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ABSTRACT. Using the Fredholm setup of Farajzadeh-Tehrani [Peking Math.
J. (2023), https://doi.org/10.1007/s42543-023-00069-1], we study genus
zero (and higher) relative Gromov-Witten invariants with maximum tangency
of symplectic log Calabi-Yau fourfolds. In particular, we give a short proof
of Gross [Duke Math. J. 153 (2010), pp. 297-362, Cnj. 6.2] that expresses
these invariants in terms of certain integral invariants by considering generic
almost complex structures to obtain a geometric count. We also revisit the
localization calculation of the multiple-cover contributions in Gross [Prp. 6.1]
and recalculate a few terms differently to provide more details and illustrate
the computation of deformation/obstruction spaces for maps that have com-
ponents in a destabilizing (or rubber) component of the target. Finally, we
study a higher genus version of these invariants and explain a decomposition
of genus one invariants into different contributions.
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1. INTRODUCTION

1.1. Notation and setup. Suppose (X, w) is a smooth closed symplectic manifold,
D C X is a smooth symplectic divisor, and J is an w-tame almost complex structure
on X preserving T'D (i.e., JTD =TD). Then, for every genus g J-holomorphic
map u: X —> X with a smooth domain that is not mapped into D and represents
the homology class A € Hy(X,Z), there is a finite (possibly empty) set of positive

integers
k

55(51,...,Sk)€Zk7 ZSZZADZO,
i=1
such that =1 (D)={z1,...,2:} CX and u has a well-defined tangency of order s,
at z, with D as in the holomorphic case. We usually require z, to be (ordered)
marked points on Y. Furthermore, we may consider extra classical marked points
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z, on ¥ and define s, = 0 for them. Then, u=*(D)C{z1,...,2r} and 5 € N*. This
way, we do not need to distinguish between the classical and contact marked points
as each non-negative integer s, determines the type of the marked point z,.

Two marked J-holomorphic maps

u,C = (2, 21,..., O = (XA, 2
(u,C = (= zp))) and (v,C" = (¥, )

are equivalent if there exists a holomorphic identification h: C =54 €' of the marked
domains C and C’ such that u = u/oh. Following the terminology of [12], we denote
the space of the equivalence classes of k-marked genus g J-holomorphic maps of
contact type s with D by M, (X, D, A). Note that My (X, D,A) is simply the
virtually-main open stratum of a suitable compactification that will be described in

Section By [13} (1.7)], the real expected dimension of M, 4(X, D, A) is
(1.1) 2( (c1(TX(~log D)), A) + (1 — g)(dime X — 3) + k)

where TX (—log D) is the logarithmic tangent bundle constructed in [15]. In Sec-
tion[2] we will review the construction and properties of the logarithmic tangent
bundle T X (—log D).

This paper concerns the case where ¢; (T X(—log D)) =0, dim¢ X =2, and k = 1.
Consequently, by (LI), dim¢ My s(X,D,A) = g. The focal point of this pa-
per, as articulated in Theorems [[.5] and [[.7] concerns genus zero curves where
dimg Mg (X, D, A) = 0. Notably, integer invariants are derived by enumerating
the elements of M (X, D, A) where s = (s = A- D).

Remark 1.1. For any finite set S, with 5 € (N°)* instead of N*, the definition of
the moduli space M, (X, D, A) above and the formula naturally extend to
the case where D = J,c g D; is a simple normal crossings symplectic divisor in the
sense of [14] Dfn. 2]; see [12]. However, the classical relative compactification does
not generalize easily. There are different approaches in the algebraic and symplectic
categories to construct a well-behaved compact moduli space; for instance see |89l
121[251[281[361[39].

Definition 1.2. We say

o [u,%,(21,...,2k)] € My (X, D, A) has maximal tangency with D if
s1=s4=A-D>0 (and s; =0 Vi>1);

e ((X,w), D) is a symplectic log Calabi-Yau pair if

(1.2) a(TX(—logD)) =c¢1(TX)—PDx(D) =0,

where PDx (D)€ H%(X,Z) is the Poincare dual of D in X;
e ((X,w), D) is a symplectic log Calabi-Yau (or CY) fourfold if dimg X =4.

Let Symplog(X , D) denote the space of symplectic structures w on X such that D
is a symplectic submanifold and ((X,w), D) is a symplectic log CY pair. To drop w
from the notation, we say (X, D) is a symplectic log CY pair if Symp,,, (X, D) # 0.
It is worth noting that if (X, D) is a symplectic log CY fourfold, by and the
adjunction formula, D will be a symplectic 2-torus.
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1.2. Integrality conjecture. As mentioned after (I.1), for the main result of this
paper, we are interested in the case where (X, D) is a symplectic log Calabi-Yau
fourfold, ¥ has genus 0 (i.e., ¥=P!) and one marked point z;, and u has maximal
tangency of order s4 with D at z;. In this case dim Mg ,)(X,D,A) = 0 and
we study the rational invariants N4 = Ny 4 arising from the so-called relative
compactification WB?ESA)(X,D,A) of Mo, (s,)(X,D,A). Furthermore, for g > 0,

in Section [4] we study an invariant N, 4 arising from the integration of the degree
——rel

2g “Hodge class” A, against the “virtual fundamental class” of M, , (X, D, A).
Under similar assumptions in the algebraic category, Conjecture 6.2 in [24] (which is
equivalent to a conjecture of Kontsevich and Soibelman in [31]) makes the following
predictions.

Conjecture 1.3. Suppose (X, D) is a log Calabi-Yau surface Let N4 denote
virtual count of the degree A rational curves in X that have maximal tangency with
D at one point. Then genus zero invariants na formally derived from N by the

formula
d -1)—-1
(1.3) Ny = Z d2( (SBd 1) >n3 VA € Hy(X,7Z)
BEH(X,Z) B
dB=A,d>0

are integer.

Similarly to the BPS or Gopakumar-Vafa formula for the genus zero Gromov-Witten
(or GW) invariants of symplectic CY sixfolds, this conjecture predicts that by
taking into account the contribution of multiple-cover maps we obtain an integral
invariant which we call the genus zero relative/log BPS invariants of (X, D). In this
paper, we present a direct geometric proof utilizing J-holomorphic curve techniques
that aligns with the Ionel-Parker’s proof [30] of the integrality of BPS numbers in
the context of compact symplectic Calabi-Yau sixfolds. More specifically, the last
statement of Theorem shows that these BPS numbers can be realized as a
geometric count of finitely many “logarithmically-rigid” curves.

A proof of Conjecture [[.3] has been given by Bousseau-Brini-van Garrel [5], em-
ploying a somewhat indirect argument that leads to quiver Donaldson-Thomas
invariants. Conjecture [4.I]in Section [d] due to P. Bousseau, extends the conjec-
ture above to a higher-genus statement concerning the integrality of coefficients
of a potential function. This function is defined in terms of N, 4 and a quntum
parameter ¢ after undergoing some rearrangements, akin to . Conjecture|4.10
in Section [4] provides a direct generalization of Conjecture[L.3]to the case of genus
one invariants.

1.3. Compactification and transversality statements. The moduli spaces
M, (X,D,A)

are often not compact. We need more conditions on J along D to construct a com-
pactification; see [12| Sec. 1]. For (w,J) in a suitable space AK(X, D) of almost
Kaéhler structures as in [12] Thm. 1.4 or Rmk. 1.5], we can use the relative compact-

——rel

ification M, (X, D, A) studied in [18[[29][32l[33] or the (analytical) log compacti-

fication ﬂlgoi(X ,D, A) constructed in [12|. In general (assuming the smoothness

i.e., complex dimension 2.
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of D), the relative compactification ./\/l (X D, A) includes nodal maps with com-
ponents either in X or in an expanded degeneratlorﬂ of that so that the contact
order s remains well-defined. The irreducible components of a relative map are or-
dered such that the order 0 maps have their image in X (intersecting D discretely),
while the higher-order components have their image in a rubber component-a fixed

Pl-bundle over D. The elements of Mrel (X, D, A) will be called relative curves.
Further details can be found in Section expanded degenerations are defined in
(3:4), relative maps are defined in Definition[3.2]and illustrated in Figure[T] The log
compactification is essentially derived by considering a partial order in lieu of the
total order. The elements of mﬁi (X, D, A) will be called log curves. Consequently,
the log compactification is slightly smaller than the relative compactification in the
sense that there is a surjective map

M (X, D, A) — M, 5(X, D, A);

see [12] Prp 4.5]. Nevertheless, the Fredholm theory developed in [13] applies to

both /\/lrel (X,D, A) and Mlog(X D, A) with slight changes. Necessary details are
prov1ded in Section [2]and .

The log compactification M Og(X D, A) in [12] is expected to be related to the al-
gebraic log compactification of Gross-Siebert and Abramovich-Chen [8]9][25]. Nev-
ertheless, Conjecture[T.3]and this paper concern Gromov-Witten invariants arising
from the relative compactification. An essential consideration to keep in mind is
that, in Theorem[I.5]land various other instances, the specific choice of the compact-
ification is not important. To be more specific, Theorem [I.5] is applicable to both
choices of compactification, with the distinction only manifesting in the multiple
cover moduli spaces of P'; see Remark[L.6] The latter are well-understood smooth
orbifolds. Therefore, for the sake of simplicity in notation, in such cases, we omit
the superscript and represent the compactified moduli space as ﬂo,s (X,D,A).

Remark 1.4. In the symplectic category, there are diverse approaches to defin-
ing Gromov-Witten invariants from moduli spaces of pseudoholomorphic curves.
Specifically, when certain positivity conditions hold for the symplectic manifold
(X,w), in the classical case (c.f. [34] Thm. 3.15, 6.6.1]), and for a pair ((X,w), D),
in the relative context (c.f. [18] Dfn. 4.7]), one can define genus zero Gromov-
Witten invariants as certain signed count of J-holomorphic curves. This count
is computed over a generic selection of J, and the approach can be extended to
“semi-positive” cases by perturbing the Cauchy-Riemann equation (2.I)), particu-
larly within the stable domain range where 2g + k > 3; c.f. [41] Thm 3.16, Prp
3.21] and [13] Crl. 1.8]. However, in general, for cases beyond the aforementioned
scenarios, one would need to provide a round about or construct a virtual funda-
mental class. The Gromov-Witten invariants are then defined through integration
against or intersection with the virtual fundamental class. For relative moduli

spaces ﬂ;c;(X, D, A), such virtual treatments can be found in [1I] and [37]. The
former is in the more general case of pseudoholomorphic curves with boundary
on a Lagrangian and the latter happens in the category of “exploded manifolds”.
The Calabi-Yau fourfolds considered in this paper are semi-positive. When g = 0,

2This degeneration is a normal crossings variety composed of X and finite copies of the P!-
bundle Px D = P(Nx D ¢ C) over D.
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Theorems and show that Gromov-Witten invariants can be defined as a
geometric count.

