
In-memory Machine Learning using Adaptive

Multivariate Decision Trees and Memristors

Akash Chavan, Pranav Sinha, Sunny Raj

Dept. of Computer Science and Engineering, Oakland University, Rochester, MI, USA

{akashchavan,pranavsinha,raj}@oakland.edu

AbstractÐWe introduce a framework to design in-memory
decision tree machine-learning (ML) circuits using memristor
crossbars. Decision trees (DTs) offer many advantages over neu-
ral networks, such as enhanced energy efficiency, interpretability,
safety, privacy, and speed, along with reduced dependence on
extensive training data. We propose an adaptive multivariate de-
cision tree (AMDT) training algorithm, which constructs decision
trees that incorporate both univariate and multivariate features,
facilitating the creation of higher accuracy and energy-efficient
crossbar designs compared to the state-of-the-art (SOTA). Our
circuits are realized using pure memristor crossbars, requiring
just one memristor per cell and no transistors while employing
sneak-paths for flow-based in-memory computations. In compar-
ison to the SOTA, our approach produces designs that are, on
average, 4% more accurate and require 12.6% lower energy.

Index TermsÐIn-memory computation, memristors, flow-
based computing, decision trees, multivariate decision trees,
energy-efficient hardware.

I. INTRODUCTION

In-memory computing using memristor crossbars provides

solutions for multiple problems with existing computing de-

vices. The von Neumann computing architecture utilized in

almost all mainstream computing devices suffers from a bot-

tleneck between the memory and the compute units, where

the bandwidth between the two units, instead of the CPU

speed, determines the throughput of data-intensive tasks such

as machine learning [1]. Moor’s Law and Dennard Scaling,

which enabled impressive year-over-year improvements in

CMOS devices, has ended, leading to an uncertain future,

necessitating the search for novel computing devices. In-

memory computing using memristors is an attractive solution

for both the memory bottleneck and the device problem.

However, most popular in-memory memristor devices uti-

lize traditional CMOS circuit components, including tran-

sistors, alongside memristors to accelerate computations [2].

Using traditional CMOS circuit elements alongside memristors

dilutes some critical advantages memristor devices enjoy.

Specifically, adding a transistor to a crossbar cell increases

its size and makes it less energy efficient, and the presence of

traditional CMOS elements makes the circuits vulnerable to

radiation degradation [3]. This hybrid approach is necessary

to control the so-called ‘sneak paths’ that affect the final

computed value [4].

Another approach termed ‘flow-based computing’ has been

proposed that utilizes these pathogenic sneak-paths for compu-

tations and provides SOTA energy and space efficiency. Flow-

based memristor crossbar designs have been shown to provide

SOTA energy efficiency for circuits in multiple standard

circuits benchmarks, including RevLib benchmark and for

multiple machine learning tasks [5]±[7]. Flow-based circuits

for machine learning have been created using decision trees as

they are similar to the BDD (Binary Decision Diagram) based

approach for designing general-purpose circuits and provide

a straightforward conversion from ML model to in-memory

flow-based designs.

DTs have many desirable properties that make them suitable

for a variety of tasks. They have lower complexity compared to

neural networks and thus require less energy during inference,

making them ideal for use in energy-constrained environments

such as edge computing and mobile devices [8], [9]. DTs are

less vulnerable to adversarial attacks than neural networks and

can be employed in scenarios prioritizing safety, robustness,

privacy, and security [10], [11]. Furthermore, neural network

outputs are not easy to interpret, while the output generated

by DTs can be explained easily [12]. DTs also find usage

in situations where the speed and lower energy cost have

been used to select one of multiple powerful machine learning

algorithms to run on the input data [8].

However, existing work on creating flow-based circuits

for ML has utilized univariate decision trees and does not

provide an algorithm to create designs of higher accuracy

multivariate decision trees. A tradeoff for this higher accuracy

is in circuit size and energy utilization, where multivariate

nodes in the decision trees require complex designs, leading

to larger circuits and, consequently, higher energy utilization.

