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Abstract—We propose a method to design in-memory hybrid
decision tree (HDT) circuits using memristor crossbars. Decision
Trees (DTs) are a well known machine learning algorithm that
carries multiple benefits when compared to deep neural networks.
They are easily interpretable, fast and they require less data to
train. These benefits make them a popular choice in wide-ranging
applications that include edge devices and particle physics. We
propose a HDT coupled with a multilayer perceptron (MLP) for
creating a flexible nonlinear decision boundary which leads to
better accuracy. Using this approach, we obtain a test accuracy
of 0.90 for the MNIST dataset, which outperforms the state-
of-the-art (SOTA). We map this decision tree onto crossbars
which are purely memristor based. They utilize zero transistor
and one memristor per cell and employ sneak-paths for flow-
based in-memory computations. Due to the absence of transistors,
our designs are radiation degradation resistant, serving their
application in radiation-rich environments, and require less
switching energy, making them energy efficient.

Index Terms—In-memory computation, memristors, flow-
based computing, decision trees, multivariate decision trees,
multilayer perceptron.

I. INTRODUCTION

Flow-based memristor crossbar designs have demonstrated

state-of-the-art energy efficiency in various standard bench-

mark circuits, including the RevLib benchmark [1], [2]. Yet,

devising circuits using flow-based computing for general func-

tions has proven challenging. Existing flow-based computing

methods employ Binary Decision Diagrams (BDDs) and sim-

ilar data structures as an intermediate step, potentially leading

to exponential complexity, particularly in cases involving com-

mon functions like multiplication [3], [4]. As a result, creating

flow-based circuits for intricate machine learning algorithms

via BDDs presents significant challenges. In this paper, we

depart from BDD-related data structures and design machine

learning circuits using decision trees [5].

DTs, with their lower complexity and reduced energy

requirements during inference, offer practicality for energy-

limited settings like edge computing and mobile devices [6],

[7]. DTs excel in scenarios with limited training data, making

them the preferred choice for prediction tasks where data

availability is scarce [8]. Adversarial attacks pose a significant

threat to neural networks, causing unexpected outputs with

minor input changes, rendering them unsuitable for safety-

critical systems [9]. DTs, in contrast, do not encounter these

problems and can be applied in scenarios demanding safety

assurances, resilience, confidentiality, and protection [10],

[11]. Furthermore, neural network’s output is not easy to

interpret, while the output generated by DTs can be explained

easily [12]. DTs are also employed when prioritizing speed

and energy efficiency among machine learning algorithms for

processing input data [7].

Concisely, our paper introduces an algorithm for generating

decision tree circuit designs that leverage the advantages of

in-memory flow-based computing with memristor crossbars

including improved throughput, and resistance to radiation and

drift. Our work encompasses several key contributions:

• We introduce a HDT algorithm that enhances accuracy

over univariate DTs, leveraging multiple features to pro-

duce an optimal decision boundary.

• We evaluated our algorithm on the popular MNIST

dataset [13] and obtain a test accuracy of 0.90 which

outperforms the SOTA [14]. While this design occu-

pies slightly more space and uses more energy, a pure

memristor-based circuit still carries many advantages

including application in radiation-rich environments and

less switching energy for its operation.

II. RELATED WORK

Several hardware designs for decision trees have been

introduced in the literature, achieving impressive throughput

up to 108 inferences per second and energy efficiency in the

nJs per inference range [15], [16]. However, these designs

mostly incorporate traditional CMOS circuitry, including var-

ious cell configurations such as 1T1R and 6T2R, as well as

conventional CMOS peripheral components for computation.

Sinha and Raj [14] generate purely memristor-based decision

tree hardware designs but their approach is less accurate due

to the utilization of univariate decision trees. These existing

approaches either use CMOS circuitry or lack a methodology

to design hardware for multivariate decision trees, which are a

more generalized form of univariate trees, capable of achieving

enhanced accuracy on specific datasets. In our paper, we

present an algorithm for generating hardware designs that

cater to both univariate and multivariate decision trees. We
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follow [14] for the standardized experimentation protocol,

mapping of the HDTs onto the crossbar designs, and also for

crossbar design verification.

