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Abstract Our previous papers introduce topological notions of normal crossings symplectic divisor
and variety, show that they are equivalent, in a suitable sense, to the corresponding geometric notions,
and establish a topological smoothability criterion for normal crossings symplectic varieties. The present
paper constructs a blowup, a complex line bundle, and a logarithmic tangent bundle naturally associated
with a normal crossings symplectic divisor and determines the Chern class of the last bundle. These
structures have applications in constructions and analysis of various moduli spaces. As a corollary of
the Chern class formula for the logarithmic tangent bundle, we refine Aluffi’s formula for the Chern
class of the tangent bundle of the blowup at a complete intersection to account for the torsion and
extend it to the blowup at the deepest stratum of an arbitrary normal crossings divisor.
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1 Introduction

Divisors, i.e., subvarieties of codimension 1 over the ground field, and related structures, are
among the central objects of study in algebraic geometry. They appear in the study of curves
(as dual objects), singularities (particularly in the Minimal Model Program), and semistable
degenerations of smooth varieties (as the singular locus). The complex line bundle Ox (V)
corresponding to a Cartier divisor V' C X and the log tangent bundle T X (— log V') (or dually the
sheaf of log 1-forms Q% (log V)) corresponding to a normal crossings (or NC) divisor are among
such useful and well-studied structures. They play important roles in the relative/log Gromov—
Witten theories of Li [22, 23], Gross—Siebert [21], and Abramovich—Chen [1, 7]. Divisors also
play an important role in symplectic topology, including as representatives of the Poincare duals
of symplectic forms [10], in symplectic sum constructions [20, 24], in relative Gromov—Witten
theory and symplectic sum formulas [11, 19, 30, 31, 35], in affine symplectic geometry [27, 28],
in homological mirror symmetry [3, 33], and in relative Fukaya category [8, 9].
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A smooth symplectic divisor is simply a symplectic submanifold of real codimension 2.
Applications involving a smooth symplectic divisor V' C X typically rely on the Symplectic
Neighborhood Theorem [25, Theorem 3.4.10]. It provides an identification ¥ (which we call a
symplectic regularization) of a neighborhood of V' in X with a neighborhood of V' in its normal
bundle N'x V. Such an identification can then be used to construct an auxiliary V-compatible
“geometric” data/structure, such as a V-compatible almost complex structure J or a complex
line bundle Ox (V) over X with first Chern class [V]x. One then shows that an invariant
defined using J or the deformation equivalence class of an object constructed using ¥ depends
only on (X, V,w). This approach is relatively straightforward to carry out in the case of smooth
divisors.

Singular symplectic divisors/varieties and structures associated with them are generally
hard to define and work with because there is no direct analogue of the Symplectic Neighbor-
hood or Darboux Theorem in this setting. Following an alternative approach, [14, 15] introduce
topological notions of NC symplectic divisor and variety and geometric notions of regularization
for NC symplectic divisors and varieties. The latter is basically a “nice” neighborhood identifi-
cation of the divisor/singular locus, analogous to that provided by the Symplectic Neighborhood
Theorem in the smooth case. Every NC symplectic divisor/variety is deformation equivalent
to one admitting a regularization. For this reason, in our approach, we work with the entire
deformation equivalence classes of NC symplectic divisors/varieties, as opposed to a fixed NC
symplectic divisor/variety; see the end of Section 4.2.

As stated in [13], a regularization of an NC symplectic variety V' C X can be used to
construct an associated complex line bundle Ox (V) and a log tangent bundle TX (—logV).
The present paper carries out these constructions in detail. While the constructions of Ox (V)
and T'X (— log V') involve the auxiliary data of regularizations and other choices, their deforma-
tion equivalence classes depend on the deformation equivalence class of the symplectic structure
only.

We denote the smooth locus of an NC symplectic divisor V' C X by V*. For r € Z=Y,
let V(") c V be r-fold locus of V, i.e., the locus that locally is the intersection of at least r
branches of V; see (4.1). For example, V() = X, V() =V, V@ is the singular locus of V, and
V* = V) @) The subspace V) — V(1) is a smooth submanifold of X of codimension 2.
We denote its inclusion into X by ¢yt _yein. If X is compact and of (real) dimension 2n,
Ly v+ is a pseudocycle in X of dimension 2(n — 7); see [37]. Thus, V* and V(") — V(1)

determine homology classes
[Vlx € Hon—o(X;Z) and [V]x € Ho 1 (X;2),

respectively.

Proposition 1.1  Let (X,w) be a symplectic manifold and V C X be an NC symplectic divisor.

(1) An w-regularization R for V. C X determines a complex line bundle (Or.x(V),ir) over X
with a smooth section sg so that s3'(0) =V and

Dsgr : Nx(V*) — Or.x(V)|v+

is an orientation-preserving isomorphism along the smooth locus V* of V.
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(2) The deformation equivalence class (Ox(V),1) of (Ox(V),ir) depends only on the defor-
mation equivalence class of (X,V,w).

(3) If V! C X is another NC symplectic divisor so that VUV’ C X is also an NC symplectic

divisor and V NV’ contains no open subspace of V', then

(Ox(VUV'),i) = (0x(V),i) @ (Ox(V'),1). (1.1)

The complex line bundle Ox (V') appears in the smoothability criterion for SC symplectic
varieties in [16] and for general NC symplectic varieties in [17]. For a simple (normal) crossings
(or SC) symplectic divisor V' = | J,.¢ Vi as in Definition 3.1, (1.1) gives

Ox (V)= Q) Ox (Vi) — X.

=
If X is compact and of (real) dimension 2n, the stated properties of sg imply that
c1(0Ox (V) =PDx([V]x) € H(X; 7). (1.2)
If X is not compact, this identity holds with [V]x denoting the element of the Borel-Moore
homology of X determined by V*; see [4].
Theorem 1.2 Let (X,w) be a symplectic manifold and V- C X be an NC symplectic divisor.

(1) An w-regularization R for V.C X determines a vector bundle Tr X (—logV') over X with
a smooth vector bundle homomorphism

iR :TrX(=1logV) — TX (1.3)
s0 that for every r € Z2°

TV" -Vt € TrX (= logV)lym _vein,  rlp@we _vetny = diye _yein,
and 1x(TrRX (= 10gV)|y o) _yosn) = T(V — v+,

(2) An R-compatible almost complex structure J on X determines a complex structure ig j on
the vector bundle Tr X (—log V') so that the bundle homomorphism (1.3) is C-linear.

(3) The deformation equivalence class (I'X(—1logV),i) of (TrX(—1logV),ir,s) depends only
on the deformation equivalence class of (X,V,w).

(4) If V! C X is a smooth submanifold so that VUV’ C X is also an NC symplectic divisor
and V NV’ contains no open subspace of V, then

(TX (—1og(V UV")),1) @ (Ox(V'),i) ~ (TX(~log V),i) & (X x C). (1.4)

(5) We have

_ (TX,w)
~ 14+ PDx([VW]x) + PDx([V®)]x)

The above equality holds in H*(X;Z) if V C X is an SC divisor.

c(TX(—1logV),1)

(X0 (L5)
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As shown in [12], the complex vector bundle (T'X (—logV'),1) plays the same role in the
deformation-obstruction theory of pseudoholomorphic curves relative to an NC symplectic di-
visor as the complex vector bundle (T'X, J) in the standard deformation-obstruction theory of
pseudoholomorphic curves; see [26, Chapter 3], for example. This provides a symplectic topol-
ogy perspective on the constructions of log stable maps in [1, 21, 30]. In [18], the vector bundle
TX(—logV) is used to define Seiberg—Witten invariants of a closed oriented 4-manifold X rel-
ative to a smooth oriented Riemann surface V. This perspective on the standard constructions
of relative Seiberg—Witten invariants reveals additional structures.

For an SC symplectic divisor V = | J;

seg Vi as in Definition 3.1, (1.4) gives

(TX(—logV),i) & EP(Ox (Vi) i) = (TX,J) & (X x C%,1). (1.6)
€S

This immediately implies that

(TX,w)
es(1 + PDx([Vilx))
_ c(TX,w)
T 1+ PDx([V <1>]x)+PDx([ @]x) +

c(TX(—1logV)) =

- € H'(X;2). (1.7)

The direct sum vector bundle on the left-hand side of (1.6) does not even exist as a vector
bundle in the general NC case; see the example in the second half of Section 7. In Sec-
tion 6.4, we instead establish the de Rham cohomology analogue of (1.5) by expressing the
Chern classes on the two sides of (1.5) in terms of the curvatures of connections in the vector
bundles TX and T X (—logV). We construct a 2k-form 74, on X, supported in a neighborhood
of V¥) and representing PDx ([V*]x) in H3¥;(X), and C-linear connections V in TX and V'
in TX(—logV) so that the curvature of V is the correct combination of the curvature of V’
and 71, ..., 7, to yield (1.5); see (6.38), Lemma 6.10, and Proposition 6.11. Our proofs of (1.4)
and (1.5) are carried out in the almost complex category.

When V' C X is either an NC complex divisor in a complex manifold or an NC almost
complex divisor in an almost complex manifold compatible with a regularization for V, in the
sense defined in Section 4.2, we can pass to the blowup X of X along the deepest stratum V(")
of V and to the proper transform V of V. We can then compare the log tangent bundles
for (X,V) and (X,V) and their Chern classes via (1.4), (1.5), and Lemma 1.3 below. This
immediately yields Corollary 1.4 below, except for the refinement in the vanishing torsion case.

This corollary refines [2, Lemma 1.3] in the SC case and extends it to the general NC case.

Lemma 1.3 Let (X,J) be an almost complex manifold, V. C X be an NC almost complex
divisor with a regularization R, and r € Z+ be such that V) = 0. If 7 : (X, J) — (X, J) is
the blowup of (X, J) along V() determined by R, B is the exceptional divisor, and V. C X is
the proper transform of X, then V =V UE is an NC almost complez divisor in ()?, j) In this
case, there are a regularization R 0f‘~/ n ()~(, j) and an isomorphism

A2 m: T X (—log V) — 7" (Tr X (= logV)) (1.8)
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so that the diagram

LR

Tﬁ)?(— logV) ——————=17X%
|#5e i
™ (TrX (—logV)) — =2 m*TX
commutes. The first and third claims above also hold in the category of complex manifolds with
NC divisors.
Corollary 1.4 With the assumptions as in Lemma 1.3,
o(TX)
1+ PD- (VM. 7@
(1+PDg([V" %)+ PDg (V]
. ( (TX)
1+PDx([VW]x) +PDx([V®@]yx)
The above equality holds in H*(X;Z) if V C X is an SC divisor or the torsion in H,(E;Z) lies

in the kernel of the homomorphism T, induced by the inclusion E — X.

<)+ )1 +PD5(Elz)) (1.9)

+___>eH*(X';@).

The statement of Lemma 1.3 in the complex category is well-known; its proof is recalled at
the end of Section 2.1. We establish this lemma in the almost complex category with regular-
izations in Sections 5.2-5.4. The regularizations are used to construct the bundles T'X (—log V')
and TX (—log(V UE)) and the blowup X.

We can also pass to a blowup X of X along the deepest stratum V() of V and the proper
transform V C X of V if V C X is an NC symplectic divisor with V(") admitting a tubu-
lar symplectic neighborhood that contains the disk subbundle of Nx V(") of a fixed radius; see
Section 5.5. This is automatically the case if V(") is the compact. If so, each deformation equiv-
alence class [w] of symplectic forms on (X, V) determines a deformation equivalence class (@]
of symplectic forms on the blowup ()Z , ‘N/) of (X, V) along V"), a homotopy class of blowdown
maps

T (X,17) — (X, V),
and a homotopy class of isomorphisms
do8r . TX (—log V) — 7*(T X (—1logV)) (1.10)

between the log tangent bundles associated with [w] and [@]. If V(") is not compact, the existence
of a tubular symplectic neighborhood that contains the disk subbundle of Nx V(") of a fixed
radius is unclear, even after deforming the symplectic form. We suspect that the answers to the
following closely related questions are negative in general; the affirmative answer to Question 1.6
would imply the affirmative answer to Question 1.5.

Question 1.5 Let (V,w) be a symplectic manifold, ' — V be a direct sum of Hermitian
line bundles (L, p;, V) determining fiberwise symplectic forms €; on L;, and N7 C N be
a neighborhood of V. Is there a deformation of w through symplectic forms and of (p;, V()
through Hermitian structures so that the induced 2-form @ as in (3.3) on the total space of N
is symplectic on the unit ball subbundle of A, with respect to the deformed metric, and this
subbundle is contained in N'?
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Question 1.6 Let (V,w) be a symplectic manifold, J be an w-compatible almost complex
structure, and C : V — R7T be a smooth function. Are there a symplectic form w’ on V

deformation equivalent to w and an w’-compatible almost complex structure J’ so that
W'(v, J'v) > C(z)w(v, Jv) Yo eV, veT,V.

We review the complex geometric constructions of the complex line bundle (Ox (V),1) and
the complex vector bundle (T'X (—log V'), 1) associated with an NC divisor V' in a complex mani-
fold V" and some of their properties in Section 2.1. As a warmup to the general case, we construct
these bundles for a smooth symplectic divisor in Section 2.2. For the reader’s convenience, Sec-
tions 3.1 and 3.2 recall the notions of SC symplectic divisor and regularization, respectively,
introduced in [14]. Section 3.3 contains the constructions of the vector bundles Ox (V) and
TX(—logV) for an SC symplectic divisor V' C X and establishes Proposition 1.1 and the first
three statements of Theorem 1.2 in this setting. Section 3.4 establishes Theorem 1.2 (4) for an
SC symplectic divisor V. The constructions and proofs in the SC case illustrate the arguments
in the general NC case, which are more notionally involved. Sections 4.1-4.3 and 6.1-6.3 are
the analogues of Sections 3.1-3.3 in the local and global perspectives, respectively, on the NC
symplectic divisors introduced in [15]. Section 4.3 also shows why the proof of Theorem 1.2 (4)
for SC symplectic divisors in Section 3.4 immediately extends to the general NC case. Sections 5
and 6.4 establish Lemma 1.3 and Theorem 1.2 (5), respectively. In Section 7, we establish the
remaining statement of Corollary 1.4 and show that (1.5) and (1.9) do not need to hold with

Z-coeflicients for arbitrary NC divisors.

2 Standard Settings
2.1 NC Complex Divisors

Let X be a complex manifold of (complex) dimension n with structure sheaf Ox (the sheaf of
local holomorphic functions). An NC divisor in X is a subvariety V' C X locally defined by an
equation of the form

212, =10 (2.1)

in a holomorphic coordinate chart (z1,...,2,) on X. The sheaf of local meromorphic functions
with simple poles along the smooth locus of V is freely generated in such a coordinate chart
by the meromorphic function 1/z; --- 2z as a module over Ox. Since this sheaf is locally free
of rank 1, it is the sheaf of local holomorphic sections of a holomorphic line bundle Ox (V).
The constant function 1 on X determines a holomorphic section s of this sheaf satisfying the
properties of sg in Proposition 1.1(1). It is immediate that (1.1) holds as well. The dual
of Ox (V) is the holomorphic line bundle Ox (—V); the sheaf of its local holomorphic sections
is freely generated in a coordinate chart as above by the holomorphic function z; - - - z.

In a local chart as in (2.1), the sheaf 7X = O(T'X) of local holomorphic sections of the
tangent bundle T'X is generated by the coordinate vector fields 0., ,...,0,,. The logarithmic
tangent sheaf 7X(—logV) is the subsheaf of 7X generated by the vector fields

log — log —
azlg = Zlazla cee 7azkg = Zk‘azkaazk+1a e 782n'

The dual of this subsheaf is the sheaf of logarithmic 1-forms Q% (log V) is the sheaf generated



Normal Crossings Singularities: Structures 113

by

%,...7%,61,2]@4,1,...,(12”.

21 2k
Since 7 X (—log V) is locally free, it is the sheaf of local holomorphic sections of a holomorphic
vector bundle T'X (—log V'). The inclusion of 7X (—log V') into 7 X gives rise to a holomorphic
homomorphism

t:TX(—logV) —TX

that realizes every section of TX(—logV) as a section of TX with values in TV along V.
The normalization ¢ : V' — V C X of V is an immersion. The inclusion of the sheaf Q% of

1-forms on X into Q% (log V') and the Poincare residue map induce an exact sequence
0— Q% — Qx(logV) — 1,05 — 0

of sheaves on X, where +,Oy; is the direct image (or push-forward) sheaf of the structure sheaf
Oy of V. Therefore,
c(Qx (log V)) = c() c(1. O). (2.2)

IV =Uecs
is an exact sequence

V; is an SC divisor, then 1.0 = @, g Ov; as sheaves on X. Furthermore, there

0— Ox(-V;) — Ox — Oy, — 0
of sheaves on X for each ¢ € S. Thus,
c(t.0p) [[(1 = PDx([Vi]x)) = 1 € H*(X;2)
ies
in this case. We thus obtain (1.7) in the complex setting.
For an arbitrary NC divisor V' C X, the derived direct image sheaf 1Oy, of Oy, coincides

with the direct image sheaf 1, Oy, because the higher derived functors for an immersion vanish.
Along with the Grothendieck-Riemann—Roch theorem, this gives

ch(2.Op ) td(X) = ch(u Oy ) td(X) = 1+ (ch(Op ) td(V)) = i (td(V)),
where ch is the Chern character and td is the Todd class; see [32, Theorem 1.3]. Thus,
L (td(V))
td(X)
This formula holds only with Q-coefficients because the Chern character is a map from the

K-theory of X to the rational Chow group of X. The proof of (2.3) in [32, Corollary 5.22]
uses blowups to reduce the problem to SC divisors; we are not aware of a direct way for

ch(u.Oy) = € H(X,Q). (2.3)

obtaining (2.3). For the purposes of computing ¢(TX (—logV)) via (2.2), it is still necessary
to translate ch(t.Oy;) into c(t.Oy ). Nevertheless, it is feasible to directly study the change
in ¢(TX(—logV)) under blowups, as is done in the proofs of Lemma 1.3 in Section 5.4, and
to relate ¢(T'X(—1logV)) to ¢(T'X) in the spirit of (2.2), as is done in the proof of (1.5) in
Section 6.4.

