fredholm setup for relative maps.
Deformation spaces are defined as a subspace of the classical deformation space and
the obstruction spaces are not precisely identified. The approach of Li-Ruan is based
on working with manifolds with cylindrical ends as in Symplectic Field Theory. In
this approach, Dlog

u ∂̄ is defined over a subspace of

Γ
(
Σ

∗,
(
u|Σ∗

)∗
T (X −D)

)
, Σ

∗ = Σ− u−1(D),

that is completed with weighted norms on the cylindrical parts of Σ∗ and X −
D. These weighted norms control the behavior of u at infinity. As the following
concrete definitions and structures indicate, our logarithmic Fredholm setup has the
advantage of working with closed surfaces and is more user-friendly for applications
such as explicitly identifying the deformation/obstruction spaces and localization
calculations.

Assume (X,ω) is a symplectic manifold and D ⊂ X is a smooth symplectic hyper-
surafce. Our construction of the complex vector bundle TX(− logD) (as well as
an almost complex structure J compatible with D) depends on

• a Hermitian structure (ρ,∇, i) on NXD, and
• a symplectic identification

(2.6) Ψ : N ′
∼=
−→ U ⊂ X

of a neighborhood U of D in X with a neighborhood N ′ ⊂ NXD of the zero
section in the normal bundle

π : NXD ≡
TX|D
TD

−→ D.

Here, i is a complex structure compatible with the symplectic structure on the rank
2 real normal bundle

NXD ∼= TDω =
{
v ∈ TxX : x ∈ D,ω(v, w) = 0 ∀w ∈ TxD},
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ρ is a Hermitian metric on (NXD, i), ∇ is a (ρ, i)-Hermitian connection, and the
standard symplectic structure on N ′ is determined by ω|D and (ρ,∇) as in [18,
(3.1)]. The connection ∇ also defines a C-linear injective homomorphism

h∇ : π∗TD −→ TNXD

that lifts a tangent vector w ∈ TxD to a “horizontal” tangent vector h∇(w) ∈
TvNXD, for all v ∈NXD|x. The homomorphism h∇ also gives rise to a similarly
denoted isomorphism

(2.7) h∇ : π∗(TD ⊕NXD)
∼=
−→ TNXD, (v;w ⊕ v′) → (v;h∇(w) + v′);

see [15, (2.6)]. Let R denote the tuple (Ψ, (ρ,∇, i)) used above which is called a
regularization in [14]. Via (2.7), an almost complex structure JD on TD and
the complex structure i on NXD define an almost complex structure J ′ on TNXD.
Then, the identification Ψ in (2.6) can be used to extend Ψ∗

(
J ′|N ′

)
to an ω-tame

almost complex structure J over the entire X. In [12, 14], the space of such D-
compatible almost Kähler structures (ω, J) on X is denoted by AK(X,D). The
relative moduli spaces are defined for a larger class of D-compatible almost complex
structures introduced in [29, Sec. 3]; also see [19, (2.11)].
For any space Y and every complex line bundle L −→ Y , let Y × C denote the
trivial line bundle on Y and L⊕Y ×C denote the direct sum of the two line bundles.
The logarithmic tangent bundle arising from a regularization R is defined to be

TRX(− logD) =
((
Ψ∗π

∗TD⊕U×C
)
7T (X−D)

)/
∼−→ U∪(X−D)=X,

(Ψ∗π
∗TD)⊕U×C 8

(
Ψ(v);w

)
⊕
(
Ψ(v); c

)
∼ dv Ψ

(
h∇(w)+cv) ∈ TΨ(v)(X−D).

In particular,

(2.8) Ψ
∗TRX(− logD)|U = π∗TD|N ′ ⊕N ′ × C.

Furthermore, the map ιR : TRX(− logD) −→ TX defined by

(2.9) ιR(ζ) =

{
dv Ψ

(
h∇(w)+cv), if ζ=

[
(Ψ(v);w)⊕(Ψ(v); c)

]
, v∈N ′;

ζ, if ζ∈T (X−D);

is a complex linear homomorphism whose restriction to X−D is a bundle isomor-
phism.
In [14] and [16], we introduced topological notions of normal crossings symplectic
divisor (and variety). We proved that, at the cost of deforming ω, every normal
crossings symplectic divisor D ⊂ X admits a compatible system R of local lin-
earizations generalizing the auxiliary data

(
Ψ, (ρ,∇, i)

)
used above in the smooth

case; see [14, Thm. 2.13] and [16, Thm. 3.4]. We call such a compatible system
R of local linearizations a regularization. In [17], we used a regularization R
to construct TRX(− logD) and prove the following and a few other results for an
arbitrary normal crossings symplectic divisor.

Theorem 2.2 ([17, Thm. 1.2]). Suppose (X,ω) is a symplectic manifold and D⊂X
is a normal crossings symplectic divisor.

(1) An ω-regularization R for D ⊂ X determines a vector bundle TRX(− logD)
over X with a smooth vector bundle homomorphism

(2.10) ιR : TRX(− logD) −→ TX.
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(2) An R-compatible almost complex structure J on X determines a complex struc-
ture iR,J on the vector bundle TRX(− logD) so that the bundle homomor-
phism (2.10) is C-linear.

(3) The deformation equivalence class TX(− logD) of TRX(− logD) depends only
on the deformation equivalence class of ((X,ω), D).

(4) If D′⊂X is a smooth submanifold so that D∪D′⊂X is also an NC symplectic
divisor and D∩D′ contains no open subspace of D, then

(2.11) TX(− log(D∪D′))⊕OX(D′) ∼= TX(− logD)⊕(X×C).

(5) We have

(2.12) c
(
TX(−logD)

)
=

c(TX)

1+PDX([D(1)]X)+PDX([D(2)]X)+. . .
∈ H∗(X;Q),

where D(k) is the k-fold intersection locus of D. The above equality holds in
H∗(X;Z) if D⊂X is a simple normal crossings divisor.

In what follows, in the light of Theorem 2.2.(3), we drop R from the notation and
simply denote TRX(− logD) by TX(− logD) and ιR in (2.9) by ι.
Going back to the main discussion, the logarithmic linearization map (2.5) con-
structed in [12] is a natural lift of (2.2) that makes the following diagram commutes:
(2.13)

Γ(Σ, u∗TX(− logD))
Dlog

u ∂̄
!!

ι

""

Γ(Σ,Ω0,1
Σ

⊗C u∗TX(− logD))

ι

""

Γ(Σ, u∗TX)
Du∂̄

!! Γ(Σ,Ω0,1
Σ

⊗C u∗TX) .

Similarly to the classical case, if coker(Dlog
u ∂̄) = 0, by Riemann-Roch, the set of

relative J-holomorphic maps of any fixed contact type s (over the fixed marked
domain C) close to f in (2.4)) form an oriented smooth manifold of real dimension

2
(
deg(u∗TX(− logD))+dimCX(1−g)

)
.

Considering the deformations of the marked domain C of the relative map f , we get
the dimension formula (1.1) and the deformation-obstruction long exact sequence

(2.14)
0 −→ aut(C)

δ
−→ Def log(u) −→ Def log(f) −→ Def(C)

δ
−→ Oblog(u) −→ Oblog(f) −→ 0,

such that

Def log(u)=ker(Dlog
u ∂̄), Oblog(u)=coker(Dlog

u ∂̄),

and aut(C) is the Lie algebra of the automorphism group of C. If Oblog(f)=0, then
a small neighborhood of f in Mg,s(X,D,A) is a smooth orbifold of the expected
dimension (1.1).
The long-exact sequence (2.14) is the long-exact sequence associated to a short-
exact sequence of fine sheaves

0 −→ O(TΣ(− log z)) −→ O(u∗TX(− logD)) −→ O(Ñf ) −→ 0

over Σ, defined in the following way.
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In [13, (4.18)], we show that the standard complex linear derivative map du : TΣ−→
TX gives rise to a logarithmic derivative map

dlog u : TΣ(− log z) −→ u∗TX(− logD), with z = u−1(D) ⊂ Σ,

such that the following diagram commutes:

(2.15) TΣ(− log z)
dlog u

!!

ι

""

u∗TX(− logD)

ι

""

TΣ
du

!! u∗TX .

Here, the vertical maps ι are the natural C-linear homomorphisms in (2.9) from the
log tangent bundles TΣ(− log z) and TX(− logD) into the classical tangent bundles

TΣ and TX, respectively; also see [15, Thm. 1.2]. By composing dlog u with the
homomorphism TΣ(− log z) −→ TΣ(− log z), we can also define

dlog u : TΣ(− log z) −→ u∗TX(− logD),

where

z ≡ z1 + · · ·+ zk

is the full divisor corresponding to all marked points. However, in what follows, we
will have z = z; therefore, the two maps are the same.
Briefly, the log derivative map dlog u is defined in the following way. Away from
the contact points z = u−1(D) ⊂ {z1, . . . , zk}, by the identification

TX(− logD)|X−D

ι
∼= TX|X−D,

we have dlog u ∼= du. For each marked point za∈z, there are

• a local coordinate x on a sufficiently small neighborhood ∆ 8 za of za ∈ Σ (i.e.,
za is (x = 0)),

• and, a local chart Ua around u(za) ∈ D ⊂ X,

such that

(1) Ua is identified with a neighborhood of u(za) in the complex normal bundle
π : (NXD, i) −→ D as in (2.6);

(2) TNXD admits a decomposition TNXD ∼= π∗TD ⊕ π∗NXD as in (2.7);
(3) with respect to the identifications in (1) and (2), J |TUa

coincides with π∗
(
JD⊕

i)|Ua
;

(4) the J-holomorphic map u decomposes into horizontal and vertical components
as

u(x)=(ua(x); ζa(x)) ∈ NXD

meaning that ua : ∆ −→ D is a JD-holomorphic map into D and ζa is a section
of u∗

aNXD;
(5) and, the section ζa is holomorphic with respect to a C-linear ∂̄-operator u∗

aD
N ∂̄

on u∗
aNXD induced by J along D.