A stable 1-marked genus zero J-holomorphic map (u, (X, 21)) with a genus zero
nodal domain 3] is simpl if the restriction u, of u to each irreducible component
%, of ¥ is not multiply-covered (or equally it is somewhere injective) whenever u,
is not constant, and the images of two such components in X are distinct; see [34}
Sec. 2.5]. An element of mo’(SA)(X, D, A) is called simple if the underlying stable
map in the classical genus zero 1-marked degree A stable map compactification
Mo 1(X, A) is simple. Let

m07(5,4) (X’ D, A) CMO,(SA)(X? D, A)
denote the subspace of simple log/relative curves. Since every log CY fourfold
(X, D) is semi-positive in the sense of [18| Dfn. 4.7] or equally [13| Dfn. 1.6], The-

orem [LF] is mainly a corollary of [13] Thm. 1.5(2)], [13} Prp. 1.7(2)], Lemma [2.4]
and some classical results. We will explain the proof with details in Section [2]

Theorem 1.5. Suppose (X, D) is a symplectic log Calabi-Yau fourfold. Then, for
every E >0, there exists a Baire subset AK™® (X, D) CAK(X, D) such that the
forgetful map
AK™8(X,D) — Symplog(X, D), (w,J) —w,

has connected fibers and, for every (w,J) € AK™®(X,D) and A € Ho(X,Z) with
w(A) < E,
e the moduli space M (SA)(X,D,A) is cut transversely and consists of finitely

many point;
o cvery log/relative curve in MS’(SA)(X,D, A) has a smooth domain, i.e.,

(14) m;,(sA)(XaDaA) = 8,(SA)(XaDaA);
e and, each multiple-cover map in
m e -
0.(s) (K> Dy A) = Mo (5.) (X, D, A) = M () (X, D, A)

has an irreducible image in X. In particular, HO,(SA)(X,D,A) is a disjoint
union of closed components

(15) MO,(SA)(XaDaA) = H m0,(d) (]P)l,OO, [dpl])* X MS,(SB)(XaDaB)'

BeH>(X,Z)
dB=A,deZ

We will explain the meaning of the superscript * on My, q) (P*, oo, [d]P’l])* in Re-
mark[L.6]

To be more precise, we show that for every arbitrary D-compatible almost Kéahler
structure (w,J), each element of the moduli space My (5,)(X, D, A) is automati-
cally super-rigid in the sense that M, ,)(X, D, A) does not have a sequence of
maps with distinct images accumulating at a multiple-cover map; see |44, Dfn. 2.3].
This statement mainly follows from [26] Thm. 1] that concerns the injectivity of
all R-linear d-operator on a line bundle of negative degree. With some effort, The-
orem[L.5] can also be extracted from the automatic transversality results of Wendl

3Note that (X, z1) is a unstable; c.f. [I3] Dfn. 3.4] for the definition of simple maps in general.
4j.e., it has no accumulation point in ﬂay(SA)(X, D, A).
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in [43|, by viewing X — D as a manifold with a cylindrical end and working with
punctured surfaces. However, our logarithmic Fredholm setup has the advantage
of working with closed surfaces and is more concrete for applications such as lo-
calization calculations. The super-rigidity statement above is similar but more
straightforward than Wendl’s super-rigidity theorem [44] Thm. A] for symplectic
Calabi-Yau sixfolds that holds for some choices of J. In particular, the connectivity
of AK™®(X, D) in Theorem [L5] does not hold for symplectic Calabi-Yau sixfolds,
resulting in a wall-crossing phenomenon where embedded J-holomorphic curves bi-
furcate when passing through certain real codimension 1 walls in the space of almost
complex structures; see [1][44]. As we explain in Section[4] for dimensional reasons,
the analogy above between the genus zero integral curve counts in compact sym-
plectic Calabi-Yau sixfolds and log Calabi-Yau fourfolds does not naturally extend
to higher genus.

Remark 1.6. As mentioned earlier, Theorem is applicable to both log and rel-
ative compactifications, with the distinction only manifesting in the multiple cover
moduli spaces of P!. The relative and log compactifications of Mo, a) (]P’l, 00, [dIP’l])
are slightly different and the difference can potentiall result in different Gromov-
Witten invariants (i.e., different multiple-cover contributions). Additionally, the set
of relative degree d multiple cover relative maps contributing to (IL.5) can be topo-
logically identified with Mg‘fid) (P!, 0o, [dP']); however, if sp > 1, as mentioned in
[24] p. 352], the algebraic moduli structure or the orbifold structure somewhat dif-
fers from the standard structure on ﬂfﬁid) (P!, 00, [dP']) and depends on sp; see the
paragraph after (1.7) below. In [24], the correct moduli/orbifold structure is indi-
cated by a superscript *; i.e., the moduli space is denoted by M{fid) (P, o0, [dPY])*.
We will explain these technical details in Section[3]
1.4. Multiple cover contributions and the BPS invariants. For every 1-
marked curve [u, P!, z1] € My (5,)(X, D, A), after a reparametrization of the do-
main, we may assume that the contact point with D happens at z; =co€P!. If u
is a degree d multiple-cover map, we have
(1.6) u=Taoh: P =CU {0} — X
such that h(z) is a degree d polynomial in z, and w: P! — X is a degree B
somewhere-injective J-holomorphic map with

A=dB and ©w'(D)=cccP!, deZ,.
The tuple (ﬂ, (P, oo)) represents an element of M (SB)(X,D,B) and the tuple
(h, (P!, 00)) represents an element of the open-dense main stratum

Mo (a) (P*, 00, [dP'])

of the relative/log moduli space MO,(d) (Pl,oo, [dIP’l])*. In the limit, a sequence
of degree d relative holomorphic maps in M (4) (]P’l, 0, [dIP’l]) may converge to a
relative/log map h’ with nodal domain. In the relative compactification, h’ is a
map

(1.7) R': (2, 21) — (P[], 00) = P oUg P! -+ - U (P!, 00)

£+1 copies of P!

5The multiple-cover localization calculation is done using the relative compactification.
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with image in a chain (or expanded degeneration) of rational curves such that the
component containing the marked point z; is mapped to the last P! and z; is
mapped to oo; see Figure[I] Nevertheless, the image of v/ =% o b’ will remain the
same irreducible curve image().

To explain the second part of Remark the set of relative maps (h/, (X, 21)) in
(I7) can be topologically identified with Mg‘fid) (P!, 00, [dP']). However, the sp-
tangency of w with D forces the tangency orders of maps to the rubber components
of P1[/] to all be divisible by sp. This results in different maps to rubber components
and modified obstruction bundles.

Theorem[I.7] confirms and strengthens Conjecture [I.3]

Theorem 1.7. Suppose (X, D) is a symplectic log Calabi- Yau fourfold. The relative
Gromov- Witten invariants

——rel

(1.8) Na=#[My (X, D, A" eQ  VAeHy(X,Z),54 >0,

can be defined without using virtual techniques (see Remark and only depend
on the deformation equivalence class of w € Symp, ., (X, D). Furthermore,

(1.9) Ny = Z me(d, sg)np
BeH>(X,Z)
dB=A,d€Z}

such that np €Z for all 0 # B€ Hy(X,Z) and

—-1)—1
(1.10) mc(d, sg) = d > (d(sB ) )
d—1
For generic J,
ng = #/\/la(SA)(X,D,A)

is a well-defined count of “logarithmically immersed” curves.

The notion of logarithmically immersed curve is defined in Section[2 If s = 1,

note that
B -1 (_1)d71
_ 2 _

In [24] Prp. 6.1], the coefficients mc(d, sp) are calculated using the relative lo-
calization. As mentioned in [24] p. 352], the moduli space ngd) (P, 00, [dPY])*
is a nonsingular Deligne-Mumford stack or complex orbifold of complex dimension

d—1. The contribution mc(d, sg) of d-fold multiple-covers of a somewhere injective
degree B map u to Nyp is

(1.11) me(d, sp) = / . Ctop(Ob(d, 5)),
Mgy (PY 00, [dP1] )

where Ob(d, sg) is the obstruction bundle of rank d — 1. Recall from Remark[L.6]
that the relative moduli space of multiple covers of P' and thus the obstruction
bundle depends on sp. In order to compute (I.11), one needs to explicitly describe
Ob(d, sp) and choose a suitable lift of the natural C*-action on P! to the (logarith-
mic) normal bundle of @. The latter determines the lift of the action to Ob(d, sp).
When sp = 1, this is done in the proof of |7, Thm. 5.1]. For sg > 1, the proper
choice of the lift is provided in the proof of [24] Prp. 6.1] and the justification is
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mostly left to the reader. In the second half of Section [3] we review the efficient ar-
gument of [24] and describe an alternative approach that involves different Weights@
and is closer to the realm of [22]. While the latter approach is computationally cum-
bersome, it illustrates how the analytic description of the deformation-obstruction
spaces in this paper works for relative maps that have components in the rubber
components of the target.

1.5. Concluding remarks and an example. From the algebraic perspective,
124] Cnj. 6.2] is proved for toric del Pezzo surfaces in [21]. There are several other
recent works such as [10] and [20] that address [24] Cnj. 6.2] or a variation of
that from the algebraic or tropical perspectives. The (expected) relation of these
invariants to certain count of J-holomorphic disks in X — D, mirror symmetry,
loop quiver Donaldson-Thomas invariants, and local CY threefold invariants are
explained in [10], [5], and other recent works. We do not know of any other work
that approaches these invariants from a purely symplectic/analytic perspective.
In Section [4] following [4], we will discuss a natural higher genus version of the
relative invariants and provide an explicit decomposition of the genus one
invariants into contributions of genus-zero curves and “conjecturally integral” “re-
duced” genus one invariants.

In the algebraic geometry literature, it is shown that the genus 0 relative GW invari-
ants N4 and their higher genus variants are explicitly related to the GW invariants
of the local CY threefold Kx, where Kx is the total space of the canonical bundle
of X; see [6]. The integral invariants can then be defined using the Gopakumar-Vafa
formula for CY threefolds. It is shown in [21] Lmm. 12] that these integral invari-
ants are related by an integral matrix with an integral inverse that has a natural
interpretation in terms of Donaldson-Thomas invariants of loop quivers. Therefore,
the integrality of the two definitions of BPS invariants are equivalent.

Example 1.8. Let X = P2, D be a cubic curve, £ denote the line class in Hy(P?,Z).
The first row of the table belo contains the relative GW invariants Ny = Ny for
1 < d < 6 and the second row contains the BPS numbers n4 in the same degree

range.
d |1 2 3 4 5 6

Ng | 9| 135/4 | 244 | 36999/16 | 635634/25 | 307095

ng |9 27 |234 2232 25380 305829

For instance, the number no of maximally tangent conics can be calculated in the
following way. Let C be a conic in P? that is maximally tangent to the cubic curve
D at a point P € D. Then,

Op(6P) = 0(2)|p,

where Op(6P) is the degree 6 line bundle on the elliptic curve D corresponding to
the divisor 6P and O(2) is the degree 2 line bundle on P2. Thus, the set of such
points P is the fiber over O(2)|p € Pic®(D) of the map

D = Pic' (D) — Pic®(D), L — L®S,
61t corresponds to infinitesimally extending the action to a neighborhood of the contributing

curve in X.
"Borrowed from [23] Table 7.1-7.2].
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between the degree 1 and 6 Picard groups. The latter is a 36:1 covering map, so
there are 36 such points in the pre-image of O(2)|p. Moreover, for each of these
points, the totally tangent conic is unique. However, for a similar reason, 9 of these
36 points correspond to double of maximally tangent lines. Therefore, no = 27. For
higher degree curves, the author is uncertain about whether the standard complex
structure on P? is regular in the sense of Theorem [[.5] when considering a generic
choice of an elliptic curve D. It is noteworthy that the relative Gromov-Witten
invariants Ny can be computed using Andreas Gathmann’s GROWTI software.

