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Abstract Our previous papers introduce topological notions of normal crossings symplectic divisor

and variety, show that they are equivalent, in a suitable sense, to the corresponding geometric notions,

and establish a topological smoothability criterion for normal crossings symplectic varieties. The present

paper constructs a blowup, a complex line bundle, and a logarithmic tangent bundle naturally associated

with a normal crossings symplectic divisor and determines the Chern class of the last bundle. These

structures have applications in constructions and analysis of various moduli spaces. As a corollary of

the Chern class formula for the logarithmic tangent bundle, we refine Aluffi’s formula for the Chern

class of the tangent bundle of the blowup at a complete intersection to account for the torsion and

extend it to the blowup at the deepest stratum of an arbitrary normal crossings divisor.
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1 Introduction

Divisors, i.e., subvarieties of codimension 1 over the ground field, and related structures, are

among the central objects of study in algebraic geometry. They appear in the study of curves

(as dual objects), singularities (particularly in the Minimal Model Program), and semistable

degenerations of smooth varieties (as the singular locus). The complex line bundle OX(V )

corresponding to a Cartier divisor V ⊂ X and the log tangent bundle TX(− logV ) (or dually the

sheaf of log 1-forms Ω1
X(log V )) corresponding to a normal crossings (or NC) divisor are among

such useful and well-studied structures. They play important roles in the relative/log Gromov–

Witten theories of Li [22, 23], Gross–Siebert [21], and Abramovich–Chen [1, 7]. Divisors also

play an important role in symplectic topology, including as representatives of the Poincare duals

of symplectic forms [10], in symplectic sum constructions [20, 24], in relative Gromov–Witten

theory and symplectic sum formulas [11, 19, 30, 31, 35], in affine symplectic geometry [27, 28],

in homological mirror symmetry [3, 33], and in relative Fukaya category [8, 9].
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A smooth symplectic divisor is simply a symplectic submanifold of real codimension 2.

Applications involving a smooth symplectic divisor V ⊂ X typically rely on the Symplectic

Neighborhood Theorem [25, Theorem 3.4.10]. It provides an identification Ψ (which we call a

symplectic regularization) of a neighborhood of V in X with a neighborhood of V in its normal

bundle NXV . Such an identification can then be used to construct an auxiliary V -compatible

“geometric” data/structure, such as a V -compatible almost complex structure J or a complex

line bundle OX(V ) over X with first Chern class [V ]X . One then shows that an invariant

defined using J or the deformation equivalence class of an object constructed using Ψ depends

only on (X, V, ω). This approach is relatively straightforward to carry out in the case of smooth

divisors.

Singular symplectic divisors/varieties and structures associated with them are generally

hard to define and work with because there is no direct analogue of the Symplectic Neighbor-

hood or Darboux Theorem in this setting. Following an alternative approach, [14, 15] introduce

topological notions of NC symplectic divisor and variety and geometric notions of regularization

for NC symplectic divisors and varieties. The latter is basically a “nice” neighborhood identifi-

cation of the divisor/singular locus, analogous to that provided by the Symplectic Neighborhood

Theorem in the smooth case. Every NC symplectic divisor/variety is deformation equivalent

to one admitting a regularization. For this reason, in our approach, we work with the entire

deformation equivalence classes of NC symplectic divisors/varieties, as opposed to a fixed NC

symplectic divisor/variety; see the end of Section 4.2.

As stated in [13], a regularization of an NC symplectic variety V ⊂ X can be used to

construct an associated complex line bundle OX(V ) and a log tangent bundle TX(− logV ).

The present paper carries out these constructions in detail. While the constructions of OX(V )

and TX(− logV ) involve the auxiliary data of regularizations and other choices, their deforma-

tion equivalence classes depend on the deformation equivalence class of the symplectic structure

only.

We denote the smooth locus of an NC symplectic divisor V ⊂ X by V ∗. For r ∈ Z≥0,

let V (r) ⊂ V be r-fold locus of V , i.e., the locus that locally is the intersection of at least r

branches of V ; see (4.1). For example, V (0) = X , V (1) = V , V (2) is the singular locus of V , and

V ∗ = V (1)−V (2). The subspace V (r)−V (r+1) is a smooth submanifold of X of codimension 2r.

We denote its inclusion into X by ιV (r)−V (r+1) . If X is compact and of (real) dimension 2n,

ιV (r)−V (r+1) is a pseudocycle in X of dimension 2(n− r); see [37]. Thus, V ∗ and V (r) − V (r+1)

determine homology classes

[V ]X ∈ H2n−2(X ; Z) and [V (r)]X ∈ H2(n−r)(X ; Z),

respectively.

Proposition 1.1 Let (X, ω) be a symplectic manifold and V ⊂ X be an NC symplectic divisor.

(1) An ω-regularization R for V ⊂ X determines a complex line bundle (OR;X(V ), iR) over X

with a smooth section sR so that s−1
R (0) = V and

DsR : NX(V ∗) −→ OR;X(V )|V ∗

is an orientation-preserving isomorphism along the smooth locus V ∗ of V .
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(2) The deformation equivalence class (OX(V ), i) of (OX(V ), iR) depends only on the defor-

mation equivalence class of (X, V, ω).

(3) If V ′ ⊂ X is another NC symplectic divisor so that V ∪ V ′ ⊂ X is also an NC symplectic

divisor and V ∩ V ′ contains no open subspace of V , then

(OX(V ∪ V ′), i) ≈ (OX(V ), i) ⊗ (OX(V ′), i). (1.1)

The complex line bundle OX(V ) appears in the smoothability criterion for SC symplectic

varieties in [16] and for general NC symplectic varieties in [17]. For a simple (normal) crossings

(or SC) symplectic divisor V =
⋃

i∈S Vi as in Definition 3.1, (1.1) gives

OX(V ) ∼=
⊗

i∈S

OX(Vi) −→ X.

If X is compact and of (real) dimension 2n, the stated properties of sR imply that

c1(OX(V )) = PDX([V ]X) ∈ H2(X ; Z). (1.2)

If X is not compact, this identity holds with [V ]X denoting the element of the Borel-Moore

homology of X determined by V ∗; see [4].

Theorem 1.2 Let (X, ω) be a symplectic manifold and V ⊂ X be an NC symplectic divisor.

(1) An ω-regularization R for V ⊂ X determines a vector bundle TRX(− logV ) over X with

a smooth vector bundle homomorphism

ιR : TRX(− logV ) −→ TX (1.3)

so that for every r ∈ Z≥0

T (V (r) − V (r+1)) ⊂ TRX(− logV )|V (r)−V (r+1) , ιR|T (V (r)−V (r+1)) = dιV (r)−V (r+1) ,

and ιR(TRX(− logV )|V (r)−V (r+1)) = T (V (r) − V (r+1)).

(2) An R-compatible almost complex structure J on X determines a complex structure iR,J on

the vector bundle TRX(− logV ) so that the bundle homomorphism (1.3) is C-linear.

(3) The deformation equivalence class (TX(− logV ), i) of (TRX(− logV ), iR,J ) depends only

on the deformation equivalence class of (X, V, ω).

(4) If V ′ ⊂ X is a smooth submanifold so that V ∪ V ′ ⊂ X is also an NC symplectic divisor

and V ∩ V ′ contains no open subspace of V , then

(TX(− log(V ∪ V ′)), i) ⊕ (OX(V ′), i) ≈ (TX(− logV ), i) ⊕ (X × C). (1.4)

(5) We have

c(TX(− logV ), i) =
c(TX, ω)

1 + PDX([V (1)]X) + PDX([V (2)]X) + · · · ∈ H∗(X ; Q). (1.5)

The above equality holds in H∗(X ; Z) if V ⊂ X is an SC divisor.
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As shown in [12], the complex vector bundle (TX(− logV ), i) plays the same role in the

deformation-obstruction theory of pseudoholomorphic curves relative to an NC symplectic di-

visor as the complex vector bundle (TX, J) in the standard deformation-obstruction theory of

pseudoholomorphic curves; see [26, Chapter 3], for example. This provides a symplectic topol-

ogy perspective on the constructions of log stable maps in [1, 21, 30]. In [18], the vector bundle

TX(− logV ) is used to define Seiberg–Witten invariants of a closed oriented 4-manifold X rel-

ative to a smooth oriented Riemann surface V . This perspective on the standard constructions

of relative Seiberg–Witten invariants reveals additional structures.

For an SC symplectic divisor V =
⋃

i∈S Vi as in Definition 3.1, (1.4) gives

(TX(− logV ), i) ⊕
⊕

i∈S

(OX(Vi), i) ≈ (TX, J) ⊕ (X × CS , i). (1.6)

This immediately implies that

c(TX(− logV )) =
c(TX, ω)∏

i∈S(1 + PDX([Vi]X))

=
c(TX, ω)

1 + PDX([V (1)]X) + PDX([V (2)]X) + · · · ∈ H∗(X ; Z). (1.7)

The direct sum vector bundle on the left-hand side of (1.6) does not even exist as a vector

bundle in the general NC case; see the example in the second half of Section 7. In Sec-

tion 6.4, we instead establish the de Rham cohomology analogue of (1.5) by expressing the

Chern classes on the two sides of (1.5) in terms of the curvatures of connections in the vector

bundles TX and TX(− logV ). We construct a 2k-form τk on X , supported in a neighborhood

of V (k) and representing PDX([V (k)]X) in H2k
deR(X), and C-linear connections ∇ in TX and ∇′

in TX(− logV ) so that the curvature of ∇ is the correct combination of the curvature of ∇′

and τ1, . . . , τr to yield (1.5); see (6.38), Lemma 6.10, and Proposition 6.11. Our proofs of (1.4)

and (1.5) are carried out in the almost complex category.

When V ⊂ X is either an NC complex divisor in a complex manifold or an NC almost

complex divisor in an almost complex manifold compatible with a regularization for V , in the

sense defined in Section 4.2, we can pass to the blowup X̃ of X along the deepest stratum V (r)

of V and to the proper transform V of V . We can then compare the log tangent bundles

for (X, V ) and (X̃, V ) and their Chern classes via (1.4), (1.5), and Lemma 1.3 below. This

immediately yields Corollary 1.4 below, except for the refinement in the vanishing torsion case.

This corollary refines [2, Lemma 1.3] in the SC case and extends it to the general NC case.

Lemma 1.3 Let (X, J) be an almost complex manifold, V ⊂ X be an NC almost complex

divisor with a regularization R, and r ∈ Z+ be such that V (r+1) = ∅. If Ã : (X̃, J̃) → (X, J) is

the blowup of (X, J) along V (r) determined by R, E is the exceptional divisor, and V ⊂ X̃ is

the proper transform of X, then Ṽ ≡ V ∪E is an NC almost complex divisor in (X̃, J̃). In this

case, there are a regularization R̃ of Ṽ in (X̃, J̃) and an isomorphism

dlog

RR̃Ã : TR̃X̃(− log Ṽ )
∼=−−→ Ã∗(TRX(− logV )) (1.8)



Normal Crossings Singularities: Structures 111

so that the diagram

TR̃X̃(− log Ṽ )

dlog

RR̃
π

��

ιR̃
�� T X̃

dπ

��

Ã∗(TRX(− logV ))
π∗ιR

�� Ã∗TX

commutes. The first and third claims above also hold in the category of complex manifolds with

NC divisors.

Corollary 1.4 With the assumptions as in Lemma 1.3,

c(T X̃)

(1 + PDX̃([V
(1)

]X̃) + PDX̃([V
(2)

]X̃) + · · · )(1 + PDX̃([E]X̃))

= Ã∗
(

c(TX)

1 + PDX([V (1)]X) + PDX([V (2)]X) + · · ·

)
∈ H∗(X̃ ; Q) .

(1.9)

The above equality holds in H∗(X̃ ; Z) if V ⊂ X is an SC divisor or the torsion in H∗(E; Z) lies

in the kernel of the homomorphism ι̃∗ induced by the inclusion E → X̃.

The statement of Lemma 1.3 in the complex category is well-known; its proof is recalled at

the end of Section 2.1. We establish this lemma in the almost complex category with regular-

izations in Sections 5.2–5.4. The regularizations are used to construct the bundles TX(− logV )

and T X̃(− log(V ∪ E)) and the blowup X̃ .

We can also pass to a blowup X̃ of X along the deepest stratum V (r) of V and the proper

transform V ⊂ X̃ of V if V ⊂ X is an NC symplectic divisor with V (r) admitting a tubu-

lar symplectic neighborhood that contains the disk subbundle of NXV (r) of a fixed radius; see

Section 5.5. This is automatically the case if V (r) is the compact. If so, each deformation equiv-

alence class [ω] of symplectic forms on (X, V ) determines a deformation equivalence class [ω̃]

of symplectic forms on the blowup (X̃, Ṽ ) of (X, V ) along V (r), a homotopy class of blowdown

maps

Ã : (X̃, Ṽ ) −→ (X, V ),

and a homotopy class of isomorphisms

dlogÃ : T X̃(− log Ṽ )
∼=−−→ Ã∗(TX(− logV )) (1.10)

between the log tangent bundles associated with [ω] and [ω̃]. If V (r) is not compact, the existence

of a tubular symplectic neighborhood that contains the disk subbundle of NXV (r) of a fixed

radius is unclear, even after deforming the symplectic form. We suspect that the answers to the

following closely related questions are negative in general; the affirmative answer to Question 1.6

would imply the affirmative answer to Question 1.5.

Question 1.5 Let (V, ω) be a symplectic manifold, N → V be a direct sum of Hermitian

line bundles (Li, Äi,∇(i)) determining fiberwise symplectic forms Ωi on Li, and N ′ ⊂ N be

a neighborhood of V . Is there a deformation of ω through symplectic forms and of (Äi,∇(i))

through Hermitian structures so that the induced 2-form ω̃ as in (3.3) on the total space of N
is symplectic on the unit ball subbundle of N , with respect to the deformed metric, and this

subbundle is contained in N ′?
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Question 1.6 Let (V, ω) be a symplectic manifold, J be an ω-compatible almost complex

structure, and C : V → R+ be a smooth function. Are there a symplectic form ω′ on V

deformation equivalent to ω and an ω′-compatible almost complex structure J ′ so that

ω′(v, J ′v) ≥ C(x)ω(v, Jv) ∀x ∈ V, v ∈ TxV.

We review the complex geometric constructions of the complex line bundle (OX(V ), i) and

the complex vector bundle (TX(− logV ), i) associated with an NC divisor V in a complex mani-

fold V and some of their properties in Section 2.1. As a warmup to the general case, we construct

these bundles for a smooth symplectic divisor in Section 2.2. For the reader’s convenience, Sec-

tions 3.1 and 3.2 recall the notions of SC symplectic divisor and regularization, respectively,

introduced in [14]. Section 3.3 contains the constructions of the vector bundles OX(V ) and

TX(− logV ) for an SC symplectic divisor V ⊂ X and establishes Proposition 1.1 and the first

three statements of Theorem 1.2 in this setting. Section 3.4 establishes Theorem 1.2 (4) for an

SC symplectic divisor V . The constructions and proofs in the SC case illustrate the arguments

in the general NC case, which are more notionally involved. Sections 4.1–4.3 and 6.1–6.3 are

the analogues of Sections 3.1–3.3 in the local and global perspectives, respectively, on the NC

symplectic divisors introduced in [15]. Section 4.3 also shows why the proof of Theorem 1.2 (4)

for SC symplectic divisors in Section 3.4 immediately extends to the general NC case. Sections 5

and 6.4 establish Lemma 1.3 and Theorem 1.2 (5), respectively. In Section 7, we establish the

remaining statement of Corollary 1.4 and show that (1.5) and (1.9) do not need to hold with

Z-coefficients for arbitrary NC divisors.

2 Standard Settings

2.1 NC Complex Divisors

Let X be a complex manifold of (complex) dimension n with structure sheaf OX (the sheaf of

local holomorphic functions). An NC divisor in X is a subvariety V ⊂ X locally defined by an

equation of the form

z1 · · · zk = 0 (2.1)

in a holomorphic coordinate chart (z1, . . . , zn) on X . The sheaf of local meromorphic functions

with simple poles along the smooth locus of V is freely generated in such a coordinate chart

by the meromorphic function 1/z1 · · · zk as a module over OX . Since this sheaf is locally free

of rank 1, it is the sheaf of local holomorphic sections of a holomorphic line bundle OX(V ).

The constant function 1 on X determines a holomorphic section s of this sheaf satisfying the

properties of sR in Proposition 1.1 (1). It is immediate that (1.1) holds as well. The dual

of OX(V ) is the holomorphic line bundle OX(−V ); the sheaf of its local holomorphic sections

is freely generated in a coordinate chart as above by the holomorphic function z1 · · · zk.

In a local chart as in (2.1), the sheaf T X ≡ O(TX) of local holomorphic sections of the

tangent bundle TX is generated by the coordinate vector fields ∂z1 , . . . , ∂zn . The logarithmic

tangent sheaf T X(− logV ) is the subsheaf of T X generated by the vector fields

∂log
z1

≡ z1∂z1 , . . . , ∂
log
zk

≡ zk∂zk
, ∂zk+1

, . . . , ∂zn .

The dual of this subsheaf is the sheaf of logarithmic 1-forms Ω1
X(log V ) is the sheaf generated
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by
dz1

z1
, . . . ,

dzk

zk
, dzk+1, . . . , dzn.

Since T X(− logV ) is locally free, it is the sheaf of local holomorphic sections of a holomorphic

vector bundle TX(− logV ). The inclusion of T X(− logV ) into T X gives rise to a holomorphic

homomorphism

ι : TX(− logV ) −→ TX

that realizes every section of TX(− logV ) as a section of TX with values in TV along V .

The normalization ι : Ṽ → V ⊂ X of V is an immersion. The inclusion of the sheaf Ω1
X of

1-forms on X into Ω1
X(log V ) and the Poincare residue map induce an exact sequence

0 −→ Ω1
X −→ Ω1

X(log V ) −→ ι∗OṼ −→ 0

of sheaves on X , where ι∗OṼ is the direct image (or push-forward) sheaf of the structure sheaf

OṼ of Ṽ . Therefore,

c(Ω1
X(log V )) = c(Ω1

X) c(ι∗OṼ ). (2.2)

If V =
⋃

i∈S Vi is an SC divisor, then ι∗OṼ =
⊕

i∈S OVi as sheaves on X . Furthermore, there

is an exact sequence

0 −→ OX(−Vi) −→ OX −→ OVi −→ 0

of sheaves on X for each i ∈ S. Thus,

c(ι∗OṼ )
∏

i∈S

(1 − PDX([Vi]X)) = 1 ∈ H2(X ; Z)

in this case. We thus obtain (1.7) in the complex setting.

For an arbitrary NC divisor V ⊂ X , the derived direct image sheaf ι!OṼ of OṼ coincides

with the direct image sheaf ι∗OṼ because the higher derived functors for an immersion vanish.

Along with the Grothendieck–Riemann–Roch theorem, this gives

ch(ι∗OṼ ) td(X) = ch(ι!OṼ ) td(X) = ι∗(ch(OṼ ) td(Ṽ )) = ι∗(td(Ṽ )),

where ch is the Chern character and td is the Todd class; see [32, Theorem 1.3]. Thus,

ch(ι∗OṼ ) =
ι∗(td(Ṽ ))

td(X)
∈ H∗(X, Q). (2.3)

This formula holds only with Q-coefficients because the Chern character is a map from the

K-theory of X to the rational Chow group of X . The proof of (2.3) in [32, Corollary 5.22]

uses blowups to reduce the problem to SC divisors; we are not aware of a direct way for

obtaining (2.3). For the purposes of computing c(TX(− logV )) via (2.2), it is still necessary

to translate ch(ι∗OṼ ) into c(ι∗OṼ ). Nevertheless, it is feasible to directly study the change

in c(TX(− logV )) under blowups, as is done in the proofs of Lemma 1.3 in Section 5.4, and

to relate c(TX(− logV )) to c(TX) in the spirit of (2.2), as is done in the proof of (1.5) in

Section 6.4.

Let r ∈ Z+, Ã : X̃ → X , and E, V ⊂ X̃ be as in Lemma 1.3 and Ũ ≡ Ã−1(U) be the

preimage of a coordinate chart U as in the sentence (2.1). For each i = 1, . . . , k,

Ũi ≡ {(zi, (uj)j∈[k]−i, (zj)j∈[n]−[k]) : (u1z1, . . . , ui−1zi, zi, ui+1zi, . . . , ukzi, (zj)j∈[n]−[k]) ∈ U},
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where [k] ≡ {1, . . . , k}, is a coordinate chart on Ũ ⊂ X̃; these charts cover Ũ . Since

V ∩ Ũi = (u1 . . . ui−1ui+1 . . . uk = 0), E ∩ Ũi = (zi = 0),

and
dzj

zj
=

duj

uj
+

dzi

zi
∀j ∈ [k] − i,

we obtain that

Ã∗Ω1
X(log V ) = Ω1

X̃
(log(V ∪ E)).

This establishes Lemma 1.3 in the complex setting.

2.2 Smooth Symplectic Divisors

It is fairly straightforward to adapt the constructions of OX(V ) and TX(− logV ) in Section 2.1

via the Symplectic Neighborhood Theorem. Before doing so below, we carefully formulate the

relevant notions.

Let V be a smooth manifold. For a vector bundle Ã : N → V , we denote by ζN the radial

vector field on the total space of N ; it is given by

ζN (v) = (v, v) ∈ Ã∗N = TN ver ↪−→ TN .

Let Ω be a fiberwise 2-form on N → V . A connection ∇ on N induces a projection TN → Ã∗N
and thus determines an extension Ω∇ of Ω to a 2-form on the total space of N . If ω is a closed

2-form on V , the 2-form

ω̃ ≡ Ã∗ω +
1

2
dιζN Ω∇ ≡ Ã∗ω +

1

2
d(Ω∇(ζN , ·)) (2.4)

on the total space of N is also closed and restricts to Ω on Ã∗N = TN ver. If ω is a symplectic

form on V and Ω is a fiberwise symplectic form on N , then ω̃ is a symplectic form on a

neighborhood of V in N .

We call Ã : (L, Ä,∇) → V a Hermitian line bundle if L → V is a smooth complex line bundle,

Ä is a Hermitian metric on L, and ∇ is a Ä-compatible connection on L. We use the same

notation Ä to denote the square of the norm function on L and the Hermitian form on L which

is C-antilinear in the second input. Thus,

Ä(v) ≡ Ä(v, v), Ä(iv, w) = iÄ(v, w) = −Ä(v, iw) ∀(v, w) ∈ L ×V L.

Let ÄR denote the real part of the form Ä.