Let r € ZT, 7 : X — X, and E,V C X be as in Lemma 1.3 and U = 7~ (U) be the

preimage of a coordinate chart U as in the sentence (2.1). For each i =1,... k,

U = {(21, (u5) jein—is (23) el 1) * (121, -« im1 2, 20y Wi 1 Zis - - - U235 (2)jefn]—14) € U
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where [k] = {1,...,k}, is a coordinate chart on U C X; these charts cover U. Since
Vﬂa:(ul...ui_luiﬂ...uk:()), Eﬂﬁi:(z@':O),

dz; du; dz;

22 273 4+ =

Z4 Uj Zi

and Vi € [k] — i,

we obtain that
Q% (log V) = Q}( (log(V UE)).
This establishes Lemma 1.3 in the complex setting.

2.2 Smooth Symplectic Divisors

It is fairly straightforward to adapt the constructions of Ox (V') and TX (—log V') in Section 2.1
via the Symplectic Neighborhood Theorem. Before doing so below, we carefully formulate the
relevant notions.

Let V be a smooth manifold. For a vector bundle 7 : N' — V', we denote by (x the radial
vector field on the total space of N; it is given by

v (v) = (v,0) € TN = TN — TN .
Let Q be a fiberwise 2-form on /' — V. A connection V on N induces a projection TN — 7* N

and thus determines an extension Qv of { to a 2-form on the total space of . If w is a closed
2-form on V, the 2-form

~ 1 1
O=r'w+ §dLCN-Qv =r'w+ §d(Qv(§/\/, ) (2.4)

on the total space of N is also closed and restricts to  on 7* A = TNV, If w is a symplectic
form on V and § is a fiberwise symplectic form on N, then @ is a symplectic form on a
neighborhood of V in \.

We call 7 : (L, p, V) — V a Hermitian line bundle if L — V' is a smooth complex line bundle,
p is a Hermitian metric on L, and V is a p-compatible connection on L. We use the same
notation p to denote the square of the norm function on L and the Hermitian form on L which
is C-antilinear in the second input. Thus,

p(v) = p(v,v), p(iv,w) =ip(v,w) = —p(v,iw) V(v,w) € L xy L.
Let p® denote the real part of the form p.

A Riemannian metric on an oriented real vector bundle L — V of rank 2 determines a
complex structure on the fibers of V. A Hermitian structure on an oriented real vector bundle
L — V ofrank 2 is a pair (p, V) such that (L, p, V) is a Hermitian line bundle with the complex
structure i, determined by the Riemannian metric pR. If Q is a fiberwise symplectic form
on an oriented vector bundle L — V of rank 2, an 2-compatible Hermitian structure on L is a
Hermitian structure (p, V) on L such that Q(-,i,-) = p%(-, ).

Definition 2.1 Let X be a manifold and V C X be a submanifold with normal bundle NxV —

V. A (smooth) regularization for V in X is a diffeomorphism ¥ : N/ — X from a neighborhood
of V in NxV onto a neighborhood of V in X such that ¥(z) = x and the isomorphism

T.X

Nx Ve = TENxV = TNxV #2 TX — = -

x

= Nxv|g;

is the identity for every x € V.
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Let V be a closed symplectic submanifold of a symplectic submanifold in (X,w). The
normal bundle NxV of V in X then inherits a fiberwise symplectic form w|y v from w via the
isomorphism

TX|v _
TV :NXV.

The symplectic form w|y on V, the fiberwise 2-form Q = w|n v on NxV, and a connection V

gy TV ={veT,X:zeV,ww) =0Vwe T,V =

on NxV thus determine a 2-form &y on the total space of NxV via (2.4). By the Symplectic
Neighborhood Theorem, there exists a regularization ¥ : A7 — X for V in X so that U*w =
v A

Suppose in addition that V is of codimension 2, i.e., V is a smooth symplectic divisor
in (X,w). If (p,V) is an w|pnv-compatible Hermitian structure on NxV, the triple R =
((p, V), ¥) is an w-regularization for V in X in the sense of Definition 3.5 and determines a

fiberwise complex structure i, on NxV. Let

Orx(V)=({¥ ' P NxVUX -V)xC)/ ~— YN)U (X -V) =X,

(U *NxV 3 (¥ (v),v,cv) ~ (¥(v),c) € (X — V) x C, (2.5)
where 7 : A7 — V is the bundle projection map. This defines a smooth complex line bundle

over X. The smooth section sk of this bundle given by

[7,v,v], ifz=¥(v), veEN;
sr(x) =

[x,1], ifre X -V;

satisfies the properties stated in Proposition 1.1 (1).
For each v € NxV, the connection V determines an injective homomorphism
hV;v : T-rr(v)v - T’U(NXV) (26)

with the image complementary to the image of N'x V. Let
TrX(=logV) = (({T'}V'7*TV) @ UN) x C)UT(X = V))/ ~— JN)U (X - V) = X,
{7 TV) @ U(N) x C 3 (¥(v),v,w) ® (¥(v),¢) ~ dy ¥ (hy.,(w) +cv) € T(X — V).
This defines a smooth vector bundle over X. The smooth bundle homomorphism (1.3) de-
fined by

() = dyV(hy,(w) +cv), ifz=[(T(),v,w)d(¥(v),c)], veN;
A Y it e T(X V)
satisfies the properties stated in Theorem 1.2 (1).

An almost complex structure J on V and the fiberwise complex structure i, on NxV
determine an almost complex structure Jz on the total space of AxV via the connection V.
We call an almost complex structure J on X R-compatible if J preserves TV C TX|y and ¥
intertwines J and Jg = (J|7v)w, i-€.,

JITV)CTV and Jod¥ =d¥oJg|y .

Such an almost complex structure J induces a fiberwise complex structure iz, y on Tr X (—log V)
satisfying Theorem 1.2 (2). It can be constructed by pasting together Jr o{d¥} ! and an almost
complex structure on X — V.
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We denote by Symp™ (X, V) the space of symplectic forms on X that restrict to symplectic
forms on V, by Aux(X,V) the space of pairs (w,R) consisting of w € Symp™ (X, V) and an
w-compatible regularization R for V in X, and by AK(X,V) the space of triples (w,R,J)
consisting of (w, R) € Aux(X, V) and an almost complex structure J on X compatible with w
and R. Since the Symplectic Neighborhood Theorem can be applied with families of symplectic
forms parametrized by compact manifolds, the projection

Auwx(X,V) — SympT (X, V), (w,R) — w, (2.7)

is a weak homotopy equivalence. It is straightforward, by adapting the proof of [25, Prop. 4.1],
for example, to show that the projection

AK(X,V) — Aux(X,V), (w,R,J) — (w,R), (2.8)

is also a weak homotopy equivalence.

The above constructions of the complex line bundle (Ox(V),i) and the vector bundle
TX(—logV) can be applied with compact families in Aux(X, V). The construction of the
complex vector bundle (T'X (—logV),ir,s) can be applied with compact families in AK(X, V).
Along with the previous paragraph, this confirms the statements of Proposition 1.1(2) and
Theorem 1.2 (3) for smooth symplectic divisors V.

The constructions of the complex line bundle (Ox (V'), 1) and the vector bundle TX (—log V)
do not involve the symplectic form w directly. The first construction can be carried out for any
closed codimension 2 submanifold V' of a smooth manifold X endowed with a complex structure
on the normal bundle NxV and a smooth regularization ¥. The constructions of the vector
bundle TX (—log V) and of the complex structure iz, ; on it require in addition a connection
on NxV in the first case and also an R-compatible almost complex structure J on X in the
second case.

Corollary 2.3 below is used later in this paper. We deduce it from the following observation.

Lemma 2.2 Suppose V is a smooth manifold, 7 : N — V is a vector bundle, and V is a
connection in N'. Let TNP* C TN be the horizontal tangent subbundle determined by V. If

V = 7*V is the connection in 7N — N determined by V, then
VN e = 0 : TP — 7 AV (2.9)
If in addition N is a complex vector bundle (and V is a complex linear connection), then
Vex|rarer 01 = iVix|raver : TNV — 7°N. (2.10)

Corollary 2.3 Suppose (V,J) is an almost complex manifold, 7 : N — V is a complex line
bundle, V is a connection in N, and V =7*V. If

O:(N-V)xC = N|yv_v, @,c)=(v,cv),

then ®*V—d is a (1,0)-form on N =V with respect to the almost complex structure Jg on N —V
determined by J and V.

Proof The 1-form O*V — d is given by

{(*V—d}l=0""'oV(®ol)=d'oViy. (2.11)
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The almost complex structure Jy restricts to {dr}*J on TA™M" and to 7*i on TAV'. The
claim thus follows from Lemma 2.2. O

Proof of Lemma 2.2  Suppose U is an open subset of V and &;,...,&, € T(U;N) is a frame
for N over U. Let 6F € I'(U; T*U) be such that

k=n k=n

V& =Y &0f _Zel®§keF(UTU®N) Vi=1,...,n. (2.12)
k=1
The frame &1, ..., &, determines an identification Ny = U x R™ so that

l=n

w(v) = abi(x),

=1

. - Yo = (z,¢1,...,0n) € Nu;
T,NMor = {(m > ab)(i),... - chﬂl”(x')) xe Tzv},

=1 =1
(2.13)

see the proof of [38, Lemma 1.1].
For each I =1,...,n, let § = 7*& € T(N|y; 7*N). By the definition of V and (2.12),

k=n
Va =Y (Bfodr)@& Yi=1,....n
k=1
Thus,
B l=n k=n
Vinl@ersen) = 2 D a(6f o dr) ®£k+z de) © &. (2.14)
=1 k=1

Along with the second statement in (2.13), this gives (2.9).

The first summand on the right-hand side of (2.14) vanishes on TAV*. If A/ is a complex
vector bundle, the above applies with R replaced by C. The second summand on the right-hand
side of (2.14) is C-linear on TNV in this case. This gives (2.10). O

Remark 2.4 By the proof of Lemma 2.2, the 1-form in (2.11) is given by

s dz
(@°V = d)l(@,2) = 1]z + — -

Thus, the curvature F2'V of the connection ®*V on (N = V) x C is given by

F®V = d(n*0}) = ' FV .
3 SC Symplectic Divisors
For N € Z=29, let

[N]={1,...,N}.

If N — V is a vector bundle, N C N, and V' C V, we define |y, = N|y NN.
3.1 Definitions
Let X be a (smooth) manifold. For a collection {V;};es of submanifolds of X and I C S, let

Vi=s(VicX, Vie= Vi, WW=Vi-Vio.
i€l oI
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Such a collection is called transverse if any subcollection {V;};¢s of these submanifolds intersects
transversely, i.e., the homomorphism
TzX &) @TI‘/; — @TzXa (U; (Ui)iel) I (U + Ui)iGI ) (31)
i€l iel
is surjective for all z € V;. By the Inverse Function Theorem, each subspace V; C X is then a
submanifold of X of codimension
codimx V; = Z codimx V;
el
and the homomorphisms
NxVi — @NXViW, VvicS, Ny, ,Vi— NxVily, VielIcCS,
iel
P M Vi — M, Vi ¥I'cIcS

iel—1I'

(3.2)

induced by inclusions of the tangent bundles are isomorphisms.

As detailed in [14, Section 2.1], a transverse collection {V;};es of oriented submanifolds
of an oriented manifold X of even codimensions induces an orientation on each submanifold
Vi € X with |[I| > 2; we call it the intersection orientation of V;. If V; is zero-dimensional, it
is a discrete collection of points in X and the homomorphism (3.1) is an isomorphism at each
point « € V7; the intersection orientation of Vi at x € V; then corresponds to a plus or minus
sign, depending on whether this isomorphism is orientation-preserving or orientation-reversing.
We call the original orientations of X = Vj and V; = Vy;; the intersection orientations of these
submanifolds V; of X with |I] < 2.

Suppose (X,w) is a symplectic manifold and {V;};cs is a transverse collection of subman-
ifolds of X such that each V7 is a symplectic submanifold of (X,w). Each V; then carries an
orientation induced by w|y,, which we call the w-orientation. If V; is zero-dimensional, it is
automatically a symplectic submanifold of (X,w); the w-orientation of V; at each point z € V;
corresponds to the plus sign by definition. By the previous paragraph, the w-orientations of X

and V; with ¢ € I also induce intersection orientations on all V.

Definition 3.1 Let (X,w) be a symplectic manifold. A simple crossings (or SC) symplectic
ies Vi of closed submanifolds of X of
codimension 2 such that Vi is a symplectic submanifold of (X,w) for every I C S and the

divisor in (X,w) is a finite transverse union V. = J

intersection and w-orientations of Vi agree.

The singular locus Vy C V of an SC symplectic divisor V' C X is the union

Vo = U Vr.
I1CS,|11>2
An SC symplectic divisor V' with |S| = 1 is a smooth symplectic divisor in the usual sense. If
(X,w) is a 4-dimensional symplectic manifold, a finite transverse union V' = (J,.g Vi of closed
symplectic submanifolds of X of codimension 2 is an SC symplectic divisor if all points of the
pairwise intersections V;, NV;, with i1 # ia are positive. By [14, Example 2.7], it is not sufficient

to consider the deepest (non-empty) intersections in higher dimensions.
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Definition 3.2 Let X be a manifold and V = J,.4 Vi be a finite transverse union of closed
submanifolds of X of codimension 2. A symplectic structure on V in X is a symplectic form w
on X such that Vi is a symplectic submanifold of (X,w) for all I C S.

For X and {V;},cs as in Definition 3.2, we denote by Symp(X, {V;}ics) the space of all
symplectic structures on {V;};cs in X and by

Symp™ (X, {Vi}ies) C Symp(X, {Vi}ics)
the subspace of the symplectic forms w such that {V;};es is an SC symplectic divisor in (X, w).

3.2 Regularizations

Let V be a smooth manifold with a 2-form w and (Li,pi,v(i))ie[ be a finite collection of
Hermitian line bundles over V. If each (p;, V() is compatible with a fiberwise symplectic
form Q; on L; and

(Na Q7 V) = @(Lla in V(l))a
il
then the 2-form (2.4) is given by

~ * 1 *
W =W, vy, =T W + 5 @ WI;id((Qi)V(i) (QLN ))7 (33)
iel
where 77,; : N'— L; is the component projection map.
If in addition ¥ : V' — V is a smooth map and (L}, p}, V/)),c; is a finite collection of
Hermitian line bundles over V', we call a (fiberwise) vector bundle isomorphism
icl iel
covering ¥ a product Hermitian isomorphism if
E’ : ( ;vpivvl(l)) - \IJ*(Lupia V(l))
is an isomorphism of Hermitian line bundles over V' for every ¢ € I.
If V is a symplectic submanifold of a symplectic manifold (X, w), we denote the restriction
of w|xyv to a subbundle L € NxV by w|r.
Definition 3.3 Let X be a manifold, V C X be a submanifold, and
NxV =P L
iel

be a fized splitting into oriented rank 2 subbundles. If w is a symplectic form on X such that V'

is a symplectic submanifold and w|r, is nondegenerate for every i € I, then an w-regularization
for V in X is a tuple ((ps, V)ier, ¥), where (p;, V) is an w
on L; for each i € I and V is a regularization for V in X in the sense of Definition 2.1, such
that

L, -compatible Hermitian structure

"
Vo = w(ﬂuv(“)ierOm(‘I’)'

Suppose {V;}ics is a transverse collection of codimension 2 submanifolds of X. For each

I C S, the last isomorphism in (3.2) with I’ = () provides a natural decomposition

mr Nx Vi = @NVI_iVI — VI (3.4)
el
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of the normal bundle of V; in X into oriented rank 2 subbundles. We take this decomposition
as given for the purposes of applying Definition 3.3. If in addition I’ C I, let

I 1 ZNI;[’ = @ Nv,f,iVI ZNVI,VI — V[ (3.5)
iel—1I'

be the bundle projection. There are canonical identifications
./\/1;171/ ZNxvp|VI, Nxvj = W;;I/NI;I,II = W;;I/Nxvp VI/ clcC [N] (3.6)

The first equality in the second statement above is used in particular in (3.10).

Definition 3.4 Let X be a manifold and {V;}ics be a transverse collection of submanifolds
of X. A system of regularizations for {V;};cs in X is a tuple (¥1)rcs, where ¥ is a reqular-
ization for Vi in X in the sense of Definition 2.1, such that

\I/](N[;]/ N DOHI(\I/])) =VrnN Im(\If[) and Im(\If[) N Im(\IJJ) = Im(\I/[UJ) (37)

forall' cITCS and JCS.

Given a system of regularizations as in Definition 3.4 and I’ C I C S, let
NII;I/ ZN];[/QDOm(\I/I), \IJI;[/ E\IJI|N,'.,/ Z./\/'II;I/ e V]/. (38)
The map Uy, is a regularization for V; in Vj». As explained in [14, Section 2.2], ¥ determines
an isomorphism
OV wrp Ne-rinv , — NxVirlv, amw)) (3.9)

of vector bundles covering Uy, and respecting the natural decompositions of Ny j_p =
Nx Vi, and NxVy.. By the last assumption in Definition 2.1,

S\IJI;I’|7r*

1;1/N1;171’|V1 =id: NI;I_I/ - NXvI/|VI

under the canonical identification of Np,;—p with NxVp |y, .

Definition 3.5 Let X be a manifold and {V;}ics be a transverse collection of submanifolds
of X.