As the last calculation indicates, for the curves contributing to N4, the tangent
points with D have finite order in the elliptic curve D. Therefore, in the holomorphic
setting, it is possible to refine the invariants N4 and n4 using the order of the
contact points in D, as is done in [10] and [3]. Since dim¢ D = 1, every J €
AK(X, D) is integrable in a neighborhood of D in X. Therefore, such a refinement
of N4 and n4 also seems possible from the analytic perspective.

2. LOGARITHMIC FREDHOLM THEORY

In this section, we review the Fredholm setup for the deformation-obstruction
theory of relative/log maps in the virtually main stratum M, (X, D, A) introduced
in [13]. The main output of this discussion will be the notion of logarithmic normal
bundle (2I7) and the super-rigidity Lemma [2:4] We conclude this section with a
relatively short proof of Theorem [T.5]

2.1. Fredholm setup. Let us start with a brief discussion of the classical Fredholm
setup. Suppose X is a smooth closed Riemann surface with the complex structure
j. Let Map 4 (%, X)) denote the space of all smooth maps u: 3 — X that represent
the homology class A, and

Ea(X,X) — Map (X, X)

be the infinite dimensional bundle whose fiber over u is I'(3, Q%l ®c u*TX). The
Cauchy-Riemann (or CR) equation

(2.1) 5u5%(du+Jdu0j)

can be seen as a section 9: Map 4 (X, X) — E4(X, X). More precisely, we consider a
Sobolev completion of these spaces for the Implicit Function Theorem to apply, but,
by elliptic regularity, every solution of Ju=0 will be smooth; see [34] Appendix B].
The linearization of the J-section at any J-holomorphic map w is an R-linear map

(2.2) D,d: T(Z,u*'TX) — (%, Q%" @c u*TX)

that is the sum of a C-linear J-operator and a compact operator. Therefore, it is a
Fredholm operator and Riemann-Roch applies; i.e., it has finite dimensional kernel
and co-kernel, and

(2.3) dimpg Def (u) —dimg Ob(u) =2(deg(u*TX )+dimc X (1—g)),
where
Def(u)=ker(D,0) and Ob(u)=-coker(D,0).
The first space corresponds to infinitesimal deformations of u (over the fixed smooth

marked domain) and the second one is the obstruction space for integrating elements
of Def(u) to actual deformations. If Ob(u) = 0, by Implicit Function Theorem
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|34l Thm. A.3.3], in a small neighborhood U of u in Map 4 (3, X), the set of J-
holomorphic maps V' = UNJ~1(0) is a smooth manifold of real dimension (2.3)), all
the elements of Def(u) are smooth, and T,V 2= Def(u); see [34] Thm. 3.1.5]. The
manifold V' carries a natural orientation.

For (w,J) € AK(X, D), in |13 Sec. 4], corresponding to every genus g k-marked
relative map in the virtually main stratum,

(2.4) f=u,C=(E,2,...,2)] € My (X,D, A),
we derive a logarithmic linearization of the CR operator/section at u, denoted
by

(25)  D89: (%, u*TX(—log D)) — (2, Q%" @c u*TX(—log D)),

such that TX (—log D) is the logarithmic tangent bundle introduced in [I5] and
constructed in detail in [I7]. After Remark [2Z1] we briefly digress from the main
discussion and recall the construction of TX (—log D) and some of its properties.

Then, we show how D!°89 can be used to study the deformation-obstruction spaces
of My +(X,D,A) at f.

Remark 2.1. In the symplectic category, moduli spaces of relative maps were first
studied by Ionel-Parker and Li-Ruan in [29] and [33]. In [18], we give a detailed
account of their approaches and streamline some aspects of their construction. The
work of Tonel-Parker does not include a dedicated Fredholm setup for relative maps.
Deformation spaces are defined as a subspace of the classical deformation space and
the obstruction spaces are not precisely identified. The approach of Li-Ruan is based
on working with manifolds with cylindrical ends as in Symplectic Field Theory. In
this approach, D!°80 is defined over a subspace of

(2 (uls) ' T(X = D)), ¥ =%—u (D),

that is completed with weighted norms on the cylindrical parts of ¥* and X —
D. These weighted norms control the behavior of u at infinity. As the following
concrete definitions and structures indicate, our logarithmic Fredholm setup has the
advantage of working with closed surfaces and is more user-friendly for applications
such as explicitly identifying the deformation/obstruction spaces and localization
calculations.

Assume (X, w) is a symplectic manifold and D C X is a smooth symplectic hyper-
surafce. Our construction of the complex vector bundle TX (—log D) (as well as
an almost complex structure J compatible with D) depends on

e a Hermitian structure (p, V,i) on Nx D, and
e a symplectic identification

(2.6) VN S UCX

of a neighborhood U of D in X with a neighborhood N’ C ANxD of the zero

section in the normal bundle

X[
TD

Here, i is a complex structure compatible with the symplectic structure on the rank
2 real normal bundle

NxD=TD* ={veT,X:z € D,wv,w)=0 YweT,D},

m: NxD = — D.
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p is a Hermitian metric on (NxD,1i), V is a (p,i)-Hermitian connection, and the
standard symplectic structure on N’ is determined by w|p and (p, V) as in [18]
(3.1)]. The connection V also defines a C-linear injective homomorphism

hy: 7*TD — TNxD

that lifts a tangent vector w € Ty D to a “horizontal” tangent vector hv(w) €
T,NxD, for all v€NxD|,. The homomorphism hy also gives rise to a similarly
denoted isomorphism

(27)  hy: 7 (TD®NxD) — TNxD,  (v;w®v') = (v; hy(w) +v');

see |15] (2.6)]. Let R denote the tuple (¥, (p, V,1i)) used above which is called a
regularization in [14]. Via (2.7), an almost complex structure Jp on 7D and
the complex structure i on Nx D define an almost complex structure J’ on TNx D.
Then, the identification ¥ in (2.6 can be used to extend U, (J'|y) to an w-tame
almost complex structure J over the entire X. In [12][14], the space of such D-
compatible almost Kéhler structures (w,J) on X is denoted by AK(X, D). The
relative moduli spaces are defined for a larger class of D-compatible almost complex
structures introduced in 29 Sec. 3]; also see [19] (2.11)].

For any space Y and every complex line bundle . — Y, let Y x C denote the
trivial line bundle on Y and L&Y x C denote the direct sum of the two line bundles.
The logarithmic tangent bundle arising from a regularization R is defined to be

TrX(—log D) = ((\I/*ﬂ*TD@Ux(C)I_IT(X—D))/wH UU(X-D)=X,

(V. m* TD)DU xC 3 (¥ (v);w) D (¥(v);¢) ~ dy ¥(hy(w)+cv) € Ty (X —D).
In particular,
(2.8) U*TrX(—log D)|y = n*TD|n &N’ x C.
Furthermore, the map (g : Tr X (—log D) — T'X defined by

dy U (hy(w)+cv), if (=[(¥(v);w)®(¥(v);c)],veEN;

(2.9) wr(C) = {C, if (eT(X—-D);

is a complex linear homomorphism whose restriction to X — D is a bundle isomor-
phism.

In [14] and [I6], we introduced topological notions of normal crossings symplectic
divisor (and variety). We proved that, at the cost of deforming w, every normal
crossings symplectic divisor D C X admits a compatible system R of local lin-
earizations generalizing the auxiliary data (\I/, (p, V,i)) used above in the smooth
case; see [14] Thm. 2.13] and [16] Thm. 3.4]. We call such a compatible system
R of local linearizations a regularization. In [17], we used a regularization R
to construct Tr X (—log D) and prove the following and a few other results for an
arbitrary normal crossings symplectic divisor.

Theorem 2.2 ([17] Thm. 1.2]). Suppose (X,w) is a symplectic manifold and D C X
is a normal crossings symplectic divisor.
(1) An w-regularization R for D C X determines a vector bundle Tr X (—log D)

over X with a smooth vector bundle homomorphism

(2.10) tr: TrX(=log D) — TX.
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(2) An R-compatible almost complez structure J on X determines a complex struc-
ture ig,; on the vector bundle Tr X (—log D) so that the bundle homomor-
phism is C-linear.

(3) The deformation equivalence class TX (—log D) of Tr X (— log D) depends only
on the deformation equivalence class of ((X,w), D).

(4) If D' C X is a smooth submanifold so that DUD' C X is also an NC symplectic
divisor and DND’ contains no open subspace of D, then

(2.11) TX(—log(DUD'))&Ox(D') = TX(—log D)&(X x C).
(5) We have

(TX)

(212) - o(TX(-10g D) = {555 {150y 1 PDX (D@ 5]+

€ H*(X;Q),

where D) is the k-fold intersection locus of D. The above equality holds in
H*(X;Z) if DCX is a simple normal crossings divisor.

In what follows, in the light of Theorem we drop R from the notation and
simply denote Tr X (—log D) by TX(—log D) and ¢ in (2:9) by ..

Going back to the main discussion, the logarithmic linearization map (2:5) con-
structed in [12] is a natural lift of (Z:2) that makes the following diagram commutes:
(2.13)

Dlgd

(%, u*TX(—log D)) 0(2, Q%" @c uw*TX(—log D))

) | |

I(, u*TX) Du? (s, 0% ®c u*TX) .

Similarly to the classical case, if coker(D°89) = 0, by Riemann-Roch, the set of
relative J-holomorphic maps of any fixed contact type s (over the fixed marked
domain C) close to f in (2.4)) form an oriented smooth manifold of real dimension

2(deg(u*TX (—log D))+dimc X (1—g)).

Considering the deformations of the marked domain C' of the relative map f, we get
the dimension formula (L) and the deformation-obstruction long exact sequence

(2.14) 0 — aut(C) — Defiog(u) —> Defigg(f) —> Def(C)

%5 Obyog (1) — Obyog(f) — 0,
such that
Def)oq (u) =ker(DI89), Objog (1) = coker(DX20),
and aut(C') is the Lie algebra of the automorphism group of C. If Obiee(f) =0, then
a small neighborhood of f in M, (X, D, A) is a smooth orbifold of the expected
dimension (1.1)).

The long-exact sequence (2.14) is the long-exact sequence associated to a short-
exact sequence of fine sheaves

0 — O(TE(—log z)) — O(W*TX(—log D)) — ONy) — 0

over X, defined in the following way.
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In [13] (4.18)], we show that the standard complex linear derivative map du: TS —
TX gives rise to a logarithmic derivative map
a8 u: TS (—log3) — u*TX(—log D), with3=u"(D)C X,

such that the following diagram commutes:

(2.15) TS (- log3) — "+ 4T X (~log D)
du *
TS wTX .

