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Abstract—We propose a method to design in-memory hybrid
decision tree (HDT) circuits using memristor crossbars. Decision
Trees (DTs) are a well known machine learning algorithm that
carries multiple benefits when compared to deep neural networks.
They are easily interpretable, fast and they require less data to
train. These benefits make them a popular choice in wide-ranging
applications that include edge devices and particle physics. We
propose a HDT coupled with a multilayer perceptron (MLP) for
creating a flexible nonlinear decision boundary which leads to
better accuracy. Using this approach, we obtain a test accuracy
of 0.90 for the MNIST dataset, which outperforms the state-
of-the-art (SOTA). We map this decision tree onto crossbars
which are purely memristor based. They utilize zero transistor
and one memristor per cell and employ sneak-paths for flow-
based in-memory computations. Due to the absence of transistors,
our designs are radiation degradation resistant, serving their
application in radiation-rich environments, and require less
switching energy, making them energy efficient.

Index Terms—In-memory computation, memristors, flow-
based computing, decision trees, multivariate decision trees,
multilayer perceptron.

[. INTRODUCTION

Flow-based memristor crossbar designs have demonstrated
state-of-the-art energy efficiency in various standard bench-
mark circuits, including the RevLib benchmark [1], [2]. Yet,
devising circuits using flow-based computing for general func-
tions has proven challenging. Existing flow-based computing
methods employ Binary Decision Diagrams (BDDs) and sim-
ilar data structures as an intermediate step, potentially leading
to exponential complexity, particularly in cases involving com-
mon functions like multiplication [3], [4]. As a result, creating
flow-based circuits for intricate machine learning algorithms
via BDDs presents significant challenges. In this paper, we
depart from BDD-related data structures and design machine
learning circuits using decision trees [5].

DTs, with their lower complexity and reduced energy
requirements during inference, offer practicality for energy-
limited settings like edge computing and mobile devices [6],
[7]. DTs excel in scenarios with limited training data, making
them the preferred choice for prediction tasks where data
availability is scarce [8]. Adversarial attacks pose a significant
threat to neural networks, causing unexpected outputs with
minor input changes, rendering them unsuitable for safety-
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critical systems [9]. DTs, in contrast, do not encounter these
problems and can be applied in scenarios demanding safety
assurances, resilience, confidentiality, and protection [10],
[11]. Furthermore, neural network’s output is not easy to
interpret, while the output generated by DTs can be explained
easily [12]. DTs are also employed when prioritizing speed
and energy efficiency among machine learning algorithms for
processing input data [7].

Concisely, our paper introduces an algorithm for generating
decision tree circuit designs that leverage the advantages of
in-memory flow-based computing with memristor crossbars
including improved throughput, and resistance to radiation and
drift. Our work encompasses several key contributions:

o We introduce a HDT algorithm that enhances accuracy
over univariate DTs, leveraging multiple features to pro-
duce an optimal decision boundary.

o We evaluated our algorithm on the popular MNIST
dataset [13] and obtain a test accuracy of 0.90 which
outperforms the SOTA [14]. While this design occu-
pies slightly more space and uses more energy, a pure
memristor-based circuit still carries many advantages
including application in radiation-rich environments and
less switching energy for its operation.

II. RELATED WORK

Several hardware designs for decision trees have been
introduced in the literature, achieving impressive throughput
up to 10% inferences per second and energy efficiency in the
nJs per inference range [15], [16]. However, these designs
mostly incorporate traditional CMOS circuitry, including var-
ious cell configurations such as 1TIR and 6T2R, as well as
conventional CMOS peripheral components for computation.
Sinha and Raj [14] generate purely memristor-based decision
tree hardware designs but their approach is less accurate due
to the utilization of univariate decision trees. These existing
approaches either use CMOS circuitry or lack a methodology
to design hardware for multivariate decision trees, which are a
more generalized form of univariate trees, capable of achieving
enhanced accuracy on specific datasets. In our paper, we
present an algorithm for generating hardware designs that
cater to both univariate and multivariate decision trees. We
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follow [14] for the standardized experimentation protocol,
mapping of the HDTs onto the crossbar designs, and also for
crossbar design verification.

A. Decision Tree

The common DTs, where every node evaluates a singular
attribute’s value, can be characterized as axis-parallel due to
the fact that the assessments at each node equate to axis-
parallel hyperplanes within the input space. Subsequently, DTs
that involve nodes evaluating a linear combination of attributes
have been put forward by various researchers under differ-
ent names: Linear Machine Decision Tree [17], Multivariate
Decision Trees [18], Oblique Decision Trees [19], Randomly
Partitioned Multivariate Decision Tree, PCA partitioned Multi-
variate Decision Tree [20] etc. The tests associated with each
node are equivalent to hyperplanes in general position, and
they partition the input space into polyhedra [21]. Multivari-
ate decision trees are specifically engineered to encapsulate
intricate interactions among multiple features, which offers
the potential to enhance predictive performance beyond that
of simple univariate decision trees [18].