(1) A regularization for {V;}ics in X is a system of regularizations (Vr)rcs for {Vitics in X
such that
Dom(¥;) C 77, Nri—r wy s ®Prr(Dom(¥r)) = Dom(¥r)v,, ntm(w,) (3.10)
Uy =V oDV pom(w,)

foralll'’ CICS.

(2) Suppose in addition that V. = {;cg Vi is an SC symplectic divisor in (X,w). An w-
regularization for V in X is a tuple

(Ri)ics = ((pr:i, VYD )ier, U 1) 1cs

such that Ry is an w-reqularization for Vi in X for each I C S, (¥1)ics is a reqularization
for {Vi}ies in X, and the induced vector bundle isomorphisms (3.9) are product Hermitian
isomorphisms for all I' C I C S.
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If (U7);cs is a regularization for {V;};cs in X, then

N7 Neg—1ne, C 7o Ne—rny

(3.11)
\I’I;I” = \IJI’;I“ (@] Q\IJI;I’ |NI’;I”’ @\I’I;Iu = S\IJI’;I” 0] Q\I’I;I’|7r*

I;I//NI;I—I” ‘N}'I”

forall " cI'cICS.

An almost complex structure J on X preserving T'V; C T Xy, and an w-regularization R
for V7 in X as in Definition 3.3 determine an almost complex structure Jg,; on the total space
of Nx V7 via the connection V) = @, ; V) We call an almost complex structure J on X
compatible with an w-regularization (R);cs as in Definition 3.5 (2) if

J(TVi) CTV; and Jod¥;=d¥ o Jr.|pemw, VICS.

The notion of regularization of Definition 3.5 (2) readily extends to families of symplectic forms;
see [14, Definition 2.12(2)]. We define the spaces Aux(X, V) of pairs (w, R) and AK(X,V) of
triples (w,R,J) as in Section 2.2. By [14, Theorem 2.17], the map (2.7) is a weak homotopy
equivalence in the present setting as well. On the other hand, it is still straightforward to show
that the map (2.8) is also a weak homotopy equivalence in the present setting.

3.3 Constructions

We now construct the bundles Ox (V) and TX(—1logV) for an SC symplectic divisor V in a
symplectic manifold (X,w). We fix an w-regularization R for V' in X as in Definition 3.5 (2).
For the purposes of constructing a complex structure on TX (—1logV'), we also fix an almost
complex structure J on X compatible with w and R.

For I' c I C S, let mr, mr.rr, Ni.py ¥, and D be as in (3.4), (3.5), (3.8), and (3.9).
In what follows, we write an element v; = (v;);er of Nx V7 as

vr = (UI;I/,UI;IJI) with v = (Ui)ielfl’ S NI;I’ and vrr-r = (Ui)iel’ S NI;IJH

We denote by V) and V() the connections on NxV; and N7.p induced by the connec-
tions V39 on the direct summands of these vector bundles. Let

by, Tryo) Vi — To,(NxVr) and  hgu.r T N

V] — T,

Vivp.gr . (vr) Vi1t

be the corresponding injective homomorphisms as in (2.6). Define

Iy : NXVI—>®NV1 Vi, Tr((vi)ier) ®U1;

el el
U7 = U (Dom(¥p)|ve) =Im ¥y — ] Vs (3.12)
JgI

the last equality follows from (3.7) and (3.10). For every I C S, let

Or.1(V) = {¥; up } '} (@M@NI) — Uy,
il (3.13)

TrU}(=logV) = ({7 |vp }*n/TVr) & (U} x C') — U}.
The complex structures i,,, on Ny, Vi = NxVi|v, encoded in R determine a complex struc-

ture on the complex line bundle Og.;(V). The almost complex structure J|ry, on V; and
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the standard complex structure on C! determine a complex structure on the vector bun-
dle TrU7 (—log V).
Let I' CICS. If £ € Up NUy, then
T = \I/[(U[) = \I/[/(Q\I/[;[/(U[;[/,’l}];[,p)) with
vr = (v vni—r) = ((v)ier—r, (vi)ier) € N @ Npjr—p st vy #0Vie I =T

Since DV, is a product Hermitian isomorphism, it follows that the map

Or1: O (V)|ugnve, — Orir(V)|ugnus, (3.14)
Opr(x,vr, (v, wri—p)) = (@, 9V rp (vr), Dy (@Y, (v, wrr—11))),
is a well-defined isomorphism of complex line bundles. The map
1 : TRUS (— log V) |us s, — TrU/(~log V)lugnus, (3.15)
Vri((z,vr,w) ® (z, (¢i)ier)) = (2, DV, (vr), do, , Vi, (hvu:ﬂ)w”,(w) + Z Cﬂh’))
iel—1
@ (z, (¢i)ier),

is similarly a well-defined isomorphism of vector bundles. Since J is an R-compatible almost
complex structure on X, this isomorphism is C-linear. By (3.11),

91~I|U;mUI°,mUI°,, = 91//1/|U;mU,°,mUI°,, ° 0['1|UI°HU}’,HU}’,,7

(3.16)
Vrrrlvgnus,nus, = I |vgnus,nus, © Yrilugnue,nue,

foral I” cI' C I.
Let I, K C S. By (3.7) and (3.10), Uy N Uy C Uy ). If I ¢ K, the maps

Orx = Oraur)lugnug © 9K_(}LJK)|U;WU;( 1 Ok (V)lvenve — Oria(V)luenve.,
V1 = V10K luenus, © 79;(_(11U1<)|U;7NU§< F TRUK (= log V)|ugnug, — TrUT (= logV)upnug,

are thus well-defined isomorphisms of complex vector bundles. By (3.16), the collections
{01k }1.xcs and {Vrk } 1 Kk cs satisfy the cocycle condition. The first collection thus determines

a complex line bundle

7 Orix (V) = ( || OR;I(V)>/ ~— X, w(fw, o, O (w)]) = =,

Ics (3.17)
OR;I(V)|UI°(‘|U?< > HIK(U) ~UE OR;K(V)|UIOQUI°< VI,K cS.
The second collection similarly determines a complex vector bundle
m:TrX(—logV)= ( |_| TrU7(—log V)) /~—> X, 7([(z,vr,w) ® (x, (¢i)ier)]) = x,
Ics (3.18)

TRU})(— 10g V)|U}>QU}>< = 19[}{(1)) ~VE TRU}){(— 10g V)lU?ﬁUf{ VI,K C S.
The smooth section sg of the complex line bundle (3.17) given by

sr(z) = [x,vr,Mf(vp)] Vo =Tr(vy) €U, ICS, (3.19)
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satisfies the properties stated in Proposition 1.1 (1). The smooth bundle homomorphism (1.3)
defined by

(o1, 0) ® (6 )ien)) = oy 0 (o, () + i)

iel
Vo =Vr(vy) € U7, I C S, (3.20)
satisfies the properties stated in Theorem 1.2 (1)-(2). By the same reasoning as at the end
of Section 2.2, the bundles (3.17) and (3.18) also satisfy the properties in Proposition 1.1 (2)

and Theorem 1.2 (3). Along with Proposition 1.1(2), Lemma 3.6 below implies the claim of
Proposition 1.1 (3) for SC symplectic divisors.

Lemma 3.6 Suppose V and V' are SC symplectic divisors in a symplectic manifold (X,w) so
that VUV’ C X is also an SC symplectic divisor and V NV’ contains no open subspace of V.

An w-regularization
R = ((pr:i, VI )ier, Wr)1csus

for VUV’ in X as in Definition 3.5(2) determines w-reqularizations R for V in X and R’

for V' in X and an isomorphism
¢’RR’ . (Oﬁ;X(V U V/), iﬁ) — (OR;X(V), if/g) X (OR/;X(VI), iR/) (3.21)

natural with respect to the restrictions to the open subsets of X.

Proof Let V = U;cgVi and V' = U,cq Vi. If R = (R1)rcsus’s then R = (Ry)rcs is an
w-regularization for V in X and R’ = (R;)rcs is an w-regularization for V' in X. By the

assumptions,
Vink = (VUV )k =VinVie, NxViuk = NxVily, . ® NxVilg,,. VICS KcCS"

For I' c 1 C S (resp. I' ¢ I C SUS’), we denote by U;° C X and 6,, (resp. UP C X
and 51/1) the analogues of the open subsets Uy and the transition maps 6 in (3.14) for the
trivialization R’ (resp. R). Thus,

Up=|J Uix YICS and Ug=|JUpx YKCS'
KCS'’ ics
For I ¢ S and K C 9’, define
YRRk 2 O g (VU V) — OR;I(V”(NJ?HK ®c OR’;K(V/”(N];HKa
Yrrrr (@, ook, H(wuk)) = (!E,Q\T’IuK;I(UIuK),HI(Q\T’IuK;I(wluK)))
@ (2,9 1k (Vi ), U (DU 1Lk (wrnk )
By (3.11) for the regularization R,
{011 @V i} o brRiIK = YRR IK © 5(1/uK/)(1|_|K) :
Oﬁ;IUK(V U VI)|(N]?uKml~]IO/uK/ % ORJ,(V”(N]?\JKHFJ;\J;« ®c ORI;KI(VI”(N]?\JKP'(NJ;MK’

forall I' c I ¢ S and K' ¢ K C S’. Along with (3.17), this implies that the collection
{Yrr .1k} induces a well-defined bundle homomorphism (3.21). O
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3.4 Proof of Theorem 1.2(4)

We now establish (1.4) under the assumption that V' is an SC symplectic divisor. The reasoning
in the general case is identical; see the end of Section 4.3. As noted after Theorem 1.2, (1.4)
implies (1.5) if V' is an SC symplectic divisor.

Suppose X is a smooth manifold, V' C X is a submanifold, and ¥ : E — F is a homomor-
phism of complex vector bundles over X that vanishes on a complex subbundle L’ C E|y. The
restriction of 1 to an extension of L’ to a complex subbundle L of E over a neighborhood U
of V' C X then determines a section ¥ of the complex vector bundle L* ®¢ F over U that
vanishes on V' and well-defined derivative bundle homomorphisms

Dytrs - NXV|90 - L;c* ®c (COk%) and Dz : NXV|a: R le — cok )y (322)
for each x € V; these homomorphisms do not depend on the extension of L’. Lemma 3.7 below,
proved at the end of this section, is the key topological input we use to establish (1.4).

Lemma 3.7 Suppose X is a smooth manifold, V C X is a closed submanifold of codimension 2
with a complex structure on NxY, ¥ : E — F is a homomorphism of complex vector bundles

over X, and L — X 1is a complex vector bundle so that
Ly =ker(y: Elv — Flv) C E|v.
If ¢ is an isomorphism over X — V, the first homomorphism in (3.22) with L' = Ly is C-
linear for every x € V, and the second homomorphism (3.22) is surjective, then there exists an
isomorphism
YV E®Ox(V)®@cL —FalL (3.23)

of complex vector bundles over X.
Lemma 3.8 LetV and V' =J,cq Vi, ﬁ, and R be as in Lemma 3.6. There exists a unique
vector bundle homomorphism

i i T X(=log(VUV')) — TrX(—logV) (3.24)
s0 that 1z = g 0 Lyp5. For every K C S,
(1) the kernel of vy over Vi is a trivial subbundle Ll ~ V& x CK;

(2) the cokernel of vy over Vi is canonically isomorphic to Nx Vie;

(3) the composition of the above isomorphism with the first homomorphism in (3.22) with
Y =1p5 and L' = LY,

Dm(LRﬁ_)L’K

NXVI/(O|I

(L/K); ®c (COk LR'fz)z i (L/K):: Sc NXVI/(O|ra

is C-linear with respect to the complex structures on its domain and target determined by

the regularization R for every x € VJ&;
(4) the second homomorphism in (3.22) with 1 = 155 and L' = LY,
Dy (itgi)ry  NxVE e ®r Lic|le — (cokigs)e

is surjective for every x € V2.
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Suppose J is an almost complex structure on X compatible with R (and thus with R). Since
L7 = LR O L5 and the homomorphisms ¢z and tx are C-linear isomorphisms over X —V U V',
the homomorphism (3.24) is C-linear with respect to the complex structures 172’ ; on the domain
and ig,; on the target. The isomorphism in Lemma 3.8 (2) is C-linear with respect to the
complex structures on its target and domain determined by R. If V' C X is a smooth symplectic
divisor, the bundle homomorphism ¢ = 1,5 thus satisfies the conditions of Lemma 3.7 with V'
replaced by V' and L = X x C. The conclusion of this lemma is the claim of (1.4).

Proof of Lemma 3.8 We continue with the notation in the proof of Lemma 3.6 and denote
by Jp/1 the analogues of the transition maps ¥/ in (3.15) for the regularization R.ForIC S
and K C 9, define

lRR;IK - T Ui (= log(V U V")) — TrUF(~ log Vg,
L’R’]NQ;IK((x7 VIUK, U)) D (ZE? (Ci)iEILIK))

= <33, DU g1 (LK), orige.r Uik <hv(IuK)quK(’w) + Z Civi)) ® (x, (¢i)ier)-
ieK

y (3.11) for the regularization R,

19[/] o L'Rﬁ;[}{ = LR']%;I’K’ o 19(1’HK’)(I|_IK) : Tﬁﬁ})uK(— 10g(V U V/))|U°

— TrUL (= log V)|l7}’u;<ﬂ~}’

U TOK!

I’uK’

forall I’ c I Cc Sand K/ C K C 5. Along with (3.18), this implies that the collection
{trm.1x} induces a well-defined bundle homomorphism (3.24).

It is immediate from the definitions and (3.11) for the regularization R that Lz = LR O Ly
Ifrcs, Kc S/, and z € VK n UI|_|K with xz = \I'IUK(UIuK;K) = \I’I('Ull_lK;K), then

ker(tpz. i )e = {(@, 010Kk, 0)} @® ({2} % {0} x CF).
The homomorphism
TrU; (—log V)|V;’<W7?ux — NXVI?'Vkﬁﬁ?uK
(JZ, VILK;K ’LU) S2) (33, (Ci)ieIuK) i dvIuK§K\I’I(h'V(I);’U[uK;K (w)) -+ TIVII(O,

induces an isomorphism cok (7% )z — NxV/2|;. The composition of this isomorphism with the
second homomorphism in (3.22) with ¢ = 1% and L' = L’ is given by

Dz(‘nﬁ)L%((wi)ieK b2 ( C’L 1€K Z C;W; .
i€EK

In particular, this homomorphism is surjective, as claimed. |

Proof of Lemma 3.7 Let ¥ : N/ — X be a regularization for V in X as in Definition 2.1 and
U=9YN"). Let Ox(V) — X be the complex line bundle (2.5) and E’ C E|y be a complex
subbundle complementary to L|y. Extend E’ to a subbundle of E|y, which we still denote
by E’. By the assumptions of the lemma, 1 is injective on E’ and ¢(E’) C F|y is a complex
subbundle. Let Q C F|y be a complex subbundle complementary to ¥ (E’). After shrinking N’
if necessary, we can extend the identification of L|y with a subbundle of E|y to an identification
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of L|y with a subbundle of E|y so that ¢)(L|y) C Q. Since ¢ vanishes on L|y, the derivative
of the associated section of L*|y ®¢ @ induces a homomorphism

DYy : NxV — L*|y ®@c Qly C (L* ®&c F)|v

of real vector bundles over V. By the assumptions on (3.22) with L’ = L|y, this homomorphism
is C-linear and induces an isomorphism

Dy, : NxV @c Lly — Qlv C Flv

of an isomorphism of complex vector bundles over V. Using parallel transport, we identify L|y
and Q with the vector bundles {U~1}*7*L and {¥U~1}*7*Q, respectively.
Choose a smooth function 5 : X — [0,1] such that 5 = 1 on a neighborhood U’ C U of V
and supp 8 C U. We define (3.23) over X —suppS C X —V and on E|y = E' ® (L|y) by
Yle,w) = (Y(e),w) V(e,w) € (E®Ox(V)®c L)|x—supps = (£ S L)|x—supp s
(e +€",0) = (p(e) + ("), —B(x)e") Ve € E., ¢" € Ly, xcU.

We extend this definition to (Ox (V) ®c L)|v by
)

D (0, (2, v,w)) = (2,v, (Bx) Db (v © w), (1 = Bx))w)) € {T'}*7*(Q& L)
Y(z,v,w) € (Ox (V) ®c L)jy—v = {¥ ™" }"7"Lly_v,
V(0 (z,v,w)) = (z,v, (Bx)Dyr (w),0)) € {¥}7"(Q & L)
V(z,v,w) € (Ox (V) @c L)y = {1} 7" (NxV @ L)|v.
The bundle homomorphism {E is well-defined and smooth. It remains to verify that the homo-

morphism

V: (L O0x(V)®c L)y — Q& (Llv) (3.25)
is injective over supp 3 C U if supp 3 is sufficiently small.
Over U’, the homomorphism (3.25) is given by
¢ AU V(L e NxV @ L)y — {8 V7 (Q @ L),
Y, v, ("0 @ w)) = (W, v,€"),0) + (w,v, (DY (v @ w), —¢")),
and is thus injective. Over supp3 —V C U — V, (3.25) is given by
7;[; : “Ijil}*ﬂ* (L ® L)|supp g—v — {@71}*W* (Qe® L),
P(@,0, (" w) = (Y(x,v,€"),0) + (z,v, (B(x) DYr (v ® w), —B(x)e” + (1 = B(z))w)).

Choose norms on L|y and Q. Let C: V — Rt and ¢ : (U,V) — (R,0) be smooth functions
such that

C(m(v)) DL (v @ w)| = |vf[w],
(¥ (v), v, w) = (¥(v), v, DY (v @ w))| < e(v)l[v]|w],
If (z,v,(¢",w)) with x = U(v) € supp 8 — V lies in the kernel of (3.26), then
Blx)e” = (1= p(x))w, Dyr(ve (B)w + ")) = Dyr(v@e”) — Pz, v,¢"),
lIB(@)w + €| < C(r(v)) D (v @ (Blx)w + €”))] < C(m(v))e(v)][v]le”].