A Riemannian metric on an oriented real vector bundle L → V of rank 2 determines a

complex structure on the fibers of V . A Hermitian structure on an oriented real vector bundle

L → V of rank 2 is a pair (Ä,∇) such that (L, Ä,∇) is a Hermitian line bundle with the complex

structure iρ determined by the Riemannian metric ÄR. If Ω is a fiberwise symplectic form

on an oriented vector bundle L → V of rank 2, an Ω-compatible Hermitian structure on L is a

Hermitian structure (Ä,∇) on L such that Ω(·, iρ·) = ÄR(·, ·).
Definition 2.1 Let X be a manifold and V ⊂ X be a submanifold with normal bundle NXV →
V . A (smooth) regularization for V in X is a diffeomorphism Ψ : N ′ → X from a neighborhood

of V in NXV onto a neighborhood of V in X such that Ψ(x) = x and the isomorphism

NXV |x = T ver
x NXV ↪−→ TxNXV

dxΨ−→ TxX −→ TxX

TxV
≡ NXV |x

is the identity for every x ∈ V .
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Let V be a closed symplectic submanifold of a symplectic submanifold in (X, ω). The

normal bundle NXV of V in X then inherits a fiberwise symplectic form ω|NXV from ω via the

isomorphism

ÃNXV : TV ω ≡ {v ∈ TxX : x ∈ V, ω(v, w) = 0 ∀w ∈ TxV } ≈−→ TX |V
TV

≡ NXV.

The symplectic form ω|V on V , the fiberwise 2-form Ω ≡ ω|NXV on NXV , and a connection ∇
on NXV thus determine a 2-form ω̃∇ on the total space of NXV via (2.4). By the Symplectic

Neighborhood Theorem, there exists a regularization Ψ : N ′ → X for V in X so that Ψ∗ω =

ω̃∇|N ′ .

Suppose in addition that V is of codimension 2, i.e., V is a smooth symplectic divisor

in (X, ω). If (Ä,∇) is an ω|NXV -compatible Hermitian structure on NXV , the triple R =

((Ä,∇), Ψ) is an ω-regularization for V in X in the sense of Definition 3.5 and determines a

fiberwise complex structure iρ on NXV . Let

OR;X(V ) = ({Ψ−1}∗Ã∗NXV � (X − V ) × C)/ ∼−→ Ψ(N ′) ∪ (X − V ) = X,

{Ψ−1}∗Ã∗NXV � (Ψ(v), v, cv) ∼ (Ψ(v), c) ∈ (X − V ) × C, (2.5)

where Ã : N ′ → V is the bundle projection map. This defines a smooth complex line bundle

over X . The smooth section sR of this bundle given by

sR(x) =

§
¨
©

[x, v, v], if x = Ψ(v), v ∈ N ′;

[x, 1], if x ∈ X − V ;

satisfies the properties stated in Proposition 1.1 (1).

For each v ∈ NXV , the connection ∇ determines an injective homomorphism

h∇;v : Tπ(v)V −→ Tv(NXV ) (2.6)

with the image complementary to the image of NXV . Let

TRX(− logV ) = ((({Ψ−1}∗Ã∗TV ) ⊕ Ψ(N ′) × C) � T (X − V ))/ ∼−→ Ψ(N ′) ∪ (X − V ) = X,

({Ψ−1}∗Ã∗TV ) ⊕ Ψ(N ′) × C � (Ψ(v), v, w) ⊕ (Ψ(v), c) ∼ dvΨ(h∇;v(w) + cv) ∈ T (X − V ).

This defines a smooth vector bundle over X . The smooth bundle homomorphism (1.3) de-

fined by

ιR(ẋ) =

§
¨
©

dvΨ(h∇;v(w) + cv), if ẋ = [(Ψ(v), v, w) ⊕ (Ψ(v), c)], v ∈ N ′;

ẋ, if ẋ ∈ T (X − V );

satisfies the properties stated in Theorem 1.2 (1).

An almost complex structure J on V and the fiberwise complex structure iρ on NXV

determine an almost complex structure JR on the total space of NXV via the connection ∇.

We call an almost complex structure J on X R-compatible if J preserves TV ⊂ TX |V and Ψ

intertwines J and JR ≡ (J |TV )R, i.e.,

J(TV ) ⊂ TV and J ◦ dΨ = dΨ ◦ JR|N ′ .

Such an almost complex structure J induces a fiberwise complex structure iR,J on TRX(− logV )

satisfying Theorem 1.2 (2). It can be constructed by pasting together JR◦{dΨ}−1 and an almost

complex structure on X − V .
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We denote by Symp+(X, V ) the space of symplectic forms on X that restrict to symplectic

forms on V , by Aux(X, V ) the space of pairs (ω,R) consisting of ω ∈ Symp+(X, V ) and an

ω-compatible regularization R for V in X , and by AK(X, V ) the space of triples (ω,R, J)

consisting of (ω,R) ∈ Aux(X, V ) and an almost complex structure J on X compatible with ω

and R. Since the Symplectic Neighborhood Theorem can be applied with families of symplectic

forms parametrized by compact manifolds, the projection

Aux(X, V ) −→ Symp+(X, V ), (ω,R) −→ ω, (2.7)

is a weak homotopy equivalence. It is straightforward, by adapting the proof of [25, Prop. 4.1],

for example, to show that the projection

AK(X, V ) −→ Aux(X, V ), (ω,R, J) −→ (ω,R), (2.8)

is also a weak homotopy equivalence.

The above constructions of the complex line bundle (OX(V ), i) and the vector bundle

TX(− logV ) can be applied with compact families in Aux(X, V ). The construction of the

complex vector bundle (TX(− logV ), iR,J ) can be applied with compact families in AK(X, V ).

Along with the previous paragraph, this confirms the statements of Proposition 1.1 (2) and

Theorem 1.2 (3) for smooth symplectic divisors V .

The constructions of the complex line bundle (OX(V ), i) and the vector bundle TX(− logV )

do not involve the symplectic form ω directly. The first construction can be carried out for any

closed codimension 2 submanifold V of a smooth manifold X endowed with a complex structure

on the normal bundle NXV and a smooth regularization Ψ. The constructions of the vector

bundle TX(− logV ) and of the complex structure iR,J on it require in addition a connection

on NXV in the first case and also an R-compatible almost complex structure J on X in the

second case.

Corollary 2.3 below is used later in this paper. We deduce it from the following observation.

Lemma 2.2 Suppose V is a smooth manifold, Ã : N → V is a vector bundle, and ∇ is a

connection in N . Let TN hor ⊂ TN be the horizontal tangent subbundle determined by ∇. If

∇̃ ≡ Ã∗∇ is the connection in Ã∗N → N determined by ∇, then

∇̃ζN |TNhor = 0 : TN hor −→ Ã∗N . (2.9)

If in addition N is a complex vector bundle (and ∇ is a complex linear connection), then

∇̃ζN |TNver ◦ i = i∇̃ζN |TNver : TN ver −→ Ã∗N . (2.10)

Corollary 2.3 Suppose (V, J) is an almost complex manifold, Ã : N → V is a complex line

bundle, ∇ is a connection in N , and ∇̃ ≡ Ã∗∇. If

Φ : (N − V ) × C
≈−→ Ã∗N|N−V , Φ(v, c) = (v, cv),

then Φ∗∇̃−d is a (1, 0)-form on N−V with respect to the almost complex structure J∇ on N−V

determined by J and ∇.

Proof The 1-form Φ∗∇̃ − d is given by

{Φ∗∇̃ − d}1 = Φ−1 ◦ ∇̃(Φ ◦ 1) = Φ−1 ◦ ∇̃ζN . (2.11)
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The almost complex structure J∇ restricts to {dÃ}∗J on TN hor and to Ã∗
i on TN ver. The

claim thus follows from Lemma 2.2. �

Proof of Lemma 2.2 Suppose U is an open subset of V and ξ1, . . . , ξn ∈ Γ(U ;N ) is a frame

for N over U . Let θk
l ∈ Γ(U ; T ∗U) be such that

∇ξl =

k=n∑

k=1

ξkθk
l ≡

k=n∑

k=1

θk
l ⊗ ξk ∈ Γ(U ; T ∗U ⊗N ) ∀l = 1, . . . , n. (2.12)

The frame ξ1, . . . , ξn determines an identification N|U = U × Rn so that

ζN (v) =

l=n∑

l=1

clξl(x),

TvN hor =

{(
ẋ,−

l=n∑

l=1

clθ
1
l (ẋ), . . . −

l=n∑

l=1

clθ
n
l (ẋ)

)
: ẋ ∈ TxV

}
,

∀v ≡ (x, c1, . . . , cn) ∈ N|U ;

(2.13)

see the proof of [38, Lemma 1.1].

For each l = 1, . . . , n, let ξ̃l = Ã∗ξl ∈ Γ(N|U ; Ã∗N ). By the definition of ∇̃ and (2.12),

∇̃ξ̃l =
k=n∑

k=1

(θk
l ◦ dÃ) ⊗ ξ̃k ∀l = 1, . . . , n.

Thus,

∇̃ζN |(x,c1,...,cn) =

l=n∑

l=1

k=n∑

k=1

cl(θ
k
l ◦ dÃ) ⊗ ξ̃k +

l=n∑

l=1

(dcl) ⊗ ξ̃l. (2.14)

Along with the second statement in (2.13), this gives (2.9).

The first summand on the right-hand side of (2.14) vanishes on TN ver. If N is a complex

vector bundle, the above applies with R replaced by C. The second summand on the right-hand

side of (2.14) is C-linear on TN ver in this case. This gives (2.10). �

Remark 2.4 By the proof of Lemma 2.2, the 1-form in (2.11) is given by

(Φ∗∇̃ − d)|(x,z) = θ1
1|x +

dz

z
.

Thus, the curvature FΦ∗∇̃ of the connection Φ∗∇̃ on (N − V ) × C is given by

FΦ∗∇̃ = d(Ã∗θ1
1) = Ã∗F∇ .

3 SC Symplectic Divisors

For N ∈ Z≥0, let

[N ] = {1, . . . , N} .

If N → V is a vector bundle, N ′ ⊂ N , and V ′ ⊂ V , we define N ′|V ′ = N|V ′ ∩ N ′.

3.1 Definitions

Let X be a (smooth) manifold. For a collection {Vi}i∈S of submanifolds of X and I ⊂ S, let

VI ≡
⋂

i∈I

Vi ⊂ X, VI,∂ =
⋃

I′�I

VI′ , V ◦
I = VI − VI,∂ .
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Such a collection is called transverse if any subcollection {Vi}i∈I of these submanifolds intersects

transversely, i.e., the homomorphism

TxX ⊕
⊕

i∈I

TxVi −→
⊕

i∈I

TxX, (v, (vi)i∈I) −→ (v + vi)i∈I , (3.1)

is surjective for all x ∈ VI . By the Inverse Function Theorem, each subspace VI ⊂ X is then a

submanifold of X of codimension

codimXVI =
∑

i∈I

codimXVi

and the homomorphisms

NXVI −→
⊕

i∈I

NXVi|VI ∀I ⊂ S, NVI−iVI −→ NXVi|VI ∀i ∈ I ⊂ S,

⊕

i∈I−I′

NVI−iVI −→ NVI′ VI ∀I ′ ⊂ I ⊂ S
(3.2)

induced by inclusions of the tangent bundles are isomorphisms.

As detailed in [14, Section 2.1], a transverse collection {Vi}i∈S of oriented submanifolds

of an oriented manifold X of even codimensions induces an orientation on each submanifold

VI ⊂ X with |I| ≥ 2; we call it the intersection orientation of VI . If VI is zero-dimensional, it

is a discrete collection of points in X and the homomorphism (3.1) is an isomorphism at each

point x ∈ VI ; the intersection orientation of VI at x ∈ VI then corresponds to a plus or minus

sign, depending on whether this isomorphism is orientation-preserving or orientation-reversing.

We call the original orientations of X = V∅ and Vi = V{i} the intersection orientations of these

submanifolds VI of X with |I| < 2.

Suppose (X, ω) is a symplectic manifold and {Vi}i∈S is a transverse collection of subman-

ifolds of X such that each VI is a symplectic submanifold of (X, ω). Each VI then carries an

orientation induced by ω|VI , which we call the ω-orientation. If VI is zero-dimensional, it is

automatically a symplectic submanifold of (X, ω); the ω-orientation of VI at each point x ∈ VI

corresponds to the plus sign by definition. By the previous paragraph, the ω-orientations of X

and Vi with i ∈ I also induce intersection orientations on all VI .

Definition 3.1 Let (X, ω) be a symplectic manifold. A simple crossings (or SC) symplectic

divisor in (X, ω) is a finite transverse union V =
⋃

i∈S Vi of closed submanifolds of X of

codimension 2 such that VI is a symplectic submanifold of (X, ω) for every I ⊂ S and the

intersection and ω-orientations of VI agree.

The singular locus V∂ ⊂ V of an SC symplectic divisor V ⊂ X is the union

V∂ ≡
⋃

I⊂S,|I|≥2

VI .

An SC symplectic divisor V with |S| = 1 is a smooth symplectic divisor in the usual sense. If

(X, ω) is a 4-dimensional symplectic manifold, a finite transverse union V =
⋃

i∈S Vi of closed

symplectic submanifolds of X of codimension 2 is an SC symplectic divisor if all points of the

pairwise intersections Vi1 ∩Vi2 with i1 �= i2 are positive. By [14, Example 2.7], it is not sufficient

to consider the deepest (non-empty) intersections in higher dimensions.



Normal Crossings Singularities: Structures 119

Definition 3.2 Let X be a manifold and V =
⋃

i∈S Vi be a finite transverse union of closed

submanifolds of X of codimension 2. A symplectic structure on V in X is a symplectic form ω

on X such that VI is a symplectic submanifold of (X, ω) for all I ⊂ S.

For X and {Vi}i∈S as in Definition 3.2, we denote by Symp(X, {Vi}i∈S) the space of all

symplectic structures on {Vi}i∈S in X and by

Symp+(X, {Vi}i∈S) ⊂ Symp(X, {Vi}i∈S)

the subspace of the symplectic forms ω such that {Vi}i∈S is an SC symplectic divisor in (X, ω).

3.2 Regularizations

Let V be a smooth manifold with a 2-form ω and (Li, Äi,∇(i))i∈I be a finite collection of

Hermitian line bundles over V . If each (Äi,∇(i)) is compatible with a fiberwise symplectic

form Ωi on Li and

(N , Ω,∇) ≡
⊕

i∈I

(Li, Ωi,∇(i)),

then the 2-form (2.4) is given by

ω̃ = ω(ρi,∇(i))i∈I
≡ Ã∗ω +

1

2

⊕

i∈I

Ã∗
I;id((Ωi)∇(i)(ζLi , ·)), (3.3)

where ÃI;i : N → Li is the component projection map.

If in addition Ψ : V ′ → V is a smooth map and (L′
i, Ä

′
i,∇′(i))i∈I is a finite collection of

Hermitian line bundles over V ′, we call a (fiberwise) vector bundle isomorphism

Ψ̃ :
⊕

i∈I

L′
i −→

⊕

i∈I

Li

covering Ψ a product Hermitian isomorphism if

Ψ̃ : (L′
i, Ä

′
i,∇′(i)) −→ Ψ∗(Li, Äi,∇(i))

is an isomorphism of Hermitian line bundles over V ′ for every i ∈ I.

If V is a symplectic submanifold of a symplectic manifold (X, ω), we denote the restriction

of ω|NXV to a subbundle L ⊂ NXV by ω|L.

Definition 3.3 Let X be a manifold, V ⊂ X be a submanifold, and

NXV =
⊕

i∈I

Li

be a fixed splitting into oriented rank 2 subbundles. If ω is a symplectic form on X such that V

is a symplectic submanifold and ω|Li is nondegenerate for every i ∈ I, then an ω-regularization

for V in X is a tuple ((Äi,∇(i))i∈I , Ψ), where (Äi,∇(i)) is an ω|Li-compatible Hermitian structure

on Li for each i ∈ I and Ψ is a regularization for V in X in the sense of Definition 2.1, such

that

Ψ∗ω = ω(ρi,∇(i))i∈I
|Dom(Ψ).

Suppose {Vi}i∈S is a transverse collection of codimension 2 submanifolds of X . For each

I ⊂ S, the last isomorphism in (3.2) with I ′ = ∅ provides a natural decomposition

ÃI : NXVI =
⊕

i∈I

NVI−iVI −→ VI (3.4)
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of the normal bundle of VI in X into oriented rank 2 subbundles. We take this decomposition

as given for the purposes of applying Definition 3.3. If in addition I ′ ⊂ I, let

ÃI;I′ : NI;I′ ≡
⊕

i∈I−I′
NVI−iVI = NVI′ VI −→ VI (3.5)

be the bundle projection. There are canonical identifications

NI;I−I′ = NXVI′ |VI , NXVI = Ã∗
I;I′NI;I−I′ = Ã∗

I;I′NXVI′ ∀I ′ ⊂ I ⊂ [N ]. (3.6)

The first equality in the second statement above is used in particular in (3.10).

Definition 3.4 Let X be a manifold and {Vi}i∈S be a transverse collection of submanifolds

of X. A system of regularizations for {Vi}i∈S in X is a tuple (ΨI)I⊂S, where ΨI is a regular-

ization for VI in X in the sense of Definition 2.1, such that

ΨI(NI;I′ ∩ Dom(ΨI)) = VI′ ∩ Im(ΨI) and Im(ΨI) ∩ Im(ΨJ) = Im(ΨI∪J) (3.7)

for all I ′ ⊂ I ⊂ S and J ⊂ S.

Given a system of regularizations as in Definition 3.4 and I ′ ⊂ I ⊂ S, let

N ′
I;I′ = NI;I′ ∩ Dom(ΨI), ΨI;I′ ≡ ΨI |N ′

I;I′
: N ′

I;I′ −→ VI′ . (3.8)

The map ΨI;I′ is a regularization for VI in VI′ . As explained in [14, Section 2.2], ΨI determines

an isomorphism

DΨI;I′ : Ã∗
I;I′NI;I−I′ |N ′

I;I′
−→ NXVI′ |VI′∩Im(ΨI) (3.9)

of vector bundles covering ΨI;I′ and respecting the natural decompositions of NI;I−I′ =

NXVI′ |VI and NXVI′ . By the last assumption in Definition 2.1,

DΨI;I′ |π∗
I;I′NI;I−I′ |VI

= id : NI;I−I′ −→ NXVI′ |VI

under the canonical identification of NI;I−I′ with NXVI′ |VI .

Definition 3.5 Let X be a manifold and {Vi}i∈S be a transverse collection of submanifolds

of X.

(1) A regularization for {Vi}i∈S in X is a system of regularizations (ΨI)I⊂S for {Vi}i∈S in X

such that

Dom(ΨI) ⊂ Ã∗
I;I′NI;I−I′ |N ′

I;I′
, DΨI;I′(Dom(ΨI)) = Dom(ΨI′)|VI′∩Im(ΨI ),

ΨI = ΨI′ ◦ DΨI;I′ |Dom(ΨI)

(3.10)

for all I ′ ⊂ I ⊂ S.

(2) Suppose in addition that V =
⋃

i∈S Vi is an SC symplectic divisor in (X, ω). An ω-

regularization for V in X is a tuple

(RI)I⊂S ≡ ((ÄI;i,∇(I;i))i∈I , ΨI)I⊂S

such that RI is an ω-regularization for VI in X for each I ⊂ S, (ΨI)I⊂S is a regularization

for {Vi}i∈S in X, and the induced vector bundle isomorphisms (3.9) are product Hermitian

isomorphisms for all I ′ ⊂ I ⊂ S.
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If (ΨI)I⊂S is a regularization for {Vi}i∈S in X , then

N ′
I;I′′ , Ã∗

I;I′′NI;I−I′′ |N ′
I;I′′

⊂ Ã∗
I;I′NI;I−I′ |N ′

I;I′
,

ΨI;I′′ = ΨI′;I′′ ◦ DΨI;I′ |N ′
I;I′′

, DΨI;I′′ = DΨI′;I′′ ◦ DΨI;I′|π∗
I;I′′NI;I−I′′ |N′

I;I′′

(3.11)

for all I ′′ ⊂ I ′ ⊂ I ⊂ S.

An almost complex structure J on X preserving TVI ⊂ TX |VI and an ω-regularization RI

for VI in X as in Definition 3.3 determine an almost complex structure JR;I on the total space

of NXVI via the connection ∇(I) ≡ ⊕
i∈I ∇(I;i). We call an almost complex structure J on X

compatible with an ω-regularization (RI)I⊂S as in Definition 3.5 (2) if

J(TVI) ⊂ TVI and J ◦ dΨI = dΨI ◦ JR;I |Dom(ΨI) ∀ I ⊂ S.

The notion of regularization of Definition 3.5 (2) readily extends to families of symplectic forms;

see [14, Definition 2.12 (2)]. We define the spaces Aux(X, V ) of pairs (ω,R) and AK(X, V ) of

triples (ω,R, J) as in Section 2.2. By [14, Theorem 2.17], the map (2.7) is a weak homotopy

equivalence in the present setting as well. On the other hand, it is still straightforward to show

that the map (2.8) is also a weak homotopy equivalence in the present setting.

3.3 Constructions

We now construct the bundles OX(V ) and TX(− logV ) for an SC symplectic divisor V in a

symplectic manifold (X, ω). We fix an ω-regularization R for V in X as in Definition 3.5 (2).

For the purposes of constructing a complex structure on TX(− logV ), we also fix an almost

complex structure J on X compatible with ω and R.

For I ′ ⊂ I ⊂ S, let ÃI , ÃI;I′ , N ′
I;I′ , ΨI;I′, and DΨI;I′ be as in (3.4), (3.5), (3.8), and (3.9).

In what follows, we write an element vI ≡ (vi)i∈I of NXVI as

vI = (vI;I′ , vI;I−I′) with vI;I′ ≡ (vi)i∈I−I′ ∈ NI;I′ and vI;I−I′ ≡ (vi)i∈I′ ∈ NI;I−I′ .

We denote by ∇(I) and ∇(I;I′) the connections on NXVI and NI;I′ induced by the connec-

tions ∇(I;i) on the direct summands of these vector bundles. Let

h∇(I);vI
: TπI(vI)VI −→ TvI (NXVI) and h∇(I;I′);vI;I′

: TπI;I′(vI;I′ )VI −→ TvI;I′NI;I′

be the corresponding injective homomorphisms as in (2.6). Define

ΠI : NXVI −→
⊗

i∈I

NVI−iVI , ΠI((vi)i∈I) =
⊗

i∈I

vi,

U◦
I = ΨI(Dom(ΨI)|V ◦

I
) = Im ΨI −

⋃

J �⊂I

VJ ; (3.12)

the last equality follows from (3.7) and (3.10). For every I ⊂ S, let

OR;I(V ) = {Ψ−1
I |U◦

I
}∗Ã ∗

I

( ⊗

i∈I

NVI−iVI

)
−→ U◦

I ,

TRU◦
I (− log V ) = ({Ψ−1

I |U◦
I
}∗Ã ∗

I TVI) ⊕ (U◦
I × CI) −→ U◦

I .

(3.13)

The complex structures iρI;i on NVI−iVI = NXVi|VI encoded in R determine a complex struc-

ture on the complex line bundle OR;I(V ). The almost complex structure J |TVI on VI and
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the standard complex structure on CI determine a complex structure on the vector bun-

dle TRU◦
I (− log V ).