A. Decision Tree

The common DTs, where every node evaluates a singular

attribute’s value, can be characterized as axis-parallel due to

the fact that the assessments at each node equate to axis-

parallel hyperplanes within the input space. Subsequently, DTs

that involve nodes evaluating a linear combination of attributes

have been put forward by various researchers under differ-

ent names: Linear Machine Decision Tree [17], Multivariate

Decision Trees [18], Oblique Decision Trees [19], Randomly

Partitioned Multivariate Decision Tree, PCA partitioned Multi-

variate Decision Tree [20] etc. The tests associated with each

node are equivalent to hyperplanes in general position, and

they partition the input space into polyhedra [21]. Multivari-

ate decision trees are specifically engineered to encapsulate

intricate interactions among multiple features, which offers

the potential to enhance predictive performance beyond that

of simple univariate decision trees [18].

The concept of neural trees emerged as an integration of

neural networks and DTs. Within the literature, neural trees

can be categorized into two main groups. The first group lever-

ages DTs as a foundational structure for the neural network.

The fundamental concept involves crafting a decision tree and

subsequently transforming it into a neural network model.

This includes Entropy nets [22], Fast training algorithms for

multilayer neural nets [23], Continuous ID3 algorithm [24] etc.

The second group uses neural networks as building blocks in

DTs. The nonlinear multivariate decision tree with MLPs at

the internal nodes was proposed by Guo and Gelfand [25].

Behnke and Karayiannis used competitive learning to form a

competitive decision tree architecture named CNET [26]. A

hybrid form that contains neural networks at the leaves of

the tree and univariate nodes in the non-leaf nodes of the

tree was introduced by Utgoff [27]. We employ the MLP

model as the non-linear, multivariate decision node. Because

MLP is a universal approximator and can approximate any

function given a sufficiently big non-linear basis function, a

decision tree need not have any node more complex than such

a node [28].

B. Flow-based computing

In flow-based computing paradigm, the rows and columns

of a crossbar act as nodes, and the memristors provide connec-

tions between the nodes. Memristors are assigned labels in the

crossbar, which decides whether the memristor is configured

with the same value as the input or the negation (¬) of the

input. The input, which is dependent on the memristor labels,

is loaded on the crossbars during run time. Memristors with a

value of 1 are considered to be of low resistance and act as a

closed circuit, whereas a value of 0 would be considered to be

of high resistance and act as an open circuit. A current is then

applied to the bottommost row and the configuration of the

memristors decides the route the current takes in the crossbar.

Configuration energy required for the memristors are in the

Femto Joules scale, making it very energy efficient [29].

An illustrative example is shown in Figure 1, where we use

a HDT generated by the proposed algorithm for the MONK’s

problem dataset available in the UCI machine learning repos-

itory [30]. The dataset consists of 6 features and two classes.

All the input features have been scaled to be between 0 and

3, for a bit length of 2 per feature. The inequalities at the

HDT nodes are used to create a truth table by assigning 0 to

values less than or equal to the threshold and 1 otherwise. The

boolean formula from truth table is converted into a reduced-

order binary decision diagram (ROBDD), which can then be

rearranged into a bipartite graph [31], also known as the Binary

Classification Graph (BCG). The BCG is then further mapped

onto a crossbar as per the algorithms discussed in [14].

III. APPROACH

The objective of this paper is to design energy-efficient flow-

based circuits for machine learning by employing multivariate

decision trees, aiming for enhanced accuracy compared to

basic univariate decision trees. We achieve this by developing

multivariate decision trees, an extension of the univariate

model, expected to improve accuracy on similar datasets.