In this work, we propose a balancing of the two objectives,

namely creating higher accuracy flow-based designs and, at

the same time, ensuring lower energy utilization. To this end,

we propose an AMDT creation algorithm that intelligently

utilizes both multivariate and univariate decision nodes in the

creation of the trained decision tree. Our AMDT algorithm is

a generalization of univariate and multivariate decision trees

and can potentially produce pure univariate or multivariate

decision trees and thus choose the designs that improve both

the accuracy and the energy efficiency. We make the following

contributions in the paper:

• We propose a generalized adaptive decision tree genera-

tion algorithm that intelligently selects between univari-

ate and multivariate decision tree nodes, improving the

accuracy and efficiency of synthesized crossbar designs.

• We experimentally verify by testing the algorithm on 11

ML datasets that our AMDT circuits on average provide

2
0
2
4
 I

E
E

E
 I

n
te

rn
at

io
n
al

 S
y
m

p
o
si

u
m

 o
n
 C

ir
cu

it
s

an
d
 S

y
st

em
s

(I
S

C
A

S
)

| 9
7
9
-8

-3
5
0
3
-3

0
9
9
-1

/2
4
/$

3
1
.0

0
 ©

2
0
2
4
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/I

S
C

A
S

5
8
7
4
4
.2

0
2
4
.1

0
5
5
7
8
5
2

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 18,2024 at 15:34:34 UTC from IEEE Xplore. Restrictions apply.

more than 4% higher accuracy and utilize 12.6% less

energy compared to the SOTA.

II. RELATED WORK

Numerous decision tree hardware designs in the literature

focus on high throughput and energy efficiency. They achieve

throughput in the range of 108 inferences per second with

energy utilization in nJs per inference [7], [13]. However,

most designs use traditional CMOS circuit elements, including

1T1R cells, 6T2R cells, or conventional CMOS peripheral

circuitry for calculations [14], [15]. Furthermore, these lines of

work do not provide a method to find designs for multivariate

decision trees. In this paper, we present an algorithm for

generating adaptive decision trees that contain both univariate

and multivariate nodes and then create equivalent flow-based

designs for energy-efficient in-memory computations.

A. Decision Tree

Traditionally, DTs are constructed using univariate nodes,

where each internal node tests the value of a single feature

to partition the data into two distinct subsets. Due to the

simplicity of their decision nodes, existing work for energy-

efficient ML hardware has focused on univariate models [14],

[15]. For instance, Sinha and Raj [7] use the CART algorithm

to produce univariate decision trees. Subsequently, the tree is

converted into a Binary Classification Graph (BCG), which is

then further processed to create the flow-based crossbar design.

Due to univariate nodes in the decision tree, the resultant

crossbar design leaves some accuracy gains on the table.

Multivariate decision trees are designed to capture com-

plex interactions between multiple features, thereby poten-

tially improving predictive performance over simple univariate

DTs [16] and require complex circuitry for implementation.

The flexibility of multivariate decision trees is a significant

advantage, as they are not confined to the restriction that

each splitting hyperplane must be orthogonal to an attribute’s

axis, unlike univariate decision trees, and can thus provide

higher accuracy. The trade-off of the accuracy gain is in circuit

complexity for realizing the decision node in hardware. Our

approach improves both accuracy and energy efficiency and

includes both univariate and multivariate nodes for making

decisions. Several multivariate decision tree training methods

have been proposed in the literature. In our implementation, we

adopt a similar approach to [17] but use logistic regression [18]

for the splitting process, as elaborated in Section III-C.

B. Flow-based computing

Our designs utilize the flow-based computing paradigm for

performing in-memory computation using memristor cross-

bars [7]. In this paradigm, row and column wires of the

crossbar are abstracted as nodes, and the memristors act

as connections between the nodes. The synthesized crossbar

design consists of labels assigned to the memristors in the

crossbar. Each label corresponds to input bits and determines

the configuration of the memristor during run-time. A label

can be configured with the same value as the input, or it can

be configured with the negation (¬) of the input value. The

input is loaded on the crossbars during run time according to

the memristor labels. An input value of 1 is configured as a

low resistance value, and 0 is configured with a high resistance

value. Then, a current is applied to the bottommost row. The

configuration of the memristors determines the current flow;

a memristor configured with low resistance will connect the

row and the column wires and allow current to flow through it;

a memristor configured with high resistance will prevent this

flow from happening. The presence of current in the top M

rows, where M is the number of classes, determines the output

of the classification. The memristors in the crossbar have to be

configured for each input, and since the configuration energy

required for the memristors is in the Femto Joules scale, it

makes the computation highly energy efficient [19]±[21].