Let I ′ ⊂ I ⊂ S. If x ∈ U◦
I ∩ U◦

I′ , then

x = ΨI(vI) = ΨI′(DΨI;I′(vI;I′ , vI;I−I′)) with

vI = (vI;I′ , vI;I−I′) ≡ ((vi)i∈I−I′ , (vi)i∈I′) ∈ NI;I′ ⊕NI;I−I′ s.t. vi �= 0 ∀i ∈ I − I ′.

Since DΨI;I′ is a product Hermitian isomorphism, it follows that the map

θI′I : OR;I(V )|U◦
I ∩U◦

I′
−→ OR;I′(V )|U◦

I ∩U◦
I′

, (3.14)

θI′I(x, vI , ΠI(vI;I′ , wI;I−I′)) = (x, DΨI;I′(vI), ΠI′(DΨI;I′(vI;I′ , wI;I−I′))),

is a well-defined isomorphism of complex line bundles. The map

ϑI′I : TRU◦
I (− log V )|U◦

I
∩U◦

I′
−→ TRU◦

I′(− log V )|U◦
I
∩U◦

I′
, (3.15)

ϑI′I((x, vI , w) ⊕ (x, (ci)i∈I)) = (x, DΨI;I′(vI), dvI;I′ ΨI;I′

(
h∇(I;I′);vI;I′

(w) +
∑

i∈I−I′

civi)

)

⊕ (x, (ci)i∈I′),

is similarly a well-defined isomorphism of vector bundles. Since J is an R-compatible almost

complex structure on X , this isomorphism is C-linear. By (3.11),

θI′′I |U◦
I ∩U◦

I′∩U◦
I′′

= θI′′I′ |U◦
I ∩U◦

I′∩U◦
I′′

◦ θI′I |U◦
I ∩U◦

I′∩U◦
I′′

,

ϑI′′I |U◦
I ∩U◦

I′∩U◦
I′′

= ϑI′′I′ |U◦
I ∩U◦

I′∩U◦
I′′

◦ ϑI′I |U◦
I ∩U◦

I′∩U◦
I′′

(3.16)

for all I ′′ ⊂ I ′ ⊂ I.

Let I, K ⊂ S. By (3.7) and (3.10), U◦
I ∩ U◦

K ⊂ U◦
I∪K . If I �⊂ K, the maps

θIK = θI(I∪K)|U◦
I ∩U◦

K
◦ θ −1

K(I∪K)|U◦
I ∩U◦

K
: OR;K(V )|U◦

I ∩U◦
K
−→ OR;I(V )|U◦

I ∩U◦
K

,

ϑIK = ϑI(I∪K)|U◦
I
∩U◦

K
◦ ϑ −1

K(I∪K)|U◦
I
∩U◦

K
: TRU◦

K(− log V )|U◦
I
∩U◦

K
−→ TRU◦

I (− log V )|U◦
I
∩U◦

K

are thus well-defined isomorphisms of complex vector bundles. By (3.16), the collections

{θIK}I,K⊂S and {ϑIK}I,K⊂S satisfy the cocycle condition. The first collection thus determines

a complex line bundle

Ã : OR;X(V ) =

( ⊔

I⊂S

OR;I(V )

)/
∼ −→ X, Ã([x, vI , ΠI(wI)]) = x,

OR;I(V )|U◦
I
∩U◦

K
� θIK(v) ∼ v ∈ OR;K(V )|U◦

I
∩U◦

K
∀I, K ⊂ S.

(3.17)

The second collection similarly determines a complex vector bundle

Ã : TRX(− logV )=

( ⊔

I⊂S

TRU◦
I (− logV )

)/
∼−→ X, Ã([(x, vI , w) ⊕ (x, (ci)i∈I)]) = x,

TRU◦
I (− logV )|U◦

I ∩U◦
K
� ϑIK(v) ∼ v ∈ TRU◦

K(− log V )|U◦
I ∩U◦

K
∀I, K ⊂ S.

(3.18)

The smooth section sR of the complex line bundle (3.17) given by

sR(x) = [x, vI , ΠI(vI)] ∀x = ΨI(vI) ∈ U◦
I , I ⊂ S, (3.19)
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satisfies the properties stated in Proposition 1.1 (1). The smooth bundle homomorphism (1.3)

defined by

ιR([(x, vI , w) ⊕ (x, (ci)i∈I)]) = dvI ΨI

(
h∇(I);vI

(w) +
∑

i∈I

civi

)

∀x = ΨI(vI) ∈ U◦
I , I ⊂ S, (3.20)

satisfies the properties stated in Theorem 1.2 (1)–(2). By the same reasoning as at the end

of Section 2.2, the bundles (3.17) and (3.18) also satisfy the properties in Proposition 1.1 (2)

and Theorem 1.2 (3). Along with Proposition 1.1 (2), Lemma 3.6 below implies the claim of

Proposition 1.1 (3) for SC symplectic divisors.

Lemma 3.6 Suppose V and V ′ are SC symplectic divisors in a symplectic manifold (X, ω) so

that V ∪ V ′ ⊂ X is also an SC symplectic divisor and V ∩ V ′ contains no open subspace of V .

An ω-regularization

R̃ ≡ ((ÄI;i,∇(I;i))i∈I , Ψ̃I)I⊂S�S′

for V ∪ V ′ in X as in Definition 3.5 (2) determines ω-regularizations R for V in X and R′

for V ′ in X and an isomorphism

ψRR′ : (OR̃;X(V ∪ V ′), iR̃) −→ (OR;X(V ), iR) ⊗ (OR′;X(V ′), iR′) (3.21)

natural with respect to the restrictions to the open subsets of X.

Proof Let V =
⋃

i∈S Vi and V ′ =
⋃

i∈S′ V ′
i . If R̃ = (RI)I⊂S�S′ , then R ≡ (RI)I⊂S is an

ω-regularization for V in X and R′ ≡ (RI)I⊂S′ is an ω-regularization for V ′ in X . By the

assumptions,

ṼI�K ≡ (V ∪ V ′)I�K = VI ∩ V ′
K , NX ṼI�K = NXVI |ṼI�K

⊕NXV ′
K |ṼI�K

∀I ⊂ S, K ⊂ S′.

For I ′ ⊂ I ⊂ S′ (resp. I ′ ⊂ I ⊂ S � S′), we denote by U ′◦
I ⊂ X and θ′I′I (resp. Ũ◦

I ⊂ X

and θ̃I′I) the analogues of the open subsets U◦
I and the transition maps θI′I in (3.14) for the

trivialization R′ (resp. R̃). Thus,

U◦
I =

⋃

K⊂S′

Ũ◦
I�K ∀I ⊂ S and U ′◦

K =
⋃

I⊂S

Ũ◦
I�K ∀K ⊂ S′.

For I ⊂ S and K ⊂ S′, define

ψRR′;IK : OR̃;I�K(V ∪ V ′) −→ OR;I(V )|Ũ◦
I�K

⊗C OR′;K(V ′)|Ũ◦
I�K

,

ψRR′;IK(x, vI�K , ΠI(wI�K)) = (x, DΨ̃I�K;I(vI�K), ΠI(DΨ̃I�K;I(wI�K)))

⊗ (x, DΨ̃I�K;K(vI�K), ΠK(DΨ̃I�K;K(wI�K))).

By (3.11) for the regularization R̃,

{ϑI′I ⊗ ϑ′
K′K} ◦ ψRR′;IK = ψRR′;I′K′ ◦ ϑ̃(I′�K′)(I�K) :

OR̃;I�K(V ∪ V ′)|Ũ◦
I�K∩Ũ◦

I′�K′
−→ OR;I′(V )|Ũ◦

I�K∩Ũ◦
I′�K′

⊗C OR′;K′(V ′)|Ũ◦
I�K∩Ũ◦

I′�K′

for all I ′ ⊂ I ⊂ S and K ′ ⊂ K ⊂ S′. Along with (3.17), this implies that the collection

{ψRR′;IK} induces a well-defined bundle homomorphism (3.21). �
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3.4 Proof of Theorem 1.2(4)

We now establish (1.4) under the assumption that V is an SC symplectic divisor. The reasoning

in the general case is identical; see the end of Section 4.3. As noted after Theorem 1.2, (1.4)

implies (1.5) if V is an SC symplectic divisor.

Suppose X is a smooth manifold, V ⊂ X is a submanifold, and ψ : E → F is a homomor-

phism of complex vector bundles over X that vanishes on a complex subbundle L′ ⊂ E|V . The

restriction of ψ to an extension of L′ to a complex subbundle L of E over a neighborhood U

of V ⊂ X then determines a section ψL′ of the complex vector bundle L∗ ⊗C F over U that

vanishes on V and well-defined derivative bundle homomorphisms

DxψL′ : NXV |x −→ L′∗
x ⊗C (cokψx) and DxψL′ : NXV |x ⊗R L′

x −→ cokψx (3.22)

for each x ∈ V ; these homomorphisms do not depend on the extension of L′. Lemma 3.7 below,

proved at the end of this section, is the key topological input we use to establish (1.4).

Lemma 3.7 Suppose X is a smooth manifold, V ⊂ X is a closed submanifold of codimension 2

with a complex structure on NXY , ψ : E → F is a homomorphism of complex vector bundles

over X, and L → X is a complex vector bundle so that

L|V = ker(ψ : E|V −→ F |V ) ⊂ E|V .

If ψ is an isomorphism over X − V , the first homomorphism in (3.22) with L′ = L|V is C-

linear for every x ∈ V , and the second homomorphism (3.22) is surjective, then there exists an

isomorphism

ψ̃ : E ⊕OX(V ) ⊗C L −→ F ⊕ L (3.23)

of complex vector bundles over X.

Lemma 3.8 Let V and V ′ ≡ ⋃
i∈S′ V ′

i , R̃, and R be as in Lemma 3.6. There exists a unique

vector bundle homomorphism

ιRR̃ : TR̃X(− log(V ∪ V ′)) −→ TRX(− logV ) (3.24)

so that ιR̃ = ιR ◦ ιRR̃. For every K ⊂ S′,

(1) the kernel of ιRR̃ over V ′◦
K is a trivial subbundle L′

K ≈ V ′◦
K × CK ;

(2) the cokernel of ιRR̃ over V ′◦
K is canonically isomorphic to NXV ′◦

K ;

(3) the composition of the above isomorphism with the first homomorphism in (3.22) with

ψ = ιRR̃ and L′ = L′
K ,

NXV ′◦
K |x

Dx(ιRR̃)L′
K−−−−−−−−→ (L′

K)∗x ⊗C (cok ιRR̃)x
≈−−→ (L′

K)∗x ⊗C NXV ′◦
K |x,

is C-linear with respect to the complex structures on its domain and target determined by

the regularization R̃ for every x ∈ V ′◦
K ;

(4) the second homomorphism in (3.22) with ψ = ιRR̃ and L′ = L′
K ,

Dx(ιRR̃)L′
K

: NXV ′◦
K |x ⊗R L′

K |x −→ (cok ιRR̃)x

is surjective for every x ∈ V ′◦
K .
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Suppose J is an almost complex structure on X compatible with R̃ (and thus with R). Since

ιR̃ = ιR ◦ ιRR̃ and the homomorphisms ιR̃ and ιR are C-linear isomorphisms over X −V ∪V ′,

the homomorphism (3.24) is C-linear with respect to the complex structures iR̃,J on the domain

and iR,J on the target. The isomorphism in Lemma 3.8 (2) is C-linear with respect to the

complex structures on its target and domain determined by R̃. If V ′ ⊂ X is a smooth symplectic

divisor, the bundle homomorphism ψ = ιRR̃ thus satisfies the conditions of Lemma 3.7 with V

replaced by V ′ and L = X × C. The conclusion of this lemma is the claim of (1.4).

Proof of Lemma 3.8 We continue with the notation in the proof of Lemma 3.6 and denote

by ϑ̃I′I the analogues of the transition maps ϑI′I in (3.15) for the regularization R̃. For I ⊂ S

and K ⊂ S′, define

ιRR̃;IK : TR̃Ũ◦
I�K(− log(V ∪ V ′)) −→ TRU◦

I (− log V )|Ũ◦
I�K

,

ιRR̃;IK((x, vI�K , w) ⊕ (x, (ci)i∈I�K))

=

(
x, DΨ̃I�K;I(vI�K), dvI�K;I Ψ̃I�K;I

(
h∇(I�K) ;vI�K

(w) +
∑

i∈K

civi

))
⊕ (x, (ci)i∈I).

By (3.11) for the regularization R̃,

ϑI′I ◦ ιRR̃;IK = ιRR̃;I′K′ ◦ ϑ̃(I′�K′)(I�K) : TR̃Ũ◦
I�K(− log(V ∪ V ′))|Ũ◦

I�K∩Ũ◦
I′�K′

−→ TRU◦
I′(− log V )|Ũ◦

I�K∩Ũ◦
I′�K′

for all I ′ ⊂ I ⊂ S and K ′ ⊂ K ⊂ S′. Along with (3.18), this implies that the collection

{ιRR̃;IK} induces a well-defined bundle homomorphism (3.24).

It is immediate from the definitions and (3.11) for the regularization R̃ that ιR̃ = ιR ◦ ιRR̃.

If I ⊂ S, K ⊂ S′, and x ∈ V ′
K ∩ Ũ◦

I�K with x = Ψ̃I∪K(vI�K;K) = ΨI(vI�K;K), then

ker(ιRR̃;IK)x = {(x, vI�K;K , 0)} ⊕ ({x} × {0}I × CK).

The homomorphism

TRU◦
I (− log V )|V ′

K∩Ũ◦
I�K

−→ NXV ′◦
K |V ′

K∩Ũ◦
I�K

,

(x, vI�K;K , w) ⊕ (x, (ci)i∈I�K) −→ dvI�K;K ΨI(h∇(I);vI�K;K
(w)) + TxV ′◦

K ,

induces an isomorphism cok(ιRR̃)x → NXV ′◦
K |x. The composition of this isomorphism with the

second homomorphism in (3.22) with ψ = ιRR̃ and L′ = L′
K is given by

Dx(ιRR̃)L′
K

((wi)i∈K ⊗ (x, (ci)i∈K)) =
∑

i∈K

ciwi.

In particular, this homomorphism is surjective, as claimed. �

Proof of Lemma 3.7 Let Ψ : N ′ → X be a regularization for V in X as in Definition 2.1 and

U = Ψ(N ′). Let OX(V ) → X be the complex line bundle (2.5) and E′ ⊂ E|V be a complex

subbundle complementary to L|V . Extend E′ to a subbundle of E|U , which we still denote

by E′. By the assumptions of the lemma, ψ is injective on E′ and ψ(E′) ⊂ F |U is a complex

subbundle. Let Q ⊂ F |U be a complex subbundle complementary to ψ(E′). After shrinking N ′

if necessary, we can extend the identification of L|V with a subbundle of E|V to an identification
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of L|U with a subbundle of E|U so that ψ(L|U ) ⊂ Q. Since ψ vanishes on L|V , the derivative

of the associated section of L∗|U ⊗C Q induces a homomorphism

DψL : NXV −→ L∗|V ⊗C Q|V ⊂ (L∗ ⊗C F )|V

of real vector bundles over V . By the assumptions on (3.22) with L′ = L|V , this homomorphism

is C-linear and induces an isomorphism

DψL : NXV ⊗C L|V −→ Q|V ⊂ F |V

of an isomorphism of complex vector bundles over V . Using parallel transport, we identify L|U
and Q with the vector bundles {Ψ−1}∗Ã∗L and {Ψ−1}∗Ã∗Q, respectively.

Choose a smooth function β : X → [0, 1] such that β = 1 on a neighborhood U ′ ⊂ U of V

and suppβ ⊂ U . We define (3.23) over X − supp β ⊂ X − V and on E|U = E′ ⊕ (L|U ) by

ψ̃(e, w) = (ψ(e), w) ∀(e, w) ∈ (E ⊕OX(V ) ⊗C L)|X−supp ³ = (E ⊕ L)|X−supp³ ,

ψ̃(e′ + e′′, 0) = (ψ(e′) + ψ(e′′),−β(x)e′′) ∀e′ ∈ E′
x, e′′ ∈ Lx, x ∈ U.

We extend this definition to (OX(V ) ⊗C L)|U by

ψ̃(0, (x, v, w)) = (x, v, (β(x)DψL(v ⊗ w), (1 − β(x))w)) ∈ {Ψ−1}∗Ã∗(Q ⊕ L)

∀(x, v, w) ∈ (OX(V ) ⊗C L)|U−V = {Ψ−1}∗Ã∗L|U−V ,

ψ̃(0, (x, v, w)) = (x, v, (β(x)DψL(w), 0)) ∈ {Ψ−1}∗Ã∗(Q ⊕ L)

∀(x, v, w) ∈ (OX(V ) ⊗C L)|U ′ = {Ψ−1}∗Ã∗(NXV ⊗ L)|U ′ .

The bundle homomorphism ψ̃ is well-defined and smooth. It remains to verify that the homo-

morphism

ψ̃ : (L ⊕OX(V ) ⊗C L)|U −→ Q ⊕ (L|U ) (3.25)

is injective over suppβ ⊂ U if suppβ is sufficiently small.

Over U ′, the homomorphism (3.25) is given by

ψ̃ : {Ψ−1}∗Ã∗(L ⊕NXV ⊗ L)|U ′ −→ {Ψ−1}∗Ã∗(Q ⊕ L),

ψ̃(x, v, (e′′, v′ ⊗ w)) = (ψ(x, v, e′′), 0) + (x, v, (DψL(v′ ⊗ w),−e′′)),

and is thus injective. Over suppβ − V ⊂ U − V , (3.25) is given by

ψ̃ : {Ψ−1}∗Ã∗(L ⊕ L)|supp ³−V −→ {Ψ−1}∗Ã∗(Q ⊕ L),

ψ̃(x, v, (e′′, w)) = (ψ(x, v, e′′), 0) + (x, v, (β(x)DψL(v ⊗ w),−β(x)e′′ + (1 − β(x))w)).
(3.26)

Choose norms on L|U and Q. Let C : V → R+ and ε : (U, V ) → (R, 0) be smooth functions

such that

C(Ã(v))|DψL(v ⊗ w)| ≥ |v||w|,
|ψ(Ψ(v), v, w) − (Ψ(v), v, DψL(v ⊗ w))| ≤ ε(v)||v||w|,

∀(v, w) ∈ N ′ ⊕ L|V .

If (x, v, (e′′, w)) with x = Ψ(v) ∈ supp β − V lies in the kernel of (3.26), then

β(x)e′′ = (1 − β(x))w, DψL(v ⊗ (β(x)w + e′′)) = DψL(v ⊗ e′′) − ψ(x, v, e′′),

|v||β(x)w + e′′| ≤ C(Ã(v))|DψL(v ⊗ (β(x)w + e′′))| ≤ C(Ã(v))ε(v)||v||e′′|.
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If C(Ã(v))ε(v) < 1, this implies that e′′, w = 0. Thus, the homomorphism (3.25) is injective

everywhere over U if the support of β is sufficiently small. We conclude that ψ̃ is an isomorphism

everywhere over X . �

4 NC Symplectic Divisors: Local Perspective

Arbitrary normal crossings (or NC) divisors are spaces that are locally SC divisors. This local

perspective, reviewed below, makes it straightforward to define NC divisors and regulariza-

tions for them. It is also readily applicable to local statements, such as Theorem 1.2 (4) and

Lemma 1.3.

For a set S, denote by P(S) the collection of subsets of S. If in addition i ∈ S, let

Pi(S) = {I ∈ P(S) : i ∈ S}.

4.1 Definitions

We begin by extending the definitions of Section 3.1 to the general NC setting.

Definition 4.1 Let (X, ω) be a symplectic manifold. A subspace V ⊂ X is an NC symplectic

divisor in (X, ω) if for every x ∈ X there exist an open neighborhood U of x in X and a finite

transverse collection {Vi}i∈S of closed submanifolds of U of codimension 2 such that

V ∩ U =
⋃

i∈S

Vi

is an SC symplectic divisor in (U, ω|U ).

Every NC divisor V ⊂ X is a closed subspace; its singular locus V∂ ⊂ V consists of the

points x ∈ V such that there exists a chart (U, {Vi}i∈S) as in Definition 4.1 and I ⊂ S with

|I| = 2 and x ∈ VI . Figure 1 shows an NC divisor V , a chart around a singular point of V , and

a chart around a smooth point of V .

U V
V1

V2V12

Figure 1 A non-SC normal crossings divisor

For each chart (U, {Vi}i∈S) as in Definition 4.1 and each x ∈ U , let

Sx = {i ∈ S : x ∈ Vi}.

The cardinality |x| ≡ |Sx| is independent of the choice of a chart around x. For each r ∈ Z≥0,

let

V (r) ≡ {x ∈ X : |x| ≥ r}. (4.1)

If (U ′, {V ′
i }i∈S′) is another chart for V in X and x ∈ U ∩ U ′, there exist a neighborhood Ux

of x in U ∩ U ′ and a bijection

hx : Sx −→ S′
x s.t. Vi ∩ Ux = V ′

hx(i) ∩ Ux ∀i ∈ Sx. (4.2)
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We also denote by hx the induced bijection P(Sx) → P(S′
x). By (4.2),

NVI−iVI |VI∩Ux = NV ′
hx(I)−hx(i)

V ′
hx(I)|V ′

hx(I)
∩Ux

∀i ∈ I ⊂ Sx. (4.3)

We denote by Symp+(X, V ) the space of all symplectic structures ω on X such that V is

an NC symplectic divisor in (X, ω).

4.2 Regularizations

Suppose V ⊂ X is an NC divisor, (U, {Vi}i∈S) and (U ′, {V ′
i }i∈S′) are charts for V in (X, ω),

and

(RI)I⊂S ≡ ((ÄI;i,∇(I;i))i∈I , ΨI)I⊂S and (R′
I)I⊂S′ ≡ ((Ä′I;i,∇′(I;i))i∈I , Ψ

′
I)I⊂S′

are an ω|U -regularization for
⋃

i∈S Vi in U and an ω|U ′ -regularization for
⋃

i∈S′ V ′
i in U ′, re-

spectively. We define

(RI)I⊂S
∼=X (R′

I)I⊂S′

if for every x ∈ U ∩ U ′ there exist Ux and hx as in (4.2) such that

(ÄI;i,∇(I;i))|VI∩Ux = (Ä′h(I);h(i),∇′(h(I);h(i)))|Vh(I)∩Ux ∀i ∈ I ⊂ Sx and

ΨI = Ψ′
I′ on Dom(ΨI)|VI∩Ux ∩ Dom(Ψ′

h(I))|Vh(I)∩Ux ∀I ⊂ Sx.
(4.4)

Definition 4.2 Let (X, ω) be a symplectic manifold, V ⊂ X be an NC symplectic divisor, and

(Uy, {Vy;i}i∈Sy)y∈A be a collection of charts for V in X as in Definition 4.1. An ω-regularization

for V in X (with respect to the atlas A) is a collection

R ≡ (Ry;I)y∈A,I⊂Sy ≡ ((Äy;I;i,∇(y;I;i))i∈I , Ψy;I)y∈A,I⊂Sy

such that (Ry;I)I⊂Sy is an ω|Uy -regularization for Vy in Uy as in Definition 3.5 (2) for each

y ∈ A and

(Ry;I)I⊂Sy
∼=X (Ry′;I)I⊂Sy′ ∀y, y′ ∈ A. (4.5)

We call an almost complex structure J on X compatible with a regularization R as in

Definition 4.2 if J |Uy is compatible with the regularization (Ry;I)y∈A,I⊂Sy for Vy in Uy for each

y ∈ A as defined at the end of Section 3.2. In particular, every open stratum V (r)−V (r+1) is an

almost complex submanifold of X with respect to an R-compatible almost complex structure

on X .