Here, the vertical maps ¢ are the natural C-linear homomorphisms in from the
log tangent bundles T (—log 3) and T X (— log D) into the classical tangent bundles
TY and TX, respectively; also see [I5] Thm. 1.2]. By composing d'°% v with the
homomorphism TY(—logz) — TX(—log}), we can also define

d'°8y: TY(—log z) — u*TX(—log D),
where
Z=Ez1+ 0+ 2z
is the full divisor corresponding to all marked points. However, in what follows, we
will have z = 3; therefore, the two maps are the same.
Briefly, the log derivative map d'°® u is defined in the following way. Away from
the contact points 3 = u=1(D) C {z1,..., 2k}, by the identification

TX(—IOgDNX,D = TX|X,D,

we have d'°8 u 2 du. For each marked point z, €3, there are

e a local coordinate x on a sufficiently small neighborhood A > z, of z, € ¥ (i.e.,

zq 1s (x = 0)),
e and, a local chart U, around u(z,) € D C X,
such that

(1) U, is identified with a neighborhood of u(z,) in the complex normal bundle
7: (NxD,i) — D as in (2.0));

(2) TNxD admits a decomposition TNxD = 7*TD & n*Nx D as in (2.7);

(3) with respect to the identifications in (1) and (2), J|rv, coincides with 7*(Jp ®
Dlv.;

(4) the J-holomorphic map u decomposes into horizontal and vertical components
as

w(z)=(Ue(z); (ulx)) € Nx D

meaning that @,: A — D is a Jp-holomorphic map into D and (, is a section
of HZNX D; ~ ~

(5) and, the section (, is holomorphic with respect to a C-linear d-operator EZDN 0
on uw Nx D induced by J along D.

Then,

e the holomorphic section (, decomposes as (,(x) = x®n,(x) with n,(0) # 0,

e and, via the decomposition (Z8), d'°® u|s has an equation of the form

d
d°8y =du, ® (sa—aj + holomorphic terms),
z
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mapping the local generating section xdzx of TX(—1log3)|a to
Oia(202) @ (sq + O(2)) € TyzyD ® C 2 TX(—1log D)ly(s,)-
Note that at = 0, we have (s, + O())|z=0 = S, and
(2.16) A8 u(207) = 0@ 84 € Ty D @ C.

Definition 2.3. We say f € M, (X, D, A) is a log immersion if u is an immer-
sion away from 3 and 3 = z (i.e., all of the marked points are contact points with

D).

By (2I6) and similarly to the classical case [42] p. 284-285], if f = [u,%,7 =
(21,...,2)] is a log immersion, then d'°8  is an embedding of vector bundles, the
quotient

(2.17) Ny =u*TX(—log D)/ (A8 TE(—log 2))

is a complex vector bundle, and D89 descends to an R-linear Fredholm operator
D}{’ié on smooth sections of Ny such that

(2.18) Deflog(f) = ker(DyED) and  Obyog(f) = coker(DEd).

Here, the key point is that, by (216), d'°®u is automatically injective at every
contact point with D, whereas d., u could be zero if s, > 1. We call Ny the log-
arithmic normal bundle of f. If only the relative marked points are concerned,
one can define the logarithmic normal bundle of u to be

uw*TX(—logD)/(d8 TS(~log3)).

In our desired application, 3 = z and thus the two bundles are the same.
As usual, the Fredholm operator Df}i@ decomposes as

(2.19) D29 =0y, + R

;
such that 5Nf is a C-linear 0-operator defining a holomorphic structure on the log
normal bundle Ny and R is an anti C-linear zero-order operator depending on the

Nijenhueis tensor of J. If d'°®w is not an embedding or 3 # z, we still obtain a
short exact sequence of sheaves of Os-modules

log u ~
0 — O(TS(-logz)) — O(uW*TX(—log D)) — ON}) — 0
such that
Ny = OWNy) & N5
is the direct sum of the sheaf of the holomorphic sections of an (dim¢ X — 1)-
dimensional holomorphic vector bundle Ny and a skyscraper sheaf ' }Or. Further-

more, D89 descends to a Fredholm operator D}ffgfé on sections of Ny such that

1 a or 1 a
(2.20)  Defiog(f) = ker(Dy50) & H(N}") and  Obg(f) = coker(D % 0);
see [38] Sec. 1.4] or [42] for a general account of the discussion above.

Lemma 2.4. Suppose (X, D) is a symplectic log Calabi-Yau fourfold, (w,J) €
AK(X, D), f=[u,P', z1]€e Mg s (X, D, A), and let

n = dim¢ H°(NV}*") > 0.
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Then, Ny = Op1(—(1 +n)),
(2.21) Defiog(f) = HO(JVJE‘“) and  dimg Obieg(f) = 2n.
In particular,

Ny =Opi(—=1) & Obig(f)=0 < fisalog immersion,
and any of these implies that u is somewhere injective and Defioq(f)=0.
Proof. First, by (L.1), we have

dim Defiog () — dim Obyog(f) = 2(0 L (1-0)(2-3)+ 1) —0.
By Riemann-Roch,
dimg ker(foi 0) — dimg coker(foié) = 2(deg(Ny)+1).

From (2:20), we conclude that Ny = Opi(—(1 4+ n)). Since —(1 +n) < 0, by
[26] Thm. 1°] , for any choice of a compact operator R in (2.19), we have keerfig =
0, which gives us (2:2I). The conditions N} = Opi(—1), Obog(f) = 0, and f being
a log immersion are all equivalent to n=0. Every holomorphic map h: P! — P!
of degree 2 or higher has at least two branch points. Therefore, since f has only
one contact marked point z1, if f is a log immersion then v must be somewhere
injective and an immersion away from z1; i.e., n = 0. (]

Remark 2.5. In the context of Lemma [2.4] if v is somewhere injective with cusp
points
wi,...,w, €u (X — D)

of orders by, ..., by (see [38] Sec 1.5]), then N}°" is the direct sum sky-scraper sheaf
@k Chi ; in particular, n = Zle b;. The marked point z; = oo can also be a
cusp point of u, however, since the second term on the righthand side of (2.16) is
non-zero at zi, from the logarithmic perspective, dL‘igu is non-zero and z; behaves
like a smooth point.

Remark 2.6. The discussion above only concerns maps in the virtually main stra-
tum M, (X, D, A) of the compactified moduli space M, (X, D, A). Together
with some ad-hoc dimension counting, this is sufficient for proving Theorem
As noted in [22], in order describe the deformation-obstruction spaces along maps in

other strata of Mﬁ. (X, D, A), one must systematically replace TX by T X (— log D).
We illustrate how this should be done in the analysis of the virtual normal bundle
to the fixed loci components in the localization calculations of Section [3]

2.2. Proof of Theorem[L.5l In [13] Prp. 1.7 and Crl. 1.9], we prove that if a pair
(X, D) is positive in the sense of [18] Dfn. 4.7] or equally [13] Dfn. 1.6], and F > 0
is an arbitrary large number, then there exists a Baire subset
AK™ (X, D)e AK(X, D)

of the second category such that for every (w, J) in this set and A € Ho(X,Z) with
w(A4) < E,

(1) the moduli space Mg . (X, D, A) is cut transversely and is a smooth manifold

of real dimension

(2.22) 2((c1(TX(—log D)), A) + (dime X — 3) +1);
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(2) the image of MET?SA)(X, D,A) = M (5 ,(X, D, A) under the evaluation map
(2.23) evi Mg (X, D,A)— D

lies in the image of smooth maps from finitely many smooth even-dimensional
manifolds of at least 2 real dimension less than (2.22)),

(3) and consequently, the map (2.23) defines a pseudo-cycle of real dimension (2.22))
in D.

The same holds for the relative compactification M(r)eé R A)(X ,D, A) instead of

—log

MO,(SA)(Xu D, A)7

see [L8][191129]. Similarly to the proof of the classical results [34] Thm. 6.6.1] and
[41] Prp. 3.21], the proof of (1)—(3) above is by showing that for generic J,

e each stratum of the simple part MS7(5A)(X, D, A) is cut transversely,
e and, under the positivity condition, non-simple or multiple-cover maps (more
precisely, their image under ev) happen in real codimension 2 or higher.

The proof of (2) involves replacing a non-simple map f with an underlying simple
map f’ with “multi-nodes” (i.e., points at which more than one component inter-
sect). This is done by (i) collapsing the ghost bubbles (ii) replacing each multiple-
cover bubble component by its image curve (or the underlying simple map), and
(iii) collapsing each sub-tree of the bubbles whose components have the same image.
Under the weaker semi-positivity assumption, instead, the codimension of the col-
lapsed stratum is a complicated formula that depends on the number of multi-nodes
and a few other factors; see [41] (3.42)] and [13] (4.79)]. In particular, the real
codimension will be a positive even number if f’ has more than one irreducible
component. Therefore, if (X, D) is semi-positive, as is the case in Theorem [[.5] the
same argument as in the positive case shows that

(1) each stratum of MEV(SA)(X, D, A) is cut transversely,
(2) and, non-simple or multiple-cover maps f for which f’ has at least two compo-
nents happen in real codimension 2 or higher.

Since, by assumption, the expected dimension (2.22) is zero in Theorem we
conclude that for generic J

e the moduli space MS’(SA)(X,D,A) is cut transversely and is a discrete set of
points;

e every stratum in ﬂa(SA)(X,D,A) = MG (s.,)(X, D, A) has negative dimension
(because we get 2 real codimension for each node), thus is empty;

e and, the only strata of multi-cover maps in

ey (X, D, A) = Mo (s.)(X, D, A) — m;,(mx, D, A)

with non-negative dimension are those which are multiple covers of a single some-
where injective curve; i.e.,

Pin (XD, A) = ] Mo (P o0, [dP'])" x MG, (X, D, B).

BEH»(X,Z)
dB=A.d>1
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Here, MO,(d) (]P’l, 00, [d]P’l])* are the relative moduli spaces in[1.6]
In order to finish the proof of Theorem|1.5] it remains to show that

. /\/l* (X D, A) consists of finitely many points with no accumulation point in
Mmc (X D,A),

o and the subset of such regular almost Kéhler structures AK™® (X, D) CAK(X, D)
is connected in each deformation equivalence class of w € Symp,,, (X, D).

The first statement follows from the super-rigidity/automatic transversailty
Lemma [24] in the following way. Suppose (X, D) is a symplectic log Calabi-Yau
fourfold,

f=u%,21] € Mo, ) (P, 00, [dP])" x M}, (X, D, B) C My, (X, D, A)
and {f;}ien is a sequence in MB,(SA)(X’ D, A) that converges to f. Let
? = [ﬂJP)lv OO] € MS,(SB)(Xa Da B)

denote the simple map underlying f. By Lemmal[2.4]and since f is cut transversely
for all B with w(B) < w(A), we have

@' TX(—log D) = TP'(—logoc) ® N5 = O(1) ® O(-1).

Therefore,
uw'TX(—log D) = O(d) & O(—d),

and the holomorphic sections of O(d) correspond to vector fields tangent to the
image of u. Consequently, as in [44] Prp. B.1], there is ig such that for all ¢ > i,
fi has the same image as f. That contradicts the simpleness of f; if d >1. This
finishes the proof of the first bullet point above.

In order to prove the second bullet point, suppose (wi,J1) and (we, J3) are two
regular almost Kéahler structures on (X, D) such that w; and wsy are deformation
equivalent in Symp,,, (X, D). By considering the space of all paths (w¢, Jt):e[o,1]
connecting (w1, J1) and (we, J2) and the 1-parameter family moduli space

(224) Moo (X, D, Ai{Tihepon) = |J Moa) (X, D, 4;0,) — [0,1],
te[0,1]

the same proof as above shows that for a generic path (w¢, Ji)seqo,1]

(1) the moduli space M (SA)(XaDaA;{Jt}tE[O,l]) is an (oriented) smooth
1-manifold;
(2) every stratum in

Mo (o) (X, D, A {ehveion) — M o) (X, D, A { e hepon)

has negative dimension (because we get 2 real codimension for each node) and
therefore is empty;

(3) and, the only strata of multi-cover maps in MG (X, D, A;{J; }1ej0,1]) with
non-negative dimension are those which are multiple covers of a single some-
where injective curve.