III. METHOD

The goal of the paper is to create flow-based circuits for

ML using multivariate decision trees that are more accurate

than simple univariate decision trees while at the same time

being more energy efficient. In a typical multivariate decision

tree, all of the features are used in all of the nodes to make a

decision. This constant usage of all the features is unnecessary

and can lead to inefficient circuit designs. In our proposed

adaptive multivariate decision tree, we choose a fixed number

of features that provide the best decision at a node. This choice

of K features reduces the number of features that need to

be mapped into the circuit by removing unnecessary and un-

informative features. To further balance the issue of energy

efficiency and accuracy, we take an adaptive approach: at each

decision node, we consider the tradeoff determined by the

hyperparameter λ of using univariate vs. K-variate nodes and

make an informed choice to select either of the two.

Algorithm 1 takes as input a training sample matrix X,

containing the feature vectors, the corresponding class label

matrix y, the number of features to use for multivariate

decisions K, and λ which controls the number of K-variate

nodes in the decision tree. The algorithm outputs decision tree

T , where each decision node is either univariate or K-variate,

and the leaf node with the assigned class label. The algorithm

maintains a list of nodes that are being worked on and needs

further processing using the queue data structure. It is initial-

ized with the root node that contains the complete dataset. In

each iteration of the while loop, the best split obtainable using

a single feature is calculated; this step utilizes the Information

Gain criteria used by the popular ID3 algorithm [22]. Next,

the best split obtainable using K features is calculated (details

in Section III-A), followed by selecting the best K features,

and finally, training a logistic regression classifier to obtain a

split of the data that best matches the separated classes. Once

the best univariate and K-variate decisions are obtained, then

depending on the information gain and the λ hyperparameter,

either of the two is selected for inclusion in the AMDT.

Finally, the data splits produced by the selected decision

are inserted into the queue for further processing if they

do not meet the stopping criteria. If the selected splits meet

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 18,2024 at 15:34:34 UTC from IEEE Xplore. Restrictions apply.

a) Adaptive Multivariate Decision Tree b) Binary Classification Graph

Fig. 1. (a) AMDT generated from our method for the Iris flower dataset, and (b) the corresponding binary classification graph (BCG) [7].

the stopping criteria, then they are assigned a label and not

processed further. We utilize the majority class proportion-

based stopping criteria proposed in [23] where after each split,

the purity of the two sample subsets is computed. If the purity

of a sample subset is less than a defined threshold δ, then the

child node corresponding to the sample subset turns into a

new parent node, with the sample subset requiring partition

again; otherwise, the child node turns into a leaf node, and

the sample subset will not be partitioned.

Once the AMDT is trained, we use the two mapping

algorithms presented in [7] to create the intermediate BCG

and then map it onto the crossbar to obtain the final crossbar

design. The AMDT and BCG for the Iris dataset are shown

in Figure 1. The crossbar design and the run time snapshot of

the execution are also shown in Figure 2. A more detailed

discussion of the steps involved in creating the AMDT is

discussed in the following subsections.

A. Class Separation

The nonlinear multivariate decision tree with multilayer

perceptrons at the internal nodes was proposed by Guo et

al. [24]. They also proposed a heuristic to group M > 2 classes

into two, which is necessary as the nodes in the tree are binary.