Then,

• the holomorphic section ζa decomposes as ζa(x) = xsaηa(x) with ηa(0) += 0,

• and, via the decomposition (2.8), dlog u|∆ has an equation of the form

dlog u = dua ⊕
(
sa

dx

x
+ holomorphic terms

)
,
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mapping the local generating section x∂x of TΣ(− log z)|∆ to

∂ua(x∂x)⊕
(
sa +O(x)

)
∈ Tu(za)D ⊕ C ∼= TX(− logD)|u(za).

Note that at x = 0, we have (sa +O(x))|x=0 = sa and

(2.16) dlogza u(x∂x) = 0⊕ sa ∈ Tu(za)D ⊕ C.

Definition 2.3. We say f ∈ Mg,s(X,D,A) is a log immersion if u is an immer-
sion away from z and z = z (i.e., all of the marked points are contact points with
D).

By (2.16) and similarly to the classical case [42, p. 284-285], if f = [u,Σ, *z =

(z1, . . . , zk)] is a log immersion, then dlog u is an embedding of vector bundles, the
quotient

(2.17) Nf ≡ u∗TX(− logD)/
(
dlogu TΣ(− log z)

)

is a complex vector bundle, and Dlog
u ∂̄ descends to an R-linear Fredholm operator

Dlog
Nf

∂̄ on smooth sections of Nf such that

(2.18) Def log(f) = ker(Dlog
Nf

∂̄) and Oblog(f) = coker(Dlog
Nf

∂̄).

Here, the key point is that, by (2.16), dlog u is automatically injective at every
contact point with D, whereas dza u could be zero if sa > 1. We call Nf the log-

arithmic normal bundle of f . If only the relative marked points are concerned,
one can define the logarithmic normal bundle of u to be

u∗TX(− logD)/
(
dlogu TΣ(− log z)

)
.

In our desired application, z = z and thus the two bundles are the same.

As usual, the Fredholm operator Dlog
Nf

∂̄ decomposes as

(2.19) Dlog
Nf

∂̄ = ∂̄Nf
+R

such that ∂̄Nf
is a C-linear ∂̄-operator defining a holomorphic structure on the log

normal bundle Nf and R is an anti C-linear zero-order operator depending on the

Nijenhueis tensor of J . If dlog u is not an embedding or z += z, we still obtain a
short exact sequence of sheaves of OΣ-modules

0 −→ O(TΣ(− log z))
dlog u
−→ O(u∗TX(− logD)) −→ O(Ñf ) −→ 0

such that

Ñf = O(Nf )⊕N tor
f

is the direct sum of the sheaf of the holomorphic sections of an (dimC X − 1)-
dimensional holomorphic vector bundle Nf and a skyscraper sheaf N tor

f . Further-

more, Dlog
u ∂̄ descends to a Fredholm operator Dlog

Nf
∂̄ on sections of Nf such that

(2.20) Def log(f) = ker(Dlog
Nf

∂̄)⊕H0(N tor
f ) and Oblog(f) = coker(Dlog

Nf
∂̄);

see [38, Sec. 1.4] or [42] for a general account of the discussion above.

Lemma 2.4. Suppose (X,D) is a symplectic log Calabi-Yau fourfold, (ω, J) ∈
AK(X,D), f=[u,P1, z1]∈M0,(sA)(X,D,A), and let

n = dimC H0(N tor
f ) ≥ 0.
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Then, Nf
∼= OP1(−(1 + n)),

(2.21) Def log(f) = H0(N tor
f ) and dimR Oblog(f) = 2n.

In particular,

Nf
∼= OP1(−1) ⇔ Oblog(f) = 0 ⇔ f is a log immersion,

and any of these implies that u is somewhere injective and Def log(f)=0.

Proof. First, by (1.1), we have

dimDef log(f)− dimOblog(f) = 2
(
0 + (1− 0)(2− 3) + 1

)
= 0.

By Riemann-Roch,

dimR ker(Dlog
Nf

∂̄)− dimR coker(Dlog
Nf

∂̄) = 2
(
deg(Nf )+ 1

)
.

From (2.20), we conclude that Nf
∼= OP1(−(1 + n)). Since −(1 + n) < 0, by

[26, Thm. 1’] , for any choice of a compact operator R in (2.19), we have kerDlog
Nf

∂̄ =

0, which gives us (2.21). The conditions Nf
∼= OP1(−1), Oblog(f) = 0, and f being

a log immersion are all equivalent to n= 0. Every holomorphic map h : P1 → P1

of degree 2 or higher has at least two branch points. Therefore, since f has only
one contact marked point z1, if f is a log immersion then u must be somewhere
injective and an immersion away from z1; i.e., n = 0. !

Remark 2.5. In the context of Lemma 2.4, if u is somewhere injective with cusp
points

w1, . . . , wk ∈ u−1(X −D)

of orders b1, . . . , bk (see [38, Sec 1.5]), then N tor
f is the direct sum sky-scraper sheaf

⊕k
i=1C

bi
wi
; in particular, n =

∑k
i=1 bi. The marked point z1 = ∞ can also be a

cusp point of u, however, since the second term on the righthand side of (2.16) is
non-zero at z1, from the logarithmic perspective, dlogz1 u is non-zero and z1 behaves
like a smooth point.

Remark 2.6. The discussion above only concerns maps in the virtually main stra-
tum Mg,s(X,D,A) of the compactified moduli space Mg,s(X,D,A). Together
with some ad-hoc dimension counting, this is sufficient for proving Theorem 1.5.
As noted in [22], in order describe the deformation-obstruction spaces along maps in

other strata ofM
rel

g,s(X,D,A), one must systematically replace TX by TX(− logD).
We illustrate how this should be done in the analysis of the virtual normal bundle
to the fixed loci components in the localization calculations of Section 3.

2.2. Proof of Theorem 1.5. In [13, Prp. 1.7 and Crl. 1.9], we prove that if a pair
(X,D) is positive in the sense of [18, Dfn. 4.7] or equally [13, Dfn. 1.6], and E > 0
is an arbitrary large number, then there exists a Baire subset

AKreg(X,D)∈AK(X,D)

of the second category such that for every (ω, J) in this set and A ∈ H2(X,Z) with
ω(A) ≤ E,

(1) the moduli space M!

0,(sA)(X,D,A) is cut transversely and is a smooth manifold

of real dimension

(2.22) 2
(
〈c1(TX(− logD)), A〉+ (dimC X − 3) + 1

)
;
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(2) the image of M
log

0,(sA)(X,D,A)−M!

0,(sA)(X,D,A) under the evaluation map

(2.23) ev :M!

0,(sA)(X,D,A)−→ D

lies in the image of smooth maps from finitely many smooth even-dimensional
manifolds of at least 2 real dimension less than (2.22),

(3) and consequently, the map (2.23) defines a pseudo-cycle of real dimension (2.22)
in D.

The same holds for the relative compactification M
rel

0,(sA)(X,D,A) instead of

M
log

0,(sA)(X,D,A);

see [18, 19, 29]. Similarly to the proof of the classical results [34, Thm. 6.6.1] and
[41, Prp. 3.21], the proof of (1)–(3) above is by showing that for generic J ,

• each stratum of the simple part M
!

0,(sA)(X,D,A) is cut transversely,

• and, under the positivity condition, non-simple or multiple-cover maps (more
precisely, their image under ev) happen in real codimension 2 or higher.

The proof of (2) involves replacing a non-simple map f with an underlying simple
map f ′ with “multi-nodes” (i.e., points at which more than one component inter-
sect). This is done by (i) collapsing the ghost bubbles (ii) replacing each multiple-
cover bubble component by its image curve (or the underlying simple map), and
(iii) collapsing each sub-tree of the bubbles whose components have the same image.
Under the weaker semi-positivity assumption, instead, the codimension of the col-
lapsed stratum is a complicated formula that depends on the number of multi-nodes
and a few other factors; see [41, (3.42)] and [13, (4.79)]. In particular, the real
codimension will be a positive even number if f ′ has more than one irreducible
component. Therefore, if (X,D) is semi-positive, as is the case in Theorem 1.5, the
same argument as in the positive case shows that

(1) each stratum of M
!

0,(sA)(X,D,A) is cut transversely,

(2) and, non-simple or multiple-cover maps f for which f ′ has at least two compo-
nents happen in real codimension 2 or higher.