More precisely, suppose

f=Mu, 3, z1]€ Mo () (P*, 00, [dP']) " x M} (o5 (XD, By Ji) € MBS, (X, D, As Jy),
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for some ¢ € [0,1] and {f;}icn is a sequence in M (54) (X, D, A; Jt,;) that con-
verges to f. We may assume that the underlying simple curve f = [@, P!, 00 €
MBV(SB)(X, D, B; J;) is not a regular point of the projection

(2.25) Mo, (s) (X, D, B; {Ji }repon]) — [0,1];

otherwise, for ¢; sufficiently close to ¢, the same reasoning as above shows that
the only other curves f; in
Mo, (s.0)(X, D, A; Jy,)
near f are of the form u’ o A’ such that
[u, P!, 00] € MG () (X, D, B Jy,)
is a deformation of [u, P!, oc] and h' defines an element of My, () (P*, oo, [dPP']) "

Furthermore, for a generic path (wy, J¢)ie[0,1], every critical point of the pro-
jection map (2.25) satisfies

dimR Ob]og(f) =1.

By the second identity in (2.21)), the latter is impossible. Therefore, for generic
path between (w1, J1) and (ws, J2), we have a similar decomposition

Mo, (s.0) (X, D, A {Jihiepo)) =
H Mo, a) (P*, 00, [dPY])" x MG () (X, D, B; {Ji }sep0.1])-

BeH,(X,7)
dB=A,deZ}
This finishes the proof of (2) and thus Theorem O

3. PROOF OF THEOREM [L.7]

In this section, we first clarify and derive the first statement of Theorem [[.7] from
Theorem [[L5] Subsequently, we briefly review the definition of relative maps and
explain the localization calculation of (IT.10).

3.1. Gromov-Witten invariants N,. As highlighted in Remark [[.4] the gen-
eral procedure for defining Gromov-Witten invariants in the symplectic category
involves the construction of a virtual fundamental class. This class is subsequently
used to define GW invariants through an integration or intersection argument.

For dealing with relative moduli spaces H:L(X,D,A), such virtual treatments
can be found in [I1] and [37]. However, there are instances where the process
can be streamlined by considering a workaround, such as considering a nice class
of almost complex structures for which the moduli spaces have better geometric
properties. Theorem [[.5] serves that purpose when it comes to defining genus zero
GW invariants of log Calabi-Yau fourfolds. The theorem states that, for generic
compatible almost complex structure, the moduli space Mo,(s (X, D, A) decom-
poses into a finite union of irreducible components with varying dimensions. Each
component is an orbifold, and the associated obstruction bundle is an (orbifold)
vector bundle. Notably, this decomposition remains invariant within a generic one-
parameter family of almost complex structures. Consequently, the ensemble of
orbifolds and orbifold vector bundles defines a Kuranishi structure of dimension 0
on ﬂo,(s ) (X , D, A). With additional analysis, it could be demonstrated that this
Kuranishi structure yields the same virtual fundamental class as defined in [11];
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see |[47] Thm. 1.2.(1)] for an example of how this comparison can be done. How-
ever, such a comparison proves unnecessary, because the numbers na are defined
geometrically and (1.9), taken as the defining equation of Ny, is clearly related to
the algebraic construction. In simpler terms, for symplectic log CY fourfolds, the
Gromov-Witten invariants can be straightforwardly defined as the sum of contri-
butions from each component. Within each component, the contribution is repre-
sented by the Euler characteristic of the obstruction bundle and can be calculated
by a localization argument. This approach bears strong resemblance to the strat-
egy employed by Ionel-Parker in proving the Gopakumar-Vafa conjecture for closed
symplectic Calabi-Yau sixfolds, where a similar comparison with existing abstract
analytical virtual techniques in the literature is not explicitly provided, but the
calculations are clearly related to the algebraic construction. The following ex-
plains the argument above in more details and establishes the first statement of
Theorem[T.7]

By Theorem for generic choice of J, the moduli space MO’(S (X, D, A) de-
composes into a disjoint union of closed components

(3.1) Mo (s)(X, D, A) = MG (X, D, A)UME, (X, D, A)

where Mg (X, D, A) is a finite set of (oriented) points and Mg¥, (X, D, A)
is a disjoint union of positive-dimensional closed oriented orbifolds. Furthermore,
by Theorem [L.5] again, for every two regular almost complex structures J; and Js,
there is a path of almost complex structures {J;};c[o,1] such that the 1-parameter
family moduli space My, (s,)(X, D, A;{Ji}1e0,1)) in (224) similarly decomposes
into a disjoint union of closed components

Mo (s.) (X, D, A5 { T }iejo)) =
0,(s.4) (Xs Dy As {Ji hrejo,1) U MGG 1 (X, D, As{ i beepo.n))-

(sa)

In conclusion, the relative GW invariant
na = #MG (X, D,A) €L

is well-defined and counts the number of logarithmically immersed degree A rational
curves in X with maximal tangency at a single point with D.

Since a generic path {.J; }+c[0,1) preserves the decomposition (1), we may abstractly
define

Q>Na= Y me(dspng  VAEHy(X,Z)
BEH,(X,Z)
dB=A,d>0
as in |1l Thm. 1.5]. However, by considering the Euler class of the obstruction

bundle over each closed component of mo,(s (X, D, A), we can indeed equip

M(rfis (X, D, A) with a zero-dimensional natural virtual fundamental class (or

vir) such that

Ny = #[ﬂgfésA)(X7DuA)]Vir = / L.

—rel

[MO,(SA) (XvaA)]Vir

This is a simple case of a similar construction/definition of vir in [47, Thm. 1.2.(1)].
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Remark 3.1. To be consistent with the setup in the items (1)—(3) including (2.23)),
we may as well define

na = deg(ev (M (., (X, D, 4))) € Ho(D,Z) 2 .

To complete the proof of Theorem[I.7] the remaining task involves elucidating the
computation of the multiple-cover contributions (I.10), which will be the focus of
the remainder of this section. Prior to delving into that, in Section [3.2], and for
the reader’s convenience, we revisit the definition of relative compactification and
establish notations that will be explicitly used in the localization calculation in

Section[3.3]

3.2. Relative compactification. In this section, following the description in [18|

Sec. 4], we briefly review the construction of the relative stable map moduli spaces
——rel

M, (X, D, A) and clarify the notation used in the rest of the paper (specifically,
the localization calculation below). For a comprehensive exploration of proofs and
justifications, we direct the reader to [18| Sec. 4] and [12]/29].

Suppose D C (X, w) is a smooth symplectic divisor, J is an w-tame almost complex
structure on X compatible with D, and du-, p is the d-operator arising from .J on
the normal bundle

_TX|p
(3.2) m: NxD = D
For any space Y and every complex line bundle L — Y, let Y x C denote the
trivial line bundle on Y and L@®Y x C denote the direct sum of the two line bundles.
Let

(3.3)

PxD =PWNxD & DxC), Dy =P(0& DxC) and Do, = P(NxD & 0) C PxD.

Here, direct sum with 0 denotes restricting to the zero-section in the line bundle
NxD or D x 0. As the projectivization of C is a point, both Dy and D, are
naturally isomorphic to D.

The splitting (27) extends to a splitting of the exact sequence

— D.

0 — TV (Px D) — T(Px D) <5 7*TD — 0,

where 7 : PxD — D is the bundle projection map induced by 7 in ([B:2)); this
splitting restricts to the canonical splittings over Dy = D, = D and is preserved by
the multiplication by C*. Via this splitting, the almost complex structure Jp =
J|lrp and the complex structure i in the fibers of 7 induce an almost complex
structure Jx p on Px D which restricts to Jp on Dy and D, and is preserved by
the C*-action. In fact, Jx p|ay p is the almost complex structure Jj Ny D associated
to Onyp. The projection 7: Px D — D is (Jp, Jx p)-holomorphic and there is a
one-to-one correspondence between the space of Jx p-holomorphic maps u: ¥ —
Px D and tuples (up, () where up: X — D is a Jp-holomorphic map into D and
¢ is a meromorphic section of uj,Nx D with respect to the holomorphic structure
defined by u*Ox, p on u*Nx D.

For each £€N, the ¢-th expanded degeneration of X is the normal crossings variety

(3.4) X[ = (X U{1}xPxDU...U{}xPxD)/~,

where
D~{1}xDy, {r}xDg~{r+1}xDy Vr=1,...,£—1;
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see Figure There exists a continuous projection map m,: X[¢] — X which is
identity on X and 7w on each Px D. We denote by J; the almost complex structure
on X[{] so that
J(‘XZJX and JZ‘{T}XP){D:JX,D Vr=1,...,¢.
For each (t1,...,t;) €C*, define
®t17~-,t2 : XM] — XM]

(r, [trv,w]), if z=(r,[v,w])€{r}xPxD;
x, ifreX.

by @tl,...,t((iﬂ) = {

This diffeomorphism is biholomorphic with respect to J;, and preserves the fibers
of the projection Px D — D and the sections Dy and D .

Definition 3.2. For ¢/ > 0, a level ¢ k-marked relative J-holomorphic map of
contact type s = (s1,...,s;) € N¥ is a continuous map u : ¥ — X[{] from a
connected marked nodal curve C = (X, (z1,.. ., 2;)) such that

u ' ({€}xDy) C {=',..., zk}, ord., (u, {¢}x Do) =s, Vzo€u ' ({€}xDy),
5q=0 if and only if z, ¢u™* ({£} x Dy), and the restriction of u to each irreducible
component X; of X is either
(1) a J-holomorphic map to X such that the set u|£j1 (D) consists of the nodes

joining X; to irreducible components of ¥ mapped to {1} xPx D, or
(2) a Jx p-holomorphic map to {r}xPxD for some r=1,...,¢ such that
(a) the set u|£j1({r} x Do) consists of the nodes g;; joining X, to irreducible
components of ¥ mapped to {r—1}xPxD if r>1 and to X if r=1 and

ord, (uD )_ ordg, ; (u, Dg), if r>1,
gj.i \Us Voo ) = ordqi,j(u,D), if r=1,

where ¢; j €¥; is the point identified with g; 4,
(b) if r </, the set u|2_]1 ({r}xDy) consists of the nodes joining X, to irreducible
components of ¥ mapped to {r+1}xPxD;
see Figure[T]

The genus and the degree of such a map u:¥ — X[{] are the arithmetic genus
of ¥ and the homology class

A = [mpou] € Ha(X,Z).

Two tuples (u,C) and (u/,C’) as above are equivalent if there exist a biholomor-
phic map ¢: ¥ — Y and t1,...,t,€C* so that

0(zq) =2, VYa=1,...,k and u' =0y _ t, 0ouoqp.

A tuple as above is stable if it has finitely many automorphisms (self-equivalences).
If A€ Hy(X,Z), g, k€N, and s=(s1,...,s,) ENF is a tuple satisfying

k
Zsa:A~D7
a=1

then the relative moduli space

(3.5) Mo(X,D, 4)
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Do
1x PxD
Dq
Do
2xPx D
Do
Z'2 2'3

FIGURE 1. A genus 2 relative map with k=3 and s=(0, 2, 2) into
the expanded degeneration X |[2]

is the set of equivalence classes of such connected stable k-marked genus g degree A
J-holomorphic maps into X[¢] for any ¢€N. If X is compact, the latter space has
a natural compact Hausdorff topology with respect to which the forgetful map

——rel

M, (X, D, A) — My i(X, A)

is continuous. The logarithmic compactification HIQO’E(X ,D, A) defined in [12] re-
places the level structure with a partial ordering on the components of the domain
and collapses unstable components that are maps from P! with less than three
special points to fibers of Px D.