Thus they use a nested optimization problem where in the

inner optimization, gradient-descent is used to find the weights

that minimize the mean-square error as usual in training neural

networks and so find a good split for the given two distinct

groups of classes. In the outer optimization problem, the ex-

change heuristic is used to find the best split of M classes into

two groups through a local search with backtracking, with time

complexity O(M2). Loh and Shih [25] use an unsupervised 2-

means clustering algorithm to do a preliminary grouping of the

classes into two superclasses. We follow a similar strategy to

[24], [25] but use a simple and deterministic method for class

grouping. At each decision node, using Euclidean distances

we create two distinct subsets of similar size, the first one

includes the samples from the most frequent class along with

the samples from the classes exhibiting close proximity to

Algorithm 1 Adaptive multivariate decision tree training

Require: Dataset X,y; hyperparameters K and λ

Ensure: Decision tree T

1: Initialize tree T with root node N

2: queue.push(N)
3: while queue not empty do

4: N ← queue.pop()
5: Find best univariate split Su for N

6: Find K-variate split Sb

7: if InformationGain(Su) > λ · InformationGain(Sb)
then

8: N.split← Su {Select univariate split}
9: else

10: N.split← Sb {Select K-variate split}
11: end if

12: Create child nodes C1, C2 partitioned by N.split

13: if C1 does not satisfy stopping criteria then

14: queue.push(C1)
15: end if

16: if C2 does not satisfy stopping criteria then

17: queue.push(C2)
18: end if

19: end while

20: return Decision tree T

it, and the second set consists of samples from the remaining

classes. The algorithm dynamically determines a positive class

by identifying the class with the highest occurrence at the

decision node. Subsequently, it calculates the mean of the

positive class and measures the distances to the means of other

classes. Through a sorting and iterative grouping process, the

algorithm effectively divides the classes into a positive class

group and a negative class group.

B. Feature Selection

The core concept is that specific dimensions within the

instance subspace when reaching a particular decision node,

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 18,2024 at 15:34:34 UTC from IEEE Xplore. Restrictions apply.

a) Crossbar Design b) Loading and Execution

Fig. 2. (a) Crossbar design for classifying the Iris dataset with labeled
memristors, obtained from the BCG from Figure 1 and (b) loading and
execution of the crossbar. Wires with a current in them have been shown
in green. A green class 2 wire indicates the classification output as 2.

TABLE I
COMPARISON OF OUR METHOD TO THE SOTA.

Method Process (nm) Depth Energy (nJ) Area (mm2) Accuracy

Intel X5560 [29] 45 6 2.04× 10
7 - -

Nvidia Tesla M2050 [29] 40 6 1.10× 10
7 - -

Xilinx Virtex-6 [29] 40 6 3.51× 10
5 - -

ASIC [30] 65 - 1.87× 10
5 6.50 -

ASIC [31] 65 - 4.60× 10
5 2.30 -

ASIC IMC [13] 65 6 19.4 0.56 -
ACAM [14] 65 10 1.28 1.80 -

DT [7] (worst-case) 70 10 2.05× 10
−2

5.23× 10
−3 -

DT (MNIST) [7] 70 10 1.74× 10
−2

9.40× 10
−4 0.82

AMDT (MNIST) 70 10 1.18× 10
−1

5.5× 10
−2 0.88

may remain constant and therefore be considered redundant.

Avoiding these features may increase the generalization ability

and reduce node complexity [26]. We perform the chi-squared

statistical test [27] similar to Kim et al.’s CRUISE [28]

to evaluate the relevance and significance of each feature

concerning the target variable at each decision node and

select K best features based on their scores. The indices of

these selected features are extracted for subsequent use in the

logistic regression model training.

C. Data Partitioning

A logistic regression model is trained on the reduced

sample matrix which contains only selected features K. The

use of logistic regression at each node within the algorithm

for data partitioning provides a transparent and interpretable

decision boundary formulation, as the estimated coefficients

and thresholds can be directly interpreted in terms of the

influence of each feature on the classification outcome [32],

and can be used in a straightforward manner to create flow-

based memristor crossbar circuit designs.

IV. RESULTS

We train the AMDT algorithm on multiple datasets from the

UCI machine learning repository and also the popular MNIST

dataset [33], [34]. The experiments are performed on an AMD

Ryzen 9 7950X 5.7 GHz CPU having 128 GB of RAM.