(3.26)

V(v,w) € N' & Lly.
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If C(m(v))e(v) < 1, this implies that ¢”,w = 0. Thus, the homomorphism (3.25) is injective
everywhere over U if the support of 3 is sufficiently small. We conclude that 1 is an isomorphism

everywhere over X. O

4 NC Symplectic Divisors: Local Perspective

Arbitrary normal crossings (or NC) divisors are spaces that are locally SC divisors. This local
perspective, reviewed below, makes it straightforward to define NC divisors and regulariza-
tions for them. It is also readily applicable to local statements, such as Theorem 1.2 (4) and
Lemma 1.3.

For a set S, denote by P(S) the collection of subsets of S. If in addition i € S, let

Pi(S)={I€P(S):ieS}
4.1 Definitions
We begin by extending the definitions of Section 3.1 to the general NC setting.
Definition 4.1 Let (X,w) be a symplectic manifold. A subspace V.C X is an NC symplectic

divisor in (X,w) if for every x € X there exist an open neighborhood U of x in X and a finite
transverse collection {V;}ics of closed submanifolds of U of codimension 2 such that
vnu = Jv
€S

is an SC symplectic divisor in (U,wl|y).

Every NC divisor V' C X is a closed subspace; its singular locus V5 C V consists of the
points z € V such that there exists a chart (U, {V;}ics) as in Definition 4.1 and I C S with
|I| =2 and = € V. Figure 1 shows an NC divisor V, a chart around a singular point of V', and

a chart around a smooth point of V.

Figure 1 A non-SC normal crossings divisor

For each chart (U, {V;}ics) as in Definition 4.1 and each z € U, let
S,={ieS:zeV;}
The cardinality |z| = |S,| is independent of the choice of a chart around . For each r € Z=°,

let
VO ={reX:|z|>r} (4.1)

If (U',{V/}ies’) is another chart for V in X and z € U NU’, there exist a neighborhood U,
of z in U NU’ and a bijection

hy Sy — S, st VinUy =V, ;NU; Vi€ S,. (4.2)
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We also denote by h, the induced bijection P(S,) — P(S.). By (4.2),
NVI—iVI|VIﬂUz = Ny Dna ) Vf:z(l)|V;{m(1)ﬁUm Viel CS,. (4.3)

hg
We denote by Symp™ (X, V) the space of all symplectic structures w on X such that V is
an NC symplectic divisor in (X, w).
4.2 Regularizations
Suppose V' C X is an NC divisor, (U, {V;}ics) and (U’,{V]}ics/) are charts for V in (X, w),
and

(Ri)ics = ((pr:i, VY )ier, U1)ics and  (Ry)ics = ((PT.40 VI e, W) res

are an w|y-regularization for | J,c4 Vi in U and an w|ys-regularization for (J;cq Vi in U’, re-

spectively. We define
(Ri)res =x (RY)1cs
if for every x € U NU’ there exist U, and h, as in (4.2) such that
(136, VI vinw, = (Phnyancys V'O vy yov, Vie IS, and 44
Wy =¥} on Dom(¥p)|v;nu, NDom(¥,)lv,yno, VI C Sy

Definition 4.2  Let (X,w) be a symplectic manifold, V- C X be an NC symplectic divisor, and
(Uy,{Vysities,)yea be a collection of charts for V in X as in Definition 4.1. An w-regularization
for Vin X (with respect to the atlas A) is a collection

R = (Ry;1)yea,ics, = ((py:r1is \ACLID) P Uy 1)yeaics,

such that (Ry;r)ics, s an w
ye A and

v, -reqularization for V, in U, as in Definition 3.5(2) for each

(Ry;n)ics, =x (Ryr)rcs,  Vy,y' € A. (4.5)

We call an almost complex structure J on X compatible with a regularization R as in
Definition 4.2 if J|y, is compatible with the regularization (Ry.r)ye4,1cs, for V, in U, for each
y € A as defined at the end of Section 3.2. In particular, every open stratum V() —V{+1) is an
almost complex submanifold of X with respect to an R-compatible almost complex structure
on X.

There are natural notions of equivalence classes of regularizations on the level of germs and
families of such equivalence classes; see [14, Section 4.1]. We denote by Aux(X, V) the space
of pairs (w,R) consisting of w € Symp™* (X, V) and the equivalence class of an w-compatible
regularization R for V in X. Let AK(X,V) be the space of triples (w,R,J) consisting of
(w,R) € Aux(X,V) and an almost complex structure J on X compatible with w and R. By
[15, Theorem 4.5], the map (2.7) is again a weak homotopy equivalence in the present setting.
It remains straightforward to show that the map (2.8) is also a weak homotopy equivalence in

the present setting.

4.3 Constructions

In this section, we extend the constructions of Section 3.3 to arbitrary NC divisors in the local
perspective. We then note that the proof of Theorem 1.2 (4) in Section 3.4 readily extends to
the general NC case.
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Suppose V is an NC symplectic divisor in a symplectic manifold (X,w), (Uy, {Vyi}ies, )yea
is a collection of charts for V' in X as in Definition 4.1, and R = (Ry)yec.4 is an w-regularization
with respect to the atlas A in the sense of Definition 4.2. For y € A and I' C I C Sy, let
‘/y =Vn Uy, U;;I C Uy be as in (312), Qy/;p[ = 91/[ be as in (314), and ﬁy/;]/] = 19[/[ be as
in (3.15). Let

my i Oy, (Vy) — Uy and my - T, Uy (= logVy) — U,
be the complex line bundle (3.17) and the logarithmic tangent bundle (3.18) determined by the
wly, -regularization R, for the NC divisor V,, for (Uy,w|y,). Let sr;, and
LRy - T’Ry Uy(— log Vy) — TUy
be the associated section of Or v, (V,) and the vector bundle homomorphism (1.3), respec-
tively.
Suppose v,y € A. For z € U, N Uy, let Uyyr., = U, C Uy NU, and

hyryw = he : Syw = Sz — Syria = S
be as in (4.2). By (4.3),

NVyisy:z*iVy;S?ﬁz|Vy?sy;mmUyy’:z = va’;sy,ﬂ h

“hylyia ()

Viss,alVps , o, Vi€ Sya. (46)
We can choose Uy, ., sufficiently small so that

Uyy’;z c U;Sy;m N U;'hg ’ (47)

y'ix

and U, = Uy, satisfies (4.4). By (3.13), (4.7), and (4.6), there are canonical identifications
Gy’y;w : ORy;Sy;m (Vy)|Uyy/;m — ORleyy/;m§Sy;:c (Vy n Uyy’;m) = ORy/;Sy/;m(Vy’”U

yy'sz’?
Vyrya : TR, Uéo‘y;z (—logVy) — TRyluyy,ﬂ Uyysa(—log(Vy N Uyy;z)) (4.8)

U

— TRy’ Ugy’:z (_ log Vyl)lUyy’:m :
Suppose 2’ € Uyy.». By (4.7) and the uniqueness of hyry.q/,
Syar C Sy, Syrer C Syries and hyryior = hyryials, -
Combining these statements with (3.14), (3.15), and (4.4), we obtain

Hy’;Sy/;z/Sy/;m 0 Oyryiw = Oyryar © 91/;5?,.7m15yle :

ORy;»Sy;z(‘/y”U 1o U ot . ORyl;Sy/;m/ (Vy’)

Yy iz yy' iz

Uyt Uyt

yy iz yy' iz

Vys,, 1 Syrie © Dyryse = Vyryar 0 Vy;s

yix

Tr,Us,, (=logVy)lo,, v, .. — Tr,Us,  (=10gVy)lu,, .00,

yy' iz yy' iz yy' iz yy' iz

1Sy :

Y

Along with (3.17) and (3.18), this implies that the collections {Hy/y;w}gCeUmey, and {ﬁy/y;aj}ggeUmey,
determine bundle isomorphisms

eyly : ORy§Uy (Vy)|UyﬁUy/ I ORy/;Uy/ (Vy’)|UyﬂUym (4 9)
ﬂyly : TRy Uy(_ log Vy)|UyﬂUy/ — TRy/ Uy’ (_ 1Og Vy’)|UyﬁUy/ )

respectively.
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Suppose y” € A is another element and z € U, N U, NUy». Let
Uyyryie = Uyyrie VUyyra O Uyryre.
By the uniqueness of hyry.z,
hytyw = hyryria © hyrya = Sye — Syrie.
This implies that the identifications (4.8) satisfy

ey”y;w = Gy”y’;w o Gy’y;a: : ORy;Sy;z (%)'Uyy/yu:z ” ORy//;Sy//:z (‘/y,,)|Uyy’y”;m’

— . o o
ﬁy”y;w = ﬁy”y’;aj o ﬁy/y;aj : TRy USy;n: (— log Vy)|Uyy’y”;m i TRy USy”:z (— IOg V-y”)|Uyyly”:z .

Thus, the collections {6yy}yrea and {9y }y rca satisfy the cocycle condition. The first
collection thus determines a complex line bundle

T OR,X(V) = ( |_| ORmUy(‘/y))/ ~— X, 7T|O’Ry;Uy(Vy) = Ty,

y€A (4.10)
ORy;Uy(Vy”UyﬁUy/ S v~ byy(v) € ORy/;Uy/ (Vy’)|UyﬁUy/ vy, y' € A
The second collection similarly determines a vector bundle
[ TRX(_ IOgV) = ( |_| TRyUy(_ 10gvy)>/ ~ X? 7T|TRyUy(*10gVy) = Ty,
yEA (4.11)

Tr,Uy(—logVy)lu,nu,, D v~ yy(v) € Tr,, Uy (—logVy)
By (3.19), (3.20), and (4.4),

v,nv,  Vy,y € A

Oyry 0 sRyy = SRy : Uy NUy — Or 0, (Vy) UynU,s»

IRy = LRy © Vyry : TR, Uy(=1log Vy)|v,nv,, — TX|u,nu,, -
The collections {sr;,}yeca and {tr,y}yeca thus determine a section sz of the line bundle (4.10)
and a bundle homomorphism ¢z as in (1.3). Since the sections sg, and the homomor-
phisms ¢, satisfy the properties of sg and ¢ stated in Proposition 1.1 (1) and Theorem 1.2 (1),
so do the just constructed sections sz and tx.

Suppose J is an R-compatible almost complex structure on X. For each y € A, J, = J|y,
is then an Ry-compatible almost complex structure on U, and determines a complex structure
on the vector bundle

Tr,U7(=1logV,) — Uy

for every I C Sy. Since Jy = Jyr on Uyy,, (4.4) implies that the bundle identification ¥y y.4
in (4.8) is C-linear. Thus, J determines a complex structure ig.s on the vector bundle (4.11)

which restricts to the complex structure i ;s on the vector bundle
Tr,Uy(=1logV,) — U,

for every y € A. Since the bundle homomorphism ¢, is C-linear with respect to the com-
plex structure iz s, on its domain and the complex structure J, on its target, we obtain
Theorem 1.2 (2).

By the same reasoning as at the end of Section 2.2, the bundles (4.10) and (4.11) also satisty
the properties in Proposition 1.1 (2) and Theorem 1.2 (3).
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Suppose V' is another NC symplectic divisor in (X,w) so that VUV’ C X is also an NC
symplectic divisor and VNV’ contains no open subspace of V. An atlas for VUV’ in X is a col-
lection of the form (Uy, {Vy;i}iesyuS;)yeA so that (Uy, {Vy;i}jesy)yﬁf\ and (Uy, {Vy;i}ies;)yeA
are atlases for V and V’, respectively. An w-regularization R = (Ry)yeca for such an atlas for
V UV’ restricts to w-regularizations

R=(Ry)yea and R'= (R;)yeA

v,-regularization ﬁy for (VUV)NT,
v,-regularizations R, for VN U, in U, and R}, for V' NU,. We denote
by 0,,, and ¥, (vesp., 0, and ﬁg’y) the analogues of the transition maps 6, and ¥/, in (4.9)

for the associated atlases for V and V' so that the w

in U, restricts to the w

for the regularization R’ (resp., R). For each y € A, let
VR, (Of, 0, (Ve UV, iz ) — (Or,u,(Vy),ir,) @ (Oryu, (V) i),
LR, Ry Tﬁy Uy(—log(V, U Vy/)) — TRyX(— log V)

be the bundle isomorphism (3.21) and the bundle homomorphism (3.24) determined by the
regularization ﬁy

Since the maps (3.21) and (3.24) are natural with respect to the restrictions to open subsets,
{oy’y X %,y} o ¢'Ry73; = wRy/R;, o Hy/y :

Oﬁy;Uy (Vyu Vy/)|Umey, — Or,u,, (Vy/)|Umey/ ® OR;,;Uy/ (Vy’/)|Umey,,

Vyyolp,z, =tr, &, ° yry : T, Uy(=log(Vy UV)))|v,n0, — Tr,, Uy (=log Vy)lv,nv, -

The collection {¢)z,®; }yc.a thus determines an isomorphism
Urr (O x(VUV'),iz) — (Orx(V),ir) ® (Orix(V'),ir)
of complex line bundles over X. In light of Proposition 1.1(2), this establishes Proposi-

tion 1.1(3).

The collection {LRyﬁy }yea similarly determines a homomorphism
s i T X (—log(VUV')) — TrX(—logV)

of vector bundles over X. By the properties of the homomorphisms 1,5 = IR, R, stated in
Lemma 3.8, this homomorphism satisfies the same properties with K C S’, V/2, and Vj¢ x CK
replaced by r € 220, V/(") —y'("+1) "and some rank r complex vector bundle over V(") —/(r+1)
respectively. By the same reasoning as in the paragraph after Lemma 3.8, ¢, % is C-linear with
respect to the complex structures iﬁ’ ; on its domain and ig s on its target determined by
an ﬁ—compatible almost complex structure J on X. Furthermore, the C-linear homomorphism
¥ = 1,5 satisfies the conditions of Lemma 3.7 if V is smooth (in which case V') — V() = V7).
In light of Theorem 1.2 (3), this establishes Theorem 1.2 (4).

5 Almost Complex and Symplectic Blowups

Let X be a smooth manifold and V' C X be an NC smooth divisor, i.e., a subspace admitting
a collection (Uy, {Vi}ics,)yea of charts as in Definition 4.1 with each V,;; C V N U, being a
smooth submanifold of U, of real codimension 2. We fix such a collection. Let r € Z* be such
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that V"t = (). We also fix a Hermitian regularization

R = (Ry)yea = ((pyrit, VYT )icr, Uyt )yeascs, (5.1)

for V in X, i.e., a tuple satisfying the conditions of Definitions 3.5(2) and 4.2 that do not
involve the symplectic form w.

By shrinking the open sets U,, we may assume that |S,| <r for all y € A, Im(V¥,.s,) = U,
if y € A with |S,| =,

Im(\I/y._,Sy)ﬂIm(\I'y/;Sy, ) C \I’y;gy (Dom(\l’y-_’gy)

Vy;sy ﬁVy/;Sy, )U\ij"-,sy/ (Dom(\l’y/?sy’) V?J?Sy ﬂVy’:Sy/ )’

and there exists an open neighborhood U’ of V(") € X so that U’ N Uy =0 for all y € A with
|Sy/| < 7. Let

A ={ye A:|Sy|=r}, A=A-A)U{(y,i):ye€ A, i €Sy}
5.1 Smooth Complex Blowup
Since VUt = ¢, V(") ¢ X is a smooth submanifold. Let

T Nx V0 — v () (5.2)

be its normal bundle. By (4.5), the Hermitian metrics py;s,;; and the connections V¥ in
the complex line bundles Ny, ; Vs, with y € A, and i € S, determine a complex structure,
a Hermitian metric p,, and a compatible connection V(") on Nx V(). Furthermore, the map

U, N/ = | ) Dom(¥ys,) — X, Up(v) = Uy, (v) Vo€ Dom(¥ygs,),y €A, (5.3)
yeEA,
is a well-defined regularization for V(") in X in the sense of Definition 2.1. We note that the
complex vector bundle Nx V(") does not necessarily split as a sum of complex line bundles.
We denote by E = P(Nx V(")) the complex projectivization of Nx V(") and by
To:v={l,v) EExNxV" :vet} —E (5.4)
the complex tautological line bundle. Let
T E— VD, x)=m.(v) if ((,v) €, (5.5)
be the bundle projection. The connection V() and the Hermitian metric pr on N V) deter-
mine a splitting
T(NXV(T))|NXV(T>_V(T) ~ W:TV(T)|NXV(T)_V(T) D {(’U, w) S W:Nxv(r) |N’XV(T)_V(T) W e (C’U}
& {(v,w) € TTNxV vy : pp(v,w) = 0} (5.6)
of the vector bundle T(NxV™)|\ o)y so that the middle summand above is identified
with the tangent bundle to the orbits of the C*-action on N'x V(") and the last summand is
its complement in the vertical tangent bundle of 7, restricted to NxV () — V(). By [38,
Lemma 1.1], the above splitting is C*-invariant. It thus induces a splitting
TE ~ 7*TV") @ (ker dr) (5.7)

so that the last summand above corresponds to the vertical tangent subbundle of 7w and a com-

plex structure on the last summand.
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Since v C ©*NxV (), the Hermitian metric p, and the compatible connection V(") on
Nx V) determine a Hermitian structure (3o, V(®)) on the complex line bundle ~ and a splitting
T~ ~7mTE & 75y (5.8)
so that the last summand above corresponds to the vertical tangent bundle of 7y. The composi-
tion of this splitting with the splitting (5.7) restricts to the splitting (5.6) under the identification
(v = E,moToly—5) = Nx V" =V m |y vorven),  (6,0) — v (5.9)

We define the smooth complex blowup 7 : X > Xof X along V(") with respect to ¥, by
V) ={(tw)ev:veN}, X=(X-VYUNY/~, Nj)—E>3 (l,v)~VU.(v) e X -V,

z, ifzeX -V,

m([2]) = U, (v), ifF=(v)eN.