3.3. Relative localization. For generic J as in the statement of Theorem [1.5]
each component

H(),(d) (]Plu 00, [dPl})* X MS’(SB)(X7 D, B)
in (I.5) is np copy of the irreducible complex (d — 1)-dimensional orbifold
Mo,y (P*, 00, [dP'])".

The obstruction bundle Ob(d, s) on this component is a complex rank d— 1 vector
bundle and the virtual fundamental class is the top chern class of Ob(d, sp), which
can be seen as a rational number

(3.6) me(d, sg) = /_ . Ciop (Ob(d, s))
Mo,(a) (P ,00,dP"])

in Hyop (Mo, () (P*, o0, [dP]) ") 2 Q. In the following, we show how a natural action
on P! lifts to this orbibundle and can be used to calculate mc(d, sg).
Consider the C*-action

[0, 21] — [mo, ta1] vVt € C*

on P! corresponding to weights (ag, 1) = (0, —1) in 27} Sec. 27.1]. Let yo =11/
and y; = xo/z1 be the affine coordinates around

po=[1,0] and p; =10,1] € P.
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The weights of the action on T,,P' (generated by dyo) and T}, P! (generated by
Oyp) are 1 and —1, respectively. Different lifts of the given action to O(1) —
P! are classified by the action-weights (m + 1,m) on (O(1)|p,, O(1),,). Since
TP (—logpi)|p, and TP (—logpi)|,, are generated by Oy and y;0y;, the line
bundle

TP (~logp1) = O(1)

has weights (1,0) at (po,p1).
Let
(3.7) h: Pt — P h(y) =y,
be the Galois d-covering of P! fully ramified at po and p;. By [27, Exe. 27.2.3], for
m as above, the weights of the lifted action on

HY(P', h*O(-1)) = H*(P!, wp @ h*O(1))Y
are

where the — sign comes from the Serre duality Therefore, the product of the

weights of the C*-action on H*(P*, h*O(-1)) is
(=D T

WH (j+md).

j=1

(3.8)

This number will determine the contribution of the obstruction bundle below with
O(—1) being the logarithmic normal bundle of a log immersed curve .

——rel
The C*-action on P! naturally lifts to an C*-action on ./\/l(rf(d) (Pl,pl = 00, [d[P’l])*
by post-composition. The fixed point loci of this action come in families of various
dimensions and are characterized by (unordered) partitions

P:(d=d1+"'+dk), d; >0,
of d in the following way.

e If £ = 1, the fixed point locus is a single point and corresponds to the de-
gree d Galois cover in of the fixed base simple curve f = [u, P!, pi] €
M(*J)(SB)(X,D,B).

o If &k > 2, the fixed locus Mp corresponding to P is the compactification of the

open dense subset Mp = Mg 11/ ~ described below. Figure [2]illustrates the
domain and image of an element in Mp with k = 3.

Following the notation in Section[3:2] the relative curves in M, consist of k (un-
ordered) Galois covers

hi: (P!, 00) — (P!, p1), i=1,...,k,

of degrees di,...,dj of f connected to a genus 0 (k + 1)-marked curve that is
mapped (dspg) : 1 to the fiber

P!~ F, CcPxD=PWNxD&C)

over ¢ = U(p1) € D. In a suitable coordinate z (so that the intersection with the

8The statement of [27] Ex. 27.2.6] is missing the sign factor arising from the Serre duality.

Licensed to Univ of lowa. Prepared on Wed Sep 18 11:03:57 EDT 2024 for download from IP 128.255.234.13.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3472 MOHAMMAD FARAJZADEH-TEHRANI

X
u
D
D
— F, PxD
Dy
z1 q

FIGURE 2. A relative map with k=3 into the expanded degener-
ation X[1] = X UPxD

divisor Dy C Px D happens at z = 00), the map to Fj, is given by the polynomial

k
(3.9) o) = (T[T =20%) ": P — F, = P!
i=1
and is fully ramified at the infinity. Since the nodes of f are unordered, the notation
Mo +1/~ means Mg 41 divided by a permutation group of marked points z; and
zj with d; = d;. The identification Mp = M 41/~ is given by

0(z) & [P, 21,..., 2,00 € Mo g1/~ .

In the discussion above, we may alternatively put an order on the nodal points
21, ..., 2, and divide (3I3) by k!

Note that if sg =1, then Mp = Mé‘fid) (Pl,pl, [dIPl]). However, as we mentioned
earlier, if sp > 1, due to the extra factor of sp in (3.9), the algebraic moduli
structure or the Kuranishi structure of the moduli space of d-covers of f slightly
differs from the standard structure on ﬂffid) (]P’l, p1, [dPl]), and is indicated by a
superscript .

Remark 3.3. As highlighted earlier, the log compactification constructed in [12]
is smaller than the relative compactification. Theorem is applicable to both
choices of log and relative compactifications, with the distinction only manifesting
in the multiple cover contibutions. More specifically, in the log compactification
M:;E(;d) (Pl,pl, [d]P’lD*, the fixed loci of the C*-action are still indexed by P, the
open dense part Mp of ﬂlﬁg is the same as above, and Ml;g = mo7k+1/~. In
the relative compactification, however, Mp is a complicated blowup of Mo 41/~
away from Mg j41/~.

In the following, we first explain the localization contribution of the isolated point
(B2 to (36) when k£ = 1, and then describe the contributions of other strata
corresponding to k > 1.

For

f=u=1o0oh,C= (P o0)] € Mg s, (X,D,A),

if w is a log immersion, we have

' TX(—log D) = TP'(—logp1) ® N7 = O(1) & O(-1)
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and the Deformation-Obstruction long exact sequence
0 — aut(C) — Defjog(u) — Defiog(f) —
Def(C) — Obiog(u) — Obieg(f) — 0,

in (2.14) reads

0 — H°(P', TP'(—log o)) —» H°(P', h*TP'(—logp1)) — Defiog(f) — 0,

0 — H' (P!, h*N5) — Obieg(f) — 0.
Since the line bundle TP!(—logp;) = O(1) has weights (1,0) at (po,p1), by [27}
Exe. 27.2.3], the localization contribution of Defiqg(f) is

d!
qa—1

Therefore, by (3.8) and considering the discrete automorphism factor 1/d of h in
(3:7), the contribution of the d-fold Galois cover to N4 is

(14 T2y (G+md)  (—1) L fdm+1) -1\ 1 (—md—1
d? d-1! a2 < d—1 ) <d—1>'

(3.10) ==
In the proof of [24] Prp. 6.1], the authors state that the right value of m to consider
for the other contributions to vanish is

m:l—sB,

which yields the coefficient

s mo(d, 53) = (_2# (d(2 ; iBl) — 1) _ %(d(SBd__l]_) - 1),

The justification (for the vanishing of other terms) is left to the reader and the
claim is stated to follow from a similar argument as in the proof of [7] Thm. 5.1]
and examining the obstruction space in [22].

After the following remarks, we describe a different choice of weight that is in-
line with the relative localization of Graber-Vakil in [22] and is applicable to the
Fredholm setup introduced above.

Remark 3.4. The moduli space of concern is (more or less) a simple case (r =
l,a; = d,by = (d)) of [7] Din. 3.1]. When sp = 1, the rank d — 1 obstruction
bundle

—rel

Ob(d, 1) — M (4 (P*, 00, [dP"])

is Rim, f*O(—1); see the proof of [4] Lmm. 5.9]. The author could not find any
reference in which the obstruction bundle is explicitely identified as above when
sp > 1. The proof of [7, Thm. 5.1] also concerns the case sp = 1 and the chosen
weights on the logarithmic normal bundle O(—1) are (—1,0). Items (i)—(iv) in
[7] p. 387] explain the reasons for the vanishing of the other strata in the fixed
locus (i.e., Mp with k > 1).

Remark 3.5. In [24], the base curve u: P! — X is (implicitly) assumed to be
an immersion so that its (regular) normal bundle is defined and is the line bundle
O(sp —2) — PL. In the light of Lemma the map @ can have a cusp point
at the intersection point with D and still be a smooth point of the moduli space
Mo, (s)(X, D, A). The local contribution should still be the same as because
the cusp point can be smoothed out without affecting the transversality.

Licensed to Univ of lowa. Prepared on Wed Sep 18 11:03:57 EDT 2024 for download from IP 128.255.234.13.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3474 MOHAMMAD FARAJZADEH-TEHRANI

In the setup of Graber-Vakil’s paper |22|, they require an C*-action on the entire
target X that preserves D (and the induced action on Nx D has non-zero weights).
In the approach of [24] reviewed above, we only have an action on the domain P*
of @. Then, we need to identify the obstruction bundle Ob(d, sg) and lift the given
C*-action on the base to the fibers of Ob(d, sp). This can be done in many ways
and different choices correspond to different values of m above.

The weight considered on NxD|, in [24] is zero. Even though we don’t have a
global C*-action on X, a neighborhood of @ can be identified with a neighborhood
of P! in the normal bundle O(sp —2) and the action can be (infinitesimally) lifted
to such a neighborhood. With respect to local coordinates (y1,c1) on the total
space of O(sp — 2) at py, the intersection of D with such a local neighborhood is
given by the local model equation

(1 —y;? =0) C C2
In order for this equation (in other words, the intersection of D with this neigh-
borhood) to be invariant under the C*-action, the weight of the action on ¢; must

be —sp. That means the weight of the action on O(sp — 2)|,, must be —sp which
corresponds to m = 1 and

(3.12) () <d(m +1) — 1> (-t <2d - 1)

d? d—1 d? d—1

in (3.10).

In the rest of this section, following the discussion above and by using the resulting
weight (—sp) on the normal bundle Ny D, we explain the localization contributions
of the fixed curves in Mp with & > 1. In [22], the authors assume that the C*-
action fixes D to obtain the relative virtual localization formula [22] Thm. 3.6].
The local action described above only preserves D. Nevertheless, if sg > 1, the
long-exact sequence in [22] p. 14] splits into easy to understand terms from which
we obtain an explicit relative virtual localization formula.

Since the case sg = 1 is well-studied, assume sg > 1. For

f=(u: C=(2,21) — (X[1],Dg)) € Mp
illustrated in Figure[2] let
fr=(u1: Cy = (31, (210)fy) —
k
(X, D)) = | (usi =@o hy;: Cri = (P};,00) — (X, D))
i=1

denote the union of components corresponding to the k Galois covers and
f2 = (UQ: CQ = (]P)%, (227;)?:1 U Zl) — (PXD, Doo U Do))

denote the rubber component in Px D given by (3:9). As noted in [22], the analysis
of the virtual normal bundle to such a component is identical to the case of ordinary
stable maps with the bundle T'X systematically replaced by T X (—log D). In fact,
the contribution of Mp to No,qp is of the form

o ~ TIE(disg)  e(Obiog(u)™)e(aut(C)™)
B O ) I d, e(Defeg (w7 e DA )

where
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o Defjos(u) and Objog(u) are calculated via the long-exact sequence
(3.14)
0— Deflog(u) — H°(Z1,uiTX(=log D)) @ H(P}, u}TPx D(—log Do U Dy))

Res @T D — Obyog (1) — H'Y(Sy,ulTX (—log D))
=1
© H (P}, u3TPx D(—log Doy U Dy)) — 0

as in [22] p. 14];

e Aut(P) is the symmetry group of P;

e [](d;sp) is the product of the tangency orders at the nodes because each f arises
as a limit of that many distinct curves in the main stratum,

e and, the product []d; in the denominator corresponds to the discrete automor-
phisms of h;.