Since, by assumption, the expected dimension (2.22) is zero in Theorem 1.5, we
conclude that for generic J

• the moduli space M!

0,(sA)(X,D,A) is cut transversely and is a discrete set of

points;

• every stratum in M
!

0,(sA)(X,D,A) − M!

0,(sA)(X,D,A) has negative dimension

(because we get 2 real codimension for each node), thus is empty;
• and, the only strata of multi-cover maps in

Mmc
0,(sA)(X,D,A) ≡ M0,(sA)(X,D,A)−M

!

0,(sA)(X,D,A)

with non-negative dimension are those which are multiple covers of a single some-
where injective curve; i.e.,

Mmc
0,(sA)(X,D,A) ∼=

∐

B∈H2(X,Z)
dB=A,d>1

M0,(d)

(
P1,∞, [dP1]

)∗
×M!

0,(sB)(X,D,B).
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Here, M0,(d)

(
P1,∞, [dP1]

)∗
are the relative moduli spaces in 1.6.

In order to finish the proof of Theorem 1.5, it remains to show that

• M!

0,(sA)(X,D,A) consists of finitely many points with no accumulation point in

Mmc
0,(sA)(X,D,A),

• and, the subset of such regular almost Kähler structures AKreg(X,D)⊂AK(X,D)
is connected in each deformation equivalence class of ω ∈ Symplog(X,D).

The first statement follows from the super-rigidity/automatic transversailty
Lemma 2.4 in the following way. Suppose (X,D) is a symplectic log Calabi-Yau
fourfold,

f = [u,Σ, z1] ∈ M0,(d)

(
P1,∞, [dP1]

)∗
×M!

0,(sB)(X,D,B) ⊂ Mmc
0,(sA)(X,D,A)

and {fi}i∈N is a sequence in M!

0,(sA)(X,D,A) that converges to f . Let

f ≡ [u,P1,∞] ∈ M!

0,(sB)(X,D,B)

denote the simple map underlying f . By Lemma 2.4 and since f is cut transversely
for all B with ω(B) < ω(A), we have

u∗TX(− logD) ∼= TP1(− log∞)⊕Nf
∼= O(1)⊕O(−1).

Therefore,

u∗TX(− logD) ∼= O(d)⊕O(−d),

and the holomorphic sections of O(d) correspond to vector fields tangent to the
image of u. Consequently, as in [44, Prp. B.1], there is i0 such that for all i > i0,
fi has the same image as f . That contradicts the simpleness of fi if d > 1. This
finishes the proof of the first bullet point above.
In order to prove the second bullet point, suppose (ω1, J1) and (ω2, J2) are two
regular almost Kähler structures on (X,D) such that ω1 and ω2 are deformation
equivalent in Symplog(X,D). By considering the space of all paths (ωt, Jt)t∈[0,1]

connecting (ω1, J1) and (ω2, J2) and the 1-parameter family moduli space

(2.24) M0,(sA)

(
X,D,A; {Jt}t∈[0,1]

)
≡

⋃

t∈[0,1]

M0,(sA)

(
X,D,A; Jt

)
−→ [0, 1],

the same proof as above shows that for a generic path (ωt, Jt)t∈[0,1]

(1) the moduli space M!

0,(sA)

(
X,D,A; {Jt}t∈[0,1]

)
is an (oriented) smooth

1-manifold;
(2) every stratum in

M
!

0,(sA)

(
X,D,A; {Jt}t∈[0,1]

)
−M!

0,(sA)

(
X,D,A; {Jt}t∈[0,1]

)

has negative dimension (because we get 2 real codimension for each node) and
therefore is empty;

(3) and, the only strata of multi-cover maps in Mmc
0,(sA)

(
X,D,A; {Jt}t∈[0,1]

)
with

non-negative dimension are those which are multiple covers of a single some-
where injective curve.
More precisely, suppose

f=[u,Σ, z1]∈M0,(d)

(
P1,∞, [dP1]

)∗
×M!

0,(sB)(X,D,B; Jt) ⊂ Mmc
0,(sA)(X,D,A; Jt),
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for some t∈ [0, 1] and {fi}i∈N is a sequence in M!

0,(sA)

(
X,D,A; Jti

)
that con-

verges to f . We may assume that the underlying simple curve f = [u,P1,∞] ∈
M!

0,(sB)(X,D,B; Jt) is not a regular point of the projection

(2.25) M0,(sB)

(
X,D,B; {Jt}t∈[0,1]

)
−→ [0, 1];

otherwise, for ti sufficiently close to t, the same reasoning as above shows that
the only other curves fi in

M0,(sA)(X,D,A; Jti)

near f are of the form u′ ◦ h′ such that

[u′,P1,∞] ∈ M!

0,(sB)(X,D,B; Jti)

is a deformation of [u,P1,∞] and h′ defines an element ofM0,(d)

(
P1,∞, [dP1]

)∗
.

Furthermore, for a generic path (wt, Jt)t∈[0,1], every critical point of the pro-
jection map (2.25) satisfies

dimR Oblog(f) = 1.

By the second identity in (2.21), the latter is impossible. Therefore, for generic
path between (ω1, J1) and (ω2, J2), we have a similar decomposition

M0,(sA)

(
X,D,A; {Jt}t∈[0,1]

)
∼=

∐

B∈H2(X,Z)
dB=A,d∈Z+

M0,(d)

(
P1,∞, [dP1]

)∗
×M!

0,(sB)

(
X,D,B; {Jt}t∈[0,1]

)
.

This finishes the proof of (2) and thus Theorem 1.5. !

3. Proof of Theorem 1.7

In this section, we first clarify and derive the first statement of Theorem 1.7 from
Theorem 1.5. Subsequently, we briefly review the definition of relative maps and
explain the localization calculation of (1.10).

3.1. Gromov-Witten invariants NA. As highlighted in Remark 1.4, the gen-
eral procedure for defining Gromov-Witten invariants in the symplectic category
involves the construction of a virtual fundamental class. This class is subsequently
used to define GW invariants through an integration or intersection argument.

For dealing with relative moduli spaces M
rel

g,s(X,D,A), such virtual treatments
can be found in [11] and [37]. However, there are instances where the process
can be streamlined by considering a workaround, such as considering a nice class
of almost complex structures for which the moduli spaces have better geometric
properties. Theorem 1.5 serves that purpose when it comes to defining genus zero
GW invariants of log Calabi-Yau fourfolds. The theorem states that, for generic
compatible almost complex structure, the moduli space M0,(sA)(X,D,A) decom-
poses into a finite union of irreducible components with varying dimensions. Each
component is an orbifold, and the associated obstruction bundle is an (orbifold)
vector bundle. Notably, this decomposition remains invariant within a generic one-
parameter family of almost complex structures. Consequently, the ensemble of
orbifolds and orbifold vector bundles defines a Kuranishi structure of dimension 0
on M0,(sA)

(
X,D,A

)
. With additional analysis, it could be demonstrated that this

Kuranishi structure yields the same virtual fundamental class as defined in [11];
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see [47, Thm. 1.2.(1)] for an example of how this comparison can be done. How-
ever, such a comparison proves unnecessary, because the numbers nA are defined
geometrically and (1.9), taken as the defining equation of NA, is clearly related to
the algebraic construction. In simpler terms, for symplectic log CY fourfolds, the
Gromov-Witten invariants can be straightforwardly defined as the sum of contri-
butions from each component. Within each component, the contribution is repre-
sented by the Euler characteristic of the obstruction bundle and can be calculated
by a localization argument. This approach bears strong resemblance to the strat-
egy employed by Ionel-Parker in proving the Gopakumar-Vafa conjecture for closed
symplectic Calabi-Yau sixfolds, where a similar comparison with existing abstract
analytical virtual techniques in the literature is not explicitly provided, but the
calculations are clearly related to the algebraic construction. The following ex-
plains the argument above in more details and establishes the first statement of
Theorem 1.7.
By Theorem 1.5, for generic choice of J , the moduli space M0,(sA)(X,D,A) de-
composes into a disjoint union of closed components

(3.1) M0,(sA)(X,D,A) = M!

0,(sA)(X,D,A) ∪Mmc
0,(sA)(X,D,A)

where M!

0,(sA)(X,D,A) is a finite set of (oriented) points and Mmc
0,(sA)(X,D,A)

is a disjoint union of positive-dimensional closed oriented orbifolds. Furthermore,
by Theorem 1.5 again, for every two regular almost complex structures J1 and J2,
there is a path of almost complex structures {Jt}t∈[0,1] such that the 1-parameter

family moduli space M0,(sA)(X,D,A; {Jt}t∈[0,1]) in (2.24) similarly decomposes
into a disjoint union of closed components

M0,(sA)

(
X,D,A; {Jt}t∈[0,1]

)
∼=

M!

0,(sA)(X,D,A; {Jt}t∈[0,1]) ∪Mmc
0,(sA)(X,D,A; {Jt}t∈[0,1]).

In conclusion, the relative GW invariant

nA ≡ #M!