The concept of neural trees emerged as an integration of
neural networks and DTs. Within the literature, neural trees
can be categorized into two main groups. The first group lever-
ages DTs as a foundational structure for the neural network.
The fundamental concept involves crafting a decision tree and
subsequently transforming it into a neural network model.
This includes Entropy nets [22], Fast training algorithms for
multilayer neural nets [23], Continuous ID3 algorithm [24] etc.
The second group uses neural networks as building blocks in
DTs. The nonlinear multivariate decision tree with MLPs at
the internal nodes was proposed by Guo and Gelfand [25].
Behnke and Karayiannis used competitive learning to form a
competitive decision tree architecture named CNET [26]. A
hybrid form that contains neural networks at the leaves of
the tree and univariate nodes in the non-leaf nodes of the
tree was introduced by Utgoff [27]. We employ the MLP
model as the non-linear, multivariate decision node. Because
MLP is a universal approximator and can approximate any
function given a sufficiently big non-linear basis function, a
decision tree need not have any node more complex than such
a node [28].

B. Flow-based computing

In flow-based computing paradigm, the rows and columns
of a crossbar act as nodes, and the memristors provide connec-
tions between the nodes. Memristors are assigned labels in the
crossbar, which decides whether the memristor is configured
with the same value as the input or the negation (—) of the
input. The input, which is dependent on the memristor labels,
is loaded on the crossbars during run time. Memristors with a
value of 1 are considered to be of low resistance and act as a
closed circuit, whereas a value of 0 would be considered to be
of high resistance and act as an open circuit. A current is then
applied to the bottommost row and the configuration of the
memristors decides the route the current takes in the crossbar.

249

Configuration energy required for the memristors are in the
Femto Joules scale, making it very energy efficient [29].

An illustrative example is shown in Figure 1, where we use
a HDT generated by the proposed algorithm for the MONK'’s
problem dataset available in the UCI machine learning repos-
itory [30]. The dataset consists of 6 features and two classes.
All the input features have been scaled to be between 0 and
3, for a bit length of 2 per feature. The inequalities at the
HDT nodes are used to create a truth table by assigning O to
values less than or equal to the threshold and 1 otherwise. The
boolean formula from truth table is converted into a reduced-
order binary decision diagram (ROBDD), which can then be
rearranged into a bipartite graph [31], also known as the Binary
Classification Graph (BCG). The BCG is then further mapped
onto a crossbar as per the algorithms discussed in [14].

III. APPROACH

The objective of this paper is to design energy-efficient flow-
based circuits for machine learning by employing multivariate
decision trees, aiming for enhanced accuracy compared to
basic univariate decision trees. We achieve this by developing
multivariate decision trees, an extension of the univariate
model, expected to improve accuracy on similar datasets.
We implement a non-linear multivariate decision tree with
multilayer perceptrons at the internal nodes as proposed by
Guo and Gelfand [25]. In the context of a standard multivariate
decision tree, all available features are collectively utilized
at the decision node to arrive at a decision, as a result,
these types of trees need more memristors in the synthesized
crossbar designs, making them inefficient in terms of space
and energy utilization. This utilization of all features can be
unnecessary and can result in suboptimal circuit designs in
terms of efficiency. To address this challenge, we implement a
two-fold strategy where, at the tree level, we limit the number
of features to a predefined value K and, at the node level, we
allow the node the flexibility to dynamically select a number of
features ranging from 2 to K, opting for the value that achieves
an optimal data partition at the node. This results in a decision
tree where some nodes use less number of features while some
use more resulting in optimum crossbar size. On top of this,
to strike a balance between energy efficiency and accuracy,
we follow an approach similar to Yildiz and Alpaydin [28]
where we compare univariate and non-linear multivariate splits
based on information gain and take the split with higher
information gain and continue tree generation. This ensures
that the final decision tree is more accurate compared to
simple univariate decision trees while being energy and space-
efficient. We experimentally verify that this hybrid approach
produces decision trees that are more accurate compared to
univariate decision trees.

The pseudo-code for our multilayer perceptron training is
presented in Algorithm 1. We first explain how the multilayer
perceptron is trained efficiently at each node. This is discussed
in Section III-A. Then, in Section III-B, we use MLP in the
decision tree training framework.
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Algorithm 1 MLP training at decision node
Require: Sample matrix X, label matrix y and, number of
features K
Ensure: Multivariate partitions mg, m,
1: Let C = {c1,...,car} be the set of M classes at the
decision node.
. Partition C' into C, and Cr
. Initialize by, by,
for f =2to K do
Feature selection
Train MLP using selected features
by < best f features
b,, < best trained MLP
: end for
cmy <+ {z]z € X and f(z[by]) < 0}, m, «+ {z|2z €
X and f(z[bs]) > 0} {f(.) denotes input-output mapping
of the model b,,}
return m;, m,

W N

R A A

11:

Algorithm 2 HDT training
Require: Dataset X, y; hyperparameters K
Ensure: Decision tree T’
1: Assign X, y to root node of tree 7'
2: stack.push(Root N ode)
3: while stack not empty do
4. N « stack.pop()
5:  Find univariate split .S,, for NV
6:  Find multivariate split .S,,, using Algorithm 2
.
8
9

if InformationGain(.S,,) > InformationGain(S,,) then
N.split < S,, {Select univariate split}