The exceptional divisor E is a codimension 2 submanifold of X with a smooth regularization
o : Ny — X, Ty(v) = [v].
5.2 Almost Complex Blowup

Suppose now that J is an almost complex structure on X, V C X is an NC almost complex
divisor, each Vy;;; C V N Uy is an almost complex submanifold of (Uy, J|v,) of real codimension 2,
and the almost complex structure J on X is R-compatible in the sense defined at the end of
Section 4.2. The smooth submanifold V(") ¢ X is then almost complex. The induced complex
structure on its normal bundle agrees with the fiberwise complex structure determined by the
complex line bundles Ny, . Vy.s, with y € A, and i € Sy.

Along with the fiberwise complex structure and the connection V(") on NxV() J Iy

determines a complex structure Jg, on the total space of Nx V() such that
Jo d\I/T = d\I/T O J’R,r|j\/’; (510)

Along with the splitting (5.7), J|y«» determines an almost complex structure Jg on E so
that the bundle projection (5.5) is (., Jg)-holomorphic. Along with the splitting (5.8), Jg in
turn determines an almost complex structure jR;O on the total space of 7. By the sentence
containing (5.9), the restrictions of the almost complex structures Jr,o to v — E and Jr.,
to Nx V") — V(") agree under the identification (5.9). Furthermore, the projection

Ty iy — Nx V()

to the second component in (5.4) is (Jg.», Jr:0)-holomorphic.

We define an almost complex structure .J on the blowup X of X constructed in Section 5.1 by
~ J5 ifzeX -V,

Ja =9 ~ U,
JR;0|5, if z E./\/O.

By the conclusion of the previous paragraph and (5.10), the definitions of J agree on J\~/é —E.
The exceptional divisor E is an almost complex submanifold of ()N( , J ). The almost complex

structure J is compatible with the Hermitian regularization (po, v, \T!O) for Ein X.
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Let V C X be the proper transform of V, i.e., the closure of V — V() and
V=EUV.
We show below that V is an NC almost complex divisor in ()Z' ,J) ) with a collection

(Uya {Vy;i}iegy)yej

of charts and a regularization

R = (Ry'-,])ye,;l,fcgy = ((5@/;1'»1" V(y;l;i))ie"a \I’yé")ye;&jcg’y (511)

obtained from the atlas (U, {Vy;i}ies, )yca and the regularization R for V' in X. If y € A—A,,
then
U, cX -V =X_E

In this case, we simply take
Sy =Sy, (U, {Vy;i}iegy) = (Uy, {Vysi }ies, ) (ﬁy;f)fcgy = (Ryr)ics,-

Suppose y € A,. Let ﬁ'y = 7 (U,) be the blowup of U, along 174200 U,. Since
Im(V,.s,) = Uy, we can identify U, with Dom(¥,.s, ) via ¥, and U, with 7= 1(U,) c N}

via Wy. For each i € Sy, let V,; C ﬁy be the proper transform of V,,.; and define

g(y,i) = {0}u(Sy—{i}), Nyu = @ NVy:syfiVy;Syv ﬁ(y,i) = ﬁy—’”ﬂ”f\fy:w ‘7(y,i);0 = E—PNy.

jeSy—i
For j € Sy —1, let ‘N/(y,i);j = Vy;j N [j‘(yﬂ,). We note that

Vi = Ny;i N Dom(qu;sy), Vy;i = ’Y|11:>/\[y;,i N ﬁy, and VN ﬁ(yﬂ') = U ‘f}(y,i);j (5.12)
JESy—1

under the above identifications. Since {‘N/(y,i); it is a transverse collection of codimension 2

~ i S jeS .0 ~
almost complex submanifolds of Uy, ;y, VNU(, ;) is an SC almost complex divisor in Uy ;). Thus,
V is an NC almost complex divisor in (X, J) and (U, {Vy:}

for V.

e 51;)@1 i is an atlas of local charts
5.3 Regularizations
Forye A, and I' C I C Sy, let
N;;I;I’ C Ny;l;l’ - NUyVy:,I = @N‘G;I—ivy;l
i€l
be the analogues of the subspaces N7.;, C Np,v C NxVr for the regularization (Uy.s)rcs, of

{NVy;i}ieSy in Uy as defined in Section 3.2. Suppose i € Sy and I C §(y’i). If 0 € I (and so
Viy,iy:r C E), then

)

‘7(yvi);1 }*Ny;smsyfl)'

~ Ve . — ~ *| * ~
NU(y,i> Viwiya = 7|V(;;,i);1 o0 |V(y,i);1 ®c 7Ny, Vy*I*O"’(

= {W|‘7(y,i);1}*Ny;Sy;170 @ (7*|‘7(yz 1 ®c {ﬂ—

y,i); 1

)s
In this case, we define

Uy {(CV v,u@w) € No, Viginr 2 v +u()w € Nj.g } — Ugyy C {mle} " No, Vyss, »

Y,1)
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¥y, (CV 0,0 @ w) = (C + u(@w), v + u(v)w).
Suppose 0 & I. Thus, ‘7(y,¢);0u1 = 17(1,@);101[*3 is a smooth submanifold of 17(1,@);1 with normal
bundle ’y|‘~,( Dot The smooth regularization

Ej(@l,i);m—']%[ : K[(y,i);oul;l = {(& v)EY:vE N;;Sy;l} - ‘f}(y,i);la \Tj(y,i);OI_II;I(& v) = (4,v),

of ‘Zy,i);ouj in ‘Zy,i);j is surjective. Let

Oﬁ;(y,i);l( )= {\IJ (v, z) ourt) {%0|J\7" Py — Vigayr

(y,i);0UI;1

be the analogue of the complex line bundle (2.5) determined by CI}(y,i);ouI;[ and the fiberwise
complex structure of . In this case,

Noo Vwint = Oryapr B @ Noy Vyirly, = Oy (E) @ Nyssyis, -1l -
We define
Uyir: {(@, (CY',v),u) @ w € Nﬁ(y,i) Vigiya v+ u(v)w € Nys,} — Uty.i),
\Tl(y’l 1((z, (CY,v),u) @ w) = (C(v + u(@)w),v + u(v)w).

Since (Vy:1)1cs, is a regularization for {V.;}ies, in Uy, (\I'(yﬁi)ﬂ)lcg'(y Y

{‘N/(yﬂv);j }je§< , in [j‘(yﬂ,). Since the collection (Vy;7)ye4,1c s, satisfies the last condition in (4.4),

is a regularization for

so does the collection ({i’y;j)yej.lcgu.
Let y € A, as before. The Hermitian structures (po, V(@) on ~ and (py.r.;, V@9)

. ﬁ((y’l)7l1])) on the

on Ny, .;—;Vy.; with j € I C S, determine Hermitian structures (py. ;1,5

complex line bundles
vl - iszOEICg(y,i);
N o Vigiy = V150 O T Noysy Viss, |y, o H0jEIC Syays 57 0;
itwiyer(E) O TNy Vyrly i €T1C 8y, 0¢ 1.
The almost complex structure J| |‘7(y,i);1 and the connection V((¥):1) determine an almost
complex structure Jg ;s on the total space of the normal bundle Nﬁ(y,i) Vigiysr of Viy iy in Uy -

IfoglIC S’i(y,i), Corollary 2.3 implies that the isomorphism
Nﬁ(y,i) Vv(y’i);ﬂ?/(yyi);f*‘7(y,i);0u1 - NU@ ‘/y;I|V1“17Vy?Sy , u® (’U, w) - u(v)w, (513)

intertwines ij; 1 with the almost complex structure Jz, ; determined by the almost com-
plex structure Jly,, and the connections V¥ with j € I. Since the regularization W,,;
intertwines Jg,.r and J, it follows that the regularization \Tl(y)i); 1 intertwines ij; 1 and J if
0€1C §(y #)- The same is the case for I = {0} by the definition of j|j\7, Since the differen-
tials ’D\Il(y i:l:1—o with 0 € I C S(y 4) are product Hermitian isomorphisms, it follows that they
intertwine the almost complex structures JR .7 and JR .1—o. Thus, the regularlzatlon \I'(y i)l
intertwines JRy .7 and Jforall I C S(y i), while CD\IJ(y #):1;17 intertwines JRy 7 and J’Ryy[/ for all
I'cIcC S(yyl).
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Below we define smooth functions f(, iy, : Viy,i);r — R* so that the metrics

f(y,i);]ﬁ(y,i);[a lf.] S I, .] 7é O;

P (5.14)
(1/ eyt Pigiyrs fj=0€1

Ply,iyilij =

on the complex line bundles ./\/‘7( 17(?“‘); 1 are preserved by the isomorphisms ’D(IVJ(y’i); I

. Y1) 0 —3 .
with j € I' C I C S(y,), after shrinking the domain of W, ;).;. The connection
v((y,i);l;j) + f(;}i);[ajf(y,i);f’ 1f.7 € I, .7 7é 0;

vl = )~
v ()i L55) _ f(;,li);jajf(y,i);h ifj=0¢el

(5.15)

on N‘”/(

almost complex structure Jg,.; on Ny,
v (i)l —j

S Viy,i);1 is compatible with ﬁ(y’i)fj' AlongAWith Jlﬁy,i>;1’ it determines the same
Vig.iy:r as V@Di159) (because the two connections
differ by a (1,0)-form). Since the isomorphisms CD\T/(W-);I;I/ preserve the metrics p(y ;).7;; and
the almost complex structures Jg s, it follows that they preserve the connections WAIRRED
as well.

We choose the functions f, ;).; so that
S (@) = fina(x) Vo e ‘7(y,¢);1 N ‘7(y,i’);17 1C §(y,i)7§(y,i’)7 i,i' €Sy, ye Ar, (5.16)
Fwir(®) = Foy @by (0 (@) V2 € Vig iy OVigrn ()i (1)

i €Sy, y.y €A, (5.17)

with hyy.. as above (4.6). For I # 0, we choose f(, ;).; so that the isomorphism (5.13) identifies

the restriction of py.ir;j to Ny Vigayuly,, .., —u.

r

, with the restriction of the metric py;r.;
to My, Vyurlv,,,—v:. Along with the assumption on Uy, this implies that the resulting collec-
tion R in (5.11) satisfies the first condition in (4.4).

Lemma 5.1 Letr € Z*. There exist a smooth function h : P'=! — Rt and § € Rt such that

(1) h is invariant under the permutations of the homogeneous coordinates on P"~1 and under

the standard (S1)"-action on P~ 1;

(2) forallse[r], [Z1,...,Z)€e Pt and [Zy, ..., Z )€ Pt with Y1 1 | Zi* <8300 | Zi)?,

W, %) |ZP e+t |4
W(Z1,. . Z5,0,-.,0)  |Zi2+ -+ | Z52

(5.18)

This lemma is established in Section 5.6. Let b : P*~! — Rt and § € RT be as in Lemma 5.1.
Define

Wyr = {[(Ui)ieSy] € IED/\/’XV(T”Vy;sy 1 Z Py:8,:i (Vi) < 5Zpy;sy;i(”i)} VIC Sy, ye A
i€S,—T iel

We can identify each fiber of (5.2) with C" respecting the splittings and the metrics. This

induces an identification of each fiber of 7 : E — V(") with P"~'. By the invariance properties

of h, the composition of this identification with h is independent of the choice of the former.

Thus, we obtain a smooth function hg : E — R* so that

he([(vi)ies,]) _ pr({(viies,])
he([(vi)ier]) — pr([(vi)ier])

V[('Ui)iesy] e Wy, I C Sy, y€ A, (5.19)
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Forye A, i€ Sy, and I C §(y,i) so that 0 € I, let Uy,.; C U, be an open neighborhood
of Vy;l_o so that Uy,;r NE = Wy.;_¢. We define

fwayr = hely,, .- (5.20)

By (5.19), the restrictions of the differentials ’D\Tl(y’i) rrwith0e I’ CIC S (y,i) tO \I'(y i1 (Uy.r)
preserve the metrics (5.14). By (5.20), the functions f(, ;.7 satisfy (5.16) and (5.17) whenever
0el

Let 3:R — R2% and ¢ : V(") — R+ be smooth functions so that

1, ift<1;

B(t) = and (5.21)
0, ift>2;

U {@iies, € Mlv,s, © pyis,i(v) < 2e(m((vi)ies,)) Vi € Sy} C UL C Up = N.
yeA,
Define
UL = | {widies, € Mlvs, ¢ puss,a(0) < e(m(vi)ies,)) Vi € S,} € UL C AL,
yEA,

Uyt = {(vi)ies, € N]lv,.s, @ Py;s,ii(vi) < (mr((vi)ies,)) Vi € I} VI C Sy, y € A
ﬂy :er|Vy;sy - RZO’ ﬂy((vz 1€S H 6 py Sysd UJ)/E(WT((Ul)zES ))) Yy € A,.
JESy
By the first condition in (4.4), 8, = B, on N/|y,
function

mNAVy’;sU, for all y,y’ € A,. Thus, the

Vyss y

B Nf — R, Bo(v) = By(v) YveN]v,s, yE A,
is well-defined and smooth. It satisfies

Brlur =1, Brlnvi—vr =0, Br((vi)ies,) = Br((vi)ier)
V[(vi)ies,) € Uyr, I C Sy, y € A, (5.22)
Forye A.,i€ Sy, and I C §(y)¢) so that 0 & I, define

Tt (¥ ipouni(v) = By (m2(v)hs(Fo(v) + (1 — Br(m2(v)))fo(v)

(5.23)
Vo € '/\[(vai);OUI;I c 7"7(y,i);0u1.

y (5.19) and the last property in (5.22), the restrictions of the differentials ’D\T/(y’i); 1. with
I’ clc S(y #) such that 0 ¢ I to \I'(y 0 1 (Uy;r N Uy,our) preserve the metrics (5.14). By (5.19)
and the first property in (5 22), the restrictions of the differentials DW, ;.77 with I’ C I C
S(y ;) such that 0 € T to \IJ @, Z) Uy r NU") preserve the metrics (5.14). By (5.23), the func-
tions f(, )7 satisfy (5.16) and (5.17) whenever 0 ¢ I. By the middle property in (5.22), the
isomorphism (5.13) identifies the restriction of p(, ;).r.; to Nv(y . V(y,i);j|‘~,(y’i);17U; with the
restriction of the metric py;r,; to Ny,

1lv, —uv: whenever j #0 ¢ I.
By [14, Lemma 5.8], we can shrink the domains Dom(\I/(y i;1) of il(y i;r with 7 € S, and
IcC S(y i) to open neighborhoods ./\f( T of V(y i1 C Dom(\I!(y #);1) S0 that

Uy;[ﬁUT/,I, if0el;

\Tf ,i;](NHi. )C
R it Uy, if0¢ I
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in ﬁy,i-
Replacing \le;f with \ij§1|N;';1 in (5.11) whenever y € A — A, we obtain an almost complex

and the collection (~ (il is still a regularization for {‘7@,@‘);]‘}

(v,1); 1>1C§<y,i> J€8(y,)

regularization for V in (X, J).
5.4 Proof of Lemma 1.3

The substance of the last claim of Lemma 1.3 is that the canonical identification
T X (—log V)5 g = TrRX(~logV)|x_y (5.24)

extends smoothly to a bundle homomorphism as in (1.8) and that this bundle homomorphism
is an isomorphism. For each y € A,, i € Sy, and I C §(y,i) with 0 € I, we verify this over
the open subspace U(oy’i);[ C J\~/6 defined as in (3.12) via the regularization R constructed in
Section 5.3.

Let y € A, i € Sy, and I C §(y ;) be as above, [v] = [(vi)ies, 1] € ‘Zy,i);j with v; # 0 for
alli € Sy — I, and u € (Cv)* — {0}. Let @ € C* and v' € N;.5,.5, 1 be sufficiently small. Let

h%((y,i);l;o);av : T[v]‘/(y,i);l — Tayy and hV('r);(w : T[v]‘/(y,i);l — Tav(NXV(T))

be the injective homomorphisms determined by the connections V(#-):1:0) and V() as in (2.6).
The isomorphism (5.7) gives

TiVig.iyit = Tr(o) V" @ (Cv)* @c (Co)*,

where (Cv)t C Nys,:1]x(v) is the py-orthogonal complement of Cv. By (5.15) and the sentence
containing (5.9),

M (.i1:1:0) 1 (W, U @ V) = hg) g (w) + u(av)v™ + 0w, u ® v*)(av)
= hge) a0 (W) + a(u(v)vt + 0w, u @ vh)v)
for some 1-form 6 on E. With the notation as in (3.15), we thus obtain
It-0 (Y (av,u® V'), (av,u @ 0), (w,u © v*), (ei)ier)
=y 1-0)s, (Vy:s, (av + u(v)v'), av + u(v)v’, w), (¢i)ies, ),
with ¢; = ¢;([v];w,u @ vt,¢p) € C for i € S, — I defined by

Z civ; = u(v)vt + (B(w,u @ v1) + co)v.
i€Sy—1I
The identification (5.24) thus extends smoothly over [v] as the vector space isomorphism
T E® C! — Ty VW @ €5 @ ¢,
(w, (¢i)icr) — (d[v]ﬂ(w), (ci([v];w, co))ies, 1, (¢ci)ici—o0)-
5.5 Symplectic Setting

Suppose now that w is a symplectic form on (X, V) and R is an w-regularization for V in X in
the sense of Definition 4.2. The smooth submanifold V(") € X is then symplectic. Let w, = @
be the closed 2-form on N'x V(") determined by wl|y ¢y, Q = w|y,, and V(") as in (2.4). Let J
be an R-compatible almost complex structure on X,

(X = (X =VOYUNY/ ~, ) — (X, )
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be the corresponding almost complex blowup with the exceptional divisor E = P(Nx V(")) as in
Section 5.2, and V C X be the proper transform of V. Suppose also that there exists € € (0, 1)
such that

N (2¢) = {v e Nx V" 2 p.(v) < 2¢} € U HUL) c N (5.25)

This is automatically the case if V(") is compact.
The subgroup S! C C* acts on N,.(2¢) x C by

u: Np(26) Xx C — N, (2¢) x C, u-(v,c) = (uv, c/u). (5.26)

This S!-action preserves the submanifolds

Z(e) = {(v,c) € Np(26) x C: pr(v) — | =€} and E. = {(v,0) € Ny(2¢) x C : p,(v) = €}.
We identify E. with the /é-sphere bundle of N'x V(") in the obvious way. Let

2(0) = 2(0/S", E.=E/S". X.=((X - ¥,(N(9) L)/ ~.