There are natural notions of equivalence classes of regularizations on the level of germs and

families of such equivalence classes; see [14, Section 4.1]. We denote by Aux(X, V ) the space

of pairs (ω,R) consisting of ω ∈ Symp+(X, V ) and the equivalence class of an ω-compatible

regularization R for V in X . Let AK(X, V ) be the space of triples (ω,R, J) consisting of

(ω,R) ∈ Aux(X, V ) and an almost complex structure J on X compatible with ω and R. By

[15, Theorem 4.5], the map (2.7) is again a weak homotopy equivalence in the present setting.

It remains straightforward to show that the map (2.8) is also a weak homotopy equivalence in

the present setting.

4.3 Constructions

In this section, we extend the constructions of Section 3.3 to arbitrary NC divisors in the local

perspective. We then note that the proof of Theorem 1.2 (4) in Section 3.4 readily extends to

the general NC case.
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Suppose V is an NC symplectic divisor in a symplectic manifold (X, ω), (Uy, {Vy;i}i∈Sy)y∈A
is a collection of charts for V in X as in Definition 4.1, and R ≡ (Ry)y∈A is an ω-regularization

with respect to the atlas A in the sense of Definition 4.2. For y ∈ A and I ′ ⊂ I ⊂ Sy, let

Vy ≡ V ∩ Uy, U◦
y;I ⊂ Uy be as in (3.12), θy′;I′I = θI′I be as in (3.14), and ϑy′;I′I = ϑI′I be as

in (3.15). Let

Ãy : ORy ;Uy(Vy) −→ Uy and Ãy : TRyUy(− log Vy) −→ Uy

be the complex line bundle (3.17) and the logarithmic tangent bundle (3.18) determined by the

ω|Uy -regularization Ry for the NC divisor Vy for (Uy, ω|Uy). Let sR;y and

ιR;y : TRyUy(− log Vy) −→ TUy

be the associated section of ORy ;Uy(Vy) and the vector bundle homomorphism (1.3), respec-

tively.

Suppose y, y′ ∈ A. For x ∈ Uy ∩ Uy′ , let Uyy′;x ≡ Ux ⊂ Uy ∩ Uy′ and

hy′y;x ≡ hx : Sy;x ≡ Sx −→ Sy′;x ≡ Sx

be as in (4.2). By (4.3),

NVy;Sy;x−iVy;Sy;x |Vy;Sy;x∩Uyy′ ;x = NVy′;S
y′;x−h

y′y;x
(i)

Vy′;Sy′;x |Vy′;S
y′;x

∩Uyy′ ;x ∀i ∈ Sy;x. (4.6)

We can choose Uyy′;x sufficiently small so that

Uyy′;x ⊂ U◦
y;Sy;x

∩ U◦
y′;Sy′;x

(4.7)

and Ux ≡ Uyy′;x satisfies (4.4). By (3.13), (4.7), and (4.6), there are canonical identifications

θy′y;x : ORy ;Sy;x(Vy)|Uyy′ ;x
=−→ ORy|U

yy′ ;x ;Sy;x
(Vy ∩ Uyy′;x)

≈−→ ORy′ ;Sy′;x(Vy′)|Uyy′ ;x ,

ϑy′y;x : TRyU◦
Sy;x

(− log Vy)|Uyy′ ;x
=−→ TRy|U

yy′ ;x
Uyy′;x(− log(Vy ∩ Uyy′;x))

≈−→ TRy′ U
◦
Sy′;x

(− logVy′)|Uyy′ ;x .

(4.8)

Suppose x′ ∈ Uyy′;x. By (4.7) and the uniqueness of hy′y;x′ ,

Sy;x′ ⊂ Sy;x, Sy′;x′ ⊂ Sy′;x, and hy′y;x′ = hy′y;x|Sy;x′ .

Combining these statements with (3.14), (3.15), and (4.4), we obtain

θy′;Sy′;x′Sy′;x ◦ θy′y;x = θy′y;x′ ◦ θy;Sy;x′Sy;x :

ORy ;Sy;x(Vy)|Uyy′ ;x∩Uyy′ ;x′ −→ ORy′ ;Sy′;x′ (Vy′)|Uyy′ ;x∩Uyy′ ;x′ ,

ϑy′;Sy′;x′Sy′;x ◦ ϑy′y;x = ϑy′y;x′ ◦ ϑy;Sy;x′Sy;x :

TRyU◦
Sy;x

(− log Vy)|Uyy′ ;x∩Uyy′ ;x′ −→ TRy′ U
◦
Sy′;x′ (− log Vy′)|Uyy′ ;x∩Uyy′ ;x′ .

Along with (3.17) and (3.18), this implies that the collections {θy′y;x}x∈Uy∩Uy′ and {ϑy′y;x}x∈Uy∩Uy′

determine bundle isomorphisms

θy′y : ORy ;Uy(Vy)|Uy∩Uy′ −→ ORy′ ;Uy′ (Vy′)|Uy∩Uy′ ,

ϑy′y : TRyUy(− log Vy)|Uy∩Uy′ −→ TRy′ Uy′(− logVy′)|Uy∩Uy′ ,
(4.9)

respectively.
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Suppose y′′ ∈ A is another element and x ∈ Uy ∩ Uy′ ∩ Uy′′ . Let

Uyy′y′′;x = Uyy′;x ∩ Uyy′;x ∩ Uy′y′′;x.

By the uniqueness of hy′′y;x,

hy′′y;x = hy′′y′;x ◦ hy′y;x : Sy;x −→ Sy′′;x.

This implies that the identifications (4.8) satisfy

θy′′y;x = θy′′y′;x ◦ θy′y;x : ORy ;Sy;x(Vy)|Uyy′y′′;x −→ ORy′′ ;Sy′′;x(Vy′′)|Uyy′y′′ ;x ,

ϑy′′y;x = ϑy′′y′;x ◦ ϑy′y;x : TRyU◦
Sy;x

(− log Vy)|Uyy′y′′ ;x −→ TRyU◦
Sy′′;x

(− log Vy′′)|Uyy′y′′ ;x .

Thus, the collections {θy′y}y,y′∈A and {ϑy′y}y,y′∈A satisfy the cocycle condition. The first

collection thus determines a complex line bundle

Ã : OR;X(V ) =

( ⊔

y∈A
ORy ;Uy(Vy)

)/
∼ −→ X, Ã|ORy ;Uy (Vy) = Ãy ,

ORy ;Uy (Vy)|Uy∩Uy′ � v ∼ θy′y(v) ∈ ORy′ ;Uy′ (Vy′)|Uy∩Uy′ ∀y, y′ ∈ A.

(4.10)

The second collection similarly determines a vector bundle

Ã : TRX(− logV ) =

( ⊔

y∈A
TRyUy(− log Vy)

)/
∼ −→ X, Ã|TRy Uy(− log Vy) = Ãy,

TRyUy(− log Vy)|Uy∩Uy′ � v ∼ ϑy′y(v) ∈ TRy′ Uy′(− logVy′)|Uy∩Uy′ ∀y, y′ ∈ A.

(4.11)

By (3.19), (3.20), and (4.4),

θy′y ◦ sR;y = sR;y′ : Uy ∩ Uy′ −→ ORy′ ;Uy′ (Vy′)|Uy∩Uy′ ,

ιR;y = ιR;y′ ◦ ϑy′y : TRyUy(− logVy)|Uy∩Uy′ −→ TX |Uy∩Uy′ .

The collections {sR;y}y∈A and {ιR;y}y∈A thus determine a section sR of the line bundle (4.10)

and a bundle homomorphism ιR as in (1.3). Since the sections sR;y and the homomor-

phisms ιR;y satisfy the properties of sR and ιR stated in Proposition 1.1 (1) and Theorem 1.2 (1),

so do the just constructed sections sR and ιR.

Suppose J is an R-compatible almost complex structure on X . For each y ∈ A, Jy ≡ J |Uy

is then an Ry-compatible almost complex structure on Uy and determines a complex structure

on the vector bundle

TRyU◦
I (− log Vy) −→ U◦

I

for every I ⊂ Sy. Since Jy = Jy′ on Uyy′;x, (4.4) implies that the bundle identification ϑy′y;x

in (4.8) is C-linear. Thus, J determines a complex structure iR;J on the vector bundle (4.11)

which restricts to the complex structure iRy ;Jy on the vector bundle

TRyUy(− log Vy) −→ Uy

for every y ∈ A. Since the bundle homomorphism ιRy is C-linear with respect to the com-

plex structure iRy ;Jy on its domain and the complex structure Jy on its target, we obtain

Theorem 1.2 (2).

By the same reasoning as at the end of Section 2.2, the bundles (4.10) and (4.11) also satisfy

the properties in Proposition 1.1 (2) and Theorem 1.2 (3).
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Suppose V ′ is another NC symplectic divisor in (X, ω) so that V ∪ V ′ ⊂ X is also an NC

symplectic divisor and V ∩V ′ contains no open subspace of V . An atlas for V ∪V ′ in X is a col-

lection of the form (Uy, {Vy;i}i∈Sy�S′
y
)y∈A so that (Uy, {Vy;i}i∈Sy)y∈A and (Uy, {Vy;i}i∈S′

y
)y∈A

are atlases for V and V ′, respectively. An ω-regularization R̃ ≡ (R̃y)y∈A for such an atlas for

V ∪ V ′ restricts to ω-regularizations

R ≡ (Ry)y∈A and R′ ≡ (R′
y)y∈A

for the associated atlases for V and V ′ so that the ω|Uy -regularization R̃y for (V ∪ V ′) ∩ Uy

in Uy restricts to the ω|Uy -regularizations Ry for V ∩Uy in Uy and R′
y for V ′ ∩Uy. We denote

by θ′y′y and ϑ′
y′y (resp., θ̃y′y and ϑ̃y′y) the analogues of the transition maps θy′y and ϑy′y in (4.9)

for the regularization R′ (resp., R̃). For each y ∈ A, let

ψRyR′
y

: (OR̃y ;Uy
(Vy ∪ V ′

y), iR̃y
) −→ (ORy ;Uy(Vy), iRy ) ⊗ (OR′

y ;Uy(V ′
y), iR′

y
),

ιRyR̃y
: TR̃y

Uy(− log(Vy ∪ V ′
y)) −→ TRyX(− logVy)

be the bundle isomorphism (3.21) and the bundle homomorphism (3.24) determined by the

regularization R̃y.

Since the maps (3.21) and (3.24) are natural with respect to the restrictions to open subsets,

{θy′y ⊗ θ′y′y} ◦ ψRyR′
y

= ψRy′R′
y′ ◦ θ̃y′y :

OR̃y ;Uy
(Vy ∪ V ′

y)|Uy∩Uy′ −→ ORy′ ;Uy′ (Vy′)|Uy∩Uy′ ⊗OR′
y′ ;Uy′ (V

′
y′)|Uy∩Uy′ ,

ϑy′y ◦ ιRyR̃y
= ιRy′ R̃y′ ◦ ϑ̃y′y : TR̃y

Uy(− log(Vy ∪ V ′
y))|Uy∩Uy′ −→ TRy′ Uy′(− logVy′)|Uy∩Uy′ .

The collection {ψRyR′
y
}y∈A thus determines an isomorphism

ψRR′ : (OR̃;X(V ∪ V ′), iR̃) −→ (OR;X(V ), iR) ⊗ (OR′;X(V ′), iR′)

of complex line bundles over X . In light of Proposition 1.1 (2), this establishes Proposi-

tion 1.1 (3).

The collection {ιRyR̃y
}y∈A similarly determines a homomorphism

ιRR̃ : TR̃X(− log(V ∪ V ′)) −→ TRX(− logV )

of vector bundles over X . By the properties of the homomorphisms ιRR̃ ≡ ιRyR̃y
stated in

Lemma 3.8, this homomorphism satisfies the same properties with K ⊂ S′, V ′◦
K , and V ′◦

K × CK

replaced by r ∈ Z≥0, V ′(r)−V ′(r+1), and some rank r complex vector bundle over V ′(r)−V ′(r+1),

respectively. By the same reasoning as in the paragraph after Lemma 3.8, ιRR̃ is C-linear with

respect to the complex structures iR̃,J on its domain and iR,J on its target determined by

an R̃-compatible almost complex structure J on X . Furthermore, the C-linear homomorphism

ψ = ιRR̃ satisfies the conditions of Lemma 3.7 if V ′ is smooth (in which case V ′(1)−V ′(2) = V ′).

In light of Theorem 1.2 (3), this establishes Theorem 1.2 (4).

5 Almost Complex and Symplectic Blowups

Let X be a smooth manifold and V ⊂ X be an NC smooth divisor, i.e., a subspace admitting

a collection (Uy, {Vy;i}i∈Sy)y∈A of charts as in Definition 4.1 with each Vy;i ⊂ V ∩ Uy being a

smooth submanifold of Uy of real codimension 2. We fix such a collection. Let r ∈ Z+ be such
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that V (r+1) = ∅. We also fix a Hermitian regularization

R ≡ (Ry)y∈A ≡ ((Äy;I;i,∇(y;I;i))i∈I , Ψy;I)y∈A,I⊂Sy (5.1)

for V in X , i.e., a tuple satisfying the conditions of Definitions 3.5 (2) and 4.2 that do not

involve the symplectic form ω.

By shrinking the open sets Uy, we may assume that |Sy| ≤ r for all y ∈ A, Im(Ψy;Sy) = Uy

if y ∈ A with |Sy| = r,

Im(Ψy;Sy)∩Im(Ψy′;Sy′ ) ⊂ Ψy;Sy(Dom(Ψy;Sy)|Vy;Sy∩Vy′;S
y′

)∪Ψy′;Sy′ (Dom(Ψy′;Sy′ )|Vy;Sy∩Vy′;S
y′

),

and there exists an open neighborhood U ′
r of V (r) ⊂ X so that U ′

r ∩Uy′ = ∅ for all y′ ∈ A with

|Sy′ | < r. Let

Ar = {y ∈ A : |Sy| = r}, Ã = (A−Ar) � {(y, i) : y ∈ Ar , i ∈ Sy}.

5.1 Smooth Complex Blowup

Since V (r+1) = ∅, V (r) ⊂ X is a smooth submanifold. Let

Ãr : NXV (r) −→ V (r) (5.2)

be its normal bundle. By (4.5), the Hermitian metrics Äy;Sy;i and the connections ∇(y;Sy ;i) in

the complex line bundles NVy;Sy−iVy;Sy with y ∈ Ar and i ∈ Sy determine a complex structure,

a Hermitian metric Är, and a compatible connection ∇(r) on NXV (r). Furthermore, the map

Ψr : N ′
r ≡

⋃

y∈Ar

Dom(Ψy;Sy) −→ X, Ψr(v) = Ψy;Sy(v) ∀v ∈ Dom(Ψy;Sy), y ∈ Ar, (5.3)

is a well-defined regularization for V (r) in X in the sense of Definition 2.1. We note that the

complex vector bundle NXV (r) does not necessarily split as a sum of complex line bundles.

We denote by E ≡ P(NXV (r)) the complex projectivization of NXV (r) and by

Ã̃0 : γ ≡ {(�, v) ∈ E ×NXV (r) : v ∈ �} −→ E (5.4)

the complex tautological line bundle. Let

Ã : E −→ V (r), Ã(�) = Ãr(v) if (�, v) ∈ γ, (5.5)

be the bundle projection. The connection ∇(r) and the Hermitian metric Är on NXV (r) deter-

mine a splitting

T (NXV (r))|NXV (r)−V (r) ≈ Ã∗
rTV (r)|NXV (r)−V (r) ⊕ {(v, w) ∈ Ã∗

rNXV (r)|NXV (r)−V (r) : w ∈ Cv}
⊕ {(v, w) ∈ Ã∗

rNXV (r)|NXV (r)−V (r) : Är(v, w) = 0} (5.6)

of the vector bundle T (NXV (r))|NXV (r)−V (r) so that the middle summand above is identified

with the tangent bundle to the orbits of the C∗-action on NXV (r) and the last summand is

its complement in the vertical tangent bundle of Ãr restricted to NXV (r) − V (r). By [38,

Lemma 1.1], the above splitting is C∗-invariant. It thus induces a splitting

TE ≈ Ã∗TV (r) ⊕ (ker dÃ) (5.7)

so that the last summand above corresponds to the vertical tangent subbundle of Ã and a com-

plex structure on the last summand.
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Since γ ⊂ Ã∗NXV (r), the Hermitian metric Är and the compatible connection ∇(r) on

NXV (r) determine a Hermitian structure (Ä̃0, ∇̃(0)) on the complex line bundle γ and a splitting

Tγ ≈ Ã̃∗
0TE ⊕ Ã̃∗

0γ (5.8)

so that the last summand above corresponds to the vertical tangent bundle of Ã̃0. The composi-

tion of this splitting with the splitting (5.7) restricts to the splitting (5.6) under the identification

(γ − E, Ã ◦ Ã̃0|´−E) = (NXV (r) − V (r), Ãr|NXV (r)−V (r)), (�, v) −→ v. (5.9)

We define the smooth complex blowup Ã : X̃ → X of X along V (r) with respect to Ψr by

Ñ ′
0 = {(�, v) ∈ γ : v ∈ N ′

r}, X̃ ≡ ((X − V (r)) � Ñ ′
0)/ ∼, Ñ ′

0 − E � (�, v) ∼ Ψr(v) ∈ X − V (r),

Ã([x̃]) =

§
¨
©

x̃, if x̃ ∈ X − V (r);

Ψr(v), if x̃ ≡ (�, v) ∈ Ñ ′
0.

The exceptional divisor E is a codimension 2 submanifold of X̃ with a smooth regularization

Ψ̃0 : Ñ ′
0 −→ X̃, Ψ̃0(v) = [v].

5.2 Almost Complex Blowup

Suppose now that J is an almost complex structure on X , V ⊂ X is an NC almost complex

divisor, each Vy;i ⊂ V ∩ Uy is an almost complex submanifold of (Uy, J |Uy ) of real codimension 2,

and the almost complex structure J on X is R-compatible in the sense defined at the end of

Section 4.2. The smooth submanifold V (r) ⊂ X is then almost complex. The induced complex

structure on its normal bundle agrees with the fiberwise complex structure determined by the

complex line bundles NVy;Sy−iVy;Sy with y ∈ Ar and i ∈ Sy.

Along with the fiberwise complex structure and the connection ∇(r) on NXV (r), J |V (r)

determines a complex structure JR;r on the total space of NXV (r) such that

J ◦ dΨr = dΨr ◦ JR;r|N ′
r
. (5.10)

Along with the splitting (5.7), J |V (r) determines an almost complex structure J̃E on E so

that the bundle projection (5.5) is (J, J̃E)-holomorphic. Along with the splitting (5.8), J̃E in

turn determines an almost complex structure J̃R;0 on the total space of γ. By the sentence

containing (5.9), the restrictions of the almost complex structures J̃R;0 to γ − E and JR;r

to NXV (r) − V (r) agree under the identification (5.9). Furthermore, the projection

Ã2 : γ −→ NXV (r)

to the second component in (5.4) is (JR;r, J̃R;0)-holomorphic.

We define an almost complex structure J̃ on the blowup X̃ of X constructed in Section 5.1 by

J̃[x̃] =

§
¨
©

Jx̃, if x̃ ∈ X − V (r);

J̃R;0|x̃, if x̃ ∈ Ñ ′
0.

By the conclusion of the previous paragraph and (5.10), the definitions of J̃ agree on Ñ ′
0 − E.

The exceptional divisor E is an almost complex submanifold of (X̃, J̃). The almost complex

structure J̃ is compatible with the Hermitian regularization (Ä̃0, ∇̃(0), Ψ̃0) for E in X̃.
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Let V ⊂ X̃ be the proper transform of V , i.e., the closure of V − V (r), and

Ṽ = E ∪ V .

We show below that Ṽ is an NC almost complex divisor in (X̃, J̃) with a collection

(Ũy, {Ṽy;i}i∈S̃y
)y∈Ã

of charts and a regularization

R̃ ≡ (R̃y;I)y∈Ã,I⊂S̃y
≡ ((Ä̃y;I;i, ∇̃(y;I;i))i∈I , Ψ̃y;I)y∈Ã,I⊂S̃y

(5.11)

obtained from the atlas (Uy, {Vy;i}i∈Sy)y∈A and the regularization R for V in X . If y ∈ A−Ar,

then

Uy ⊂ X − V (r) = X̃ − E.

In this case, we simply take

S̃y = Sy, (Ũy, {Ṽy;i}i∈S̃y
) = (Uy, {Vy;i}i∈Sy), (R̃y;I)I⊂S̃y

= (Ry;I)I⊂Sy .

Suppose y ∈ Ar. Let Ũy ≡ Ã−1(Uy) be the blowup of Uy along V (r) ∩ Uy. Since

Im(Ψy;Sy) = Uy, we can identify Uy with Dom(Ψy;Sy) via Ψr and Ũy with Ã−1(Uy) ⊂ Ñ ′
0

via Ψ̃0. For each i ∈ Sy, let V y;i ⊂ Ũy be the proper transform of Vy;i and define

S̃(y,i) = {0}�(Sy−{i}), Ny;i =
⊕

j∈Sy−i

NVy;Sy−iVy;Sy , Ũ(y,i) = Ũy−γ|PNy;i , Ṽ(y,i);0 = E−PNy;i.

For j ∈ Sy − i, let Ṽ(y,i);j = V y;j ∩ Ũ(y,i). We note that

Vy;i = Ny;i ∩ Dom(Ψy;Sy), V y;i = γ|PNy;i ∩ Ũy, and V ∩ Ũ(y,i) =
⋃

j∈Sy−i

Ṽ(y,i);j (5.12)

under the above identifications. Since {Ṽ(y,i);j}j∈S̃(y,i)
is a transverse collection of codimension 2

almost complex submanifolds of Ũ(y,i), Ṽ ∩Ũ(y,i) is an SC almost complex divisor in Ũ(y,i). Thus,

Ṽ is an NC almost complex divisor in (X̃, J̃) and (Ũy, {Ṽy;i}i∈S̃y
)y∈Ã is an atlas of local charts

for Ṽ .