We implement a non-linear multivariate decision tree with

multilayer perceptrons at the internal nodes as proposed by

Guo and Gelfand [25]. In the context of a standard multivariate

decision tree, all available features are collectively utilized

at the decision node to arrive at a decision, as a result,

these types of trees need more memristors in the synthesized

crossbar designs, making them inefficient in terms of space

and energy utilization. This utilization of all features can be

unnecessary and can result in suboptimal circuit designs in

terms of efficiency. To address this challenge, we implement a

two-fold strategy where, at the tree level, we limit the number

of features to a predefined value K and, at the node level, we

allow the node the flexibility to dynamically select a number of

features ranging from 2 to K, opting for the value that achieves

an optimal data partition at the node. This results in a decision

tree where some nodes use less number of features while some

use more resulting in optimum crossbar size. On top of this,

to strike a balance between energy efficiency and accuracy,

we follow an approach similar to Yildiz and Alpaydin [28]

where we compare univariate and non-linear multivariate splits

based on information gain and take the split with higher

information gain and continue tree generation. This ensures

that the final decision tree is more accurate compared to

simple univariate decision trees while being energy and space-

efficient. We experimentally verify that this hybrid approach

produces decision trees that are more accurate compared to

univariate decision trees.

The pseudo-code for our multilayer perceptron training is

presented in Algorithm 1. We first explain how the multilayer

perceptron is trained efficiently at each node. This is discussed

in Section III-A. Then, in Section III-B, we use MLP in the

decision tree training framework.
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Algorithm 1 MLP training at decision node

Require: Sample matrix X , label matrix y and, number of

features K
Ensure: Multivariate partitions ml,mr

1: Let C = {c1, ..., cM} be the set of M classes at the

decision node.

2: Partition C into CL and CR

3: Initialize bf , bm
4: for f = 2 to K do
5: Feature selection

6: Train MLP using selected features

7: bf ← best f features

8: bm ← best trained MLP

9: end for
10: ml ← {x |x ∈ X and f(x[bf ]) ≤ 0}, mr ← {x |x ∈

X and f(x[bf ]) > 0} {f(.) denotes input-output mapping

of the model bm}
11: return ml,mr

Algorithm 2 HDT training

Require: Dataset X,y; hyperparameters K
Ensure: Decision tree T

1: Assign X , y to root node of tree T
2: stack.push(RootNode)
3: while stack not empty do
4: N ← stack.pop()
5: Find univariate split Su for N
6: Find multivariate split Sm using Algorithm 2
7: if InformationGain(Su) > InformationGain(Sm) then
8: N.split ← Su {Select univariate split}
9: else

10: N.split ← Sm {Select multivariate split}
11: end if
12: Create child nodes C1, C2 partitioned by N.split
13: if C1 does not satisfy stopping criteria then
14: stack.push(C1)
15: end if
16: if C2 does not satisfy stopping criteria then
17: stack.push(C2)
18: end if
19: end while
20: return Decision tree T

A. MLP Training

The algorithm takes a sample matrix X , a label matrix y,

and the maximum number of features K as input. It aims

to generate multivariate partitions ml and mr. The following

subsections describe the steps to obtain these multivariate

partitions in more detail.

1) Class Partitioning: Guo and Gelfand [25] introduced a

nonlinear multivariate decision tree with multilayer percep-

trons at the internal nodes. To address the binary nature of

the tree nodes, they devised a heuristic for grouping M > 2
classes into two. This process entails a nested optimization ap-

proach. In the inner optimization, gradient descent is employed

to determine weights minimizing mean-squared error, akin to

standard neural network training, enabling the identification

of a suitable split for the two distinct class groups. The outer

optimization leverages the exchange heuristic to perform a

local search with backtracking, achieving the best split of M

classes into two groups with a time complexity of O(M2). Loh

and Shih [32] proposed an unsupervised 2-means clustering

algorithm to initially group classes into two superclasses. Our

approach aligns with the strategies of [25], [32] but adopts

a simpler and deterministic method for class grouping. We

construct two distinct subsets of approximately equal size:

CL, comprising samples from the most frequent class and

those closely related, and CR, encompassing samples from

the remaining classes.

2) Feature Selection: The key concept is that specific

dimensions within the instance space, as it reaches a particular

node, may exhibit little variation and can be deemed redun-

dant. Avoiding these features may increase the generalization

ability and reduce node complexity [33]. We iterate through

the range of features from f = 2 to K and select the best

features that can distinguish between the two sets effectively,

which can then be efficiently implemented using memristor

crossbars. To do this, we use the usual machine-learning

strategies for feature selection. We perform the chi-squared test

[34] similar to [35] to evaluate the relevance and significance

of each feature with respect to the target variable and select

the f best features based on their scores.