For hyperparameter tuning, a grid search is performed with

a range of [0, 1) for λ, [0.85, 0.995] for δ, and [1, 10] for the

maximum tree depth. The value of the K parameter is set

TABLE II
ACCURACY AND ENERGY UTILIZATION COMPARISON BETWEEN

UNIVARIATE AND ADAPTIVE MULTIVARIATE DECISION TREES.

Accuracy Energy (pJ)
Dataset DT [7] AMDT Delta DT [7] AMDT Delta

Iris 0.9 0.93 0.03 0.58 0.3 - 0.28
Wine 0.92 1.00 0.08 1.34 0.56 - 0.78
Banknote 1.00 1.00 0 1.6 2.64 1.04
Car-evaluation 0.86 0.86 0 0.18 0.1 - 0.08
Ionosphere 0.96 0.99 0.03 1.52 1.08 - 0.44
Balance-scale 0.79 0.91 0.12 8.84 8.4 - 0.44
Indian-Diabetes 0.77 0.8 0.03 14.92 0.72 - 14.2
Tic-tac-toe 0.96 0.95 - 0.01 1.2 1.3 0.1
Monk1 0.8 0.92 0.12 0.84 0.28 - 0.56
Statlog-shuttle 1.00 1.00 0 5.8 1.38 - 4.42
MNIST 0.86 0.88 0.02 118.12 118.13 0.01

Average 0.89 0.93 0.04 14.08 12.3 -1.82

to 2 during our experiments. While training, each feature of

the input is scaled to be between 0 and 2L − 1, where L is

the bit length of the feature. We use a train-test split ratio

of 80:20. We use the memristors synthesized by Goux et al.

which have energy utilization and cell width of 10 fJ and 70

nm respectively [35]. Energy utilization of the crossbar design

is calculated by multiplying the number of programmable

memristors present on the crossbar by 10 fJ. The area is

calculated by multiplying the number of rows and the number

of columns by 4900 nm2.

As shown in Table I, on the popular MNIST dataset, SOTA

[7] achieves a test accuracy of 0.82 with a crossbar area of

9.40× 10−4mm2 consuming 1.74× 10−2nJ of energy. On the

other hand, using AMDT the test accuracy increases to 0.88

with a crossbar area of 5.5 × 10−2mm2 consuming 1.18 ×
10−1nJ of energy.

Table II shows the comparison between SOTA [7] and

AMDT on multiple datasets based on their highest accuracy

among the tested 1 to 8 bit length, energy consumption and

space utilization. As expected, in a multivariate environment,

the average test accuracy of AMDT outperforms the SOTA [7]

by 4%. We also manage to use 12.6% less energy, thanks

to the intelligent selection performed between univariate and

multivariate features in the AMDT algorithm.

V. CONCLUSION

The AMDT training algorithm presented in our work

enables the integration of both univariate and multivariate

decision nodes which leads to the creation of decision trees

that exhibit higher accuracy and superior energy efficiency

in crossbar designs when compared to the current SOTA

methodologies. These circuits utilize sneak paths and 0T1R

memristor crossbars, making them robust against resistance

drift and radiation degradation from which other decision tree

accelerator hardware suffer. We also experimentally verify that

our AMDTs produce flow-based designs that are more accurate

and energy-efficient compared to univariate DTs for multiple

machine learning datasets.

VI. ACKNOWLEDGMENT

We acknowledge support from NSF Award #2245756 to

Sunny Raj.

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 18,2024 at 15:34:34 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] J. Backus, ªCan programming be liberated from the von neumann style?
a functional style and its algebra of programs,º Communications of the

ACM, vol. 21, no. 8, pp. 613±641, 1978.

[2] S. Rafiq, J. Hazra, M. Liehr, K. Beckmann, M. Abedin, J. S. Pannu,
S. K. Jha, and N. C. Cady, ªInvestigation of reram variability on flow-
based edge detection computing using hfo 2-based reram arrays,º IEEE

Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 7,
pp. 2900±2910, 2021.

[3] C. Yakopcic, T. M. Taha, and R. Hasan, ªHybrid crossbar architecture
for a memristor based memory,º in NAECON 2014-IEEE National

Aerospace and Electronics Conference. IEEE, 2014, pp. 237±242.