Moreover, in

o g = us(z9;) = u1(z1), for all ¢ = 1,... k, is the image of the nodes between f;
and f5 in D;

e and, HO(P}, u3TPx D(—log Ds U Dy)) is the quotient of

HO(PL, u3TPx D(—log Do U Dy))
by the complex 1-dimensional subspace corresponding to the C*-action on Px D.
Since
u3TPx D(—log Dog U Dy) = (P' x T, D) & (P' x C),
we have
HO(PY, u3TPx D(—log Doy U Dy)) = T,D
and  H'(Pi, u3TPx D(—log Do U Dy)) = 0.
Since s > 1, for all i = 1,..., k, the residue map
Res: H(P};,u},TX(~log D)) — T,D
is zero. Also
HO(PL, uTPx D(— log Do U Dy)) = T,D £ EBT D
is the diagonal embedding. Therefore,
Defjog(u) = H(X1,uiT X (—log D))

and

k
© T.D
0—s @%;% — Obyog (1) — H'(S1,uiTX (—log D)) —» 0
q

Note that,
H'(S1,uiTX(~log D)) EBHl Pl hi,0(-1)).

Decomposing Def(C) into the moving and ﬁxed factors, Def(C) = Def(C)™* @
Def(C)™°V, the moving part corresponds to the simultaneous smoothing of the
nodes and has the equivariant contribution —sp — 1. Here, —sp is the weight
of the action on NxD|, and ¢ is the relative -class in [22] Sec. 2.5]. The fixed
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part Def(C)f* corresponds to the deformations of Mp. We conclude that the
localization contribution Cont(Mp) of P is given by the formula

Vi s : k—1 1
COHt(MP) = W(H@Cont(fh))(—l) \/mp m
SB k
(3.15) = m(gdzcont(hi)) /mp wk72
sp Ty (D%t 2d -1 fo
= twery LU, <d«—1>fgpw

where Cont(f1;) is the contribution of the Galois cover fi; with m = 1 in (3.12)
k
and (—1)*~! is the contribution of % to e(Obiog (f)™).
q [E—
For instance, if d = 2 and P = {1, 1}, then Mp is a point, Aut(P) has order 2, and

Cont(Mp) = S?B.

Together with the contribution of the Galois cover (i.e. P = (2)), which is

(—12#<2><2—1):_3/47

2-1
we get
-3 2sp 1/2(sp—1)—1
2 = — _— .
me(2,sp) = 7=+ = 22( 21

If d = 3, the partitions of 3 are P; = (3),P> = (2,1), and P3 = (1,1,1). Since
Mp, is a point, by ([3:12) and (3:15), we have
—383

5

Cont(Mp,) = 19—0, Cont(Mp,) =

Also, by [22] Rmk. 3.4], we have

1
| Y= 5/_ 3spY1 = sB/2;
* I Mo,a

My
therefore,
Cont(Mp,) = s5/2.
We conclude that

10 3sp sy 1 (3(sp—1)—1
e A T U T

Remark 3.6. The examples above suggest that the degree k term of (B:11), as a

polynomial in sp, is the sum of all Cont(Mp) where P is a partition of d into k+1

summands.

4. HIGHER GENUS INVARIANTS WITH MAXIMAL TANGENCY

In this section, we study a higher genus version of the invariants N4 and n4,
and explain a decomposition of genus one invariants into different contributions.
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4.1. Higher genus integrality conjecture. Suppose (X, D) is a symplectic log
Calabi-Yau fourfold and g > 1. By (L.1)), the real expected dimension of

mg,(sA)(*Xva Da A)

is 2g. The relative GW invariants

(4.1) Nga= /[mml

g,(sa)

vir(_l)gAg € Q VAGHQ(Xa Z)vsA >0,
(X.D,A)]

are defined by pairing the (algebraic) virtual fundamental class of M;I(S 2) (X,D,A)
with the degree 2g Hodge class A\gy. The latter is the top chern class of a rank g
(orbifold) vector bundle

E— Mg,(sA)(Xa D, A)

whose fiber over (u, X, z1) with smooth domain is the space of holomorphic 1-forms
on X; more generally, E is defined to be the push-forward of the relative dualizing
sheaf on the universal curve space Cy (s,)(X, D, A). These invariants are defined
and studied in [24] Sec. 5.8] and [4]. The fact that the top lambda class is a natural
insertion to consider in higher genus stems from the fact that N, 4 are related to the
higher genus invariants of the symplectic sixfold X x P!, and (via localization) the
top lambda class with the appropriate sign (—1)9 measures the difference between
complex 2 and 3 dimensional obstruction theories; see |4] p.13].

Let
sin(h/2 on_ _
42 R =00 X U N, sl
BEH,(X,Z) 920
dB=A,d>0

where p is the Mobius function, ¢ = /2, and No,a = N4 are the genus 0 invariants

defined in (L8).

Conjecture 4.1 (c.f. [4] Cnj. 8.3]). The function Fy in [A2) is a well-defined
rational function of q, invariant under ¢ — ¢~ '; furthermore, it is a Laurent poly-
nomaal in q with integer coefficients.

Note that, letting o — 0, only the genus zero terms survive, sin(h/2) cancels with
h/2, and thus the value F4(1), which is the sum of the coefficients of the Laurent
polynomial, is the genus 0 BPS invariant

A= Y @(_1)SB*1NB € Z.

d2
BEH(X,Z)
dB=A.d%0

The inverse of the formula above is

—1 SB(d—1)~

Na= ) %”B-
BeH>(X,Z)
dB=A,d>0

This formula looks different from but the integrality of 714 is equivalent to the
integrality of the genus 0 BPS invariants n in (1.9). A non-elementary but con-
ceptual proof of this equivalence follows from Donaldson-Thomas theory of quivers;
see [4] Sec. 8.5].
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In the following, first, we explain how the higher genus invariants N, 4 can be ana-
lytically defined without using virtual techniques at the cost of using (Ruan-Tian)-
type global perturbations. Then, we revisit the unperturbed setup and explain the
issue of multi-cover contributions, with a particular focus on genus one invariants.

4.2. Higher genus invariants of semi-positive pairs. From the analytic point
of view, for g > 1, in order to construct a (virtual) fundamental class for
My (sa) (X, D, A),

we can use the logarithmic/relative Ruan-Tian perturbations as in [13/[29] in the
following way. For g,k € N with 2¢g + k > 3 (which is the case for all ¢ > 1 and
k = 1), let T, denote the Teichmiiler space of genus g Riemann surfaces with k
marked points and by G, . the corresponding mapping class group. We have

Mg = E,k/gg,lv

Assume g=g1+g2 and k=ki+ko with 2¢;+k; >3 for i=1,2. For any decomposition
S1USs of {1,2,...,k} with |S;| = k;, there exists a canonical immersion

(43) L=18,,5;" M9177€1+1 X Mgz;’fz-i‘l ? 8M(]77€
which assigns to a pair of marked curves
(Ci=[Zi 21,5, Zi,ki+1])i=172>

the marked curve
C=21,...,28), Z=21U32/21 k;+1~ 22 ks +1

{Z17 .- .,Zk}:{ZL], . '7zl,k1} U {22,17 .- '722,]62}7

so that the remaining marked points are renumbered by {1,..., k} according to the
decomposition S;US5. There is also another natural immersion

(44) 0: Mg_L]gJ,_Q — 8mg,k
which is obtained by gluing together the last two marked points.
Definition 4.2 ([48] Dfn. 2.1]). Let g, k€N with 2g+k>3, and

(4.5) p: My — My

be a finite branched cover in the orbifold category. A universal family over ﬁgyk
is a tuple

(46) <7T: ﬂg,k Hﬁg,]ﬁ}lv"wsk)a

where ﬁg’k is a complex projective variety and 7 is a projective morphism with
disjoint sections 31,...,3% such that for each c€ My the tuple

C= (Zzﬂfl(c), (2155 2k) = (31(0), . .. ,3k(c)))
is a stable k-marked genus g curve whose equivalence class is [C]=p(c).

Definition 4.3. Let g, k€N with 2g+k>3. A cover (£J) is regular if

(1) it admits a universal family,
(2) each topological component of p~! (Mg,k) is the quotient of 7, 1 by a subgroup
of gg,kv
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(3) for each boundary divisor (4.3) we have
(Mglakl"rl X Mgmkz-i-l) X (t,p) ﬁ%k ~ ﬁ91,’f1+1 x ﬁng%-‘rla

for some regular covers ﬁgi,kiﬂ of Mgi,kiﬂ, and
(4) for the boundary divisor (£4]) we have

Mgfl,k+2 ><(6,;0) mg,k ~ mg—l,quQ;

for some regular cover My_1 k4o of My_1 p12.

The last two conditions are inductively well-defined. The existence of such regular
covers is a consequence of (2| Prp. 2.2, Thm. 2.3, Thm. 3.9]; see also moduli space
of curves with level n structures in |35 p. 285]. In the genus 0 case, for each k>3,
the moduli space mo,k itself is smooth and the universal curve

Cox = Mo g1 — Mo

is already a universal family. The regular covers are only branched over the bound-
aries of the moduli space. Furthermore, the total space of a universal family as in
(46) over a regular cover only has singularities of the form

{(z,y,t) eCPray=t"} — C,  (z,y,t) — 1

at the nodal points of the fibers of 7. In the original approach of [41], for dealing
with such singularities they consider embeddings of a universal family into PV for
sufficiently large N.

Fix a regular covering (43) and a universal family (£0]). Denote by

— % —
ingc C ng,k:

the complement of the nodes of the fibers of the projection map « in (4.6). Denote
by
—%
Tg,k = ker d(’ﬂ'|ﬁ;k) — ug,k

the vertical tangent bundle. The latter is a complex line bundle; we denote the
complex structure by jy. Then

Qg:i = (Tg,ka —ju)* — i_l;k

is the complex line bundle of vertical (or relative) (0,1)-forms. It is possible to
extend this construction to the nodal points by allowing simple poles and dual
residues, or by embedding i, . into some P as in [41].

Let (X,w) be a symplectic manifold and J be an w-tame almost complex struc-
ture on X. The classical space of perturbations considered in [41] (following the
modification in [48]) is the infinite dimensional linear space

Hon(X,J)= {uer(ﬁ;k x X, 70, @c 3T X)

(4.7 ., k
s.t. supp(v) C (8, — U Im(34)) XX},

a=1

where 71, 5 are projection maps from i_l;k x X onto the first and second compo-
nents, respectively, and supp(v) is the closure of the complement of the vanishing
locus of v in the compact space ﬂgﬁk x X. Let Hg (X, w) denote the space of tuples
(J,v) where J is w-tame and v € H, (X, J). Note that given v and a boundary
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component as in Definition (3)| (resp. Definition (4)), the restriction of v to

My, ky+1 gives a perturbation term in Hy, x, (X, J) (vesp. Hg—1 k+2(X, J)).