0,(sA)(X,D,A) ∈ Z

is well-defined and counts the number of logarithmically immersed degree A rational
curves in X with maximal tangency at a single point with D.
Since a generic path {Jt}t∈[0,1] preserves the decomposition (3.1), we may abstractly
define

Q 8 NA ≡
∑

B∈H2(X,Z)
dB=A,d>0

mc(d, sB)nB ∀A∈H2(X,Z)

as in [1, Thm. 1.5]. However, by considering the Euler class of the obstruction
bundle over each closed component of M0,(sA)(X,D,A), we can indeed equip

M
rel

0,(sA)(X,D,A) with a zero-dimensional natural virtual fundamental class (or

vir) such that

NA = #[M
rel

0,(sA)(X,D,A)]vir ≡

∫

[M
rel
0,(sA)(X,D,A)]vir

1.

This is a simple case of a similar construction/definition of vir in [47, Thm. 1.2.(1)].
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Remark 3.1. To be consistent with the setup in the items (1)–(3) including (2.23),
we may as well define

nA = deg
(
ev

(
M!

0,(sA)(X,D,A)
))

∈ H0(D,Z) ∼= Z.

To complete the proof of Theorem 1.7, the remaining task involves elucidating the
computation of the multiple-cover contributions (1.10), which will be the focus of
the remainder of this section. Prior to delving into that, in Section 3.2 , and for
the reader’s convenience, we revisit the definition of relative compactification and
establish notations that will be explicitly used in the localization calculation in
Section 3.3.

3.2. Relative compactification. In this section, following the description in [18,
Sec. 4], we briefly review the construction of the relative stable map moduli spaces

M
rel

g,s(X,D,A) and clarify the notation used in the rest of the paper (specifically,
the localization calculation below). For a comprehensive exploration of proofs and
justifications, we direct the reader to [18, Sec. 4] and [12, 29].
Suppose D⊂(X,ω) is a smooth symplectic divisor, J is an ω-tame almost complex
structure on X compatible with D, and ∂̄NXD is the ∂̄-operator arising from J on
the normal bundle

(3.2) π : NXD ≡
TX|D
TD

−→ D.

For any space Y and every complex line bundle L −→ Y , let Y × C denote the
trivial line bundle on Y and L⊕Y ×C denote the direct sum of the two line bundles.
Let
(3.3)
PXD = P(NXD⊕D×C), D0 = P(0⊕D×C) and D∞ = P(NXD⊕ 0) ⊂ PXD.

Here, direct sum with 0 denotes restricting to the zero-section in the line bundle
NXD or D × 0. As the projectivization of C is a point, both D0 and D∞ are
naturally isomorphic to D.
The splitting (2.7) extends to a splitting of the exact sequence

0 −→ T vrt(PXD) −→ T (PXD)
dπ
−→ π∗TD −→ 0,

where π : PXD −→ D is the bundle projection map induced by π in (3.2); this
splitting restricts to the canonical splittings over D0

∼=D∞
∼=D and is preserved by

the multiplication by C∗. Via this splitting, the almost complex structure JD =
J |TD and the complex structure i in the fibers of π induce an almost complex
structure JX,D on PXD which restricts to JD on D0 and D∞ and is preserved by
the C∗-action. In fact, JX,D|NXD is the almost complex structure J∂̄NXD

associated

to ∂̄NXD. The projection π : PXD−→D is (JD, JX,D)-holomorphic and there is a
one-to-one correspondence between the space of JX,D-holomorphic maps u :Σ−→
PXD and tuples (uD, ζ) where uD : Σ−→D is a JD-holomorphic map into D and
ζ is a meromorphic section of u∗

DNXD with respect to the holomorphic structure
defined by u∗∂̄NXD on u∗NXD.
For each $∈N, the $-th expanded degeneration of X is the normal crossings variety

(3.4) X[$] =
(
X 7 {1}×PXD 7 . . . 7 {$}×PXD

)
/∼ ,

where
D ∼ {1}×D∞ , {r}×D0 ∼ {r+1}×D∞ ∀r=1, . . . , $−1;
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see Figure 1. There exists a continuous projection map π" :X[$] −→ X which is
identity on X and π on each PXD. We denote by J" the almost complex structure
on X[$] so that

J"|X = JX and J"|{r}×PXD = JX,D ∀r = 1, . . . , $.

For each (t1, . . . , t")∈C∗, define

Θt1,...,t! : X[$] −→ X[$]

by Θt1,...,t!(x) =

{
(r, [trv, w]), if x=(r, [v, w])∈{r}×PXD;

x, if x∈X.

This diffeomorphism is biholomorphic with respect to J" and preserves the fibers
of the projection PXD−→D and the sections D0 and D∞.

Definition 3.2. For $ > 0, a level $ k-marked relative J-holomorphic map of
contact type s = (s1, . . . , sk) ∈ Nk is a continuous map u : Σ −→ X[$] from a
connected marked nodal curve C =

(
Σ, (z1, . . . , zk)

)
such that

u−1
(
{$}×D0

)
⊂

{
z1, . . . , zk

}
, ordza(u, {$}×D0)=sa ∀za∈u−1

(
{$}×D0

)
,

sa=0 if and only if za /∈u−1
(
{$}×D0

)
, and the restriction of u to each irreducible

component Σj of Σ is either

(1) a J-holomorphic map to X such that the set u|−1
Σj

(D) consists of the nodes

joining Σj to irreducible components of Σ mapped to {1}×PXD, or
(2) a JX,D-holomorphic map to {r}×PXD for some r=1, . . . , $ such that

(a) the set u|−1
Σj

({r}×D∞) consists of the nodes qj,i joining Σj to irreducible

components of Σ mapped to {r−1}×PXD if r>1 and to X if r=1 and

ordqj,i
(
u,D∞

)
=

{
ordqi,j (u,D0), if r>1,

ordqi,j (u,D), if r=1,

where qi,j ∈Σi is the point identified with qj,i,

(b) if r<$, the set u|−1
Σj

({r}×D0) consists of the nodes joining Σj to irreducible

components of Σ mapped to {r+1}×PXD;

see Figure 1.

The genus and the degree of such a map u :Σ−→X[$] are the arithmetic genus
of Σ and the homology class

A =
[
π"◦u

]
∈ H2(X,Z).

Two tuples (u,C) and (u′, C ′) as above are equivalent if there exist a biholomor-
phic map ϕ : Σ−→Σ′ and t1, . . . , t"∈C∗ so that

ϕ(za) = z′a ∀a=1, . . . , k and u′ = Θt1,...,t! ◦ u ◦ ϕ.

A tuple as above is stable if it has finitely many automorphisms (self-equivalences).
If A∈H2(X,Z), g, k∈N, and s=(s1, . . . , sk)∈Nk is a tuple satisfying

k∑

a=1

sa = A ·D,

then the relative moduli space

(3.5) M
rel

g,s(X,D,A)
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D

D∞

D0

D∞

D0

z2 z3

X

1×PXD

2×PXD

z1

Figure 1. A genus 2 relative map with k=3 and s=(0, 2, 2) into
the expanded degeneration X[2]

is the set of equivalence classes of such connected stable k-marked genus g degree A
J-holomorphic maps into X[$] for any $∈N. If X is compact, the latter space has
a natural compact Hausdorff topology with respect to which the forgetful map

M
rel

g,s(X,D,A) −→ Mg,k(X,A)

is continuous. The logarithmic compactification M
log

g,s(X,D,A) defined in [12] re-
places the level structure with a partial ordering on the components of the domain
and collapses unstable components that are maps from P1 with less than three
special points to fibers of PXD.

3.3. Relative localization. For generic J as in the statement of Theorem 1.5,
each component

M0,(d)

(
P1,∞, [dP1]

)∗
×M!

0,(sB)(X,D,B)

in (1.5) is nB copy of the irreducible complex (d− 1)-dimensional orbifold

M0,(d)

(
P1,∞, [dP1]

)∗
.

The obstruction bundle Ob(d, sB) on this component is a complex rank d−1 vector
bundle and the virtual fundamental class is the top chern class of Ob(d, sB), which
can be seen as a rational number

(3.6) mc(d, sB) ≡

∫

M0,(d)

(
P1,∞,[dP1]

)
∗
ctop

(
Ob(d, sB)

)

in Htop(M0,(d)

(
P1,∞, [dP1]

)∗
) ∼= Q. In the following, we show how a natural action

on P1 lifts to this orbibundle and can be used to calculate mc(d, sB).
Consider the C∗-action

[x0, x1] −→ [x0, tx1] ∀t ∈ C∗

on P1 corresponding to weights (α0,α1) = (0,−1) in [27, Sec. 27.1]. Let y0=x1/x0

and y1 = x0/x1 be the affine coordinates around

p0 ≡ [1, 0] and p1 ≡ [0, 1] ∈ P1.
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The weights of the action on Tp0
P1 (generated by ∂y0) and Tp1

P1 (generated by
∂y1) are 1 and −1, respectively. Different lifts of the given action to O(1) −→
P1 are classified by the action-weights (m + 1,m) on

(
O(1)|p0

,O(1)|p1

)
. Since

TP1(− log p1)|p0
and TP1(− log p1)|p1

are generated by ∂y0 and y1∂y1, the line
bundle

TP1(− log p1) ∼= O(1)

has weights (1, 0) at (p0, p1).
Let

(3.7) h : P1 −→ P1, h(y0) = yd0 ,

be the Galois d-covering of P1 fully ramified at p0 and p1. By [27, Exe. 27.2.3], for
m as above, the weights of the lifted action on

H1(P1, h∗O(−1)) = H0(P1,ωP1 ⊗ h∗O(1))∨

are

−
( j
d
+m

)
, 1 ≤ j ≤ d− 1,

where the − sign comes from the Serre duality.8 Therefore, the product of the
weights of the C∗-action on H1(P1, h∗O(−1)) is

(3.8)
(−1)d−1

dd−1

d−1∏

j=1

(
j +md

)
.