5.3 Regularizations

For y ∈ Ar and I ′ ⊂ I ⊂ Sy, let

N ′
y;I;I′ ⊂ Ny;I;I′ ⊂ NUy Vy;I =

⊕

i∈I

NVy;I−iVy;I

be the analogues of the subspaces N ′
I;I′ ⊂ NI;I′ ⊂ NXVI for the regularization (Ψy;I)I⊂Sy of

{Vy;i}i∈Sy in Uy as defined in Section 3.2. Suppose i ∈ Sy and I ⊂ S̃(y,i). If 0 ∈ I (and so

Ṽ(y,i);I ⊂ E), then

NŨ(y,i)
Ṽ(y,i);I = γ|Ṽ(y,i);I

⊕ (γ∗|Ṽ(y,i);I
⊗C Ã∗NUy Vy;I−0|Ṽ(y,i);I

)

⊂ {Ã|Ṽ(y,i);I
}∗Ny;Sy ;I−0 ⊕ (γ∗|Ṽ(y,i);I

⊗C {Ã|Ṽ(y,i);I
}∗Ny;Sy;Sy−I).

In this case, we define

Ψ̃(y,i);I : {(Cv′, v, u ⊗ w) ∈ NŨ(y,i)
Ṽ(y,i);I : v + u(v)w ∈ N ′

y;Sy
} −→ Ũ(y,i) ⊂ {Ã|E}∗NUy Vy;Sy ,
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Ψ̃(y,i);I(Cv′, v, u ⊗ w) = (C(v′ + u(v′)w), v + u(v)w).

Suppose 0 �∈ I. Thus, Ṽ(y,i);0�I ≡ Ṽ(y,i);I ∩E is a smooth submanifold of Ṽ(y,i);I with normal

bundle γ|Ṽ(y,i);0�I
. The smooth regularization

Ψ̃(y,i);0�I;I : Ñ ′
(y,i);0�I;I ≡ {(�, v) ∈ γ : v ∈ N ′

y;Sy;I} −→ Ṽ(y,i);I , Ψ̃(y,i);0�I;I(�, v) = (�, v),

of Ṽ(y,i);0�I in Ṽ(y,i);I is surjective. Let

OR̃;(y,i);I(E) ≡ {Ψ̃ −1
(y,i);0�I;I}∗{Ã̃0|Ñ ′

(y,i);0�I;I
}∗γ −→ Ṽ(y,i);I

be the analogue of the complex line bundle (2.5) determined by Ψ̃(y,i);0�I;I and the fiberwise

complex structure of γ. In this case,

NŨ(y,i)
Ṽ(y,i);I = OR̃;(y,i);I(E)∗ ⊗C Ã∗NUyVy;I |Ṽ(y,i);I

= OR̃;(y,i);I(E)∗ ⊗C Ã∗Ny;Sy ;Sy−I |Ṽ(y,i);I
.

We define

Ψ̃(y,i);I : {(x, (Cv′, v), u) ⊗ w ∈ NŨ(y,i)
Ṽ(y,i);I : v + u(v)w ∈ N ′

y;Sy
} −→ Ũ(y,i),

Ψ̃(y,i);I((x, (Cv′, v), u) ⊗ w) = (C(v′ + u(v′)w), v + u(v)w).

Since (Ψy;I)I⊂Sy is a regularization for {Vy;i}i∈Sy in Uy, (Ψ̃(y,i);I)I⊂S̃(y,i)
is a regularization for

{Ṽ(y,i);j}j∈S̃(y,i)
in Ũ(y,i). Since the collection (Ψy;I)y∈A,I⊂Sy satisfies the last condition in (4.4),

so does the collection (Ψ̃y;I)y∈Ã,I⊂S̃y
.

Let y ∈ Ar as before. The Hermitian structures (Ä̃0, ∇̃(0)) on γ and (Äy;I;j ,∇(y;I;j))

on NVy ;I−jVy;I with j ∈ I ⊂ Sy determine Hermitian structures (Ä̂(y,i);I;j, ∇̂((y,i);I;j)) on the

complex line bundles

NṼ(y,i);I−j
Ṽ(y,i);I =

§
⎪⎪⎪̈

⎪⎪⎪©

γ|Ṽ(y,i);I
, if j = 0 ∈ I ⊂ S̃(y,i);

γ∗|Ṽ(y,i);I
⊗C Ã∗NVy;Sy−j Vy;Sy |Ṽ(y,i);I

, if 0, j ∈ I ⊂ S̃(y,i), j �= 0;

OR̃;(y,i);I(E)∗ ⊗C Ã∗NVy ;I−jVy;I |Ṽ(y,i);I
, if j ∈ I ⊂ S̃(y,i), 0 �∈ I.

The almost complex structure J̃ |Ṽ(y,i);I
and the connection ∇̂((y,i);I;j) determine an almost

complex structure J̃Ry ;I on the total space of the normal bundle NŨ(y,i)
Ṽ(y,i);I of Ṽ(y,i);I in Ũ(y,i).

If 0 �∈ I ⊂ S̃(y,i), Corollary 2.3 implies that the isomorphism

NŨ(y,i)
Ṽ(y,i);I |Ṽ(y,i);I−Ṽ(y,i);0�I

−→ NUy Vy;I |Vy;I−Vy;Sy
, u ⊗ (v, w) −→ u(v)w, (5.13)

intertwines J̃Ry ;I with the almost complex structure JRy ;I determined by the almost com-

plex structure J |Vy;I and the connections ∇(y;I;j) with j ∈ I. Since the regularization Ψy;I

intertwines JRy ;I and J , it follows that the regularization Ψ̃(y,i);I intertwines J̃Ry ;I and J̃ if

0 �∈ I ⊂ S̃(y,i). The same is the case for I = {0} by the definition of J̃ |Ñ ′
0
. Since the differen-

tials DΨ̃(y,i);I;I−0 with 0 ∈ I ⊂ S̃(y,i) are product Hermitian isomorphisms, it follows that they

intertwine the almost complex structures J̃Ry ;I and J̃Ry ;I−0. Thus, the regularization Ψ̃(y,i);I

intertwines J̃Ry ;I and J̃ for all I ⊂ S̃(y,i), while DΨ̃(y,i);I;I′ intertwines J̃Ry ;I and J̃Ry ;I′ for all

I ′ ⊂ I ⊂ S̃(y,i).
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Below we define smooth functions f(y,i);I : Ṽ(y,i);I → R+ so that the metrics

Ä̃(y,i);I;j ≡

§
¨
©

f(y,i);I Ä̂(y,i);I , if j ∈ I, j �= 0;

(1/f(y,i);I)Ä̂(y,i);I , if j = 0 ∈ I
(5.14)

on the complex line bundles NṼ(y,i);I−j
Ṽ(y,i);I are preserved by the isomorphisms DΨ̃(y,i);I;I′

with j ∈ I ′ ⊂ I ⊂ S̃(y,i), after shrinking the domain of Ψ̃(y,i);I . The connection

∇̃((y,i);I;j) ≡

§
¨
©
∇̂((y,i);I;j) + f−1

(y,i);I∂J̃f(y,i);I , if j ∈ I, j �= 0;

∇̂((y,i);I;j) − f−1
(y,i);I∂J̃f(y,i);I , if j = 0 ∈ I

(5.15)

on NṼ(y,i);I−j
Ṽ(y,i);I is compatible with Ä̃(y,i);I;j. Along with J̃ |Ṽ(y,i);I

, it determines the same

almost complex structure J̃Ry ;I on NṼ(y,i);I−j
Ṽ(y,i);I as ∇̂((y,i);I;j) (because the two connections

differ by a (1, 0)-form). Since the isomorphisms DΨ̃(y,i);I;I′ preserve the metrics Ä̃(y,i);I;j and

the almost complex structures J̃Ry ;I , it follows that they preserve the connections ∇̃((y,i);I;j)

as well.

We choose the functions f(y,i);I so that

f(y,i);I(x) = f(y,i′);I(x) ∀x ∈ Ṽ(y,i);I ∩ Ṽ(y,i′);I , I ⊂ S̃(y,i), S̃(y,i′), i, i′ ∈ Sy, y ∈ Ar, (5.16)

f(y,i);I(x) = f(y′,hy′y;x(i));hy′y;x(I)(x) ∀x ∈ Ṽ(y,i);I ∩ Ṽ(y′,hy′y;x(i));hy′y;x(I),

i ∈ Sy, y, y′ ∈ Ar, (5.17)

with hy′y;x as above (4.6). For I �� 0, we choose f(y,i);I so that the isomorphism (5.13) identifies

the restriction of Ä̃(y,i);I;j to NṼ(y,i);I−j
Ṽ(y,i);I |Ṽ(y,i);I−U ′

r
with the restriction of the metric Äy;I;j

to NVy;I−j Vy;I |Vy;I−U ′
r
. Along with the assumption on U ′

r, this implies that the resulting collec-

tion R̃ in (5.11) satisfies the first condition in (4.4).

Lemma 5.1 Let r ∈ Z+. There exist a smooth function h : Pr−1 → R+ and δ ∈ R+ such that

(1) h is invariant under the permutations of the homogeneous coordinates on Pr−1 and under

the standard (S1)r-action on Pr−1;

(2) for all s∈ [r], [Z1, . . . , Zs]∈ Ps−1, and [Z1, . . . , Zr]∈ Pr−1 with
∑r

i=s+1 |Zi|2 ≤ δ
∑s

i=1 |Zi|2,
h(Z1, . . . , Zr)

h(Z1, . . . , Zs, 0, . . . , 0)
=

|Z1|2 + · · · + |Zr|2
|Z1|2 + · · · + |Zs|2

. (5.18)

This lemma is established in Section 5.6. Let h : Pr−1 → R+ and δ ∈ R+ be as in Lemma 5.1.

Define

Wy;I =

{
[(vi)i∈Sy ] ∈ PNXV (r)|Vy;Sy

:
∑

i∈Sy−I

Äy;Sy;i(vi) < δ
∑

i∈I

Äy;Sy ;i(vi)

}
∀I ⊂ Sy, y ∈ Ar.

We can identify each fiber of (5.2) with Cr respecting the splittings and the metrics. This

induces an identification of each fiber of Ã : E → V (r) with Pr−1. By the invariance properties

of h, the composition of this identification with h is independent of the choice of the former.

Thus, we obtain a smooth function hE : E → R+ so that

hE([(vi)i∈Sy ])

hE([(vi)i∈I ])
=

Är([(vi)i∈Sy ])

Är([(vi)i∈I ])
∀[(vi)i∈Sy ] ∈ Wy;I , I ⊂ Sy, y ∈ Ar . (5.19)
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For y ∈ Ar, i ∈ Sy, and I ⊂ S̃(y,i) so that 0 ∈ I, let Uy;I ⊂ Ũy be an open neighborhood

of Ṽy;I−0 so that Uy;I ∩ E = Wy;I−0. We define

f(y,i);I = hE|Ṽ(y,i);I
. (5.20)

By (5.19), the restrictions of the differentials DΨ̃(y,i);I;I′ with 0 ∈ I ′ ⊂ I ⊂ S̃(y,i) to Ψ̃−1
(y,i);I(Uy;I)

preserve the metrics (5.14). By (5.20), the functions f(y,i);I satisfy (5.16) and (5.17) whenever

0 ∈ I.

Let β : R → R≥0 and ε : V (r) → R+ be smooth functions so that

β(t) =

§
¨
©

1, if t ≤ 1;

0, if t ≥ 2;
and (5.21)

⋃

y∈Ar

{(vi)i∈Sy ∈ N ′
r|Vy;Sy

: Äy;Sy;i(v) < 2ε(Ãr((vi)i∈Sy )) ∀i ∈ Sy} ⊂ U ′
r ⊂ Ur = N ′

r.

Define

U ′′
r =

⋃

y∈Ar

{(vi)i∈Sy ∈ N ′
r|Vy;Sy

: Äy;Sy;i(vi) < ε(Ãr((vi)i∈Sy)) ∀i ∈ Sy} ⊂ U ′
r ⊂ N ′

r,

Uy;I = {(vi)i∈Sy ∈ N ′
r|Vy;Sy

: Äy;Sy;i(vi) < ε(Ãr((vi)i∈Sy )) ∀i ∈ I} ∀I ⊂ Sy, y ∈ Ar;

βy : N ′
r|Vy;Sy

−→ R≥0, βy((vi)i∈Sy) =
∏

j∈Sy

β(Äy;Sy ;j(vj)/ε(Ãr((vi)i∈Sy))) ∀y ∈ Ar.

By the first condition in (4.4), βy = βy′ on N ′
r|Vy;Sy

∩ N ′
r|Vy′;S

y′
for all y, y′ ∈ Ar. Thus, the

function

βr : N ′
r −→ R≥0, βr(v) = βy(v) ∀v ∈ N ′

r|Vy;Sy
, y ∈ Ar,

is well-defined and smooth. It satisfies

βr|U ′′
r

= 1, βr|N ′
r−U ′

r
= 0, βr((vi)i∈Sy ) = βr((vi)i∈I)

∀[(vi)i∈Sy ] ∈ Uy;I , I ⊂ Sy, y ∈ Ar. (5.22)

For y ∈ Ar, i ∈ Sy, and I ⊂ S̃(y,i) so that 0 �∈ I, define

f(y,i);I(Ψ̃(y,i);0�I;I(v)) = βr(Ã2(v))hE(Ã̃0(v)) + (1 − βr(Ã2(v)))Ä̃0(v)

∀v ∈ N ′
(y,i);0�I;I ⊂ γ|Ṽ(y,i);0�I

.
(5.23)

By (5.19) and the last property in (5.22), the restrictions of the differentials DΨ̃(y,i);I;I′ with

I ′ ⊂ I ⊂ S̃(y,i) such that 0 �∈ I to Ψ̃−1
(y,i);I(Uy;I ∩ Uy;0�I) preserve the metrics (5.14). By (5.19)

and the first property in (5.22), the restrictions of the differentials DΨ̃(y,i);I;I′ with I ′ ⊂ I ⊂
S̃(y,i) such that 0 ∈ I to Ψ̃−1

(y,i);I(Uy;I ∩ U ′′
r ) preserve the metrics (5.14). By (5.23), the func-

tions f(y,i);I satisfy (5.16) and (5.17) whenever 0 �∈ I. By the middle property in (5.22), the

isomorphism (5.13) identifies the restriction of Ä̃(y,i);I;j to NṼ(y,i);I−j
Ṽ(y,i);I |Ṽ(y,i);I−U ′

r
with the

restriction of the metric Äy;I;j to NVy;I−j Vy;I |Vy;I−U ′
r

whenever j �= 0 �∈ I.

By [14, Lemma 5.8], we can shrink the domains Dom(Ψ̃(y,i);I) of Ψ̃(y,i);I with i ∈ Sy and

I ⊂ S̃(y,i) to open neighborhoods N ′′
(y,i);I of Ṽ(y,i);I ⊂ Dom(Ψ̃(y,i);I) so that

Ψ̃(y,i);I(N ′′
(y,i);I) ⊂

§
¨
©

Uy;I ∩ U ′′
r , if 0 ∈ I;

Uy;I , if 0 �∈ I;
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and the collection (Ψ̃(y,i);I |N ′′
(y,i);I

)I⊂S̃(y,i)
is still a regularization for {Ṽ(y,i);j}j∈S̃(y,i)

in Ũy,i.

Replacing Ψ̃y;I with Ψ̃y;I |N ′′
y;I

in (5.11) whenever y ∈ Ã − A, we obtain an almost complex

regularization for Ṽ in (X̃, J̃).

5.4 Proof of Lemma 1.3

The substance of the last claim of Lemma 1.3 is that the canonical identification

TR̃X̃(− log Ṽ )|X̃−E = TRX(− logV )|X−V (r) (5.24)

extends smoothly to a bundle homomorphism as in (1.8) and that this bundle homomorphism

is an isomorphism. For each y ∈ Ar, i ∈ Sy, and I ⊂ S̃(y,i) with 0 ∈ I, we verify this over

the open subspace U◦
(y,i);I ⊂ Ñ ′

0 defined as in (3.12) via the regularization R̃ constructed in

Section 5.3.

Let y ∈ Ar, i ∈ Sy, and I ⊂ S̃(y,i) be as above, [v] ≡ [(vi)i∈Sy−I ] ∈ Ṽ(y,i);I with vi �= 0 for

all i ∈ Sy − I, and u ∈ (Cv)∗ − {0}. Let a ∈ C∗ and v′ ∈ Ny;Sy;Sy−I be sufficiently small. Let

h∇̃((y,i);I;0) ;av : T[v]Ṽ(y,i);I −→ Tavγ and h∇(r);av : T[v]Ṽ(y,i);I −→ Tav(NXV (r))

be the injective homomorphisms determined by the connections ∇̃((y,i);I;0) and ∇(r) as in (2.6).

The isomorphism (5.7) gives

T[v]Ṽ(y,i);I = Tπ(v)V
(r) ⊕ (Cv)∗ ⊗C (Cv)⊥,

where (Cv)⊥ ⊂ Ny;Sy ;I |π(v) is the Är-orthogonal complement of Cv. By (5.15) and the sentence

containing (5.9),

h∇̃((y,i);I;0) ;av(w, u ⊗ v⊥) = h∇(r);av(w) + u(av)v⊥ + θ(w, u ⊗ v⊥)(av)

= h∇(r);av(w) + a(u(v)v⊥ + θ(w, u ⊗ v⊥)v)

for some 1-form θ on E. With the notation as in (3.15), we thus obtain

ϑ(y,i);(I−0)I((Ψ̃(y,i);I(av, u ⊗ v′), (av, u ⊗ v′), (w, u ⊗ v⊥)), (ci)i∈I)

= ϑy;(I−0)Sy
((Ψy;Sy(av + u(v)v′), av + u(v)v′, w), (ci)i∈Sy ),

with ci ≡ ci([v]; w, u ⊗ v⊥, c0) ∈ C for i ∈ Sy − I defined by
∑

i∈Sy−I

civi = u(v)v⊥ + (θ(w, u ⊗ v⊥) + c0)v.

The identification (5.24) thus extends smoothly over [v] as the vector space isomorphism

T[v]E ⊕ CI −→ Tπ([v])V
(r) ⊕ CSy−I ⊕ CI−0,

(w, (ci)i∈I) −→ (d[v]Ã(w), (ci([v]; w, c0))i∈Sy−I , (ci)i∈I−0).

5.5 Symplectic Setting

Suppose now that ω is a symplectic form on (X, V ) and R is an ω-regularization for V in X in

the sense of Definition 4.2. The smooth submanifold V (r) ⊂ X is then symplectic. Let ωr ≡ ω̃

be the closed 2-form on NXV (r) determined by ω|V (r) , Ω ≡ ω|Nr , and ∇(r) as in (2.4). Let J

be an R-compatible almost complex structure on X ,

Ã : (X̃ ≡ ((X − V (r)) � Ñ ′
0)/ ∼, J̃) −→ (X, J)
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be the corresponding almost complex blowup with the exceptional divisor E ≡ P(NXV (r)) as in

Section 5.2, and V ⊂ X̃ be the proper transform of V . Suppose also that there exists ε ∈ (0, 1)

such that

Nr(2ε) ≡ {v ∈ NXV (r) : Är(v) < 2ε} ⊂ Ψ−1
r (U ′

r) ⊂ N ′
r. (5.25)

This is automatically the case if V (r) is compact.

The subgroup S1 ⊂ C∗ acts on Nr(2ε) × C by

u : Nr(2ε) × C −→ Nr(2ε) × C, u · (v, c) = (uv, c/u). (5.26)

This S1-action preserves the submanifolds

Z̃(ε) ≡ {(v, c) ∈ Nr(2ε) × C : Är(v) − |c|2 = ε} and Ẽε ≡ {(v, 0) ∈ Nr(2ε) × C : Är(v) = ε}.

We identify Ẽε with the
√

ε-sphere bundle of NXV (r) in the obvious way. Let

Z(ε) = Z̃(ε)/S1, Eε = Ẽε/S1, Xε = ((X − Ψr(Nr(ε))) � Z(ε))/ ∼,

Z(ε) − Eε � [v,
√

Är(v) − ε] ∼ Ψr(v) ∈ X − Ψr(Nr(ε)) ∀v ∈ Nr(2ε) −Nr(ε). (5.27)

By the Symplectic Reduction Theorem [6, Theorem 23.1], there is a unique symplectic form ωr;ε

on the smooth manifold Z(ε) so that

q∗ε ωr;ε = (Ã∗
1ωr + Ã∗

2ωC)|Z̃(ε), (5.28)

where qε : Z̃(ε) → Z(ε) is the quotient projection,

Ã1, Ã2 : Nr(2ε) × C −→ Nr(2ε), C

are the component projections, and ωC is the standard symplectic form on C. Since Ψ∗
rω = ωr

on Nr(2ε) and the S1-action (5.26) preserves the 2-form Ã∗
1ωr + Ã∗

2ωC, (5.28) implies that

the identification (5.27) intertwines ωr;ε and ω. We thus obtain a symplectic form ωε on Xε

such that

ωε|X−Ψr(Nr(ε)) = ω|X−Ψr(Nr(ε)) and ωε|Z(ε) = ωr;ε.

It restricts to a symplectic form on Eε ⊂ Xε.

The Pr−1-fiber bundle Ãε : Eε → V (r) is canonically identified with Ã : E → V (r). This

identification canonically lifts to an identification of the complex line bundle

Ã̃0 : NXεEε = Ẽε ×S1 C −→ Ẽε/S1 ≡ Eε, (v, c) ∼ (uv, c/u) ∀(v, c) ∈ Ẽε × C, u ∈ S1,

with the tautological line bundle γ ⊂ Ã∗NXV (r) as in (5.4). The differential

dqε : Ẽε × C = NZ̃(ε)Ẽε −→ q∗εNXεEε

is an isomorphism of complex line bundles. It intertwines the fiberwise symplectic form ωC with

the fiberwise symplectic form

ωε|NXε Eε = ωr;ε|NXε Eε

on NXεEε induced by ωε as below Definition 2.1. Thus, the complex orientation on NXεEε

agrees with the orientation induced by the symplectic form ωε. It is straightforward to see that

the map

Ψ̃ε;0 : Ñ ′
ε;0 ≡ {[v, c] ∈ NXεEε : |c|2 < ε} −→ Z(ε) ⊂ Xε, Ψ̃ε;0([v, c]) = [

√
1 + |c|2/ε v, c],

is a well-defined smooth regularization for Eε in Xε.
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Remark 5.2 Via the above identification of the complex line bundles NX̃ε
E and γ, the

Hermitian metric Är and connection ∇(r) on NXV (r) determine a connection ∇̃(0) on NX̃ε
E, as

in Section 5.1. The standard Hermitian metric on C determines a Hermitian metric Ä̃0 on NX̃ε
E

compatible with ∇̃(0) and the fiberwise symplectic form ω̃ε|N
X̃ε

E. The metric Ä̃0 corresponds to

the Hermitian metric ε−1Ã∗Är|´ via the above identification of the complex line bundles NX̃ε
E

and γ. For the record, we show in Section 5.6 that ((Ä̃0, ∇̃(0)), Ψ̃ε;0) is an ωε-regularization

for Eε in Xε in the sense of Definition 3.3.