[4] M. A. Zidan, H. A. H. Fahmy, M. M. Hussain, and K. N. Salama,
ªMemristor-based memory: The sneak paths problem and solutions,º
Microelectronics journal, vol. 44, no. 2, pp. 176±183, 2013.

[5] R. Wille, D. Groûe, L. Teuber, G. W. Dueck, and R. Drechsler, ªRevlib:
An online resource for reversible functions and reversible circuits,º in
38th International Symposium on Multiple Valued Logic (ismvl 2008).
IEEE, 2008, pp. 220±225.

[6] S. Thijssen, S. K. Jha, and R. Ewetz, ªCompact: Flow-based computing
on nanoscale crossbars with minimal semiperimeter,º in 2021 Design,

Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2021, pp. 232±237.

[7] P. Sinha and S. Raj, ªDesigning energy-efficient decision tree memristor
crossbar circuits using binary classification graphs,º in 2022 IEEE/ACM

International Conference On Computer Aided Design (ICCAD), 2022,
pp. 1±9.

[8] M. Al Moteri, S. B. Khan, and M. Alojail, ªMachine learning-driven
ubiquitous mobile edge computing as a solution to network challenges
in next-generation iot,º Systems, vol. 11, no. 6, p. 308, 2023.

[9] ÐÐ, ªMachine learning-driven ubiquitous mobile edge computing as a
solution to network challenges in next-generation iot,º Systems, vol. 11,
no. 6, p. 308, 2023.

[10] D. Puthal, E. Damiani, and S. P. Mohanty, ªSecure and scalable collab-
orative edge computing using decision tree,º in 2022 IEEE Computer

Society Annual Symposium on VLSI (ISVLSI). IEEE, 2022, pp. 247±
252.

[11] A. Akavia, M. Leibovich, Y. S. Resheff, R. Ron, M. Shahar, and
M. Vald, ªPrivacy-preserving decision trees training and prediction,º
ACM Transactions on Privacy and Security, vol. 25, no. 3, pp. 1±30,
2022.

[12] Y. Izza, A. Ignatiev, and J. Marques-Silva, ªOn tackling explanation
redundancy in decision trees,º Journal of Artificial Intelligence Research,
vol. 75, pp. 261±321, 2022.

[13] M. Kang, S. K. Gonugondla, S. Lim, and N. R. Shanbhag, ªA 19.4-
nj/decision, 364-k decisions/s, in-memory random forest multi-class
inference accelerator,º IEEE Journal of Solid-State Circuits, vol. 53,
no. 7, pp. 2126±2135, 2018.

[14] G. Pedretti, C. E. Graves, S. Serebryakov, R. Mao, X. Sheng, M. Foltin,
C. Li, and J. P. Strachan, ªTree-based machine learning performed in-
memory with memristive analog cam,º Nature communications, vol. 12,
no. 1, pp. 1±10, 2021.

[15] M. Rakka, M. E. Fouda, R. Kanj, and F. Kurdahi, ªDt2cam: A deci-
sion tree to content addressable memory framework,º arXiv preprint

arXiv:2204.06114, 2022.

[16] C. Brodley and P. Utgoff, ªMultivariate decision trees,º Machine Learn-

ing, vol. 19, pp. 45±77, 04 1995.

[17] F. Wang, Q. Wang, F. Nie, Z. Li, W. Yu, and F. Ren, ªA linear
multivariate binary decision tree classifier based on K-means splitting,º
Pattern Recognition, vol. 107, p. 107521, Nov. 2020.

[18] D. R. Cox, ªThe regression analysis of binary sequences,º Journal of the

Royal Statistical Society. Series B (Methodological), vol. 20, no. 2, pp.
215±242, 1958. [Online]. Available: http://www.jstor.org/stable/2983890

[19] S. Goswami, A. J. Matula, S. P. Rath, S. HedstrÈom, S. Saha, M. An-
namalai, D. Sengupta, A. Patra, S. Ghosh, H. Jani et al., ªRobust
resistive memory devices using solution-processable metal-coordinated
azo aromatics,º Nature materials, vol. 16, no. 12, pp. 1216±1224, 2017.