This number will determine the contribution of the obstruction bundle below with
O(−1) being the logarithmic normal bundle of a log immersed curve u.

The C∗-action on P1 naturally lifts to an C∗-action on M
rel

0,(d)

(
P1, p1 = ∞, [dP1]

)∗

by post-composition. The fixed point loci of this action come in families of various
dimensions and are characterized by (unordered) partitions

P :
(
d = d1 + · · ·+ dk

)
, di > 0,

of d in the following way.

• If k = 1, the fixed point locus is a single point and corresponds to the de-
gree d Galois cover in (3.7) of the fixed base simple curve f = [u,P1, p1] ∈
M!

0,(sB)(X,D,B).

• If k ≥ 2, the fixed locus MP corresponding to P is the compactification of the
open dense subset MP

∼= M0,k+1/ ∼ described below. Figure 2 illustrates the
domain and image of an element in MP with k = 3.

Following the notation in Section 3.2, the relative curves in Mu consist of k (un-
ordered) Galois covers

hi : (P
1,∞) −→ (P1, p1), i = 1, . . . , k,

of degrees d1, . . . , dk of f connected to a genus 0 (k + 1)-marked curve that is
mapped (dsB) : 1 to the fiber

P1 ∼= Fq ⊂ PXD = P(NXD ⊕ C)

over q = u(p1) ∈ D. In a suitable coordinate z (so that the intersection with the

8The statement of [27, Ex. 27.2.6] is missing the sign factor arising from the Serre duality.
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X

PXD

D

D∞

D0

q

u

Fq

z1

−→

Figure 2. A relative map with k=3 into the expanded degener-
ation X[1] = X ∪ PXD

divisor D0 ⊂ PXD happens at z = ∞), the map to Fq is given by the polynomial

(3.9) -(z) =
( k∏

i=1

(z − zi)
di)

)sB
: P1 → Fq

∼= P1

and is fully ramified at the infinity. Since the nodes of f are unordered, the notation
M0,k+1/∼ means M0,k+1 divided by a permutation group of marked points zi and
zj with di = dj . The identification MP

∼= M0,k+1/∼ is given by

-(z) ⇔ [P1, z1, . . . , zk,∞] ∈ M0,k+1/∼ .

In the discussion above, we may alternatively put an order on the nodal points
z1, . . . , zk and divide (3.13) by k!.

Note that if sB =1, then MP = M
rel

0,(d)

(
P1, p1, [dP

1]
)
. However, as we mentioned

earlier, if sB > 1, due to the extra factor of sB in (3.9), the algebraic moduli
structure or the Kuranishi structure of the moduli space of d-covers of f slightly

differs from the standard structure on M
rel

0,(d)

(
P1, p1, [dP

1]
)
, and is indicated by a

superscript ∗.

Remark 3.3. As highlighted earlier, the log compactification constructed in [12]
is smaller than the relative compactification. Theorem 1.5 is applicable to both
choices of log and relative compactifications, with the distinction only manifesting
in the multiple cover contibutions. More specifically, in the log compactification

M
log

0,(d)

(
P1, p1, [dP

1]
)∗
, the fixed loci of the C∗-action are still indexed by P, the

open dense part MP of M
log

P is the same as above, and M
log

P
∼= M0,k+1/∼. In

the relative compactification, however, MP is a complicated blowup of M0,k+1/∼
away from M0,k+1/∼.

In the following, we first explain the localization contribution of the isolated point
(3.7) to (3.6) when k = 1, and then describe the contributions of other strata
corresponding to k > 1.
For

f = [u = u ◦ h,C = (P1,∞)] ∈ M0,(sA)(X,D,A),

if u is a log immersion, we have

u∗TX(− logD) = TP1(− log p1)⊕Nf
∼= O(1)⊕O(−1)
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and the Deformation-Obstruction long exact sequence

0 −→ aut(C) −→ Def log(u) −→ Def log(f) −→

Def(C) −→ Oblog(u) −→ Oblog(f) −→ 0,

in (2.14) reads

0 −→ H0
(
P1, TP1(− log∞)

)
−→ H0

(
P1, h∗TP1(− log p1)

)
−→ Def log(f) −→ 0,

0 −→ H1
(
P1, h∗Nf

)
−→ Oblog(f) −→ 0.

Since the line bundle TP1(− log p1) ∼= O(1) has weights (1, 0) at (p0, p1), by [27,
Exe. 27.2.3], the localization contribution of Def log(f) is

d!

dd−1
.

Therefore, by (3.8) and considering the discrete automorphism factor 1/d of h in
(3.7), the contribution of the d-fold Galois cover to NA is

(3.10)
(−1)d−1

d2

∏d−1
j=1

(
j +md

)

(d− 1)!
=

(−1)d−1

d2

(
d(m+ 1)− 1

d− 1

)
=

1

d2

(
−md− 1

d− 1

)
.

In the proof of [24, Prp. 6.1], the authors state that the right value of m to consider
for the other contributions to vanish is

m = 1− sB,

which yields the coefficient

(3.11) mc(d, sB) =
(−1)d−1

d2

(
d(2− sB)− 1

d− 1

)
=

1

d2

(
d(sB − 1)− 1

d− 1

)
.

The justification (for the vanishing of other terms) is left to the reader and the
claim is stated to follow from a similar argument as in the proof of [7, Thm. 5.1]
and examining the obstruction space in [22].
After the following remarks, we describe a different choice of weight that is in-
line with the relative localization of Graber-Vakil in [22] and is applicable to the
Fredholm setup introduced above.

Remark 3.4. The moduli space of concern is (more or less) a simple case (r =
1,α1 = d, b1 = (d)) of [7, Dfn. 3.1]. When sB = 1, the rank d − 1 obstruction
bundle

Ob(d, 1) −→ M
rel

0,(d)

(
P1,∞, [dP1]

)

is R1π∗f
∗O(−1); see the proof of [4, Lmm. 5.9]. The author could not find any

reference in which the obstruction bundle is explicitely identified as above when
sB > 1. The proof of [7, Thm. 5.1] also concerns the case sB = 1 and the chosen
weights on the logarithmic normal bundle O(−1) are (−1, 0). Items (i)–(iv) in
[7, p. 387] explain the reasons for the vanishing of the other strata in the fixed
locus (i.e., MP with k > 1).

Remark 3.5. In [24], the base curve u : P1 −→ X is (implicitly) assumed to be
an immersion so that its (regular) normal bundle is defined and is the line bundle
O(sB − 2) −→ P1. In the light of Lemma 2.4, the map u can have a cusp point
at the intersection point with D and still be a smooth point of the moduli space
M0,(sB)(X,D,A). The local contribution should still be the same as (3.11) because
the cusp point can be smoothed out without affecting the transversality.
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In the setup of Graber-Vakil’s paper [22], they require an C∗-action on the entire
target X that preserves D (and the induced action on NXD has non-zero weights).
In the approach of [24] reviewed above, we only have an action on the domain P1

of u. Then, we need to identify the obstruction bundle Ob(d, sB) and lift the given
C∗-action on the base to the fibers of Ob(d, sB). This can be done in many ways
and different choices correspond to different values of m above.
The weight considered on NXD|q in [24] is zero. Even though we don’t have a
global C∗-action on X, a neighborhood of u can be identified with a neighborhood
of P1 in the normal bundle O(sB − 2) and the action can be (infinitesimally) lifted
to such a neighborhood. With respect to local coordinates (y1, c1) on the total
space of O(sB − 2) at p1, the intersection of D with such a local neighborhood is
given by the local model equation

(c1 − ysB1 = 0) ⊂ C2.