The open subspaces X − Ψr(Nr(ε)) of X and Xε −Eε of Xε are canonically identified. Let

V ε ⊂ Xε be the closure of V − Ψr(Nr(ε)) and Ṽε = Eε ∪ V ε. We now show that Ṽε is an NC

symplectic divisor in (Xε, ωε) with a collection (Ũy, {Ṽy;i}i∈S̃y
)y∈Ã of charts. If y ∈ A − Ar,

then

Uy ⊂ X − V (r) = Xε − Eε.

In this case, we again take

S̃y = Sy and (Ũy, {Ṽy;i}i∈S̃y
) = (Uy, {Vy;i}i∈Sy).

As before, we identify N ′
r ⊂ NXV (r) with Ψr(N ′

r) ⊂ X via Ψr. Let

Ñ ′
r;ε = (N ′

r −Nr(ε)) ∪ Z(ε) ⊂ Xε

and Ã̃r;ε : Ñ ′
r;ε → V (r) be the projection induced by Ãr. Suppose y ∈ Ar. For each i ∈ Sy,

define S̃(y,i), Ny;i, and Ṽ(y,i);0 as at the end of Section 5.2, with E replaced by Eε, and set

Ũy = Ñ ′
r;ε|Vy;Sy

≡ Ã̃−1
r;ε (Vy;Sy ), V y;i = γ|PNy;i ∩ Ũy.

For j ∈ Sy − i, let Ṽ(y,i);j = V y;j ∩ Ũ(y,i) as before. We again have (5.12), with V replaced by V ε

in the last statement. In this case, {Ṽ(y,i);j}j∈S̃(y,i)
is a transverse collection of codimension 2

symplectic submanifolds of (Ũ(y,i), ωr;ε) so that their intersection and symplectic orientations

agree. Thus, Ṽε∩ Ũ(y,i) is an SC symplectic divisor in (Ũ(y,i), ωr;ε) in the sense of Definition 3.1,

Ṽε is an NC symplectic divisor in (Xε, ωε), and (Ũy, {Ṽy;i}i∈S̃y
)y∈Ã is an atlas of local charts

for Ṽε.

Let fε : R → R be a smooth function so that

f ′
ε(t) > 0 ∀t ∈ R, fε(t) =

§
¨
©

√
ε + t2/ε, if t ≤ ε/2;

t, if t ≥ 5
√

ε/4.

The map

Ã̃ε : X̃ −→ Xε, Ã̃ε(x̃) =

§
⎪⎪⎪̈

⎪⎪⎪©

Ψ̃ε;0(x̃) ∈ Z(ε), if x̃ ∈ Ñ ′
0, Är(x̃) < ε2/4;

Ψr(fε(
√

Är(x̃)) x̃√
ρr(x̃)

), if x̃ ∈ Ñ ′
0, Är(x̃) > 0;

x̃ ∈ X − Ψr(Nr(25ε/16))), if x̃ ∈ X − Ψr(Nr(25ε/16))

is then an orientation-preserving diffeomorphism. It identifies the NC almost complex divisor

Ṽ ⊂ X̃ with the NC symplectic divisor Ṽε ⊂ Xε. Thus,

Ã̃∗
ε ωε ∈ Symp+(X̃, Ṽ ).
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Let R̃ be a regularization for V in (X̃, J̃) obtained as in Section 5.3 from the regularizationR
for V in (X, ω) and thus in (X, J). Repeated applications of [14, Theorem 3.1], starting from

the deepest strata of V ∩ E, provide a smooth family (μτ )τ∈[0,1] of 1-forms on X̃ so that

• ω̃ε;τ ≡ Ã̃∗
ε ωε + dμτ ∈ Symp+(X̃, Ṽ ) for all τ ∈ [0, 1];

• μ0 = 0 and suppμτ ⊂ N ′
0 for all τ ∈ [0, 1];

• a tuple R̂ obtained from R̃ by restricting the domains of the maps Ψ̃y;I with y ∈ Ã −
(A−Ar) is an ω̃ε;1-regularization for Ṽ in X̃.

The bundle isomorphism (1.8) thus determines a homotopy class of isomorphisms (1.10)

between the log tangent bundles associated with the deformation equivalence classes of ω in

Symp+(X, V ) and of Ã̃∗
ε ωε in Symp+(X̃, Ṽ ).

The (deformation equivalence class of the) NC symplectic divisor Ṽ ⊂ X̃ constructed above

does not depend on the choices of J , fε, and ε. Since the projection (2.7) is a weak homotopy

equivalence, it does not depend on the choices of the regularization R and ω ∈ Symp+(X, V )

in the given equivalence class if V (r) is compact. Thus, if V (r) is compact, an NC symplectic

divisor structure [ω] on V ⊂ X determines an NC symplectic divisor structure [ω̃] on Ṽ ⊂ X̃.

5.6 Proofs of Technical Statements

We conclude our discussion of blowups with proofs of the claims of Lemma 5.1 and Remark 5.2.

Proof of Lemma 5.1 Suppose r ≥ 2 and the claim is true with r replaced by r−1. We denote

by Sr the group of permutations of the homogeneous coordinates of Pr−1 and by τr ∈ Sr the

transposition of the last two coordinates. We identify Pr−2 with the subspace (Zr = 0) of Pr−1.

It is preserved by the subgroup Sr−1 ⊂ Sr and by the (S1)r-action on Pr−1.

Let h : Pr−2 → R+ and δ ∈ R+ be a smooth function and a positive number satisfying the

conditions in the lemma with r replaced by r − 1. Let U ⊂ Pr−1 be an open neighborhood

of Pr−2 preserved by the subgroup Sr−1 ⊂ Sr and by the (S1)r-action so that

U ∩ τr(U) ⊂ {[Z1, . . . , Zr] ∈ Pr−1 : |Zr−1|2 + |Zr|2 ≤ δ(|Z1|2 + · · · + |Zr−2|2)}. (5.29)

We extend h over U by

h̃ : U −→ R+, h̃([Z1, . . . , Zr]) = h([Z1, . . . , Zr−1, 0])
|Z1|2 + · · · + |Zr|2

|Z1|2 + · · · + |Zr−1|2
.

For each permutation g ∈ Sr of the homogeneous coordinates of Pr−1, define

h̃g : g(U) −→ R+, h̃g([Z]) = h̃([g−1Z]).

By the invariance assumptions on U and h, h̃g1 = h̃g2 if g−1
1 g2 ∈ Sr−1.

Suppose [Z1, . . . , Zr] ∈ U ∩ τr(U). By (5.29) and (5.18) with r replaced by r − 1,

h̃τr([Z1, . . . , Zr]) = h̃([Z1, . . . , Zr−2, Zr, Zr−1])

= h̃([Z1, . . . , Zr−2, 0, 0])
|Z1|2 + · · · + |Zr−2|2 + |Zr|2

|Z1|2 + · · · + |Zr−2|2
|Z1|2 + · · · + |Zr|2

|Z1|2 + · · · + |Zr−2|2 + |Zr|2

= h̃([Z1, . . . , Zr−2, 0, 0])
|Z1|2 + · · · + |Zr−1|2
|Z1|2 + · · · + |Zr−2|2

|Z1|2 + · · · + |Zr|2
|Z1|2 + · · · + |Zr−1|2

= h̃([Z1, . . . , Zr]).

Thus, h̃τr = h̃ on U ∩ τr(U). Along with the invariance assumptions on U and h, this implies

that h̃g1 = h̃g2 on g1(U) ∩ g2(U) for all g1, g2 ∈ Sr.
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We thus obtain a well-defined smooth function

H : W ≡
⋃

g∈Sr

g(U) −→ R+, H([Z]) = h̃g([Z]) ∀g ∈ Sr, [Z] ∈ g(U),

which is invariant under the Sr- and (S1)r-actions on Pr−1 and satisfies the last property in

the lemma for some δ ∈ R+. Let β : Pr−1 → [1, 0] be a smooth function which is invariant

under these two actions, restricts to 1 on a neighborhood of Pr−2, and is supported in W . The

smooth function

βH + 1 − β : Pr−1 −→ R+

then has the desired properties for some δ ∈ R+. �

Proof of Remark 5.2 Let

ω̂ε = Ã̃∗
0(ωε|Eε) +

1

2
dιζNXε

Eε
(ωε|NXε Eε)∇̃(0) ,

φ, ϕ : NXV (r) − V (r) −→ NXV (r), φ(v) =
v√

Är(v)
, ϕ(v) =

√
1 + Är(v)

v√
Är(v)

,

mc : NXV (r) −→ NXV (r), mc(v) = cv, ∀c ∈ C.

The composition of the restriction of Ψ̃ε;0 to Ñ ′
ε;0−Eε with the identification in (5.27) is given by

Ñ ′
ε;0 − Eε

m√
ε◦ϕ◦m1/ε−−−−−−−−→ N ′

r − V (r) Ψr−−−→ X − V (r).

It thus remains to show that ϕ∗(m∗√
ε
ωr) = m∗

ε ω̂ε on m1/ε(Ñ ′
ε;0 − Eε) ⊂ NXV (r) − V (r).

For each v ∈ NXV (r) − V (r), let

Ãv, Ã⊥
v : NXV (r)|π̃0(v) = (Cv)⊥ ⊕ (Cv) −→ Cv, (Cv)⊥

be the Är-orthogonal projections. Let

Ã∇ : Tv(NXV (r)) −→ NXV (r)|πr(v)

be the projection corresponding to the decomposition (5.6) determined by the connection ∇(r).

As noted below (5.6), this splitting also encodes the decomposition associated with the connec-

tion ∇̃(0). By the properties of a connection, the map mc preserves the decomposition (5.6) for

any c ∈ C∗; see [38, Lemma 1.1]. Since the connection ∇(r) is compatible with the Hermitian

metric Är, its connection 1-form is purely imaginary in any Hermitian trivialization. It follows

that the maps φ and ϕ also preserve the decomposition (5.6); see the proof of [38, Lemma 1.1].

Thus,

Ã∇ ◦ mc = mc ◦ Ã∇ ∀c ∈ C, Ã∇ ◦ φ = φ ◦ Ã∇, Ã∇ ◦ ϕ = ϕ ◦ Ã∇. (5.30)

We also note that

mc∗ζN = ζN ◦ mc and m∗
cΩ = c2Ω ∀c ∈ R (5.31)

for any vector bundle N and a fiberwise 2-form Ω on N .

Since Ã̃0 = qε ◦ m√
ε ◦ φ ◦ m1/ε, ωε|Cv = ε−1ωr|Cv, and ζNXε Eε = ζNXV (r) on NXεEε − Eε =

NXV (r) − V (r), the first identity in (5.30) and (5.31) give

m∗
ε ω̂ε = φ∗m∗√

εq
∗
ε (ωε|Eε) +

1

2
dιζNXε

Eε
m∗

ε (ε
−1ωr|NXV (r) ◦ Ãv)∇(r)

= φ∗(m∗√
εωr) +

1

2
dιζNX V (r)

((m∗√
εω)|NXV (r) ◦ Ãv ◦ Ã∇).
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Thus, it is sufficient to assume that ε = 1 and show that

ϕ∗ωr = φ∗ωr +
1

2
dιζNX V (r)

(ω|NXV (r) ◦ Ãv ◦ Ã∇) (5.32)

on NXV (r) − V (r).

By the compatibility of ω|NXV (r) with the Hermitian metric Är determining the projec-

tion Ãv,

ιζNX V (r)
(ω|NXV (r)) = ιζNX V (r)

(ω|NXV (r) ◦ Ãv).

We also note that

(ιζNX V (r)
(ω|NXV (r))) ◦ φ∗ =

1

Är(v)
(ιζNX V (r)

(ω|NXV (r))),

ϕ∗

(
1 + Är(v)

Är(v)
ζNXV (r)

)
= ζNX V (r) ◦ ϕ, ϕ∗(ω|NXV (r)) = ω|NXV (r) +

1

Är(v)
ω|NXV (r) ◦ Ã⊥

v .

Along with the last two identities in (5.30) and

ωr = Ã∗
r (ω|V (r)) +

1

2
dιζNX V (r)

(ω|NXV (r) ◦ Ã∇),

the above statements give

φ∗ωr = Ã∗
r (ω|V (r)) +

1

2
d

(
1

Är(v)
(ιζNX V (r)

ω|NXV (r)) ◦ Ã∇

)
,

ϕ∗ωr = Ã∗
r (ω|V (r)) +

1

2
d

(
1 + Är(v)

Är(v)
(ιζNX V (r)

ω|NXV (r)) ◦ Ã∇

)
.

This establishes (5.32). �

6 NC Symplectic Divisors: Global Perspective

An NC divisor can also be viewed as the image of a transverse immersion ι with certain prop-

erties. Following [15], we review the global analogues of the notions of Sections 4.1 and 4.2 in

Sections 6.1 and 6.2 below. This global perspective leads to a more succinct notion of regular-

izations for NC divisors and fits better with global statements, such as Theorem 1.2 (5). The

local and global perspectives are shown to be equivalent in [15, Lemma 3.5].

6.1 Definition

For a finite set I, denote by SI the symmetric group of permutations of the elements of I.

For k ∈ Z≥0, denote by Sk ≡ S[k] the k-th symmetric group. For k′ ∈ [k], there is a natural

subgroup

Sk′ × S[k]−[k′] ⊂ Sk.

We denote its first factor by Sk;k′ and the second by Sc
k;k′ . For each σ ∈ Sk and i ∈ [k], let

σi ∈ Sk−1 be the permutation obtained from the bijection

[k] − {i} −→ [k] − {σ(i)}, j −→ σ(j), (6.1)

by identifying its domain and target with [k − 1] in the order-preserving fashions.

For any map ι : Ṽ → X and k ∈ Z≥0, let

Ṽ (k)
ι = {(x, ṽ1, . . . , ṽk) ∈ X × (Ṽ k − ∆

(k)

Ṽ
) : ι(ṽi) = x ∀i ∈ [k]}, (6.2)
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where ∆
(k)

Ṽ
⊂ Ṽ k is the big diagonal (at least two of the coordinates are the same). Define

ιk : Ṽ (k)
ι −→ X, ιk(x, ṽ1, . . . , ṽk) = x, (6.3)

V (k)
ι = ιk(Ṽ (k)

ι ) = {x ∈ X : |ι−1(x)| ≥ k}. (6.4)

For example,

Ṽ (0)
ι , V (0)

ι = X, Ṽ (1)
ι ≈ Ṽ , V (1)

ι = ι(Ṽ ).

For k′, k ∈ Z≥0 and i ∈ Z+ with i, k′ ≤ k, define

ι̃k;k′ : Ṽ (k)
ι −→ Ṽ (k′)

ι , ι̃k;k′ (x, ṽ1, . . . , ṽk) = (x, ṽ1, . . . , ṽk′ ), (6.5)

ι̃
(i)
k;k−1 : Ṽ (k)

ι −→ Ṽ (k−1)
ι , ι̃

(i)
k;k−1(x, ṽ1, . . . , ṽk) = (x, ṽ1, . . . , ṽi−1, ṽi+1, . . . , ṽk), (6.6)

ι̃
(i)
k : Ṽ (k)

ι −→ Ṽ , ι̃
(i)
k (x, ṽ1, . . . , ṽk) = ṽi. (6.7)

For example,

ι̃k;k′ = ι̃
(k′+1)
k′+1;k′ ◦ · · · ◦ ι̃

(k)
k;k−1 : Ṽ (k)

ι −→ Ṽ (k′)
ι , ι̃k;1 ≈ ι̃

(1)
k : Ṽ (k)

ι −→ Ṽ (1)
ι ≈ Ṽ ,

ι̃k;0 = ιk : Ṽ (k)
ι −→ Ṽ (0)

ι = X, ι̃1;0 ≈ ι : Ṽ (1)
ι ≈ Ṽ −→ X.

We define an Sk-action on Ṽ
(k)
ι by requiring that

ι̃
(i)
k = ι̃

(σ(i))
k ◦ σ : Ṽ (k)

ι −→ Ṽ (6.8)

for all σ ∈ Sk and i ∈ [k]. The diagrams

Ṽ
(k)
ι

ι̃
(i)
k

��

ι̃
(i)
k;k−1

��

ι̃k;k′

��

ιk

��

Ṽ

ι

��

Ṽ
(k−1)
ι

ιk−1

���

�

�

�

�

�

�

�

�

�

�

�

�

ι̃k−1;k′

��
�

�

�

Ṽ
(k′)
ι

ιk′
�� X

Ṽ
(k)
ι

σ
��

ι̃
(i)
k;k−1

��

Ṽ
(k)
ι

ι̃
(σ(i))
k;k−1

��

Ṽ
(k−1)
ι

σi
�� Ṽ

(k−1)
ι

(6.9)

of solid arrows then commute; the entire first diagram commutes if i > k′.

Example 6.1 If V =
⋃

i∈S Vi is an SC symplectic divisor, then

ι : Ṽ ≡
⊔

i∈S

Vi −→ X

restricts by the inclusion on each Vi, and

Ṽ (k)
ι ≈

⊔

I⊂S, |I|=k

(VI × �I),

where �I ⊂ Ik is the subcollection of tuples with all entries distinct. The action of σ ∈ Sk on

Ṽ
(k)
ι is by reordering the element of each tuple in �I:

(i1, . . . , ik) −→ (iσ−1(1), . . . , iσ−1(k)).

The maps ι̃k;k′ : Ṽ
(k)
ι → Ṽ

(k′)
ι in (6.5) are given by

VI × �I � (x, (i1, . . . , ik)) −→ (x, (i1, . . . , ik′)) ∈ VJ × �J, where �J = �I − {ik′+1, . . . , ik}.
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A smooth map ι : Ṽ → X is an immersion if the differential dxι of ι at x is injective for all

x ∈ Ṽ . This implies that

codim ι ≡ dim X − dim V ≥ 0.

Such a map has a well-defined normal bundle,

N ι ≡ ι∗TX/Im(dι) −→ Ṽ . (6.10)

If ι is a closed immersion, then the subspace V
(k)
ι ⊂ X and Ṽ

(k)
ι ⊂ X × Ṽ k are closed.

An immersion ι : Ṽ → X is transverse if the homomorphism

TxX ⊕
k⊕

i=1

Tṽi
Ṽ −→

k⊕

i=1

TxX, (w, (wi)i∈[k]) −→ (w + dṽi
ι(wi))i∈[k],

is surjective for all (x, ṽ1, . . . , ṽk) ∈ Ṽ
(k)
ι and k ∈ Z+. By the Inverse Function Theorem, in

such a case

• each Ṽ
(k)
ι is a smooth submanifold of X × Ṽ k,

• the maps ι̃k;k−1 in (6.5) and the maps (6.6) are transverse immersions,

• the homeomorphisms σ of Ṽ
(k)
ι determined by the elements of Sk as in (6.8) are diffeo-

morphisms.

By the commutativity of the upper and middle triangles in the first diagram in (6.9), the

inclusion of Im(dιk) into ι̃
(i)∗
k Im(dι) and the homomorphism dιk−1 induce homomorphisms

N ιk −→ ι
(i)∗
k N ι, N ι̃

(i)
k;k−1 −→ N ιk ∀i ∈ [k].

By the Inverse Function Theorem, the resulting homomorphisms

N ιk −→
⊕

i∈[k]

ι̃
(i)∗
k N ι and N ι̃

(i)
k;k−1 −→ ι̃

(i)∗
k N ι ∀i ∈ [k] (6.11)

are isomorphisms. If Ṽ is the disjoint union of submanifolds Vi ⊂ X , they correspond to the

first two isomorphisms in (3.2). For σ ∈ Sk and i ∈ [k], the homomorphisms dσ and dσi of the

second diagram in (6.9) induces an isomorphism

Diσ : N ι̃
(i)
k;k−1 −→ N ι̃

(σ(i))
k;k−1 (6.12)

covering σ.

If ι : Ṽ → X is any immersion between oriented manifolds of even dimensions, the short

exact sequence of vector bundles

0 −→ T Ṽ
dι−→ ι∗TX −→ N ι −→ 0 (6.13)

over Ṽ induces an orientation on N ι. If in addition ι is a transverse immersion, the orientation

on N ι induced by the orientations of X and Ṽ induces an orientation on N ιk via the first

isomorphism in (6.11). The orientations of X and N ιk then induce an orientation on Ṽ
(k)
ι

via the short exact sequence (6.13) with ι = ιk for all k ∈ Z+, which we call the intersection

orientation of Ṽ
(k)
ι . For k = 1, it agrees with the original orientation of Ṽ under the canonical

identification Ṽ
(1)
ι ≈ Ṽ .

Suppose (X, ω) is a symplectic manifold. If ι : Ṽ → X is a transverse immersion such that

ι∗kω is a symplectic form on Ṽ
(k)
ι for all k ∈ Z+, then each Ṽ

(k)
ι carries an orientation induced
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by ι∗kω, which we call the ω-orientation. By the previous paragraph, the ω-orientations of X

and Ṽ also induce intersection orientations on all Ṽ
(k)
ι . By definition, the intersection and

ω-orientations of Ṽ
(1)
ι are the same.

Proposition 6.2 ([15, Proposition 3.6]) Suppose (X, ω) is a symplectic manifold and ι : Ṽ →
X is a transverse immersion of codimension 2. Then, V = ι(Ṽ ) is an NC symplectic divisor

in (X, ω) in the sense of Definition 4.1 if and only if ι∗kω is a symplectic form on Ṽ
(k)
ι for all

k ∈ Z+ and the intersection and ω-orientations of Ṽ
(k)
ι are the same.

In the global description of an NC divisor V ⊂ X , the singular locus V∂ ⊂ X is V
(2)
ι .

6.2 Regularizations

Suppose ι : Ṽ → X is a transverse immersion and k, k′ ∈ Z≥0 with k′ ≤ k. With the notation

as in (6.2)–(6.7), define

Ãk;k′ :Nk;k′ ι =
⊕

i∈[k]−[k′ ]

N ι̃
(i)
k;k−1−→ Ṽ (k)

ι and Ãc
k;k′ :N c

k;k′ ι =
⊕

i∈[k′]

N ι̃
(i)
k;k−1 −→ Ṽ (k)

ι . (6.14)

By the commutativity of the first diagram in (6.9), the homomorphisms dι̃k−1;k′ and dιk−1

induce homomorphisms

Nk;k′ ι −→ N ι̃k;k′ and N c
k;k′ι −→ ι̃ ∗k;k′N ιk′ .