[20] S. Goswami, S. Goswami, and T. Venkatesan, ªAn organic approach
to low energy memory and brain inspired electronics,º Applied Physics

Reviews, vol. 7, no. 2, p. 021303, 2020.

[21] S. Pi, C. Li, H. Jiang, W. Xia, H. Xin, J. J. Yang, and Q. Xia, ªMemristor
crossbar arrays with 6-nm half-pitch and 2-nm critical dimension,º
Nature nanotechnology, vol. 14, no. 1, pp. 35±39, 2019.

[22] J. R. Quinlan, ªInduction of decision trees,º Machine

Learning, vol. 1, pp. 81±106, 1986. [Online]. Available:
https://api.semanticscholar.org/CorpusID:13252401

[23] F. Wang, Q. Wang, F. Nie, W. Yu, and R. Wang,
ªEfficient tree classifiers for large scale datasets,º Neuro-

computing, vol. 284, pp. 70±79, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0925231218300328

[24] H. Guo and S. B. Gelfand, ªClassification trees with neural network
feature extraction,º in Proceedings 1992 IEEE Computer Society Con-

ference on Computer Vision and Pattern Recognition. IEEE Computer
Society, 1992, pp. 183±184.

[25] W.-Y. Loh and Y.-S. Shih, ªSplit selection methods for classification
trees,º Statistica sinica, pp. 815±840, 1997.

[26] S. B. Kotsiantis, ªDecision trees: a recent overview,º Artificial Intelli-

gence Review, vol. 39, pp. 261±283, 2013.
[27] P. E. Greenwood and M. S. Nikulin, A guide to chi-squared testing.

John Wiley & Sons, 1996, vol. 280.
[28] H. Kim and W.-Y. Loh, ªClassification trees with unbiased

multiway splits,º Journal of the American Statistical Association,
vol. 96, no. 454, pp. 589±604, 2001. [Online]. Available:
https://doi.org/10.1198/016214501753168271

[29] B. Van Essen, C. Macaraeg, M. Gokhale, and R. Prenger, ªAccelerating
a random forest classifier: Multi-core, gp-gpu, or fpga?º in 2012

IEEE 20th International Symposium on Field-Programmable Custom

Computing Machines. IEEE, 2012, pp. 232±239.
[30] T.-W. Chen, Y.-C. Su, K.-Y. Huang, Y.-M. Tsai, S.-Y. Chien, and L.-G.

Chen, ªVisual vocabulary processor based on binary tree architecture for
real-time object recognition in full-hd resolution,º IEEE transactions on

very large scale integration (VLSI) systems, vol. 20, no. 12, pp. 2329±
2332, 2011.

[31] K. J. Lee, G. Kim, J. Park, and H.-J. Yoo, ªA vocabulary forest object
matching processor with 2.07 m-vector/s throughput and 13.3 nj/vector
per-vector energy for full-hd 60 fps video object recognition,º IEEE

Journal of Solid-State Circuits, vol. 50, no. 4, pp. 1059±1069, 2015.
[32] R. Thomas, P. Zhu, B. Zumbo, and S. Dutta, ªOn measuring the relative

importance of explanatory variables in a logistic regression,º Journal of

modern applied statistical methods: JMASM, vol. 7, pp. 21±38, 05 2008.
[33] D. Dua and C. Graff, ªUci machine learning repository. university

of california, school of information and computer science, irvine, ca
(2019),º 2019.

[34] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, ªGradient-based learning
applied to document recognition,º Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278±2324, 1998.

[35] L. Goux, A. Fantini, G. Kar, Y.-Y. Chen, N. Jossart, R. Degraeve,
S. Clima, B. Govoreanu, G. Lorenzo, G. Pourtois et al., ªUltralow sub-
500na operating current high-performance TiN\Al2O3\HfO2\Hf\TiN
bipolar RRAM achieved through understanding-based stack-
engineering,º in 2012 Symposium on VLSI Technology (VLSIT).
IEEE, 2012, pp. 159±160.

Authorized licensed use limited to: OAKLAND UNIVERSITY. Downloaded on September 18,2024 at 15:34:34 UTC from IEEE Xplore. Restrictions apply.