In order for this equation (in other words, the intersection of D with this neigh-
borhood) to be invariant under the C∗-action, the weight of the action on c1 must
be −sB. That means the weight of the action on O(sB − 2)|p1

must be −sB which
corresponds to m = 1 and

(3.12)
(−1)d−1

d2

(
d(m+ 1)− 1

d− 1

)
=

(−1)d−1

d2

(
2d− 1

d− 1

)

in (3.10).
In the rest of this section, following the discussion above and by using the resulting
weight (−sB) on the normal bundle NXD, we explain the localization contributions
of the fixed curves in MP with k > 1. In [22], the authors assume that the C∗-
action fixes D to obtain the relative virtual localization formula [22, Thm. 3.6].
The local action described above only preserves D. Nevertheless, if sB > 1, the
long-exact sequence in [22, p. 14] splits into easy to understand terms from which
we obtain an explicit relative virtual localization formula.
Since the case sB = 1 is well-studied, assume sB > 1. For

f =
(
u : C = (Σ, z1) −→ (X[1], D0)

)
∈ MP

illustrated in Figure 2, let

f1 =
(
u1 : C1 = (Σ1, (z1i)

k
i=1) −→

(X,D)
)
=

k⋃

i=1

(
u1i = u ◦ h1i : C1i = (P1

1i,∞) −→ (X,D)
)

denote the union of components corresponding to the k Galois covers and

f2 =
(
u2 : C2 =

(
P1
2, (z2i)

k
i=1 ∪ z1

)
−→ (PXD,D∞ ∪D0)

)

denote the rubber component in PXD given by (3.9). As noted in [22], the analysis
of the virtual normal bundle to such a component is identical to the case of ordinary
stable maps with the bundle TX systematically replaced by TX(− logD). In fact,
the contribution of MP to N0,dB is of the form

(3.13) Cont(MP) =

∏k
i=1(disB)

|Aut(P)|
∏k

i=1 di

e(Oblog(u)
mov)e(aut(C)mov)

e(Def log(u)mov)e(Def(C)mov)

where
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• Def log(u) and Oblog(u) are calculated via the long-exact sequence
(3.14)

0 −→ Def log(u) −→ H0(Σ1, u
∗
1TX(− logD))⊕ H̃0(P1

2, u
∗
2TPXD(− logD∞ ∪D0))

Res
−→

k⊕

i=1

TqD −→ Oblog(u) −→ H1(Σ1, u
∗
1TX(− logD))

⊕H1(P1
2, u

∗
2TPXD(− logD∞ ∪D0)) −→ 0

as in [22, p. 14];
• Aut(P) is the symmetry group of P;
•
∏
(disB) is the product of the tangency orders at the nodes because each f arises

as a limit of that many distinct curves in the main stratum,
• and, the product

∏
di in the denominator corresponds to the discrete automor-

phisms of hi.

Moreover, in (3.14)

• q = u2(z2i) = u1(z1i), for all i = 1, . . . , k, is the image of the nodes between f1
and f2 in D;

• and, H̃0(P1
2, u

∗
2TPXD(− logD∞ ∪D0)) is the quotient of

H0(P1
2, u

∗
2TPXD(− logD∞ ∪D0))

by the complex 1-dimensional subspace corresponding to the C∗-action on PXD.

Since
u∗
2TPXD(− logD∞ ∪D0) =

(
P1 × TqD

)
⊕
(
P1 × C

)
,

we have

H̃0(P1
2, u

∗
2TPXD(− logD∞ ∪D0)) ∼= TqD

and H1(P1
2, u

∗
2TPXD(− logD∞ ∪D0)) = 0.

Since sB > 1, for all i = 1, . . . , k, the residue map

Res : H0(P1
1i, u

∗
1iTX(− logD)) −→ TqD

is zero. Also

H̃0(P1
2, u

∗
2TPXD(− logD∞ ∪D0)) ∼= TqD

Res
−→

k⊕

i=1

TqD

is the diagonal embedding. Therefore,

Def log(u) ∼= H0(Σ1, u
∗
1TX(− logD))

and

0 −→

⊕k
i=1 TqD

TqD
−→ Oblog(u) −→ H1(Σ1, u

∗
1TX(− logD)) −→ 0.

Note that,

H1(Σ1, u
∗
1TX(− logD)) =

k⊕

i=1

H1(P1
1i, h

∗
1iO(−1)).

Decomposing Def(C) into the moving and fixed factors, Def(C) = Def(C)fix ⊕
Def(C)mov, the moving part corresponds to the simultaneous smoothing of the
nodes and has the equivariant contribution −sB − ψ. Here, −sB is the weight
of the action on NXD|q and ψ is the relative ψ-class in [22, Sec. 2.5]. The fixed



3476 MOHAMMAD FARAJZADEH-TEHRANI

part Def(C)fix corresponds to the deformations of MP . We conclude that the
localization contribution Cont(MP) of P is given by the formula

(3.15)

Cont(MP) =
skB

|Aut(P)|

( k∏

i=1

diCont(f1i)
)
(−1)k−1

∫

MP

1

−sB − ψ

=
sB

|Aut(P)|

( k∏

i=1

diCont(f1i)
)∫

MP

ψk−2

=
sB

|Aut(P)|

k∏

i=1

(−1)di−1

di

(
2di − 1

di − 1

)∫

MP

ψk−2

where Cont(f1i) is the contribution of the Galois cover f1i with m = 1 in (3.12)

and (−1)k−1 is the contribution of
⊕k

i=1 TqD

TqD
to e

(
Oblog(f)

mov
)
.

For instance, if d = 2 and P = {1, 1}, then MP is a point, Aut(P) has order 2, and

Cont(MP) =
sB
2
.

Together with the contribution of the Galois cover (i.e. P = (2)), which is

(−1)2−1

22

(
2× 2− 1

2− 1

)
= −3/4,

we get

mc(2, sB) =
−3

4
+

2sB
4

=
1

22

(
2(sB − 1)− 1

2− 1

)
.

If d = 3, the partitions of 3 are P1 = (3),P2 = (2, 1), and P3 = (1, 1, 1). Since
MP2

is a point, by (3.12) and (3.15), we have

Cont(MP1
) =

10

9
, Cont(MP2

) =
−3sB
2

.

Also, by [22, Rmk. 3.4], we have
∫

Mµ2

ψ =
1

3!

∫

M0,4

3sBψ1 = sB/2;

therefore,

Cont(MP3
) = s2B/2.

We conclude that

mc(3, sB) =
10

9
−

3sB
2

+
s2B
2

=
1

32

(
3(sB − 1)− 1

3− 1

)
.

Remark 3.6. The examples above suggest that the degree k term of (3.11), as a
polynomial in sB, is the sum of all Cont(MP) where P is a partition of d into k+1
summands.

4. Higher genus invariants with maximal tangency

In this section, we study a higher genus version of the invariants NA and nA,
and explain a decomposition of genus one invariants into different contributions.



BPS INVARIANTS OF SYMPLECTIC LOG CY 4-FOLDS 3477

4.1. Higher genus integrality conjecture. Suppose (X,D) is a symplectic log
Calabi-Yau fourfold and g ≥ 1. By (1.1), the real expected dimension of

Mg,(sA)(X,D,A)

is 2g. The relative GW invariants

(4.1) Ng,A =

∫
[
M

rel
g,(sA)(X,D,A)

]vir(−1)gλg ∈ Q ∀A∈H2(X,Z), sA > 0,

are defined by pairing the (algebraic) virtual fundamental class of M
rel

g,(sA)(X,D,A)
with the degree 2g Hodge class λg. The latter is the top chern class of a rank g
(orbifold) vector bundle

E −→ Mg,(sA)(X,D,A)

whose fiber over (u,Σ, z1) with smooth domain is the space of holomorphic 1-forms
on Σ; more generally, E is defined to be the push-forward of the relative dualizing
sheaf on the universal curve space Cg,(sA)(X,D,A). These invariants are defined
and studied in [24, Sec. 5.8] and [4]. The fact that the top lambda class is a natural
insertion to consider in higher genus stems from the fact that Ng,A are related to the
higher genus invariants of the symplectic sixfold X × P1, and (via localization) the
top lambda class with the appropriate sign (−1)g measures the difference between
complex 2 and 3 dimensional obstruction theories; see [4, p.13].
Let

(4.2) FA(q) =
sin(h/2)

h/2

∑

B∈H2(X,Z)
dB=A,d>0

(−1)sB−1µ(d)d2g−2
∑

g≥0

Ng,Bh
2g,

where µ is the Möbius function, q = eih/2, and N0,A ≡ NA are the genus 0 invariants
defined in (1.8).

Conjecture 4.1 (c.f. [4, Cnj. 8.3]). The function FA in (4.2) is a well-defined
rational function of q, invariant under q → q−1; furthermore, it is a Laurent poly-
nomial in q with integer coefficients.

Note that, letting h −→ 0, only the genus zero terms survive, sin(h/2) cancels with
h/2, and thus the value FA(1), which is the sum of the coefficients of the Laurent
polynomial, is the genus 0 BPS invariant

ñA =
∑

B∈H2(X,Z)
dB=A,d>0

µ(d)

d2
(−1)sB−1NB ∈ Z.

The inverse of the formula above is

NA =
∑

B∈H2(X,Z)
dB=A,d>0

(−1)sB(d−1)

d2
ñB.

This formula looks different from (1.9) but the integrality of ñA is equivalent to the
integrality of the genus 0 BPS invariants nA in (1.9). A non-elementary but con-
ceptual proof of this equivalence follows from Donaldson-Thomas theory of quivers;
see [4, Sec. 8.5].
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In the following, first, we explain how the higher genus invariants Ng,A can be ana-
lytically defined without using virtual techniques at the cost of using (Ruan-Tian)-
type global perturbations. Then, we revisit the unperturbed setup and explain the
issue of multi-cover contributions, with a particular focus on genus one invariants.