Z(€) —Ee 3 [, /pr(v) — ¢ ~ U, (v) € X — T, (No(€)) Yo €N (2) — Ny(e). (5.27)

By the Symplectic Reduction Theorem [6, Theorem 23.1], there is a unique symplectic form wy
on the smooth manifold Z(e) so that

gewrie = (TTwr + mywe)| 50, (5.28)
where g : Z(e) — Z(e) is the quotient projection,
71, o : Ni(2€) X C — N.(2¢),C
are the component projections, and wc is the standard symplectic form on C. Since Viw = w,
on N,(2¢) and the Sl-action (5.26) preserves the 2-form 7iw, + mjwc, (5.28) implies that

the identification (5.27) intertwines w,.. and w. We thus obtain a symplectic form we on X
such that

Welx v, (@) = Ix—w, iy and welz = wre.

It restricts to a symplectic form on E. C X..

The P"!-fiber bundle 7. : E. — V() is canonically identified with 7 : E — V(). This
identification canonically lifts to an identification of the complex line bundle

To: Nx.Ec=E. xg1 C — E/S'=E., (v,¢)~ (uwv,c/u) Y(v,c¢) € Ec x C, u e S,
with the tautological line bundle v C 7*Nx V(") as in (5.4). The differential

dqge - Ee x C = Né(e)Ee - Q:NXGEe
is an isomorphism of complex line bundles. It intertwines the fiberwise symplectic form w¢ with
the fiberwise symplectic form
wE|NX5Ee = wT§E|NX€Ee

on Nx E. induced by w, as below Definition 2.1. Thus, the complex orientation on Nx_ E.
agrees with the orientation induced by the symplectic form we. It is straightforward to see that
the map

\Tle;o :./\76’._’0 ={[v,d € Nx.Ec: |c|> < e} — Z(e) € X, Veo([v,d]) = [V/1+ |c]?/ev,d,

is a well-defined smooth regularization for E, in X..
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Remark 5.2 Via the above identification of the complex line bundles N % E and -y, the
Hermitian metric p, and connection V) on Nx V(") determine a connection VO on N %.E, as
in Section 5.1. The standard Hermitian metric on C determines a Hermitian metric pg on N <. E
compatible with V(© and the fiberwise symplectic form w.| Ng E: The metric py corresponds to
the Hermitian metric e~ '7*p,.|, via the above identification of the complex line bundles N <. E
and . For the record, we show in Section 5.6 that ((po, V@), ¥ o) is an w,-regularization
for E. in X, in the sense of Definition 3.3.

The open subspaces X — \IIT(./\W) of X and X, — E. of X, are canonically identified. Let
V. C X. be the closure of V — U,(N;(¢)) and V. = E. UV.. We now show that V. is an NC
symplectic divisor in (X, w,) with a collection (ﬁy, {‘Zl%i}ieéy)yeﬂ of charts. If y € A— A,,
then

U,c X-v" =X, -E.
In this case, we again take
Sy =5, and (Uy, {Vyitics,) = Uy, {Vyilies,)-
As before, we identify N7 € Nx V") with ¥,.(NV?) € X via ¥,. Let
Nie = N =N () U Z(e) C X,
and Ty : ./\~fr';6 — V() be the projection induced by m,. Suppose y € A,. For each i € Sy,

define §(y’i), Ny, and ‘7(‘7”);0 as at the end of Section 5.2, with E replaced by E., and set

~ ~, o~ _ ~
Uy = Nr;e Vy;sy = ﬂ-r;e (‘/94511)7 Vyl = ’th/\/y;i N UZI

For j € S, —1, let ‘N/(y’i);j = Vy;j N ﬁ(y,i) as before. We again have (5.12), with V replaced by V.

in the last statement. In this case, {‘N/(y,i);j} is a transverse collection of codimension 2

jeg(y,i)
symplectic submanifolds of (U, ;),wr;c) so that their intersection and symplectic orientations
agree. Thus, VoNU(, ;) is an SC symplectic divisor in (U, ;),wr;c) in the sense of Definition 3.1,
Ve ii an NC symplectic divisor in (X, w.), and (U, {Vy;i}iegy)yej is an atlas of local charts
for V..

Let f. : R — R be a smooth function so that

Vet+t2e, ift<e/2

fe£) >0 VEER, fc(t) =

t, if t > 5y/€/4.
The map
Ueo(7) € Z(e), it7 e NI, p(F) < €2/4;
Fei X — Xo, 7e(®) = { U fe pr(f))%@)), if 7 € N, pr(F) > 0;

FeX— U, (N(25¢/16)), if7e X — U, (N, (25¢/16))

is then an orientation-preserving diffeomorphism. It identifies the NC almost complex divisor
V C X with the NC symplectic divisor V. C X.. Thus,

Trwe € Symp™ (X, V).
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Let R be a regularization for V in (X, J) obtained as in Section 5.3 from the regularization R
for V in (X,w) and thus in (X, .J). Repeated applications of [14, Theorem 3.1], starting from
the deepest strata of V N E, provide a smooth family (ttr)re[0,1) of 1-forms on X so that

e Der = Trwe + dpr € Symp™ (X, V) for all 7 € [0, 1];

e 1o =0 and supp u, C N} for all 7 € [0,1];

e a tuple R obtained from R by restricting the domains of the maps \T/y; 7 with y € A—
(A— A,) is an G -regularization for V in X.

The bundle isomorphism (1.8) thus determines a homotopy class of isomorphisms (1.10)
between the log tangent bundles associated with the deformation equivalence classes of w in
Symp™ (X, V) and of 7w, in Symp™ (X, V).

The (deformation equivalence class of the) NC symplectic divisor V C X constructed above
does not depend on the choices of J, f, and €. Since the projection (2.7) is a weak homotopy
equivalence, it does not depend on the choices of the regularization R and w € Symp™ (X, V)
in the given equivalence class if V(") is compact. Thus, if V(") is compact, an NC symplectic

divisor structure [w] on V C X determines an NC symplectic divisor structure [&] on V C X.

5.6 Proofs of Technical Statements

We conclude our discussion of blowups with proofs of the claims of Lemma 5.1 and Remark 5.2.
Proof of Lemma 5.1  Suppose r > 2 and the claim is true with r replaced by » —1. We denote
by S, the group of permutations of the homogeneous coordinates of P"~! and by 7. € S, the
transposition of the last two coordinates. We identify P"~2 with the subspace (Z, = 0) of P" 1.
It is preserved by the subgroup S,_; C S, and by the (S!)"-action on P~ 1.

Let h:P"~2 — Rt and § € Rt be a smooth function and a positive number satisfying the
conditions in the lemma with 7 replaced by » — 1. Let U C P"~! be an open neighborhood
of P"~2 preserved by the subgroup S,_; C S, and by the (S!)"-action so that

Unt(U)c{[Z,....,Z) €P | Zo 1P +|Z. 2 <521+ + | Zr D)} (5.29)
We extend h over U by

~ ~ Z1 >+ + |2
h:U— RT, h([Zl,...,ZT]):h([Zl,...7Zr,1,0])|Z1|12+m+|Z SR

For each permutation g € S, of the homogeneous coordinates of P"~!, define

By g(U) — RY, hy(1Z]) = h(lg™" Z]).
By the invariance assumptions on U and h, ?Lgl = ﬁgz if gflgg €S,-1.
Suppose [Z1,...,Z;] € UN7.(U). By (5.29) and (5.18) with r replaced by r — 1,

he (21, Ze)) = W([Z1,y .oy Zo—oy Zpy Zip—1))
~ Ak D 2 ZTQ 7.2 Zr2
(2. 7o a,0,0)) 2L - +1Zr—f +|2 | 2| 12+ +|2| :
|Z1| +—|—|ZT_2| |Z1| +_|_|ZT_2| +|Zr|

> 2>+ 412 |22+ + 122 5
— (21, Zr,0,0 — W2, ... Z))).
([ 1 2 ])|Z1|2—|—"'+|Zr_2|2 |Z1|2+"'+|Zr_1|2 ([ 1 ])

Thus, En —honUnN 7-(U). Along with the invariance assumptions on U and h, this implies
that hyg, = hg, on g1(U) N g2(U) for all g1, g2 € S,.
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We thus obtain a well-defined smooth function

H:W=]JgU)—RY, H(Z])=hy(2]) VgeS,, [Z]€g(U),
gES,
which is invariant under the S,- and (S')"-actions on P"~! and satisfies the last property in
the lemma for some § € RT. Let 3 : P"! — [1,0] be a smooth function which is invariant
under these two actions, restricts to 1 on a neighborhood of P"~2, and is supported in W. The

smooth function
BH+1—-p3:P~! — R

then has the desired properties for some § € RT. g
Proof of Remark 5.2  Let

~

We = m5(

E.) + dLCNX Ee (wE|NXE )%(O)v

6,0 Nx V) =V L ANV (o) = —=—,  ¢(v) = \/1+ p,(v)
pr(v)

me : Nx V" — Nx VT mo(v) =cv, VeeC.

Pr (U)

The composition of the restriction of \T’e;o to J\Z’;O —E, with the identification in (5.27) is given by

m g0pomy /¢
_

7o —Ee N -V 2o, x v,

It thus remains to show that ¢* (m’:ﬁwr) =mlUec on my . (./\Nfﬁ'._’0 —E) C NxV® -y,
For each v € Nx V(") — V() let

7Tva7T NXV(T |7r0 (v) — ((CU) ((CU) - CU? (C’U)J—
be the p.-orthogonal projections. Let
Tyt To(Nx V) — Nx VOl

be the projection corresponding to the decomposition (5.6) determined by the connection v
As noted below (5.6), this splitting also encodes the decomposition associated with the connec-
tion V(©), By the properties of a connection, the map m, preserves the decomposition (5.6) for
any ¢ € C*; see [38, Lemma 1.1]. Since the connection V(") is compatible with the Hermitian
metric p,, its connection 1-form is purely imaginary in any Hermitian trivialization. It follows
that the maps ¢ and ¢ also preserve the decomposition (5.6); see the proof of [38, Lemma 1.1].
Thus,

Tyome.=meony VcE€C, nyop=¢ony, 7Tyop=pomny. (5.30)
We also note that

Mexly =Cvome and miQ=c*Q VeeR (5.31)

for any vector bundle N and a fiberwise 2-form Q on N.

Since o = ge © M. /¢ © ¢ 0 My /e, Welcw = € 'wrlcy, and (v, B, = Cuyvin on Nx, Ee — E. =
Nx V) — V() the first identity in (5.30) and (5.31) give

~ 1 _
MmeDe = ¢ Mgl (wele.) + 5dicy o, M€ wrlnyver 0 Ty

* * 1 *
= ¢"(mwr) + §dLCNXV(T) (M7 ew)larg v 0Ty 0 T9).
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Thus, it is sufficient to assume that € = 1 and show that
1
O wr = ¢ wy + §dLCNXv<'r) (W|pg v 0y 0 Ty) (5.32)

on Ny V) — (),
By the compatibility of w|yr, v with the Hermitian metric p, determining the projec-
tion m,,
Ky oy (@lneve) = o (@lave om).

We also note that

(6ypyin v 0 60 = i,y (@laievio))

o (1 + pr(v)

pr(v)

Along with the last two identities in (5.30) and

1
CNXVcr)) =Cvevm 09, O (Wngvem) = Wave + p—(v)wb\/wi ° 7Tvl-
s

1
wr = mi(Wlve) + 5di, oy Wivve 0 mv),

the above statements give

. . 1 1
QZS Wy = T, (W|V(r)) + §d<pr(1}) (LCNXv(r)LULN’Xv(r)) ] 7TV>7
. . 1 (14 p.(v)
o wr =1 (wlye) + §d<T(U)(LCNXV(r>W|NXVW) onv |-
This establishes (5.32). O

6 NC Symplectic Divisors: Global Perspective

An NC divisor can also be viewed as the image of a transverse immersion ¢ with certain prop-
erties. Following [15], we review the global analogues of the notions of Sections 4.1 and 4.2 in
Sections 6.1 and 6.2 below. This global perspective leads to a more succinct notion of regular-
izations for NC divisors and fits better with global statements, such as Theorem 1.2 (5). The

local and global perspectives are shown to be equivalent in [15, Lemma 3.5].

6.1 Definition

For a finite set I, denote by S; the symmetric group of permutations of the elements of I.
For k € Z=°, denote by Sy, = S the k-th symmetric group. For k" € [k], there is a natural
subgroup

Sk % S[k]f[k’] C Sg.

We denote its first factor by Sk;r and the second by S, For each o € Sy and ¢ € [k], let
0; € Si—1 be the permutation obtained from the bijection

K] ={i} — K] —{o(@)}, 7— (), (6.1)

by identifying its domain and target with [k — 1] in the order-preserving fashions.
For any map ¢ : V — X and k € Z2, let

VO = {(@,0,...,5) € X x (VE = AW): u(@) = 2 vi € [k]}, (6.2)
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where Ag) C V¥ is the big diagonal (at least two of the coordinates are the same). Define
Lk:‘z(k)—>X, te(x, 01, ..., V) =, (6.3)
vk = Lk(ﬁ(’“)) ={zeX: | z)| >k} (6.4)

For example,
VO VO —x, VOV, VO = (V).

For k', k € Z=° and i € Zt with i, k' < k, define

Te : VE — V) D0, Tk) = (2,00, T ), (6.5)
z“k VR VDT (2,0, ) = (@00 Tt ik D), (6.6)
Zé) :XZ(’“) —V, Zg)(m,vl,...,vk)zﬂi. (6.7)
For example,
Ut = chlf::rlll)c’ o Ozgfi)cﬂ A L A %Zg) A A A

U0 = Lk ‘Z(k) — ‘71(0) =X, no~t: ‘7;(1) ~V — X.
We define an Sg-action on ‘Z(k) by requiring that
DR ACUR R VAL i (6.8)
for all o € Sy, and ¢ € [k]. The diagrams

‘;(1)
‘Z(k) L - %

lzw 7K AR ()

o | D | [ o)
| ~ o4 ~
1z Vb(k—l) - 5 Vb(k—l)

‘Z(k’)
of solid arrows then commute; the entire first diagram commutes if ¢ > k'.
Example 6.1 If V = J,.g Vi is an SC symplectic divisor, then
LV = |_| Vi— X
ics
restricts by the inclusion on each V;, and

PO~ | D,
ICS, |I|=k

where I C I* is the subcollection of tuples with all entries distinct. The action of ¢ € S; on

K(k) is by reordering the element of each tuple in I:

(il, . ,ik) — (ig—l(l), ce ,ia—l(k)).

The maps tx5 : v v i (6.5) are given by

Vi x I3 (x,(in,...,ix) — (x, (i1, ..., i) € Vg x J, where J =T — {ipg1,... i}
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A smooth map ¢ : V — X is an immersion if the differential dy of ¢ at z is injective for all
x € V. This implies that
codim: =dim X —dimV > 0.

Such a map has a well-defined normal bundle,
Nu=0TX/Im(d) — V. (6.10)

If ¢+ is a closed immersion, then the subspace M(k) C X and 175’“) C X x V¥ are closed.

An immersion ¢ : V' — X is transverse if the homomorphism

k k
LXoPTV — PrX, (w (wi)iew) — (w+ds,e(w;))icu,
i=1 i=1
is surjective for all (z,v1,...,0;) € ‘N/L(k) and k € ZT. By the Inverse Function Theorem, in

such a case

e each ‘N/L(k) is a smooth submanifold of X x ‘N/k,

e the maps 7;,—1 in (6.5) and the maps (6.6) are transverse immersions,

e the homeomorphisms o of V™) determined by the elements of Sy as in (6.8) are diffeo-
morphisms.

By the commutativity of the upper and middle triangles in the first diagram in (6.9), the

inclusion of Im(di) into Zg)*Im(dL) and the homomorphism dig_; induce homomorphisms

Ny — "N, ngf)k_l — N, Vi€ [k].
By the Inverse Function Theorem, the resulting homomorphisms

Ny, — @Z(,f)*NL and NZS),C_l — 1N Vi e [K] (6.11)
i€ k]

are isomorphisms. If V is the disjoint union of submanifolds V; C X, they correspond to the
first two isomorphisms in (3.2). For o € Sy, and ¢ € [k], the homomorphisms do and do; of the
second diagram in (6.9) induces an isomorphism

Dio: Nigyy — N (6.12)

covering o.
If o : V — X is any immersion between oriented manifolds of even dimensions, the short

exact sequence of vector bundles
0— TV -2 *TX — Nt — 0 (6.13)

over V induces an orientation on Ae. If in addition ¢ is a transverse immersion, the orientation
on N induced by the orientations of X and V induces an orientation on ANy via the first
isomorphism in (6.11). The orientations of X and N then induce an orientation on v
via the short exact sequence (6.13) with ¢ = ¢ for all k € Z™, which we call the intersection
orientation of ‘Z(k). For k = 1, it agrees with the original orientation of V under the canonical
identification ‘Z(l) ~V.