Definition 4.4. Suppose g,k € N with 2g+k >3, U, ; is a universal family as in
(40), (X,w) is a symplectic manifold, A € Hy(X,Z), and (J,v) € Hyp(X,w). A
degree A genus g k-marked (J,v)-map is a tuple

(4.8) f= (¢,u,cz (E,(zl,...,zk))),

where C' is a nodal genus g k-marked complex curve, ¢: 3 —>£_lg7k is a holomorphic
map onto a fiber of ﬂgﬁk preserving the marked points, and u: ¥ — X represents
the homology class A and satisfies

ou = (¢, u)*v.

Two k-marked (.J,v)-holomorphic maps (qbl,ul,Cl) and (¢2,U2,C’2) are equiva-
lent if there exists a holomorphic identification h of Cy and C5 such that (¢1,u1)=
(¢2,u2) o h. A (J,v)-holomorphic map is stable if it has a finite automorphism
group. A contracted component of ¥ in (£8) is a smooth component whose image
under the map ¢ is just a point. A map is stable if and only if the degree
of the restriction of u to every contracted component of ¥ containing only one or
two special (nodal or marked) points is not zero. If is stable, every connected
cluster of contracted components is a tree of spheres, with a total of at most 2
speciaEI points, at least one of which is a nodal point. For generic v, the only
components of ¥ contributing non-trivially to the automorphism group of are
the contracted components.

In order to perturb J-holomorphic curves with tangency condition relative to a
(smooth or normal crossing) divisor D C X, we need to restrict to subset of
Hg (X, J) consisting of perturbations that are “compatible” with D in suitable
sense. In [18][29], the latter is expressed in terms of a first order condition on v
along D. In [13], we consider the logarithmic perturbation space

{ulog er(T, , x X, 7Y, ®c m3TX (—log D))

(4.9) B .
8.t. supp(Viog) C (ﬂ;k - U Im(34)) XX}.

a=1
Associated to each v; We get a classical perturbation term
(4.10) v=1(Vog) EHg1(X,J),
where by abuse of notation ¢ denotes the C-linear homomorphism
71 (Q0)) ®c 3T X (—log D) — w1} (QY}) @c m3TX
induced by (2.9). Define H, (X, D) to be the space of tuples (w, J, 11o5) where
(w,J) € AK(X, D) and v belongs to (£9). For such a tuple (w,J,vog), it is

shown in [I3] that the moduli space M, (X, D, A, v) consisting of equivalence
classes of genus g k-marked (J, v)-holomorphic maps of tangency type s is defined
and has a natural compactification Mlg"j(X , D, A, v) satisfying properties similarly

9Either a marked point or a nodal point connecting the cluster to an irreducible component of
3 outside the cluster.
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—rel
to the unperturbed case. The relative moduli space M:H(X, D, A, v) can be defined
similarly and admits a surjective map

M (X, D, A,v) — MyE(X, D, A, v)

as in the unperturbed case.

If (X, D) is a symplectic log CY fourfold, then it is semi-positive in the sense of
[18] Dfn. 4.7] or equally [13] Dfn. 1.6]. Therefore, by [13| Prp. 1.7 and Crl. 1.9], we
have the following result.

Theorem 4.5. Suppose (X, D) is a symplectic log CY fourfold, A € Hyo(X,Z),
and g > 0. Then, for any given choice of universal family in ([6), there exists
a Baire set of second category H:™ (X, D) C Hy (s, (X, D) such that for each

rog g,(sa)
(w7 J7 Vlog) EHg7(sA) (X7 D)7
(1) the moduli space M (54) (X, D, A) is cut transversely and is a smooth manifold

of real dimension 2g,
(2) the image of Mg (s,)(X, D, A) — M;)(SA)(X,D,A) under the forgetful map

(4.11) Sttmgv(sA)(X,D,A)—)MgJ

lies in the image of smooth maps from finitely many smooth even-dimensional
manifolds of at least 2 real dimension less than 2g,

(3) and consequently, the map defines a pseudo-cycle of real dimension 2g
mn ﬂg’l whose integral homology class [st] only depends on the deformation
equivalence class of (X, D,w) and the degree degp of the regular covering
used to define Vigg.

Corollary 4.6. The rational homology class

1
oy 1] € H20(My1,0),

[My () (X, D, A" =

is an invariant of the deformation equivalence class of (X,w, D) and can be used to
define (41). Furthermore, for every g > 0, there exists a constant cg (independent
of the choice of (X, D) and A) such that

cgNga €L VA € Hy(X,Z), with sy > 0.

Using the perturbed setting above proves to be an effective method for defining the
invariants Ny 4. However, it falls short when it comes to defining integer-valued
invariants and comprehending the geometric significance of the integers posited
by Conjecture In the subsequent section, we eschew these perturbations and
explore strategies for addressing the irregularity present in higher genus (unper-
turbed) moduli spaces. The section concludes with a conjecture concerning the
integrality of genus one.

4.3. Reduced genus one invariants. For g > 0, given a 1-marked smooth curve
(3, p), the relative space M, () (3, p, [dX]) of genus g degree d covers fully ramified
over p is not necessarily a smooth orbifold of the correct complex dimension. Fur-
thermore, the following observations illustrate the complicated nature of relative
multiple-cover maps in higher genus.

First, we have the following weaker analogue of Lemmal[2.4] which is again a corollary
of |26 Thm 17].
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Lemma 4.7. Suppose (X, D) is a symplectic log Calabi-Yau fourfold and
[=u,%, znle Mg (X,D,A).
If f is a log immersion then deg(Ny) = 2g — 1,
Defioq(f) = H*(N}) and Obyg(f) = H'(Ny) =0,

where Ny is the logarithmic normal bundle defined in (2.17). In other words,
My (s.)(X, D, A) is cut transversally in a neighborhood of every log immersion.

In [40], given an elliptic curve ¥ and an integer g > 2, the author constructs a
genus g curve X' and a map h: ¥’ — 3 of degree 2g — 1, so that h is ramified
above exactly one point of ¥, and so that the local monodromy above that point is
of type a (2g — 1)-cycle. Together with Lemma[47] we get the following observa-
tion. Suppose u: (X,p) — (X, D) is a genus 1 log immersion in My (5,)(X, D, A)
and h: (¥',z1) — (%,p) is a degree 29 — 1 map ramified at exactly p. Then,
by Lemma the moduli space M, ;,)(X, D, A) is cut transversely in a neigh-
borhood of the multiple-cover map w o h: (X', 2;) — (X, D). Therefore, u can
not have a multiple-cover contribution to an integral-valued invariant arising from
mgy(sA)(X,D,A). Nevertheless, for ¢ = 1, the possible multiple-covers are well-
understood and moduli space ml’(SA)(X, D, A) and the invariant N; 4 can be ex-
plicitly described as follows.

For A # 0, let Mll,(SA)(X’ D, A) denote the subset of My ,)(X, D, A) consisting
of the relative/log stable maps [u,C' = (X, z1)] such that ¥ is an elliptic curve E
with 1 rational component attached directly to it and u|g is constant (therefore,

the restriction of u to the rational component has degree A). In other words,

/17(SA)(X’D’A) = MO,(O,SA)(XvaA) X My 1.

We denote by M’L(SA)(X, D, A) the closure of M’ (X,D,A)in My (5,)(X, D, A).

. 1,(sa)
By [45] Thm 1.2], the moduli space M (5,)(X, D, A) admits a closed subspace
M?ZZ)(X, D, A) that contains the virtually main stratum M, (;,)(X, D, A) and
is invariant under deformations of J. Furthermore, if (X, D) is a log Calabi-Yau
fourfold and .J is generic, the moduli space M, (s ,)(X, D, A) decomposes as

——main

(4.12) M (o) (X, D, A) = My () (X, D, A) UM, (. ,,(X, D, A).
By (412), we have
Nia=NPS™+ Ny,
such that NL 4 1s a function of {np}ip—a determined by the lemma below.

Lemma 4.8. We have
, _ (2—83) d(SB—l)—]. i
Nia= Y 5~ ( e gL

dB=A

d>0
Proof. For the same choice of weight as in (3:11)), the contribution of a logarithmi-
cally immersed rational curve [u, (P, 00)] € MG (55X, D, A) to Ni 4_yp has the
form

(4.13) /m (1 €(Obyog (1) )e(aut(C)meY)

ae(Def(u)mOV)e(DeflOg(C)nmv) x (—)\1)),
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where C' = (E Ugo P! 00) is the 1-marked nodal domain obtained by attaching
P! and an elliptic curve E at the points 0 and g, respectively, with the marked
point co on the rational component. Over P!, the map f is the d-fold Galois cover
(P, 0Uo00) — (P, po Upy), and over E the map is constant pg. Compared to the
calculations leading to (3.10), the node in the domain contributes a factor of
1 1

1 =d

73— 1 —dyn
to the moving part Def(C)™°" and the automorphism factor aut(C) of (P, 0U co)
is the weight zero representation

HO(P', TP (—1log0 U c0)) = C - (20020)-

These two changes each contribute an extra factor of d to the resulting fraction in
(3.10). Since the weights on the tangent space of the (standard) normal bundle to
u at pg are sg —2 and 1, by [27] p. 550], the obstruction bundle over E contributes
a factor of

(4.14) (s5 = 2)c(EY)(1/(sp — 2))c(EY)(1)
to e(Obieg ()™ /e(Defiog (f)™°¥) where E is the Hodge bundle over E and
Q) =1+t (Q) + -+ +17¢(Q)

for any complex vector bundle @ of rank r. By dimensional reason, only the degree
zero term sg — 2 of (4.14) contributes to the integral (4.13)). Since

1
>\1 = 51
/ﬂl,l 24

we conclude that (£13) is equal to

!

Remark 4.9. For sp =1, we get

(2—sp) (d(sp—1) =1\ _(=1)%*
24B< Bd—l > 24

which is the number calculated in |7} (13)].

The reduced moduli space ﬂ;n?;i) (X, D, A) may still include components of higher

——main

than expected dimension. For instance, if A = dB, M, (X, D, A) includes
multiple-covers of the form

u: (B,q) 2 (P',00) -5 (X, D),
where h € M (q)(P!, 00,[d]) is a genus 1 multiple-cover of P! fully ramified at co.
Note that

dime Ml,(d) (]P’l, 00, [d]) =d+1.
However, since the class A; vanishes on the locus of curves with loops (c.f. [24]
p. 351]), the (localization) contribution of such multiple-covers to N3 is zero.

Also, unlike in classical GW theory, isogenies of elliptic curve do not appear because
of the maximal tangency condition. Furthermore, by fixing the complex structure
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of the domain elliptic curve, we can reduce the complex dimension to zero and avoid
the integration of \; at the cost of multiplying by the constant

PDyg (M) € Ho(M1,1,Q) = Q.

Therefore, we expect the reduced genus-one GW invariants N4 arising from

——main

M (5,)(X, D, A) to be a fixed multiple of an integer count of genus one maximally-
tangent logarithmically immersed curves in (X, D) with a fixed complex structure
on the domain.

Conjecture 4.10. Suppose (X, D) is a log Calabi-Yau surface. Then the reduced
genus one invariants ny 4 formally derived from Ny a by the formula

disp—1)—1
(4.15) 24Ny a4 =n1a + Z (2- 33)( ( Bd _ 1) )nB
S

are z'mfeger—valued Moreover, for a generic choice of a complex structure j on
the torus, ny a4 represents a geometric count of degree A mazimally tangent genus
1 curves in X with the complex structure j.
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