4.2. Higher genus invariants of semi-positive pairs. From the analytic point
of view, for g ≥ 1, in order to construct a (virtual) fundamental class for

Mg,(sA)(X,D,A),

we can use the logarithmic/relative Ruan-Tian perturbations as in [13, 29] in the
following way. For g, k ∈ N with 2g + k ≥ 3 (which is the case for all g ≥ 1 and
k = 1), let Tg,k denote the Teichmüler space of genus g Riemann surfaces with k
marked points and by Gg,k the corresponding mapping class group. We have

Mg,k = Tg,k/Gg,k.

Assume g=g1+g2 and k=k1+k2 with 2gi+ki≥3 for i=1, 2. For any decomposition
S1 ∪ S2 of {1, 2, . . . , k} with |Si| = ki, there exists a canonical immersion

(4.3) ι = ιS1,S2
: Mg1,k1+1 ×Mg2,k2+1 −→ ∂Mg,k

which assigns to a pair of marked curves
(
Ci=[Σi, zi,1, . . . , zi,ki+1]

)
i=1,2

,

the marked curve

C = [Σ, z1, . . . , zk], Σ=Σ17Σ2/z1,k1+1∼z2,k2+1

{z1, . . . , zk}={z1,1, . . . , z1,k1
} ∪ {z2,1, . . . , z2,k2

},

so that the remaining marked points are renumbered by {1, . . . , k} according to the
decomposition S1∪S2. There is also another natural immersion

(4.4) δ : Mg−1,k+2 −→ ∂Mg,k

which is obtained by gluing together the last two marked points.

Definition 4.2 ([48, Dfn. 2.1]). Let g, k∈N with 2g+k≥3, and

(4.5) p : Mg,k −→ Mg,k

be a finite branched cover in the orbifold category. A universal family over Mg,k

is a tuple

(4.6)

(
π : Ug,k −→ Mg,k, z1, . . . , zk

)
,

where Ug,k is a complex projective variety and π is a projective morphism with

disjoint sections z1, . . . , zk such that for each c∈Mg,k the tuple

C=
(
Σ=π−1(c), (z1, . . . , zk) = (z1(c), . . . , zk(c))

)

is a stable k-marked genus g curve whose equivalence class is [C]=p(c).

Definition 4.3. Let g, k∈N with 2g+k≥3. A cover (4.5) is regular if

(1) it admits a universal family,
(2) each topological component of p−1

(
Mg,k

)
is the quotient of Tg,k by a subgroup

of Gg,k,
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(3) for each boundary divisor (4.3) we have
(
Mg1,k1+1 ×Mg2,k2+1

)
×(ι,p) Mg,k ≈ Mg1,k1+1 ×Mg2,k2+1,

for some regular covers Mgi,ki+1 of Mgi,ki+1, and
(4) for the boundary divisor (4.4) we have

Mg−1,k+2 ×(δ,p) Mg,k ≈ Mg−1,k+2,

for some regular cover Mg−1,k+2 of Mg−1,k+2.

The last two conditions are inductively well-defined. The existence of such regular
covers is a consequence of [2, Prp. 2.2, Thm. 2.3, Thm. 3.9]; see also moduli space
of curves with level n structures in [35, p. 285]. In the genus 0 case, for each k≥3,
the moduli space M0,k itself is smooth and the universal curve

C0,k = M0,k+1 −→ M0,k

is already a universal family. The regular covers are only branched over the bound-
aries of the moduli space. Furthermore, the total space of a universal family as in
(4.6) over a regular cover only has singularities of the form

{(x, y, t) ∈ C3 : xy = tm} −→ C, (x, y, t) −→ t

at the nodal points of the fibers of π. In the original approach of [41], for dealing
with such singularities they consider embeddings of a universal family into PN for
sufficiently large N .
Fix a regular covering (4.5) and a universal family (4.6). Denote by

U
!

g,k ⊂ Ug,k

the complement of the nodes of the fibers of the projection map π in (4.6). Denote
by

Tg,k = ker d(π|
U

"

g,k
) −→ U

!

g,k

the vertical tangent bundle. The latter is a complex line bundle; we denote the
complex structure by jU. Then

Ω
0,1
g,k := (Tg,k,−jU)

∗ −→ U
!

g,k

is the complex line bundle of vertical (or relative) (0, 1)-forms. It is possible to
extend this construction to the nodal points by allowing simple poles and dual
residues, or by embedding Ug,k into some PM as in [41].
Let (X,ω) be a symplectic manifold and J be an ω-tame almost complex struc-
ture on X. The classical space of perturbations considered in [41] (following the
modification in [48]) is the infinite dimensional linear space

(4.7)

Hg,k(X, J)=
{
ν∈Γ

(
U
!

g,k ×X,π∗
1Ω

0,1
g,k ⊗C π∗

2TX
)

s.t. supp(ν)⊂ (U
!

g,k −
k⋃

a=1

Im(za))×X
}
,

where π1,π2 are projection maps from U
!

g,k ×X onto the first and second compo-
nents, respectively, and supp(ν) is the closure of the complement of the vanishing
locus of ν in the compact space Ug,k×X. Let Hg,k(X,ω) denote the space of tuples
(J, ν) where J is ω-tame and ν ∈Hg,k(X, J). Note that given ν and a boundary
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component as in Definition 4.3.(3) (resp. Definition 4.3.(4)), the restriction of ν to
Mg1,k1+1 gives a perturbation term in Hg1,k1

(X, J) (resp. Hg−1,k+2(X, J)).

Definition 4.4. Suppose g, k ∈N with 2g+k≥ 3, Ug,k is a universal family as in
(4.6), (X,ω) is a symplectic manifold, A ∈H2(X,Z), and (J, ν) ∈Hg,k(X,ω). A
degree A genus g k-marked (J, ν)-map is a tuple

(4.8) f =
(
φ, u, C =

(
Σ, (z1, . . . , zk)

))
,

where C is a nodal genus g k-marked complex curve, φ :Σ−→Ug,k is a holomorphic

map onto a fiber of Ug,k preserving the marked points, and u :Σ−→X represents
the homology class A and satisfies

∂̄u = (φ, u)∗ν.

Two k-marked (J, ν)-holomorphic maps
(
φ1, u1, C1

)
and

(
φ2, u2, C2

)
are equiva-

lent if there exists a holomorphic identification h of C1 and C2 such that (φ1, u1)=
(φ2, u2) ◦ h. A (J, ν)-holomorphic map is stable if it has a finite automorphism
group. A contracted component of Σ in (4.8) is a smooth component whose image
under the map φ is just a point. A map (4.8) is stable if and only if the degree
of the restriction of u to every contracted component of Σ containing only one or
two special (nodal or marked) points is not zero. If (4.8) is stable, every connected
cluster of contracted components is a tree of spheres, with a total of at most 2
special9 points, at least one of which is a nodal point. For generic ν, the only
components of Σ contributing non-trivially to the automorphism group of (4.8) are
the contracted components.
In order to perturb J-holomorphic curves with tangency condition relative to a
(smooth or normal crossing) divisor D ⊂ X, we need to restrict to subset of
Hg,k(X, J) consisting of perturbations that are “compatible” with D in suitable
sense. In [18, 29], the latter is expressed in terms of a first order condition on ν

along D. In [13], we consider the logarithmic perturbation space

(4.9)

{
νlog∈Γ

(
U
!

g,k ×X,π∗
1Ω

0,1
g,k ⊗C π∗

2TX(− logD)
)

s.t. supp(νlog)⊂
(
U
!

g,k −
k⋃

a=1

Im(za)
)
×X

}
.

Associated to each νlog we get a classical perturbation term

(4.10) ν= ι(νlog)∈Hg,k(X, J),

where by abuse of notation ι denotes the C-linear homomorphism

π∗
1(Ω

0,1
g,k)⊗C π∗

2TX(− logD) −→ π∗
1(Ω

0,1
g,k)⊗C π∗

2TX

induced by (2.9). Define Hg,s(X,D) to be the space of tuples (ω, J, νlog) where
(ω, J) ∈ AK(X,D) and νlog belongs to (4.9). For such a tuple (ω, J, νlog), it is
shown in [13] that the moduli space Mg,s(X,D,A, ν) consisting of equivalence
classes of genus g k-marked (J, ν)-holomorphic maps of tangency type s is defined

and has a natural compactification M
log

g,s(X,D,A, ν) satisfying properties similarly

9Either a marked point or a nodal point connecting the cluster to an irreducible component of
Σ outside the cluster.
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to the unperturbed case. The relative moduli spaceM
rel

g,s(X,D,A, ν) can be defined
similarly and admits a surjective map

M
rel

g,s(X,D,A, ν) −→ M
log

g,s(X,D,A, ν)

as in the unperturbed case.
If (X,D) is a symplectic log CY fourfold, then it is semi-positive in the sense of
[18, Dfn. 4.7] or equally [13, Dfn. 1.6]. Therefore, by [13, Prp. 1.7 and Crl. 1.9], we
have the following result.