Suppose (X,w) is a symplectic manifold. If ¢ : V — X is a transverse immersion such that
tjw is a symplectic form on \Z(k) for all k € Z*, then each 17}’“) carries an orientation induced
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by t;w, which we call the w-orientation. By the previous paragraph, the w-orientations of X

(k)

and V also induce intersection orientations on all V, By definition, the intersection and

w-orientations of ‘N/L(l) are the same.

Proposition 6.2 ([15, Proposition 3.6]) Suppose (X,w) is a symplectic manifold and ¢ : V-
X is a transverse immersion of codimension 2. Then, V = L(\~/) is an NC symplectic divisor
in (X,w) in the sense of Definition 4.1 if and only if jw is a symplectic form on ‘N/L(k) for all
k € Z* and the intersection and w-orientations of ‘N/L(k) are the same.

In the global description of an NC divisor V' C X, the singular locus Vy C X is VL(Q).

6.2 Regularizations

Suppose ¢ : V — X is a transverse immersion and k, k&’ € Z=° with k¥’ < k. With the notation
as in (6.2)—(6.7), define

Thh Npshr b = @ -/\@Z)k,l —V® and T Nt = @ ./\/Zg)kfl — V® . (6.14)
i€ [k]—[k'] i€[k’]
By the commutativity of the first diagram in (6.9), the homomorphisms diy_1,» and dig—1
induce homomorphisms

Negt — Nt and NSt — 0 0 Nigr.
; ; k;k k;k

By the Inverse Function Theorem, these homomorphisms are isomorphisms. If V is the disjoint
union of submanifolds V; C X, they correspond to the last isomorphism in (3.2) and the
first identification in (3.6). For each o € Si, the isomorphisms (6.11) and (6.12) induce an

isomorphism

Do = (Dio)ici) : Nk = Niot = @ Lk 1 “gj]gz))l = Niot = Ny (6.15)
i€ (k] 1€[k]

(k)

lifting the action of o on V;*"/. The isomorphism (6.15) permutes the components of the direct

sum so that the subbundles

Nk;k/bale;k/L C ./\/Lk

are invariant under the action of the subgroup Sy x Sy of S, but not under the action of
the full group Sy.

Definition 6.3 A regularization for an immersion ¢ : V — X is a smooth map ¥ : N — X
from a neighborhood of V in Nv such that for every v € ‘7, there exists a meighborhood Uy of
7 in V so that the restriction of ¥ to N'|y. is a diffeomorphism onto its image, U () = 1(7),
and the homomorphism

. X
NbﬂzTgerNL%TgNLﬂTgX% =Nz
Im(dze)

is the identity.

Definition 6.4 A system of regularizations for a transverse immersion i : V — X is a tuple

(Uk)pezz0, where each ¥y, is a reqularization for the immersion vy, such that

Ui (Nkre N Dom(¥)) = V,E) N Im(Wy)  Vk € Z2°, K € [k, (6.16)
Uy = Uy 0 Dolpom(w,) Yk €Z2°, 0 €Sy; (6.17)
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{x e X |0, ()] >k} C Im(¥y1q) Vk € 220 (6.18)

The stratification condition (6.16) replaces the first condition in (3.7) and implies that there
exists a smooth map

Uy : Nipot = Nigrrt N Dom(0,) — V) st (6.19)
T 6.19

s [0 = Thsr s Whlnr 0=t 0 Wisp
see Proposition 1.35 and Theorem 1.32 in [36]. Similarly to (3.9), W, lifts to a (fiberwise)
vector bundle isomorphism

D\I/k;k/ : WZ;I@’N/’@C;I@’HNé;kw — NLk/ |Im(‘1’k;k’)' (620)

This bundle isomorphism preserves the second splitting below in (6.14) and is S, x/-equivariant
and Sj; -invariant. The condition (6.21) below replaces (3.10) in the present setting.
Definition 6.5 A refined regularization for a transverse immersion t : V- Xisa system

(Uk)pezzo of regularizations for v such that

Dom(¥y) C Wl:;k/NIs;k’”Nl:;k/w DV (Dom(¥y,)) = Dom (Vi) (w0 )

(6.21)
Uy = W 0 DWpiks |Dom(wy)
whenever 0 < k' < k.
If (U))pez>o is a refined regularization for a transverse immersion ¢ : V — X, then
N];;k:””’ ﬂz;k”Nkc;k””N,;:k”L C WZ;]C/NICC;]C/”N];_WU
(6.22)

\I’k;k” = \I’k/;k” 0] :D\I’k;k’ |N]: X @\I/k;k// = Q\I’k/;k” (@] ’D\IJk;k/“*

c
nt k;k”Nk§k//L‘N,,c.k//L

whenever 0 < k" < k' < k.
Suppose (X,w) is a symplectic manifold and ¢ : V — X is an immersion so that (*w is a
symplectic form on V. The normal bundle
cTX
Im(de)
of ¢ then inherits a fiberwise symplectic form w|xr, from w. We denote the restriction of wxs,
to a subbundle L C Nt by w|L.

N =

~ (Im(de))” ={w e T, X : v e V, w(w,dge(w')) =0 Vo' € T3V}

Definition 6.6 Suppose (X, w) is a symplectic manifold, ¢ : V — X is an immersion so that

NL:@Ll

el

t*w is a symplectic form on V', and

is a fized splitting into oriented rank 2 subbundles. If w|r, is nondegenerate for every i € I,
then an w-regularization for v is a tuple ((pi, V)icr, ), where (p;, V) is an w

L, -compatible
Hermitian structure on L; for each i € I and V s a regularization for v, such that

U'w = (1'w)(p,, v0),c; [Dom(w)-
Definition 6.7 Suppose (X,w) is a symplectic manifold and ¢ : V — X is a transverse

immersion of codimension 2 so that (;w is a symplectic form on ‘N/L(k) for each k € Z*. A

refined w-regularization for v is a tuple

R = (R )kezzo = ((Pk;i, V(k;i))ie[k]a\yk)kelzﬂ (6.23)
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such that (Vy)pez=>o is a refined reqularization for v, Ry, is an w-regularization for v, with respect
to the splitting (6.15) for every k € Z2°,

(prsi, VED) = {Dio}* (prio sy, VFTD) Yk € 220, 0 €Sy, i € [K], (6.24)

and the induced vector bundle isomorphisms (6.20) are product Hermitian isomorphisms for all
K <k.

An almost complex structure J on X that preserves Im d: determines an almost complex
structure J,.; on V) for every k € Z20, with Jy = J. The maps ¢, tk, gk, Zg;)kqa ZS),
and o from ‘N/L(k) respect these almost complex structures. A refined w-regularization R for ¢

determines a fiberwise complex structure i, on Ay, and a splitting
T(Nuw,) = WZ;OT‘Z(]C) D o Nt

which are preserved by the action of S;. Along with J,.;, they determine an almost com-
plex structure Jg.; on the total space of Ni,. We call an almost complex structure J on X
compatible with an w-regularization R as in (6.23) if

J(Imd) CImde and Jod¥y = dVy o Jrk|pom(w,) Yk € 7>°. (6.25)

Under the correspondence between the local and global perspectives provided by Proposi-
tion 6.2, this notion is the global version of the R-compatibility defined in Section 4.2.

Remark 6.8 Let (¥),ez>0 be a refined regularization for a transverse immersion ¢ : VX
as in Definition 6.5. For k € Z7T, the limit set Im ¥}, — Im ¥}, of U}, is closed and disjoint from
the closed subspace ‘/L(k) of X. There are thus disjoint open neighborhoods W}, of V'L(k) and W,
of the limit set. By [14, Lemma 5.8], we can shrink the domains of ¥y so that Im ¥, C W}
for every k € Z* and the new collection (Vj)ez>o0 is still a refined regularization for .. Each
map Uy, is then closed (in addition to being open).

6.3 Constructions

We now describe the vector bundles
Orx(V)=0g.x(t) — X and TrX(—logV)=TrX(—logt) — X,

the section sg of Og.x(V), and the vector bundle homomorphism tg on Tr X (—1log V) con-
structed in Section 4.3 from the global perspective on NC divisors and regularizations presented
in Sections 6.1 and 6.2. We fix a symplectic manifold (X,w), a normalization ¢ : V — X of an
NC symplectic divisor V' as in Proposition 6.2, and a refined w-regularization R for ¢ in X as
in (6.23). For the purposes of constructing a complex structure on Tr X (— logt), we also fix an
almost complex structure J on X compatible with w and R.

With the notation as in (6.2) and (6.4), the restrictions

\I/k : Dom(\I'k) — Wk = \Ifk(DOm(\I/k)

|‘7L(k)*1m(bk+1;k) |‘7L(k)*1m(bk+1;k))

are not even Sg-covering maps. In other words, there could exist

v,v" € Dom(¥y) st. Up(v) =¥,(v') € X and Do(v) #v Vo € S;

|‘N/L(k)*1m(bk+1;k)
see the left diagram in Figure 2. This makes it difficult to describe a vector bundle on Wy, as

a pushdown of a vector bundle on Dom(Wy) . For this reason, we shrink the last

|‘~/L(k)*1m(bk+1;k)
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space to an Si-invariant open subspace Ny ¢ so that
Wi Nt — Uf = W(Mgo) (6.26)

is an Sg-covering map and the collection {U} }rez>o0 is an open covering of X. Figure 2 illus-

trates this shrinking procedure.

Figure 2 Shrinking regularizations

For k', k € Z=° with k' < k, let mgp : Nyoprt — ‘N/L(k) be as in (6.14). For a continuous
function € : ‘N/L(k) — RT, define

Nigre(€) = {(vi)ietr)—w) € Nigwrt : psi(vi) < €% (mia (v)) Vi € [k] — [K]}.

By Remark 6.8 and the proof of [14, Lemma 5.8], there exists a smooth function ¢ : X — R*
such that

Niot(28e 0 1) € Dom(¥y),  e(Uh(v)) = (i (mr0(v))) Yo € Niot(2¥e 0 1), (6.27)

and V(25 1eo1;) C X is closed for every k € Z2°. If V is compact, ¢ can taken to be a

constant. Define

Ve = gk _ U U0 (Nnt (27 T€ o 17)),
>k (6.28)
Neot = Nigou(2Fe o w)lgm.e, UR = Pr(Ngow).

By (6.17) and (6.18), the restriction (6.26) is an Si-covering map.
For k, k' € 229 with k' < k, let

N]ﬁlol/ = N]:;OL N Q\Ij;i/ (N]:’;OL) and Nk]j;ol/ = @‘Ijk;’k;/ (N]ﬁlol/) = Q\Ijk;k/ (Nﬁ;ol/) n N]:/;OL.

. . . . . . / .
Since the map DV is Sy -equivariant and Sf  -invariant, the subspace ./\f,f;OL - N,f;OL is

Skrr % Si;k,—invariant. The restriction
DUt Nt — N (6.29)
is an Sj,x/-equivariant Si;k/—covering map. By the last equality in (6.22),
DU (Mot NNEG) = NE ot D NE ot DUk (NEge N NEGL) = N gt AN o1,
DU erjorr (N]f/;OL N N’%I:OL) = ./\f,f,,;OL N N]f///;OL,

whenever 0 < k" < k' < k.

(6.30)
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Suppose
{Tw + By — Npgthrezzo  and  {Fpy EklNﬁ'gL — Ly |Nl§,,0b}k,k/ezzﬂ,k/gk

is a collection of Sg-equivariant (complex) vector bundles and a collection of S.;/-equivariant
Sg.p-invariant (smooth) vector bundle maps that lift the covering maps (6.29), restrict to an

isomorphism on each fiber, and satisfy
T T ' " /
Fk;k” |N,§:IOLQN,§:/(;L = Fk/;k” o] Fk;k/ |NI§:/0LQN]?;/[;L Vk S k S k (631)

By (6.30), the composition on the right-hand side above is well-defined. Since the map (6.29)
is an Sg-covering map,
Ek = Ek/Sk — N]S;()L/Sk = U]S

is a vector bundle. The maps ﬁk;k/ induce vector bundle isomorphisms
Frg : Exlvgnue, — Ewlugnue,
covering the identity on Ug N Uy,. By (6.31),

Fk;k“|U,gnU,g,mU;,, = Fprpr 0 Fk;k'|U,§nU;,nU;,,-

We can thus form a vector bundle

W:EE( |_| Ek)/~—>X, m([]) = U (7r(v)) VEk € Z2° v € By,

kez20 (6.32)

Exlugrue, 2 w ~ Fip(w) € Bylugnve, Yk, K € Z2° K < k.
A collection {3} yezz0 of Sg-equivariant sections of the vector bundles Ej such that
Fspr 0 8kl e, = S0 Whpe e, Vo K € 77° K <k, (6.33)
determines a section s on the corresponding vector bundle F in (6.32) so that
s([v]) = [5k(v)] Yk € ZZ° v € Nt

If B — X is a (complex) vector bundle, the Sp-action on N lifts to an action on the
vector bundle
T, o By, = VB — NP

so that E} /Sy, = E'|yre. The covering maps (6.29) lift to Sy -equivariant S, -invariant vector
bundle maps
Frw Bl — By,
that restrict to an isomorphism on each fiber and satisfy (6.31) with F replaced by F’ so that
the corresponding vector bundle (6.32) is canonically identified with E’. A collection
{O1: Bk — Ej}rezzo

of Si-equivariant vector bundle homomorphisms covering the identity on N such that

= s e = >0

Fk;kl (0] (I)klNzilgL = (I)k’ (0] Fk;k’ |Nl§:0L Vk7 kl E Z* 5 ]{Z/ S k7 (634)
determines a vector bundle homomorphism ® : E — E’ covering the identity on X so that

®([w])) = [®x(w)] Vk e Z2°, w € E.
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For every k € Z2°, let

Tt Ork(t =<7Tko®N‘kk 1)’ — Niobs
Nt

ik (6.35)

7~Tk : TR§1€(_ IOg L) = (ﬂ-k;OT‘/L(k)’ )|NI?;0L D (Nko;OL X C[k]) - NI:;OL'

The complex structures i;; on L,f;)kfl encoded in R determine a complex structure on the
complex line bundle Og.;(¢). The almost complex structure J,;; on ‘~/k, induced by J, and
the standard complex structure on C[ determine a complex structure on the vector bun-
dle Tr;x(—logt). The Sy-action on Nt naturally lifts to both bundles.

Let k, k' € 220 with k' < k and

II}, - NLkO_’®Nka 19 Ik ( Uzu’;‘[k ®'Uz

i€ k] i€[k]
We denote by V*) and V*#) the connections on N1y & Ny.ot and NTjpr & Nypet induced by
the connections V*% on the direct summands of these vector bundles. We write an element
v = (V3)iepn) Of Nisot as
v = (Vkkr, Vi) With g = (V)i -] € Nt and v = (0i)ieprr) € Nt

below. Let

hV(k);U : Tﬂk;o(v)‘z(k) - TU(NIC§0L) and hV(’“?k/);Uk;k/ : Tﬁk;k’(vk;k’)‘z(k) vk % (Nk k'L)

be the injective homomorphisms as in (2.6) corresponding to the connections V) and VFE),
By the first equation in (6.28),

vi £0 Vi€ k] = K], (vy)jem € Nior € ED Ny
JElk]
Since DV is a product Hermitian isomorphism, the map
Hk;k, : OR;]Q(L”N,?;/OL — OR;k’ (L)|N:/;OL’ (636)
Osr (0, T (Vs s WEpe ) = (DWytr (0), T (D s (Vg Wi ))),
is a well-defined homomorphism of complex line bundles that lifts the covering map (6.29) and

restricts to an isomorphism on each fiber. The map

Dot + Trog(— log O, — Tran(=logd) |y, o, (6.37)

5]“;]“/((“’ w) ® (U’ (Ci)ie[k])) = (S\Ijk;k/ (U)7 d”k;k' Wik (hv(k=k’>;vk;k/ (w) + Z Ci”i))
[+']

i€k]—
D (Vs (Viskr ) (€ )ie i)

is similarly a well-defined homomorphism of vector bundles that lifts the covering map (6.29)
and restricts to an isomorphism on each fiber. Since J is an R-compatible almost complex
structure on X, this homomorphism is C-linear.

By the commutativity of the diagrams in Figure 2, the bundle homomorphisms (6.36)
and (6.37) are Sg,-equivariant Sf.p-invariant. By (6.22), the collections {5k;k/}k/§k and
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{0 <k satisfy (6.31) with F replaced by 6 and . The first collection thus determines
a complex line bundle

T O’RX ( |_| O’Rk /Sk>/w—>X ﬂ'([w]):\I'k(%k(w)) VkEZZO,wEOR;k(L),

kez=0
[w] ~ [Op (w)] Yk, k' € 220K < k,w e Orak ()l yw .

The second collection similarly determines a complex vector bundle

m: TrX(—logt) = ( || Tra(— logL/Sk>/~—>X

kezz0
m([w]) = U (Fr(w)) Yk € Z2° w € TrRX (—logt),
[w] ~ [O (w)] VK € ZZ0 K < k,w € TrX(—logu)| Ny

The smooth sections
5k Nigot — Orae(t), Sk(v) = (v, Ik (v)),

are Sp-equivariant and satisfy (6.33) with F replaced by 9. They thus determine a section sg

of the complex line bundle Og.x(¢). The smooth bundle homomorphisms

Oy : Tro(—loge) — UITX, By((v,w) @ (v, (ci)iep))) = do s <hV(k);v(w) + Z Civi)
i€ (k]

are Sp-equivariant. By (6.29), these bundle homomorphisms satisfy (6.34) with F replaced
by ¥. They thus determine a vector bundle homomorphism

tr : TrX(—logt) — TX.