By the Inverse Function Theorem, these homomorphisms are isomorphisms. If Ṽ is the disjoint

union of submanifolds Vi ⊂ X , they correspond to the last isomorphism in (3.2) and the

first identification in (3.6). For each σ ∈ Sk, the isomorphisms (6.11) and (6.12) induce an

isomorphism

Dσ = (Diσ)i∈[k] : N ιk ≈ Nk;0ι ≡
⊕

i∈[k]

N ι̃
(i)
k;k−1 −→

⊕

i∈[k]

N ι̃
(σ(i))
k;k−1 ≡ Nk;0ι ≈ N ιk (6.15)

lifting the action of σ on Ṽ
(k)
ι . The isomorphism (6.15) permutes the components of the direct

sum so that the subbundles

Nk;k′ ι,N c
k;k′ ι ⊂ N ιk

are invariant under the action of the subgroup Sk′ × S[k]−[k′ ] of Sk, but not under the action of

the full group Sk.

Definition 6.3 A regularization for an immersion ι : Ṽ → X is a smooth map Ψ : N ′ → X

from a neighborhood of Ṽ in N ι such that for every ṽ ∈ Ṽ , there exists a neighborhood Uṽ of

ṽ in Ṽ so that the restriction of Ψ to N ′|Uṽ
is a diffeomorphism onto its image, Ψ(ṽ) = ι(ṽ),

and the homomorphism

N ι|ṽ = T ver
ṽ N ι ↪−→ TṽN ι

dṽΨ−→ TṽX −→ TṽX

Im(dṽι)
≡ N ι|ṽ

is the identity.

Definition 6.4 A system of regularizations for a transverse immersion ι : Ṽ → X is a tuple

(Ψk)k∈Z≥0 , where each Ψk is a regularization for the immersion ιk, such that

Ψk(Nk;k′ ι ∩ Dom(Ψk)) = V (k′)
ι ∩ Im(Ψk) ∀k ∈ Z≥0, k′ ∈ [k], (6.16)

Ψk = Ψk ◦ Dσ|Dom(Ψk) ∀k ∈ Z≥0, σ ∈ Sk; (6.17)
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{x ∈ X : |Ψ−1
k (x)| ≥ k} ⊂ Im(Ψk+1) ∀k ∈ Z≥0. (6.18)

The stratification condition (6.16) replaces the first condition in (3.7) and implies that there

exists a smooth map

Ψk;k′ : N ′
k;k′ ι ≡ Nk;k′ ι ∩ Dom(Ψk) −→ Ṽ (k′)

ι s.t.

Ψk;k′ |
Ṽ

(k)
ι

= ι̃k;k′ , Ψk|N ′
k;k′ ι = ιk′ ◦ Ψk;k′ ;

(6.19)

see Proposition 1.35 and Theorem 1.32 in [36]. Similarly to (3.9), Ψk;k′ lifts to a (fiberwise)

vector bundle isomorphism

DΨk;k′ : Ã∗
k;k′N c

k;k′ ι|N ′
k;k′ ι −→ N ιk′ |Im(Ψk;k′). (6.20)

This bundle isomorphism preserves the second splitting below in (6.14) and is Sk;k′ -equivariant

and Sc
k;k′ -invariant. The condition (6.21) below replaces (3.10) in the present setting.

Definition 6.5 A refined regularization for a transverse immersion ι : Ṽ → X is a system

(Ψk)k∈Z≥0 of regularizations for ι such that

Dom(Ψk) ⊂ Ã∗
k;k′N c

k;k′ ι|N ′
k;k′ ι, DΨk;k′(Dom(Ψk)) = Dom(Ψk′)|Im(Ψk;k′ ),

Ψk = Ψk′ ◦ DΨk;k′ |Dom(Ψk)

(6.21)

whenever 0 ≤ k′ ≤ k.

If (Ψk)k∈Z≥0 is a refined regularization for a transverse immersion ι : Ṽ → X, then

N ′
k;k′′ ι, Ã∗

k;k′′N c
k;k′′ ι|N ′

k;k′′ ι ⊂ Ã∗
k;k′N c

k;k′ι|N ′
k;k′ ι,

Ψk;k′′ = Ψk′;k′′ ◦ DΨk;k′ |N ′
k;k′′ ι , DΨk;k′′ = DΨk′;k′′ ◦ DΨk;k′ |π∗

k;k′′N c
k;k′′ ι|N′

k;k′′ ι

(6.22)

whenever 0 ≤ k′′ ≤ k′ ≤ k.

Suppose (X, ω) is a symplectic manifold and ι : Ṽ → X is an immersion so that ι∗ω is a

symplectic form on V . The normal bundle

N ι ≡ ι∗TX

Im(dι)
≈ (Im(dι))ω ≡ {w ∈ Tι(ṽ)X : ṽ ∈ Ṽ , ω(w, dxι(w′)) = 0 ∀w′ ∈ TṽV }

of ι then inherits a fiberwise symplectic form ω|N ι from ω. We denote the restriction of ω|N ι

to a subbundle L ⊂ N ι by ω|L.

Definition 6.6 Suppose (X, ω) is a symplectic manifold, ι : Ṽ → X is an immersion so that

ι∗ω is a symplectic form on V , and

N ι =
⊕

i∈I

Li

is a fixed splitting into oriented rank 2 subbundles. If ω|Li is nondegenerate for every i ∈ I,

then an ω-regularization for ι is a tuple ((Äi,∇(i))i∈I , Ψ), where (Äi,∇(i)) is an ω|Li-compatible

Hermitian structure on Li for each i ∈ I and Ψ is a regularization for ι, such that

Ψ∗ω = (ι∗ω)(ρi,∇(i))i∈I
|Dom(Ψ).

Definition 6.7 Suppose (X, ω) is a symplectic manifold and ι : Ṽ → X is a transverse

immersion of codimension 2 so that ι∗kω is a symplectic form on Ṽ
(k)
ι for each k ∈ Z+. A

refined ω-regularization for ι is a tuple

R ≡ (Rk)k∈Z≥0 ≡ ((Äk;i,∇(k;i))i∈[k], Ψk)k∈Z≥0 (6.23)
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such that (Ψk)k∈Z≥0 is a refined regularization for ι, Rk is an ω-regularization for ιk with respect

to the splitting (6.15) for every k ∈ Z≥0,

(Äk;i,∇(k;i)) = {Diσ}∗(Äk;σ(i),∇(k;σ(i))) ∀k ∈ Z≥0, σ ∈ Sk, i ∈ [k], (6.24)

and the induced vector bundle isomorphisms (6.20) are product Hermitian isomorphisms for all

k′ ≤ k.

An almost complex structure J on X that preserves Im dι determines an almost complex

structure Jι;k on Ṽ
(k)
ι for every k ∈ Z≥0, with J0 = J . The maps ι, ιk, ι̃k;k′ , ι̃

(i)
k;k−1, ι̃

(i)
k ,

and σ from Ṽ
(k)
ι respect these almost complex structures. A refined ω-regularization R for ι

determines a fiberwise complex structure ik on N ιk and a splitting

T (N ιk) ≈ Ã∗
k;0T Ṽ (k)

ι ⊕ Ã∗
k;0N ιk ,

which are preserved by the action of Sk. Along with Jι;k, they determine an almost com-

plex structure JR;k on the total space of N ιk. We call an almost complex structure J on X

compatible with an ω-regularization R as in (6.23) if

J(Im dι) ⊂ Im dι and J ◦ dΨk = dΨk ◦ JR;k|Dom(Ψk) ∀k ∈ Z≥0. (6.25)

Under the correspondence between the local and global perspectives provided by Proposi-

tion 6.2, this notion is the global version of the R-compatibility defined in Section 4.2.

Remark 6.8 Let (Ψk)k∈Z≥0 be a refined regularization for a transverse immersion ι : Ṽ → X

as in Definition 6.5. For k ∈ Z+, the limit set Im Ψk − Im Ψk of Ψk is closed and disjoint from

the closed subspace V
(k)
ι of X . There are thus disjoint open neighborhoods Wk of V

(k)
ι and W ′

k

of the limit set. By [14, Lemma 5.8], we can shrink the domains of Ψk so that Im Ψk ⊂ Wk

for every k ∈ Z+ and the new collection (Ψk)k∈Z≥0 is still a refined regularization for ι. Each

map Ψk is then closed (in addition to being open).

6.3 Constructions

We now describe the vector bundles

OR;X(V ) = OR;X(ι) −→ X and TRX(− log V ) = TRX(− log ι) −→ X,

the section sR of OR;X(V ), and the vector bundle homomorphism ιR on TRX(− logV ) con-

structed in Section 4.3 from the global perspective on NC divisors and regularizations presented

in Sections 6.1 and 6.2. We fix a symplectic manifold (X, ω), a normalization ι : Ṽ → X of an

NC symplectic divisor V as in Proposition 6.2, and a refined ω-regularization R for ι in X as

in (6.23). For the purposes of constructing a complex structure on TRX(− log ι), we also fix an

almost complex structure J on X compatible with ω and R.

With the notation as in (6.2) and (6.4), the restrictions

Ψk : Dom(Ψk)|
Ṽ

(k)
ι −Im(ιk+1;k)

−→ Wk ≡ Ψk(Dom(Ψk)|
Ṽ

(k)
ι −Im(ιk+1;k)

)

are not even Sk-covering maps. In other words, there could exist

v, v′ ∈ Dom(Ψk)|
Ṽ

(k)
ι −Im(ιk+1;k)

s.t. Ψk(v) = Ψk(v′) ∈ X and Dσ(v) �= v′ ∀σ ∈ Sk;

see the left diagram in Figure 2. This makes it difficult to describe a vector bundle on Wk as

a pushdown of a vector bundle on Dom(Ψk)|
Ṽ

(k)
ι −Im(ιk+1;k)

. For this reason, we shrink the last
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space to an Sk-invariant open subspace N ◦
k;0ι so that

Ψk : N ◦
k;0ι −→ U◦

k ≡ Ψk(N ◦
k;0ι) (6.26)

is an Sk-covering map and the collection {U◦
k}k∈Z≥0 is an open covering of X . Figure 2 illus-

trates this shrinking procedure.

v

v′
x

shrinking

Figure 2 Shrinking regularizations

For k′, k ∈ Z≥0 with k′ ≤ k, let Ãk;k′ : Nk;k′ ι → Ṽ
(k)
ι be as in (6.14). For a continuous

function ε : Ṽ
(k)
ι → R+, define

Nk;k′ ι(ε) = {(vi)i∈[k]−[k′ ] ∈ Nk;k′ ι : Äk;i(vi) < ε2(Ãk;k′ (v)) ∀i ∈ [k] − [k′]}.

By Remark 6.8 and the proof of [14, Lemma 5.8], there exists a smooth function ε : X → R+

such that

Nk;0ι(2
kε ◦ ιk) ⊂ Dom(Ψk), ε(Ψk(v)) = ε(ιk(Ãk;0(v))) ∀v ∈ Nk;0ι(2

kε ◦ ιk), (6.27)

and Ψk(2k−1ε ◦ ιk) ⊂ X is closed for every k ∈ Z≥0. If V is compact, ε can taken to be a

constant. Define

Ṽ (k),◦
ι = Ṽ (k)

ι −
⋃

�>k

Ψ�;k(N�;kι(2�−1ε ◦ ι�)),

N ◦
k;0ι = Nk;0ι(2

kε ◦ ιk)|
Ṽ

(k),◦
ι

, U◦
k = Ψk(N ◦

k;0ι).

(6.28)

By (6.17) and (6.18), the restriction (6.26) is an Sk-covering map.

For k, k′ ∈ Z≥0 with k′ ≤ k, let

N k′
k;0ι = N ◦

k;0ι ∩ DΨ−1
k;k′(N ◦

k′ ;0ι) and N k
k′ ;0ι = DΨk,k′(N k′

k;0ι) = DΨk;k′(N ◦
k;0ι) ∩ N ◦

k′;0ι.

Since the map DΨk;k′ is Sk;k′ -equivariant and Sc
k;k′ -invariant, the subspace N k′

k;0ι ⊂ N k
k;0ι is

Sk;k′ × Sc
k;k′ -invariant. The restriction

DΨk;k′ : N k′
k;0ι −→ N k

k′;0ι (6.29)

is an Sk;k′ -equivariant Sc
k;k′ -covering map. By the last equality in (6.22),

DΨk;k′ (N k′
k;0ι ∩ N k′′

k;0ι) = N k
k′;0ι ∩ N k′′

k′;0ι, DΨk;k′′(N k′
k;0ι ∩ N k′′

k;0ι) = N k
k′′ ;0ι ∩ N k′

k′′;0ι,

DΨk′;k′′ (N k
k′;0ι ∩ N k′′

k′;0ι) = N k
k′′ ;0ι ∩ N k′

k′′;0ι,
(6.30)

whenever 0 ≤ k′′ ≤ k′ ≤ k.
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Suppose

{Ã̃k : Ẽk −→ N ◦
k;0ι}k∈Z≥0 and {F̃k;k′ : Ẽk|Nk′

k;0ι −→ Ẽk′ |Nk
k′;0ι}k,k′∈Z≥0,k′≤k

is a collection of Sk-equivariant (complex) vector bundles and a collection of Sk;k′ -equivariant

Sc
k;k′ -invariant (smooth) vector bundle maps that lift the covering maps (6.29), restrict to an

isomorphism on each fiber, and satisfy

F̃k;k′′ |Nk′
k;0

ι∩Nk′′
k;0

ι = F̃k′ ;k′′ ◦ F̃k;k′ |Nk′
k;0

ι∩Nk′′
k;0

ι ∀k′′ ≤ k′ ≤ k. (6.31)

By (6.30), the composition on the right-hand side above is well-defined. Since the map (6.29)

is an Sk-covering map,

Ek ≡ Ẽk/Sk −→ N ◦
k;0ι/Sk = U◦

k

is a vector bundle. The maps F̃k;k′ induce vector bundle isomorphisms

Fk;k′ : Ek|U◦
k∩U◦

k′ −→ Ek′ |U◦
k∩U◦

k′

covering the identity on U◦
k ∩ U◦

k′ . By (6.31),

Fk;k′′ |U◦
k
∩U◦

k′∩U◦
k′′ = Fk′;k′′ ◦ Fk;k′ |U◦

k
∩U◦

k′∩U◦
k′′ .

We can thus form a vector bundle

Ã : E ≡
( ⊔

k∈Z≥0

Ek

)/
∼−→ X, Ã([v]) = Ψk(Ã̃k(v)) ∀k ∈ Z≥0, v ∈ Ek,

Ek|U◦
k∩U◦

k′ � w ∼ Fk;k′ (w) ∈ Ek′ |U◦
k∩U◦

k′ ∀k, k′ ∈ Z≥0, k′ ≤ k.

(6.32)

A collection {s̃k}k∈Z≥0 of Sk-equivariant sections of the vector bundles Ẽk such that

F̃k;k′ ◦ s̃k|Nk′
k;0ι = s̃k′ ◦ Ψk;k′ |Nk′

k;0ι ∀k, k′ ∈ Z≥0, k′ ≤ k, (6.33)

determines a section s on the corresponding vector bundle E in (6.32) so that

s([v]) = [s̃k(v)] ∀k ∈ Z≥0, v ∈ N ◦
k;0ι.

If E′ → X is a (complex) vector bundle, the Sk-action on N ◦
k;0ι lifts to an action on the

vector bundle

Ã̃′
k : Ẽ′

k ≡ Ψ∗
kE′ −→ N ◦

k;0ι

so that Ẽ′
k/Sk = E′|U◦

k
. The covering maps (6.29) lift to Sk;k′ -equivariant Sc

k;k′ -invariant vector

bundle maps

F̃ ′
k;k′ : Ẽ′

k|Nk′
k;0ι −→ Ẽ′

k′ |Nk
k′;0ι

that restrict to an isomorphism on each fiber and satisfy (6.31) with F̃ replaced by F̃ ′ so that

the corresponding vector bundle (6.32) is canonically identified with E′. A collection

{Φ̃k : Ẽk −→ Ẽ′
k}k∈Z≥0

of Sk-equivariant vector bundle homomorphisms covering the identity on Nk;0ι such that

F̃k;k′ ◦ Φ̃k|Nk′
k;0ι = Φ̃k′ ◦ F̃k;k′ |Nk′

k;0ι ∀k, k′ ∈ Z≥0, k′ ≤ k, (6.34)

determines a vector bundle homomorphism Φ : E → E′ covering the identity on X so that

Φ([w]) = [Φ̃k(w)] ∀k ∈ Z≥0, w ∈ Ẽk.
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For every k ∈ Z≥0, let

Ã̃k : OR;k(ι) =

(
Ã∗

k;0

⊗

i∈[k]

N ι̃
(i)
k;k−1

)∣∣∣∣
N◦

k;0ι

−→ N ◦
k;0ι,

Ã̃k : TR;k(− log ι) = (Ã ∗
k;0T Ṽ (k),◦

ι )|N◦
k;0ι ⊕ (N ◦

k;0ι × C[k]) −→ N ◦
k;0ι.

(6.35)

The complex structures ik;i on N ι̃
(i)
k;k−1 encoded in R determine a complex structure on the

complex line bundle OR;k(ι). The almost complex structure Jι;k on Ṽk, induced by J , and

the standard complex structure on C[k] determine a complex structure on the vector bun-

dle TR;k(− log ι). The Sk-action on N ◦
k;0ι naturally lifts to both bundles.

Let k, k′ ∈ Z≥0 with k′ ≤ k and

Πk : N ι̃k;0 −→
⊗

i∈[k]

N ι̃
(i)
k;k−1, Πk((vi)i∈[k]) =

⊗

i∈[k]

vi.

We denote by ∇(k) and ∇(k;k′) the connections on N ιk ≈ Nk;0ι and N ι̃k;k′ ≈ Nk;k′ι induced by

the connections ∇(k;i) on the direct summands of these vector bundles. We write an element

v ≡ (vi)i∈[k] of Nk;0ι as

v = (vk;k′ , vc
k;k′ ) with vk;k′ ≡ (vi)i∈[k]−[k′] ∈ Nk;k′ ι and vc

k;k′ ≡ (vi)i∈[k′ ] ∈ N c
k;k′ ι

below. Let

h∇(k);v : Tπk;0(v)Ṽ
(k)
ι −→ Tv(Nk;0ι) and h∇(k;k′);vk;k′ : Tπk;k′(vk;k′ )Ṽ

(k)
ι −→ Tvk;k′ (Nk;k′ ι)

be the injective homomorphisms as in (2.6) corresponding to the connections ∇(k) and ∇(k;k′).

By the first equation in (6.28),

vi �= 0 ∀i ∈ [k] − [k′], (vj)j∈[k] ∈ N k′
k;0ι ⊂

⊕

j∈[k]

N ι̃
(j)
k;k−1.

Since DΨk;k′ is a product Hermitian isomorphism, the map

θ̃k;k′ : OR;k(ι)|Nk′
k;0ι −→ OR;k′(ι)|Nk

k′ ;0ι, (6.36)

θ̃k;k′ (v, Πk(vk;k′ , wc
k;k′ )) = (DΨk;k′ (v), Πk′ (DΨk;k′ (vk;k′ , wc

k;k′ ))),

is a well-defined homomorphism of complex line bundles that lifts the covering map (6.29) and

restricts to an isomorphism on each fiber. The map

ϑ̃k;k′ : TR;k(− log ι)|Nk′
k;0

ι −→ TR;k(− log ι)|Nk
k′;0ι, (6.37)

ϑ̃k;k′ ((v, w) ⊕ (v, (ci)i∈[k])) =

(
DΨk;k′ (v), dvk;k′ Ψk;k′

(
h∇(k;k′);vk;k′ (w) +

∑

i∈[k]−[k′]

civi

))

⊕ (Ψk;k′ (vk;k′ ), (ci)i∈[k′ ]),

is similarly a well-defined homomorphism of vector bundles that lifts the covering map (6.29)

and restricts to an isomorphism on each fiber. Since J is an R-compatible almost complex

structure on X , this homomorphism is C-linear.

By the commutativity of the diagrams in Figure 2, the bundle homomorphisms (6.36)

and (6.37) are Sk;k′ -equivariant Sc
k;k′ -invariant. By (6.22), the collections {θ̃k;k′}k′≤k and
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{ϑ̃k;k′}k′≤k satisfy (6.31) with F̃ replaced by θ̃ and ϑ̃. The first collection thus determines

a complex line bundle

Ã : OR;X(ι)=

( ⊔

k∈Z≥0

OR;k(ι)/Sk

)/
∼−→ X, Ã([w])=Ψk(Ã̃k(w)) ∀k ∈ Z≥0, w ∈ OR;k(ι),

[w] ∼ [θ̃k;k′(w)] ∀k, k′ ∈ Z≥0, k′ ≤ k, w ∈ OR;k(ι)|Nk′
k;0ι.

The second collection similarly determines a complex vector bundle

Ã : TRX(− log ι) =

( ⊔

k∈Z≥0

TR;k(− log ι)/Sk

)/
∼ −→ X,

Ã([w]) = Ψk(Ã̃k(w)) ∀k ∈ Z≥0, w ∈ TRX(− log ι),

[w] ∼ [ϑ̃k;k′ (w)] ∀k, k′ ∈ Z≥0, k′ ≤ k, w ∈ TRX(− log ι)|Nk′
k;0ι.

The smooth sections

s̃k : N ◦
k;0ι −→ OR;k(ι), s̃k(v) = (v, Πk(v)),

are Sk-equivariant and satisfy (6.33) with F̃ replaced by θ̃. They thus determine a section sR
of the complex line bundle OR;X(ι). The smooth bundle homomorphisms

Φ̃k : TR;k(− log ι) −→ Ψ∗
kTX, Φ̃k((v, w) ⊕ (v, (ci)i∈[k])) = dvΨk

(
h∇(k);v(w) +

∑

i∈[k]

civi

)

are Sk-equivariant. By (6.29), these bundle homomorphisms satisfy (6.34) with F̃ replaced

by ϑ̃. They thus determine a vector bundle homomorphism

ιR : TRX(− log ι) −→ TX.

6.4 Proof of Theorem 1.2(5)

Let (X, ω), V ⊂ X , ι : Ṽ → X , R, and J be as in Section 6.3. We denote the curvature 2-form

of a connection ∇ on a complex vector bundle E → Y over a smooth manifold by

F∇ ∈ Γ(Y ; Λ2(T ∗Y ) ⊗R EndC(E)).

For i ∈ Z≥0, we define

ci(∇) ∈ Γ(Y ; Λ2i(T ∗Y ) ⊗R EndC(E)) and c(∇) ∈
∞⊕

i=0

Γ(Y ; Λ2i(T ∗Y ) ⊗R EndC(E))

by 1 + c1(∇) + c2(∇) + · · · ≡ c(∇) ≡ det C

(
I +

i

2Ã
F∇

)
.

By [29, p. 206],

[c∇(E)] = c(E) ∈ H2∗
deR(Y ) ≡

∞⊕

i=0

H2i
deR(Y ). (6.38)

We compare c(TX) and c(TX(− logV )) = c(TX(− log ι)) at the level of differential forms,

which can be done locally; see Proposition 6.11. This essentially reduces the computation to

the SC case. The de Rham cohomology version of (1.5), which is equivalent to (1.5) itself,

follows from (6.38), Lemma 6.10, and Proposition 6.11.
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A connection ∇ on a complex line bundle Ã : L → Y determines a horizontal tangent sub-

bundle TLhor ⊂ TL and an R-valued angular 1-form α∇ on L−Y . The latter is characterized by

kerα∇ = (TLhor ⊕ RζL)|L−Y and α∇

(
d

dθ
eiθv

∣∣∣
θ=0

)
= 1.