Theorem 4.5. Suppose (X,D) is a symplectic log CY fourfold, A ∈ H2(X,Z),
and g > 0. Then, for any given choice of universal family in (4.6), there exists
a Baire set of second category Hreg

g,(sA)(X,D) ⊂ Hg,(sA)(X,D) such that for each

(ω, J, νlog)∈Hreg
g,(sA)(X,D),

(1) the moduli space M!

g,(sA)(X,D,A) is cut transversely and is a smooth manifold

of real dimension 2g,
(2) the image of Mg,(sA)(X,D,A)−M!

g,(sA)(X,D,A) under the forgetful map

(4.11) st :Mg,(sA)(X,D,A)−→ Mg,1

lies in the image of smooth maps from finitely many smooth even-dimensional
manifolds of at least 2 real dimension less than 2g,

(3) and consequently, the map (4.11) defines a pseudo-cycle of real dimension 2g
in Mg,1 whose integral homology class [st] only depends on the deformation
equivalence class of (X,D,ω) and the degree degp of the regular covering (4.5)
used to define νlog.

Corollary 4.6. The rational homology class

[
Mg,(sA)(X,D,A)

]vir
≡

1

degp
[st] ∈ H2g(Mg,1,Q),

is an invariant of the deformation equivalence class of (X,ω, D) and can be used to
define (4.1). Furthermore, for every g > 0, there exists a constant cg (independent
of the choice of (X,D) and A) such that

cgNg,A ∈ Z ∀A ∈ H2(X,Z), with sA > 0.

Using the perturbed setting above proves to be an effective method for defining the
invariants Ng,A. However, it falls short when it comes to defining integer-valued
invariants and comprehending the geometric significance of the integers posited
by Conjecture 4.1. In the subsequent section, we eschew these perturbations and
explore strategies for addressing the irregularity present in higher genus (unper-
turbed) moduli spaces. The section concludes with a conjecture concerning the
integrality of genus one.

4.3. Reduced genus one invariants. For g > 0, given a 1-marked smooth curve
(Σ, p), the relative space Mg,(d)(Σ, p, [dΣ]) of genus g degree d covers fully ramified
over p is not necessarily a smooth orbifold of the correct complex dimension. Fur-
thermore, the following observations illustrate the complicated nature of relative
multiple-cover maps in higher genus.
First, we have the following weaker analogue of Lemma 2.4 which is again a corollary
of [26, Thm 1’].
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Lemma 4.7. Suppose (X,D) is a symplectic log Calabi-Yau fourfold and

f=[u,Σ, z1]∈Mg,(sA)(X,D,A).

If f is a log immersion then deg(Nf ) = 2g − 1,

Def log(f) = H0(Nf ) and Oblog(f) = H1(Nf ) = 0,

where Nf is the logarithmic normal bundle defined in (2.17). In other words,
Mg,(sA)(X,D,A) is cut transversally in a neighborhood of every log immersion.

In [40], given an elliptic curve Σ and an integer g ≥ 2, the author constructs a
genus g curve Σ′ and a map h : Σ′ −→ Σ of degree 2g − 1, so that h is ramified
above exactly one point of Σ, and so that the local monodromy above that point is
of type a (2g − 1)-cycle. Together with Lemma 4.7, we get the following observa-
tion. Suppose u : (Σ, p) −→ (X,D) is a genus 1 log immersion in M1,(sA)(X,D,A)
and h : (Σ′, z1) −→ (Σ, p) is a degree 2g − 1 map ramified at exactly p. Then,
by Lemma 4.7, the moduli space Mg,(sA)(X,D,A) is cut transversely in a neigh-
borhood of the multiple-cover map u ◦ h : (Σ′, z1) −→ (X,D). Therefore, u can
not have a multiple-cover contribution to an integral-valued invariant arising from
Mg,(sA)(X,D,A). Nevertheless, for g = 1, the possible multiple-covers are well-

understood and moduli space M1,(sA)(X,D,A) and the invariant N1,A can be ex-
plicitly described as follows.
For A += 0, let M′

1,(sA)(X,D,A) denote the subset of M1,(sA)(X,D,A) consisting

of the relative/log stable maps [u,C = (Σ, z1)] such that Σ is an elliptic curve E
with 1 rational component attached directly to it and u|E is constant (therefore,
the restriction of u to the rational component has degree A). In other words,

M′
1,(sA)(X,D,A) ∼= M0,(0,sA)(X,D,A)×M1,1.

We denote byM
′

1,(sA)(X,D,A) the closure ofM′
1,(sA)(X,D,A) inM1,(sA)(X,D,A).

By [45, Thm 1.2], the moduli space M1,(sA)(X,D,A) admits a closed subspace

M
main

1,(sA)(X,D,A) that contains the virtually main stratum M1,(sA)(X,D,A) and

is invariant under deformations of J . Furthermore, if (X,D) is a log Calabi-Yau
fourfold and J is generic, the moduli space M1,(sA)(X,D,A) decomposes as

(4.12) M1,(sA)(X,D,A) = M
main

1,(sA)(X,D,A) ∪M
′

1,(sA)(X,D,A).

By (4.12), we have

N1,A = Nmain
1,A +N ′

1,A

such that N ′
1,A is a function of {nB}dB=A determined by the lemma below.

Lemma 4.8. We have

N ′
1,A =

∑

dB=A
d>0

(2− sB)

24

(
d(sB − 1)− 1

d− 1

)
nB ∈

1

24
Z.

Proof. For the same choice of weight as in (3.11), the contribution of a logarithmi-
cally immersed rational curve [u, (P1,∞)] ∈ M!

0,(sB)(X,D,A) to N ′
1,A=dB has the

form

(4.13)

∫

M1,1

(1
d

e(Oblog(u)
mov)e(aut(C)mov)

e(Def(u)mov)e(Def log(C)mov)
× (−λ1)

)
,
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where C = (E ∪q∼0 P1,∞) is the 1-marked nodal domain obtained by attaching
P1 and an elliptic curve E at the points 0 and q, respectively, with the marked
point ∞ on the rational component. Over P1, the map f is the d-fold Galois cover
(P1, 0∪∞) −→ (P1, p0 ∪ p1), and over E the map is constant p0. Compared to the
calculations leading to (3.10), the node in the domain contributes a factor of

1
1
d − ψ1

= d
1

1− dψ1

to the moving part Def(C)mov and the automorphism factor aut(C) of (P1, 0 ∪∞)
is the weight zero representation

H0(P1, TP1(− log 0 ∪∞)) = C · (z0∂z0).

These two changes each contribute an extra factor of d to the resulting fraction in
(3.10). Since the weights on the tangent space of the (standard) normal bundle to
u at p0 are sB − 2 and 1, by [27, p. 550], the obstruction bundle over E contributes
a factor of

(4.14) (sB − 2)c(E∨)(1/(sB − 2))c(E∨)(1)

to e(Oblog(f)
mov/e(Def log(f)

mov) where E is the Hodge bundle over E and

c(Q)(t) = 1 + tc1(Q) + · · ·+ trcr(Q)

for any complex vector bundle Q of rank r. By dimensional reason, only the degree
zero term sB − 2 of (4.14) contributes to the integral (4.13). Since

∫

M1,1

λ1 =
1

24
,

we conclude that (4.13) is equal to

(2− sB)

24

(
d(sB − 1)− 1

d− 1

)
.

!

Remark 4.9. For sB = 1, we get

(2− sB)

24

(
d(sB − 1)− 1

d− 1

)
=

(−1)d−1

24

which is the number calculated in [7, (13)].

The reduced moduli space M
main

1,(sA)(X,D,A) may still include components of higher

than expected dimension. For instance, if A = dB, M
main

1,(sA)(X,D,A) includes
multiple-covers of the form

u : (E, q)
h

−→ (P1,∞)
u

−→ (X,D),

where h ∈ M1,(d)(P
1,∞, [d]) is a genus 1 multiple-cover of P1 fully ramified at ∞.

Note that

dimC M1,(d)(P
1,∞, [d]) = d+ 1.

However, since the class λ1 vanishes on the locus of curves with loops (c.f. [24,
p. 351]), the (localization) contribution of such multiple-covers to Nmain

1 is zero.
Also, unlike in classical GW theory, isogenies of elliptic curve do not appear because
of the maximal tangency condition. Furthermore, by fixing the complex structure
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of the domain elliptic curve, we can reduce the complex dimension to zero and avoid
the integration of λ1 at the cost of multiplying by the constant

PDM1,1
(λ1) ∈ H0(M1,1,Q) ∼= Q.

Therefore, we expect the reduced genus-one GW invariants Nmain
1,A arising from

M
main

1,(sA)(X,D,A) to be a fixed multiple of an integer count of genus one maximally-

tangent logarithmically immersed curves in (X,D) with a fixed complex structure
on the domain.

Conjecture 4.10. Suppose (X,D) is a log Calabi-Yau surface. Then the reduced
genus one invariants n1,A formally derived from N1,A by the formula

(4.15) 24N1,A = n1,A +
∑

dB=A
d>0

(2− sB)

(
d(sB − 1)− 1

d− 1

)
nB

are integer-valued.10 Moreover, for a generic choice of a complex structure j on
the torus, n1,A represents a geometric count of degree A maximally tangent genus
1 curves in X with the complex structure j.
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