6.4 Proof of Theorem 1.2(5)

Let (X,w),VCX,¢: V- X, R, and J be as in Section 6.3. We denote the curvature 2-form
of a connection V on a complex vector bundle £ — Y over a smooth manifold by

FY e T(Y;A*(T*Y) ®g Endc(E)).

For i € Z2°, we define

ci(V) € D(Y; A*(T*Y) @g Endc(E)) and ¢(V) € ér(y; A*(T*Y) ®g Ende(E))
=0

by 1—|—61(V)+CQ(V)+---EC(V)Edetc<l+ iFV).
By [29, p. 206],

[CV(E)] =c(E) € deR @ HdeR (6.38)

We compare ¢(TX) and ¢(TX(—1logV)) = ¢(TX(—logt)) at the level of differential forms,
which can be done locally; see Proposition 6.11. This essentially reduces the computation to
the SC case. The de Rham cohomology version of (1.5), which is equivalent to (1.5) itself,
follows from (6.38), Lemma 6.10, and Proposition 6.11.
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A connection V on a complex line bundle 7w : L — Y determines a horizontal tangent sub-
bundle TL"" C TL and an R-valued angular 1-form ay on L —Y. The latter is characterized by

ker ay = (TLhor OR()|—y and ay <di0eiev‘9_0) =1
By the proof of [38, Lemma 1.1],
day = 1*nv|L—y (6.39)
for some 2-form 7y on Y.

Remark 6.9 If V is compatible with a Hermitian metric p on L, then the connection 1-
form 67 in the proof of Lemma 2.2 is purely imaginary. In the local chart of this proof, the

angular 1-form ay of V is then given by
dz
aV|(y,z) = —17 — T 9%

Thus, ny = —iFV above.

Let 8 : R — R2Y be as in (5.21). For a Hermitian metric p and a smooth function
e:Y — RT, define

Bpe i L — R, B,.(v) = B(2e(n(v))2p(v). (6.40)
By (6.39), the 2-form

1 1 .
Tp;Vie = _%d(ﬁp;aav) = _%(dﬂp;e Nag + Bpem nv)

is well-defined on the entire total space of L. This closed 2-form is compactly supported in the

vertical direction and

1 o0
/ ToiVie =~ (/ d,@p;g) (/ d0> =1 VyevY. (6.41)
T1(y) T\ Jo st

Thus, 7,,v,c represents the Thom class of the complex line bundle 7 : L — Y’; see [5, p. 64].
For each k € ZT, let e, : V¥) — RT be the composition of the function € in (6.28) with ¢.
For each i € [k], let
T Niw & Nigot — Ny,

be the component projection. For k' € Z2°, we denote by T € Q2 (Ny) the k/-th elemen-

tary symmetric polynomial on the set {m};7, . .cwi .o, bick), i€,

-~ * *

Thik' = E (Wk;il Tpriiy ;V(k?il);Qak) ARERNA (ﬂ-k;ik/Tpk:ik/ ;vwk/);ggk)-
il,...,ikle[k]
i1<---<ik/

This 2k’-form on the total space of N, is Si-invariant and closed. The 2k-form

_ * _ * *
Tk = A ThiTor v 00 26, = (T Tpaivtem e ) A A TaTpy 0 00 526,.)

is in addition compactly supported in the vertical direction. By (6.41), it represents the Thom
class of the complex vector bundle 7 : Ny, — K(k).
For an open subset U C X such that
U HU) =Ty U, U---UT, with

~ - ~ 6.42
Uy C N, — Nu(er) and Wy :U; — U a diffeomorphism Vi € [{], (642
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we define ,
VinTewlo = > _{{Tklg, } '} Fer € Q2 (U3 R). (6.43)
=1

Since Ty.;, vanishes on 170, U1 Ti:k |u does not depend on an admissible decomposition of \I',:1 U)
as above. Thus, V. Tr.x|v is well-defined and

(YrsTrske|0) luvnv = YisThok|lvno = (VisTrklur) luno

for all open subsets U, U’ C X with admissible decompositions. By Lemma 6.12 at the end of
this section, such open subsets cover X. We thus obtain a closed 2k-form Wy, 7., on X. If p
is a closed form on X, then

[ wdann=[ Fan@in=[ s (6.44)

X Ny V (k)

the first equality above holds for any differential form g on X. The next straightforward lemma
is also proved at the end of this section.
Lemma 6.10 With the notation as above,

1 i} _
T = E\I'kﬂ'k;k = PDx([VL(k)]X), \Ijka'|N§;o = Tk;k’ |Nz§;o Vk,k‘/ VAR (6.45)

Proposition 6.11 There exist connections V and V' in the complex vector bundles (T X, J)
and (TrX (—logt),ir,s) so that

c(V)=cVY1+7m+m2+-). (6.46)
Proof We construct V and V' using the global perspective of Section 6.3. For k € ZZ° and
i€ [k], let

Breii = Bprisen :Mig;)kfl — R>°

be a smooth function as in (6.40) and

Py.; (/\fzg)k_l — ‘7(’“)) x C — w*/\/zgc_l, PDy.i(v,c) = cv,

L

where 7 : Nzﬁj?k_l — ‘N/L(k) is the bundle projection. We define a connection V'/(*:%) in the trivial
complex line bundle N Zg)kfl x C over N Zg)kfl by

V/(k;i) = 6k,1d + (1 - 6k,1)¢]:177*v(k71)7
the last summand above is well-defined because B;; = 1 in a neighborhood of the zero section
Vb(k) C NZE;.),C_l. We note that

! (k33) (ksi)

FY77 = B F 4 (1= Brg) FO5™ V7 4 d(1 = Br) A (@7, VHED — q)

— 0+ (1= Br)m* FY"" —idBi Aagwn = FY " 42107, Cunie;  (6.47)

the last two equalities follow from Remarks 2.4 and 6.9.
For each k € Z=°, the connections V*%) on the complex line bundles Nzg;)k—l determine a
splitting

k
T(Nw) = w50 TV® & @ miigNi - (6.48)
=1
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Let r € Z*+ be such that V," ™) = . By Definition 6.7, the vector bundle isomorphisms (6.20)
are product Hermitian isomorphisms for all ¥’ < k. Furthermore, € = & 0 ¥p.r. Starting
with a J-compatible connection on TVL(T) and possibly shrinking the domains of the regular-
izations Wy, we can thus inductively construct a connection V on TX so that {d¥;}*V agrees
with the restriction of the connection

k

= * (k) * .3 .

vk = Wk;ovTV" ® @(Wk;ov(k’ )+ (Bpriszen = Borisen )awn)
i=1

on (6.48) to Dom(VUy) for every k € ZT. By Remark 6.9, the curvature of the last sum-
mand V*7) above satisfies

1 Sk i D)
FV * FV ) * )
1 o0 (1 27T7Tk:,0 - Tpk;i;v(’“”’);ek) (1 ﬂk;iTpk;i;V“"”);2ak)

1
- Ed((l - ﬂpk;i;Ek)aV(k?i)) A d(ﬂpk;i;%kav(’“?i));
the term on the last line above vanishes because 3,, .., = 1 onsupp 3,, ,2c, . Along with (6.47),
this gives
k

TV, ") ksi
Vie(V)lnge = 0V ) g [T 0e(V SN (Ut miimy, v az,)) g 0
i=1

—WkOC(V V(k) J\/° L(Hﬂ- V/(kl) >\IJZ(1+7-1_|_7-2+...)|N§:0L; (6.49)

the last equality follows from the second statement of Lemma 6.10.
By (6.24), the connection
k

|N°0L€B@ﬂ—k0vl |N730L
=1

(k) — _x TV
v()zﬁk;ov .

on the complex vector bundle (6.35) is Sg-equivariant. Since e = ej 0 Uy, and DUy is a
product Hermitian isomorphisms, the bundle isomorphisms (6.24) intertwine these connections.
Thus, they determine a connection V’ on the complex vector bundle Tr X (—log¢). Since

k
* < * 7 (k) N y
eV ) vgge = (V') = e (VY avgo [T oV E9),
i=1

the identity (6.46) follows from (6.49). O

Lemma 6.12 Let k € Z". Every point x € X admits a neighborhood U as in (6.42).
Proof Let ¥, '(x) = {w1,...,w,}. For each i € [{], let U; C V") be a neighborhood
of Tx.0(w;) so that the restriction
Uy : Dom(Uy)|ly, — X
is a diffeomorphism onto its image; see Definition 6.3. By Remark 6.8,

W=X — \Ijk(NLk(Ek)|\7fk)7U1U...uU£)

is an open subspace of X. The open neighborhood
‘
U=Wn()¥Dom(¥y)

i=1

Ui)
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of z € X then satisfies the condition in (6.42). O
Proof of Lemma 6.10  Let u be a closed form on X. We show that

/(k) o= / Tie A . (6.50)
v, X

Since 1, : V®) — V(#® ig a kl-covering map outside of a codimension 2 subspace,

a= Ly, QL.
Vb(k) k! Vv (k)

Combining this with (6.44), we obtain (6.50) and establish the first statement in (6.45).
If ¥ > k, the left-hand side of the second identity in (6.45) vanishes because

supp 7 C Wi (Nio(ex/2))  and  Wpr (Nio(er/2)) N W(Ngg) = 0.

The right-hand side of the second identity in (6.45) vanishes by definition in this case.

Suppose k' < k. Let Si.r C Sk be a collection of representatives for the right cosets of
Skikr X S§.ps in Sg preserving the order of the first &' elements. Since (6.26) is an Si-covering
map, every point of Uy has a neighborhood U so that

VU) = || e(W) c MR
o€ESy
for some open subset W C N]:;OL. Since ¥y, = Uy 0 DV and Dy is Si;k/—invariant, (6.18)
implies that
o) = U L] ew(mew)).
WESy s TES s

Since D is Sy,r-equivariant and 7j/,4s is Sys-invariant,

% Z Z {Do}t { DV } {Dw} Thr i = Z {Do} {DW b } T s -

UESk;k/ wESy, O’ESk;k/

\I/ZTk/ =

Since € = € 0 Up.pr and Dy, is a product Hermitian isomorphism, it follows that
Wi = Z {Do}" <,Ej[\k,]7rk*;i7-/)kmv““’”;26k)'
TES ’
Since Do is also a product Hermitian isomorphism, the last expression equals 7y, . |
Remark 6.13 If X and V,¥) are not compact, the above proof of the first identity in (6.45)
goes through if p is compactly supported. If X is not compact, but V'L(k) is compact, then this

identity holds in the compactly de Rham cohomology of X, as well as in the usual de Rham
cohomology of X.

7 On the Sharpness of (1.5) and (1.9)

We conclude by establishing the remaining statement of Corollary 1.4 and showing that (1.9)
does not need to hold in H*(X;Z) for arbitrary NC divisors. The latter implies that (1.5) does
not hold in H*(X;Z) for arbitrary NC divisors either.

Continuing with the notation and setup as in Lemma 1.3, we denote by

T:E— X and To:vy—E
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the inclusion map and the tautological line bundle, respectively. For . € H,(V(); R), we denote
by E|, € H.(E; R) the fiber product of y with 7|g.

Lemma 7.1 If R is a commutative ring with unity,

ker(m, : H*()Z';R) — H.(X;R)) =T, (ker(ﬂ :H,(E;R) — H, (V™ R))) and (7.1)
ker(m, : H.(E; R) — H.(V("); R)) @{c1 "R, s € Heoi(VIR)Y.(7.2)

Proof We omit the coefficient ring R below. Let U C X be an open neighborhood of Y = V()
which deformation retracts onto Y and U C 71 (U). Since E is a deformation retract of U, the
MayerVietoris sequences for X = (X —E)UU and X = (X —Y) U U induce a commutative

diagram

-+ ——H,(U—-E)— H,(X —E)& H,(E) — H,(X) — H,_,(U —E) —

N

s HU-Y)—=H (X -Y)®H(Y) —= H(X) —=H, 1(U~-Y) —>

of exact sequences of R-modules. This gives (7.1).
For every y € Y, the collection {1|g,,c1(V)[g,,---,c1(¥)" " '|g,} is a basis for H*(E,). By
[34, Theorem 5.7.9], the homomorphism

r—1

H.(B) — P He2i(Y), [i— (m(cr(y)' N izo,...r—1),
=0

is thus an isomorphism. This implies (7.2). O
For each k € [r — 1], let

e = 7" (PDx([V®]x)) - PD (V7] ) € H*(X: ).

By Lemma 7.1, there exist nj; € H?k=0)(V(): R) with i € [k] so that

e N [X] = ZT*(Cl(W)Fl N (Ele Avey)) € H.(X;R). (7.3)
i=1
For example,
(P PDx (VO N [X] = Vg +rEly ifr>2 (7.4)

the coefficient 7§, = r above is obtained by intersecting both sides with Z. (¢1(7)" 2 N Ey).
We set

PD(V) =1+PDx([VW]x) + PDx([V@]x) + - € é H*(X;R),
=0

ne=n b0, e @PHPVOSR) Vier—1], nt=1.
k=0

The identity (1.9) is equivalent to

o(TX) I
- mc(TX)(1+PDg([Elg)) ZPDX(L* (1M ™ N (Elyerppvy -1y o))
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+PD 4 (7*PDx (1 (PD(V) "' 0 [V(I]))), (7.5)

where ¢ : V(") — X is the inclusion. Via (7.4), (7.5) in particular gives

a(TX)=r"c1(TX) - (r—1)PDg([E]g) ifr>2; (7.6)
CQ(T}?) =7"ca(TX) = PDg(t((m"cr (TX) 4 2¢1()) N [E]) + 7" (PDx [V(2)]X)
= 2E[pp, (v )nve)) ifr=2. (7.7)

With the dimension of X and the codimension of the blowup locus V() fixed, the left-hand
side of (7.5) must be of the form

r—1
D PD (@ (er(1) ™ N (Elpy ey Wi Vs oes W VDAV ])))
i=1

+ PD ¢ (7" PD x (¢4 (P (c1 NxVO) e (N VD)) N V)

for some universal polynomials P, ..., P, € Z[ci,...,¢]. Since (1.9) holds with Z-coefficients
in the SC case, the right-hand side of (7.5) reduces to the above form in this case. For example,

PDx([VPx) N[V = e (Wx VYN[V € H (VD Z) (7.8)

in the SC case. This also occurs if the branches of V at V(") can be distinguished globally,
i.e., Nx V() splits into r subbundles which restrict to the subbundles Ny, , ,Vy.; with i € I

for every chart (Uy, {Vy.i}ics,) as in Definition 4.1 and every I C S, with |S,| = r.

Since (1.9) holds with Q-coefficients in general, the differences
nEUPD(V) ™! = Pt Wx V), e (Wx V) € H.(VD;Z)
are torsion. If the torsion in H,(E;Z) lies in the kernel 7,, then the torsion in H,(V(");Z) lies
in the kernel ¢,. In such a case,
L(Epenppvy-1nve)) = G(Ep, o, Wx VO),..en Wx VIO DAV E]) € H,(X;2Z),
LPDWV)IN[VD)) = 1o (Pr(cd(Nx V), ey (W V) N VD)) € Ho(X;Z).
This implies that (1.9) holds in H*(X;Z) if the torsion in H,(V(");Z) lies in the kernel ¢,.
We now give an example in which (1.9) does not hold in H*(X;Z). Let ¥ be a compact

connected Riemann surface and z* € ¥. Let S be a K3 surface and ¢ € Aut(S) be a fixed-
point-free involution so that S = S/t is an Enriques surface. Define

J:XE§XE2_)§a J(yvzlsz):(w(y)aZQVZl)a
X=X/, V=5Sx¥x{z}cX.
The image V C X of V under the quotient map q : X — X is an NC divisor in X. Its 2-fold
locus V® ~ § is the image of S x {2*}? under q. Since the 3-fold locus of V is empty, r = 2
in this case. We show below that
L(PDx (VW) N[VP]) =0e Ho(X;Z), aa(NxVP)#£0e HX (V. 7), (7.9)

and the torsion of Ho(V(?);Z) does not vanish under ¢,. This implies that the last term in (7.7)
is not determined by the Chern class of Nx V(?). Thus, (7.8), (7.7), (1.9), and (1.5) do not hold
with Z coeflicients in this case.
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The image of S x {z}2 under ¢ is homologous to V@ for any z € ¥. Since it is disjoint
from V for z #£ z*,

L(PDx (VW] x)n[VE)) = PDx(VW]x)n[VP]x =0.

This confirms the first statement in (7.9).
The normal bundle Nx V® of V(® in X is the quotient of the trivial bundle S x C2 by the
involution
SxC?— 8xC% (y,c1,¢2) — (W), c2,c1).

Thus, NxV® ~ L, & L_, where
Ly={ly,c,£:y€ §, ceC}c Nx V@,

The complex line bundle L, over S is isomorphic to S x C. The flat complex line bundle L_
corresponds to the non-trivial homomorphism

71'1(5) - Zg e Sl.

This confirms the second statement in (7.9).

Let fy : ¥4 — S be a smooth map from a compact Riemann surface representing the unique
torsion element of Hy(S;7Z). Let f_ : ¥_ — S be a smooth map from a compact (unorientable)
surface representing a class in Ha(S; Z2) so that [f1]z, -5 [f-]z, # 0 € Za, where -5 denotes the

Zo-intersection product on S. The involution {[; pulls back to a smooth involution

1;— : Z— = {(xvy) €X_ X 5 : f_(l‘) = Q(y)} x ¥ — Z—a J—(xvyazlsz) = ($,¢(y),22,21).

The map F_ : Z_ = Z_/¢Y_ — X, F_([z,y,21,2)]) = [y, 21, 22], is smooth and determines
an element of Hg(X;Z) so that

t([fi]zs) x [F-lzo = [f+]zs s [[-]2, # 0 € Za.
This confirms the claim just after (7.9).
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