3) Training: Selected features f are used to train a MLP to

separate classes CL and CR. We store the best model obtained

along with the best features while iterating over the range of

features. Using the best model we partition the data into left

and right partitions similar to [25].

B. HDT Training

The steps to train the HDT are presented in algorithm 2.

The algorithm takes as input a training sample matrix X,

containing the feature vectors, the corresponding class label

matrix y, and K, the max number of features to use for

multivariate decisions. The algorithm outputs a decision tree

T , where each decision node is either univariate or non-linear

multivariate and the leaf node with the assigned class label.

The algorithm maintains a list of nodes that are being worked

on and needs further processing using the stack data structure.

It is initialized with the root node that contains the complete

dataset. In each iteration of the while loop, the best univariate

split obtainable using a single feature is calculated; this step

utilizes the same Information Gain criteria used by the popular

ID3 algorithm. Then, using the MLP, a non-linear multivariate

split is obtained, and depending on the information gain of

both splits either of the two is selected for inclusion in the

decision tree. Finally, the data splits produced by the selected

decision are inserted into the stack for further processing if

they do not meet the stopping criteria. If the selected splits

meet the stopping criteria, they are assigned a label and not
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Fig. 1. A HDT is trained using the MONK’s problem dataset. The inequalities at the decision nodes in the HDT are transformed into a truth table. This truth
table is then employed to construct an equivalent ROBDD, effectively substituting the decisions. This transformation results in the conversion of the HDT
into a BCG, which subsequently serves as the basis for deriving the crossbar design.

TABLE I
ACCURACY, CROSSBAR SIZE, AND ENERGY UTILIZATION COMPARISON BETWEEN UNIVARIATE AND HYBRID DECISION TREES. HDTS ARE MORE

ACCURATE PROVIDED ITS CAPABILITY TO CREATE A NONLINEAR BOUNDARY USING MULTIPLE FEATURES.

Accuracy Size Energy (pJ)
Dataset DT [14] HDT Delta DT [14] HDT DT [14] HDT
Iris 0.9 0.93 0.03 20×18 10×9 0.58 0.24
Wine 0.92 1.00 0.08 41×39 48×48 1.34 1.62
Banknote 1.00 1.00 0 51×48 36×34 1.6 1.10
Car-evaluation 0.86 0.90 0.04 10×14 34×34 0.18 1.00
Ionosphere 0.96 0.99 0.03 51×45 58×51 1.52 1.88
Balance-scale 0.79 0.90 0.11 283×260 92×93 8.84 3.05
Indian-Diabetes 0.77 0.81 0.04 435×408 132×128 14.92 4.76
Tic-tac-toe 0.96 0.98 0.02 32×32 254×242 1.2 8.61
Monk1 0.8 0.92 0.12 28×25 27×24 0.84 0.76
Statlog-shuttle 1.00 1.00 0 178×167 384×385 5.8 15.02
MNIST 0.86 0.90 0.04 3391×3237 14068×13935 118.12 506.16

processed further. We utilize the majority class proportion-

based stopping criteria proposed in [20].

IV. RESULTS

We train our HDT algorithm on multiple datasets from the

UCI machine learning repository and the MNIST dataset [13],

[30]. The crossbar design is synthesized from the obtained tree

and is compared with the ones generated through the univariate

decision tree proposed in [14] on the basis of accuracy, size

and energy utilization. We performed all the tests on an AMD

Ryzen 9 7950X 5.7 GHz CPU with 128 GB of memory.

Figure 2 shows the crossbar design generated from the

BCG. Each memristor has a label associated with it. The label

decides whether the memristor is configured with the same

value as the input or the negation (¬) of the input. It also tells

the feature index and the bit value. Once the crossbar design

is ready, depending on the input, the values for the labels are

loaded with either 0 or 1. During execution a current is applied

to the bottommost row and the output is received in one of the

top M rows, M being the number of classes, which is 2 in this

case. The memristor values decide the route the current takes

in the crossbar, and since the current ends up in the Class 0

line, we classify the input to be of Class 0.