By the proof of [38, Lemma 1.1],

dα∇ = Ã∗η∇|L−Y (6.39)

for some 2-form η∇ on Y .

Remark 6.9 If ∇ is compatible with a Hermitian metric Ä on L, then the connection 1-

form θ1
1 in the proof of Lemma 2.2 is purely imaginary. In the local chart of this proof, the

angular 1-form α∇ of ∇ is then given by

α∇|(y,z) = −i
dz

z
− iÃ∗θ1

1.

Thus, η∇ = −iF∇ above.

Let β : R → R≥0 be as in (5.21). For a Hermitian metric Ä and a smooth function

ε : Y → R+, define

βρ;ε : L −→ R≥0, βρ;ε(v) = β(2ε(Ã(v))−2Ä(v)). (6.40)

By (6.39), the 2-form

τρ;∇;ε ≡ − 1

2Ã
d(βρ;εα∇) = − 1

2Ã
(dβρ;ε ∧ α∇ + βρ;εÃ

∗η∇)

is well-defined on the entire total space of L. This closed 2-form is compactly supported in the

vertical direction and∫

π−1(y)

τρ;∇;ε = − 1

2Ã

( ∫ ∞

0

dβρ;ε

)( ∫

S1

dθ

)
= 1 ∀y ∈ Y. (6.41)

Thus, τρ;∇;ε represents the Thom class of the complex line bundle Ã : L → Y ; see [5, p. 64].

For each k ∈ Z+, let εk : Ṽ (k) → R+ be the composition of the function ε in (6.28) with ιk.

For each i ∈ [k], let

Ãk;i : N ιk ≈ Nk;0ι −→ N ι̃
(i)
k;k−1

be the component projection. For k′ ∈ Z≥0, we denote by τ̃k;k′ ∈ Ω2k′
(Nk;0) the k′-th elemen-

tary symmetric polynomial on the set {Ã ∗
k;iτρk;i;∇(k;i);2εk

}i∈[k], i.e.,

τ̃k;k′ =
∑

i1,...,ik′∈[k]
i1<···<ik′

(Ã ∗
k;i1τρk;i1

;∇(k;i1);2εk
) ∧ · · · ∧ (Ã ∗

k;ik′ τρk;i
k′ ;∇(k;i

k′ );2εk
).

This 2k′-form on the total space of N ιk is Sk-invariant and closed. The 2k-form

τ̃k;k ≡ Λ
i∈[k]

Ã ∗
k;iτρk;i;∇(k;i);2εk

≡ (Ã ∗
k;1τρk;1;∇(k;1);2εk

) ∧ · · · ∧ (Ã ∗
k;kτρk;k;∇(k;k);2εk

)

is in addition compactly supported in the vertical direction. By (6.41), it represents the Thom

class of the complex vector bundle Ãk;0 : N ιk → Ṽ
(k)
ι .

For an open subset U ⊂ X such that

Ψ−1
k (U) = Ũ0 � Ũ1 � · · · � Ũ� with

Ũ0 ⊂ N ιk −N ιk(εk) and Ψk : Ũi −→ U a diffeomorphism ∀i ∈ [�],
(6.42)
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we define

Ψk∗τ̃k;k|U =

�∑

i=1

{{Ψk|Ũi
}−1}∗τ̃k;k ∈ Ω2k(U ; R). (6.43)

Since τ̃k;k vanishes on Ũ0, Ψk∗τ̃k;k|U does not depend on an admissible decomposition of Ψ−1
k (U)

as above. Thus, Ψk∗τ̃k;k|U is well-defined and

(Ψk∗τ̃k;k|U )|U∩U ′ = Ψk∗τ̃k;k|U∩U ′ = (Ψk∗τ̃k;k|U ′)|U∩U ′

for all open subsets U, U ′ ⊂ X with admissible decompositions. By Lemma 6.12 at the end of

this section, such open subsets cover X . We thus obtain a closed 2k-form Ψk∗τ̃k;k on X . If μ

is a closed form on X , then
∫

X

(Ψk∗τ̃k;k) ∧ μ =

∫

N ιk

τ̃k;k ∧ (Ψ∗
kμ) =

∫

Ṽ (k)

ι∗kμ; (6.44)

the first equality above holds for any differential form μ on X . The next straightforward lemma

is also proved at the end of this section.

Lemma 6.10 With the notation as above,

τk ≡ 1

k!
Ψk∗τ̃k;k = PDX([V (k)

ι ]X), Ψ∗
kτk′ |N◦

k;0
= τ̃k;k′ |N◦

k;0
∀k, k′ ∈ Z+. (6.45)

Proposition 6.11 There exist connections ∇ and ∇′ in the complex vector bundles (TX, J)

and (TRX(− log ι), iR,J ) so that

c(∇) = c(∇′)(1 + τ1 + τ2 + · · · ). (6.46)

Proof We construct ∇ and ∇′ using the global perspective of Section 6.3. For k ∈ Z≥0 and

i ∈ [k], let

βk;i ≡ βρk;i;εk
: N ι̃

(i)
k;k−1 −→ R≥0

be a smooth function as in (6.40) and

Φk;i : (N ι̃
(i)
k;k−1 − Ṽ (k)

ι ) × C −→ Ã∗N ι̃
(i)
k;k−1, Φk;i(v, c) = cv,

where Ã : N ι̃
(i)
k;k−1 → Ṽ

(k)
ι is the bundle projection. We define a connection ∇′(k;i) in the trivial

complex line bundle N ι̃
(i)
k;k−1 × C over N ι̃

(i)
k;k−1 by

∇′(k;i) = βk;id + (1 − βk;i)Φ
∗
k;iÃ

∗∇(k;i);

the last summand above is well-defined because βk;i = 1 in a neighborhood of the zero section

Ṽ
(k)
ι ⊂ N ι̃

(i)
k;k−1. We note that

F∇′(k;i)

= βk;iF
d + (1 − βk;i)F

Φ ∗
k;iπ

∗∇(k;i)

+ d(1 − βk;i) ∧ (Φ ∗
k;iÃ

∗∇(k;i) − d)

= 0 + (1 − βk;i)Ã
∗F∇(k;i) − i dβk;i ∧ α∇(k;i) = Ã∗F∇(k;i)

+ 2Ãiτρk;i;∇(k;i);εk
; (6.47)

the last two equalities follow from Remarks 2.4 and 6.9.

For each k ∈ Z≥0, the connections ∇(k;i) on the complex line bundles N ι̃
(i)
k;k−1 determine a

splitting

T (N ιk) = Ã ∗
k;0T Ṽ (k)

ι ⊕
k⊕

i=1

Ã ∗
k;0N ι̃

(i)
k;k−1. (6.48)
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Let r ∈ Z+ be such that V
(r+1)
ι = ∅. By Definition 6.7, the vector bundle isomorphisms (6.20)

are product Hermitian isomorphisms for all k′ ≤ k. Furthermore, εk = εk′ ◦ Ψk;k′ . Starting

with a J-compatible connection on TV
(r)
ι and possibly shrinking the domains of the regular-

izations Ψk, we can thus inductively construct a connection ∇ on TX so that {dΨk}∗∇ agrees

with the restriction of the connection

∇̃(k) ≡ Ã ∗
k;0∇TṼ (k)

ι ⊕
k⊕

i=1

(Ã ∗
k;0∇(k;i) + i(βρk;i;2εk

− βρk;i;εk
)α∇(k;i))

on (6.48) to Dom(Ψk) for every k ∈ Z+. By Remark 6.9, the curvature of the last sum-

mand ∇̃(k;i) above satisfies

1 +
i

2Ã
F ∇̃(k;i)

=

(
1 +

i

2Ã
Ã ∗

k;0F
∇(k;i) − τρk;i;∇(k;i);εk

)
(1 + Ã ∗

k;iτρk;i;∇(k;i);2εk
)

− 1

4Ã
d((1 − βρk;i;εk

)α∇(k;i)) ∧ d(βρk;i;2εk
α∇(k;i));

the term on the last line above vanishes because βρk;i;εk
≡ 1 on suppβρk;i;2εk

. Along with (6.47),

this gives

Ψ∗
kc(∇)|N◦

k;0ι = Ã ∗
k;0c(∇TṼ (k)

ι )|N◦
k;0ι

k∏

i=1

(Ã ∗
k;0c(∇′(k;i))(1 + Ã ∗

k;iτρk;i;∇(k;i);2εk
))|N◦

k;0ι

= Ã ∗
k;0c(∇TṼ (k)

ι )|N◦
k;0

ι

( k∏

i=1

Ã ∗
k;0c(∇′(k;i))

)
Ψ∗

k(1 + τ1 + τ2 + · · · )|N◦
k;0

ι; (6.49)

the last equality follows from the second statement of Lemma 6.10.

By (6.24), the connection

∇̃′(k) ≡ Ã ∗
k;0∇TṼ (k)

ι |N◦
k;0ι ⊕

k⊕

i=1

Ã ∗
k;0∇̃′(k;i)|N◦

k;0ι

on the complex vector bundle (6.35) is Sk-equivariant. Since εk = εk′ ◦ Ψk;k′ and DΨk;k′ is a

product Hermitian isomorphisms, the bundle isomorphisms (6.24) intertwine these connections.

Thus, they determine a connection ∇′ on the complex vector bundle TRX(− log ι). Since

Ψ∗
kc(∇′)|N◦

k;0
ι = c(∇̃′(k)) = Ã ∗

k;0c(∇TṼ (k)
ι )|N◦

k;0
ι

k∏

i=1

Ã ∗
k;0c(∇′(k;i)),

the identity (6.46) follows from (6.49). �

Lemma 6.12 Let k ∈ Z+. Every point x ∈ X admits a neighborhood U as in (6.42).

Proof Let Ψ−1
k (x) = {w̃1, . . . , w̃�}. For each i ∈ [�], let Ui ⊂ Ṽ

(k)
ι be a neighborhood

of Ãk;0(w̃i) so that the restriction

Ψk : Dom(Ψk)|Ui −→ X

is a diffeomorphism onto its image; see Definition 6.3. By Remark 6.8,

W ≡ X − Ψk(N ιk(εk)|
Ṽ

(k)
ι −U1∪...∪U�

)

is an open subspace of X . The open neighborhood

U ≡ W ∩
�⋂

i=1

Ψk(Dom(Ψk)|Ui)
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of x ∈ X then satisfies the condition in (6.42). �

Proof of Lemma 6.10 Let μ be a closed form on X . We show that
∫

V
(k)

ι

α =

∫

X

τk ∧ μ. (6.50)

Since ιk : Ṽ (k) → V (k) is a k!-covering map outside of a codimension 2 subspace,
∫

V
(k)

ι

α =
1

k!

∫

Ṽ (k)

ι∗kα.

Combining this with (6.44), we obtain (6.50) and establish the first statement in (6.45).

If k′ > k, the left-hand side of the second identity in (6.45) vanishes because

supp τk′ ⊂ Ψk′(Nk;0(εk/2)) and Ψk′(Nk;0(εk/2)) ∩ Ψk(N ◦
k;0) = ∅.

The right-hand side of the second identity in (6.45) vanishes by definition in this case.

Suppose k′ ≤ k. Let Sk;k′ ⊂ Sk be a collection of representatives for the right cosets of

Sk;k′ × Sc
k;k′ in Sk preserving the order of the first k′ elements. Since (6.26) is an Sk-covering

map, every point of U◦
k has a neighborhood U so that

Ψ−1
k (U) =

⊔

σ∈Sk

σ(W ) ⊂ N ◦
k;0ι

for some open subset W ⊂ N ◦
k;0ι. Since Ψk = Ψk′ ◦DΨk;k′ and DΨk;k′ is Sc

k;k′ -invariant, (6.18)

implies that

Ψ−1
k′ (U) =

⋃

�∈Sk;k′

⊔

σ∈Sk;k′

Ψk;k′(�σ(W )).

Since DΨk;k′ is Sk;k′ -equivariant and τ̃k′;k′ is Sk′ -invariant,

Ψ∗
kτk′ =

1

k!

∑

σ∈Sk;k′

∑

�∈Sk′

{Dσ}∗{DΨk;k′}∗{D�}∗τ̃k′ ;k′ =
∑

σ∈Sk;k′

{Dσ}∗{DΨk;k′}∗τ̃k′ ;k′ .

Since εk = εk′ ◦ Ψk;k′ and DΨk;k′ is a product Hermitian isomorphism, it follows that

Ψ∗
kτk′ =

∑

σ∈Sk;k′

{Dσ}∗
(

Λ
i∈[k′ ]

Ã ∗
k;iτρk;i;∇(k;i);2εk

)
.

Since Dσ is also a product Hermitian isomorphism, the last expression equals τ̃k;k′ . �

Remark 6.13 If X and V
(k)
ι are not compact, the above proof of the first identity in (6.45)

goes through if μ is compactly supported. If X is not compact, but V
(k)
ι is compact, then this

identity holds in the compactly de Rham cohomology of X , as well as in the usual de Rham

cohomology of X .

7 On the Sharpness of (1.5) and (1.9)

We conclude by establishing the remaining statement of Corollary 1.4 and showing that (1.9)

does not need to hold in H∗(X̃; Z) for arbitrary NC divisors. The latter implies that (1.5) does

not hold in H∗(X ; Z) for arbitrary NC divisors either.

Continuing with the notation and setup as in Lemma 1.3, we denote by

ι̃ : E −→ X̃ and Ã̃0 : γ −→ E
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the inclusion map and the tautological line bundle, respectively. For μ ∈ H∗(V (r); R), we denote

by E|μ ∈ H∗(E; R) the fiber product of μ with Ã|E.

Lemma 7.1 If R is a commutative ring with unity,

ker(Ã∗ : H∗(X̃; R) −→ H∗(X ; R)) = ι̃∗(ker(Ã∗ : H∗(E; R) −→ H∗(V
(r); R))) and (7.1)

ker(Ã∗ : H∗(E; R) −→ H∗(V
(r); R)) =

r−1⊕

i=1

{c1(γ)r−1−i ∩ (E|μi) : μi ∈ H∗−2i(V
(r); R)}. (7.2)

Proof We omit the coefficient ring R below. Let U ⊂ X be an open neighborhood of Y ≡ V (r)

which deformation retracts onto Y and Ũ ⊂ Ã−1(U). Since E is a deformation retract of Ũ , the

Mayer–Vietoris sequences for X̃ = (X̃ − E) ∪ Ũ and X = (X − Y ) ∪ U induce a commutative

diagram

· · · �� H∗(Ũ − E) ��

id

��

H∗(X̃ − E) ⊕ H∗(E) ��

id⊕π∗
��

H∗(X̃) ��

π∗

��

H∗−1(Ũ − E)

id

��

�� · · ·

· · · �� H∗(U − Y ) �� H∗(X − Y ) ⊕ H∗(Y ) �� H∗(X) �� H∗−1(U − Y ) �� · · ·

of exact sequences of R-modules. This gives (7.1).

For every y ∈ Y , the collection {1|Ey , c1(γ)|Ey , . . . , c1(γ)r−1|Ey} is a basis for H∗(Ey). By

[34, Theorem 5.7.9], the homomorphism

H∗(E) −→
r−1⊕

i=0

H∗−2i(Y ), μ̃ −→ (Ã∗(c1(γ)i ∩ μ̃)i=0,...,r−1),

is thus an isomorphism. This implies (7.2). �

For each k ∈ [r − 1], let

η̃k = Ã∗(PDX([V (k)]X)) − PDX̃([V
(k)

]X̃) ∈ H2k(X̃ ; R).

By Lemma 7.1, there exist ηc
k;i ∈ H2(k−i)(V (r); R) with i ∈ [k] so that

η̃k ∩ [X̃ ] =
k∑

i=1

ι̃∗(c1(γ)i−1 ∩ (E|ηc
k;i∩[V (r)])) ∈ H∗(X̃; R). (7.3)

For example,

(Ã∗(PDX([V (1)]X))) ∩ [X̃ ] = [V
(1)

]X̃ + r[E]X̃ if r ≥ 2; (7.4)

the coefficient ηc
1;1 = r above is obtained by intersecting both sides with ι̃∗(c1(γ)r−2 ∩ Ey).

We set

PD(V ) = 1 + PDX([V (1)]X) + PDX([V (2)]X) + · · · ∈
∞⊕

i=0

H2i(X ; R),

ηc
i = ηc

i;i + · · · + ηc
r−1;i ∈

∞⊕

k=0

H2k(V (r); R) ∀i ∈ [r − 1], ηc
r = 1.

The identity (1.9) is equivalent to

1 − c(T X̃)

Ã∗c(TX)(1 + PDX̃([E]X̃))
=

r−1∑

i=1

PDX̃(ι̃∗(c1(γ)i−1 ∩ (E|ηc
i ∩PD(V )−1∩[V (r)])))
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+ PDX̃(Ã∗PDX(ι∗(PD(V )−1 ∩ [V (r)]))), (7.5)

where ι : V (r) → X is the inclusion. Via (7.4), (7.5) in particular gives

c1(T X̃) = Ã∗c1(TX) − (r − 1)PDX̃([E]X̃) if r ≥ 2; (7.6)

c2(T X̃) = Ã∗c2(TX) − PDX̃(ι̃∗((Ã
∗c1(TX) + 2c1(γ)) ∩ [E]) + Ã∗(PDX [V (2)]X)

− 2E|PDX ([V (1)]X )∩[V (2)]) if r = 2. (7.7)

With the dimension of X and the codimension of the blowup locus V (r) fixed, the left-hand

side of (7.5) must be of the form

r−1∑

i=1

PDX̃(ι̃∗(c1(γ)i−1 ∩ (E|Pi(c1(NXV (r)),...,cr(NXV (r)))∩[V (r)])))

+ PDX̃(Ã∗PDX(ι∗(Pr(c1(NXV (r)), . . . , cr(NXV (r))) ∩ [V (r)])))

for some universal polynomials P1, . . . , Pr ∈ Z[c1, . . . , cr]. Since (1.9) holds with Z-coefficients

in the SC case, the right-hand side of (7.5) reduces to the above form in this case. For example,

PDX([V (k)]X) ∩ [V (r)] = ck(NXV (r)) ∩ [V (r)] ∈ H∗(V
(r); Z) (7.8)

in the SC case. This also occurs if the branches of V at V (r) can be distinguished globally,

i.e., NXV (r) splits into r subbundles which restrict to the subbundles NVy;I−iVy;I with i ∈ I

for every chart (Uy, {Vy;i}i∈Sy) as in Definition 4.1 and every I ⊂ Sy with |Sy| = r.

Since (1.9) holds with Q-coefficients in general, the differences

ηc
i ∪ PD(V )−1 − Pi(c1(NXV (r)), . . . , cr(NXV (r))) ∈ H∗(V

(r); Z)

are torsion. If the torsion in H∗(E; Z) lies in the kernel ι̃∗, then the torsion in H∗(V (r); Z) lies

in the kernel ι∗. In such a case,

ι̃∗(Eηc
i ∩PD(V )−1∩[V (r)]) = ι̃∗(EPi(c1(NXV (r)),...,cr(NXV (r)))∩[V (r)]) ∈ H∗(X̃; Z),

ι∗(PD(V )−1 ∩ [V (r)]) = ι∗(Pr(c1(NXV (r)), . . . , cr(NXV (r))) ∩ [V (r)]) ∈ H∗(X ; Z).

This implies that (1.9) holds in H∗(X̃; Z) if the torsion in H∗(V (r); Z) lies in the kernel ι∗.

We now give an example in which (1.9) does not hold in H∗(X̃; Z). Let Σ be a compact

connected Riemann surface and z∗ ∈ Σ. Let S̃ be a K3 surface and ψ ∈ Aut(S̃) be a fixed-

point-free involution so that S ≡ S̃/ψ is an Enriques surface. Define

ψ̃ : X̃ ≡ S̃ × Σ2 −→ S̃, ψ̃(y, z1, z2) = (ψ(y), z2, z1),

X = X̃/ψ̃, Ṽ = S̃ × Σ × {z∗} ⊂ X̃.

The image V ⊂ X of Ṽ under the quotient map q : X̃ → X is an NC divisor in X . Its 2-fold

locus V (2) ≈ S is the image of S̃ × {z∗}2 under q. Since the 3-fold locus of V is empty, r = 2

in this case. We show below that

ι∗(PDX([V (1)]X) ∩ [V (2)]) = 0 ∈ H2(X ; Z), c1(NXV (2)) �= 0 ∈ H2(V (2); Z), (7.9)

and the torsion of H2(V
(2); Z) does not vanish under ι∗. This implies that the last term in (7.7)

is not determined by the Chern class of NXV (2). Thus, (7.8), (7.7), (1.9), and (1.5) do not hold

with Z coefficients in this case.
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The image of S̃ × {z}2 under q is homologous to V (2) for any z ∈ Σ. Since it is disjoint

from V for z �= z∗,

ι∗(PDX([V (1)]X) ∩ [V (2)]) = PDX([V (1)]X) ∩ [V (2)]X = 0.

This confirms the first statement in (7.9).

The normal bundle NXV (2) of V (2) in X is the quotient of the trivial bundle S̃ ×C2 by the

involution

S̃ × C2 −→ S̃ × C2, (y, c1, c2) −→ (ψ(y), c2, c1).

Thus, NXV (2) ≈ L+ ⊕ L−, where

L± = {[y, c,±c] : y ∈ S̃, c ∈ C} ⊂ NXV (2).

The complex line bundle L+ over S is isomorphic to S × C. The flat complex line bundle L−
corresponds to the non-trivial homomorphism

Ã1(S) = Z2 −→ S1.

This confirms the second statement in (7.9).

Let f+ : Σ+ → S be a smooth map from a compact Riemann surface representing the unique

torsion element of H2(S; Z). Let f− : Σ− → S be a smooth map from a compact (unorientable)

surface representing a class in H2(S; Z2) so that [f+]Z2 ·S [f−]Z2 �= 0 ∈ Z2, where ·S denotes the

Z2-intersection product on S. The involution ψ̃ pulls back to a smooth involution

ψ̃− : Z̃− ≡ {(x, y) ∈ Σ− × S̃ : f−(x) = q(y)} × Σ2 −→ Z̃−, ψ̃−(x, y, z1, z2) = (x, ψ(y), z2, z1).

The map F− : Z− ≡ Z̃−/ψ̃− −→ X, F−([x, y, z1, z2]) = [y, z1, z2], is smooth and determines

an element of H6(X ; Z) so that

ι∗([f+]Z2) ·X [F−]Z2 = [f+]Z2 ·S [f−]Z2 �= 0 ∈ Z2.

This confirms the claim just after (7.9).
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