We also tune hyperparameters to obtain the best accuracy.

We primarily make use of three hyperparameters: maximum

features to utilize K, δ to calculate the stopping criteria, and

maximum tree depth. We perform a grid search with a range of

[2, number of features] for K, [0.85, 0.995] for δ, and [1, 10]

for the maximum tree depth. To train the decision trees, each

feature of the input is scaled to be between 0 and 2L−1, where
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Fig. 2. (a) Crossbar design for classifying the MONK’s problem dataset with labeled memristors, obtained from the BCG from Figure 1 and (b) loading and
execution of the crossbar for input data in class 0. Current is initially applied to the lowest row and all the wires with a current in them have been shown in
green. A green class 0 wire indicates the classification output as 0.

TABLE II
COMPARISON OF OUR METHOD TO THE SOTA. WE REPORT TREE-DEPTH, ENERGY, AREA, AND ACCURACY NUMBERS FOR THE MNIST DATASET.

Method Process (nm) Tree Depth Energy (nJ) Area (mm2) Accuracy

Intel X5560 [36] 45 6 2.04× 107 - -
Nvidia Tesla M2050 [36] 40 6 1.10× 107 - -
Xilinx Virtex-6 [36] 40 6 3.51× 105 - -
ASIC [37] 65 - 1.87× 105 6.50 -
ASIC [38] 65 - 4.60× 105 2.30 -
ASIC IMC [39] 65 6 19.4 0.56 -
ACAM [40] 65 10 1.28 1.80 -

DT (worst-case) [14] 70 10 2.05× 10−2 5.23× 10−3 -
DT (MNIST) [14] 70 10 1.74× 10−2 9.40× 10−4 0.82
HDT (MNIST) 70 10 0.5 0.96 0.90

L is the bit length of the feature. The decision tree is trained

on 80% of the dataset while keeping the rest for testing. The

memristors used are the ones synthesized by Goux et al. which

have energy utilization and cell width of 10 fJ and 70 nm

respectively [41]. The number of programmable memristors in

the crossbar multiplied by 10 fJ yields the energy utilization

of the complete crossbar design. To compare univariate and

hybrid decision trees, we report the best accuracy among

feature bit lengths from 1 to 8 and their corresponding energy

utilization, and the crossbar size of the design.

Table I shows the comparison between the univariate and

hybrid decision trees based on their highest accuracy among

the tested 1 to 8-bit length, energy consumption and space

utilization. As expected, the test accuracy of HDT outperforms

the univariate DT. However, this increase in accuracy comes

with a substantial increase in the crossbar size which leads to

a higher energy consumption.

The comparison of our designs to the SOTA is presented in

Table II. In our setup, we follow a strategy of [14] where we

train our model for the popular MNIST dataset with 80% of

the data for training and the rest for testing. The maximum tree

depth is set to be 10. The univariate test accuracy is 0.82 with a

crossbar area of 9.40×10−4mm2 consuming 1.74×10−2nJ of

energy [14]. However, when we incorporate multiple features

using the hybrid decision tree, we obtain a test accuracy of

0.90 with a crossbar area of 0.96mm2 consuming 0.5nJ of

energy. The increase in size can be attributed to the increase

in the number of features that were considered while training

the hybrid decision tree.

V. CONCLUSION

We develop high-accuracy decision tree acceleration circuits

based on flow-based memristor crossbars. These circuits in-

corporate sneak paths and 0T1R memristor crossbars to resist

issues like resistance drift and radiation-induced degradation.

Our approach termed the hybrid decision tree, combines a

MLP to create flexible, nonlinear decision boundaries. We

also experimentally verify that our HDTs produce flow-based

designs that are more accurate compared to univariate DTs.

We verify this by testing the proposed algorithm on various

datasets including the MNIST dataset where we achieve a test

accuracy of 0.90, which outperforms the SOTA.
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