. else
10: N.split <— Sy, {Select multivariate split}
11:  end if
12:  Create child nodes C, Cy partitioned by N.split
13:  if C does not satisfy stopping criteria then
14: stack.push(Ch)
15:  end if
16:  if Co does not satisfy stopping criteria then
17: stack.push(Cs)
18:  end if
19: end while

20: return Decision tree 1T’

A. MLP Training

The algorithm takes a sample matrix X, a label matrix y,
and the maximum number of features K as input. It aims
to generate multivariate partitions m; and m,.. The following
subsections describe the steps to obtain these multivariate
partitions in more detail.

1) Class Partitioning: Guo and Gelfand [25] introduced a
nonlinear multivariate decision tree with multilayer percep-
trons at the internal nodes. To address the binary nature of
the tree nodes, they devised a heuristic for grouping M > 2
classes into two. This process entails a nested optimization ap-
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proach. In the inner optimization, gradient descent is employed
to determine weights minimizing mean-squared error, akin to
standard neural network training, enabling the identification
of a suitable split for the two distinct class groups. The outer
optimization leverages the exchange heuristic to perform a
local search with backtracking, achieving the best split of M
classes into two groups with a time complexity of O(M?). Loh
and Shih [32] proposed an unsupervised 2-means clustering
algorithm to initially group classes into two superclasses. Our
approach aligns with the strategies of [25], [32] but adopts
a simpler and deterministic method for class grouping. We
construct two distinct subsets of approximately equal size:
Cr, comprising samples from the most frequent class and
those closely related, and C'r, encompassing samples from
the remaining classes.

2) Feature Selection: The key concept is that specific
dimensions within the instance space, as it reaches a particular
node, may exhibit little variation and can be deemed redun-
dant. Avoiding these features may increase the generalization
ability and reduce node complexity [33]. We iterate through
the range of features from f = 2 to K and select the best
features that can distinguish between the two sets effectively,
which can then be efficiently implemented using memristor
crossbars. To do this, we use the usual machine-learning
strategies for feature selection. We perform the chi-squared test
[34] similar to [35] to evaluate the relevance and significance
of each feature with respect to the target variable and select
the f best features based on their scores.

3) Training: Selected features f are used to train a MLP to
separate classes C', and C'r. We store the best model obtained
along with the best features while iterating over the range of
features. Using the best model we partition the data into left
and right partitions similar to [25].

B. HDT Training

The steps to train the HDT are presented in algorithm 2.
The algorithm takes as input a training sample matrix X,
containing the feature vectors, the corresponding class label
matrix y, and K, the max number of features to use for
multivariate decisions. The algorithm outputs a decision tree
T, where each decision node is either univariate or non-linear
multivariate and the leaf node with the assigned class label.
The algorithm maintains a list of nodes that are being worked
on and needs further processing using the stack data structure.
It is initialized with the root node that contains the complete
dataset. In each iteration of the while loop, the best univariate
split obtainable using a single feature is calculated; this step
utilizes the same Information Gain criteria used by the popular
ID3 algorithm. Then, using the MLP, a non-linear multivariate
split is obtained, and depending on the information gain of
both splits either of the two is selected for inclusion in the
decision tree. Finally, the data splits produced by the selected
decision are inserted into the stack for further processing if
they do not meet the stopping criteria. If the selected splits
meet the stopping criteria, they are assigned a label and not
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Fig. 1. A HDT is trained using the MONK’s problem dataset. The inequalities at the decision nodes in the HDT are transformed into a truth table. This truth
table is then employed to construct an equivalent ROBDD, effectively substituting the decisions. This transformation results in the conversion of the HDT
into a BCG, which subsequently serves as the basis for deriving the crossbar design.

TABLE I
ACCURACY, CROSSBAR SIZE, AND ENERGY UTILIZATION COMPARISON BETWEEN UNIVARIATE AND HYBRID DECISION TREES. HDTS ARE MORE
ACCURATE PROVIDED ITS CAPABILITY TO CREATE A NONLINEAR BOUNDARY USING MULTIPLE FEATURES.

Accuracy Size Energy (pJ)
Dataset DT [14] HDT Delta DT [14] HDT DT [14] HDT
Iris 0.9 093  0.03 2018 10x9 0.58 0.24
Wine 0.92 1.00 0.08 41x39 48x48 1.34 1.62
Banknote 1.00 1.00 0 51x48 36x34 1.6 1.10
Car-evaluation 0.86 0.90 0.04 10x 14 34x34 0.18 1.00
Tonosphere 0.96 099 0.03 51x45 58x51 1.52 1.88
Balance-scale 0.79 090 0.11 283x260 92x93 8.84 3.05
Indian-Diabetes 0.77 0.81 0.04 435x408 132x128 14.92 4.76
Tic-tac-toe 0.96 0.98 0.02 32x32 254242 1.2 8.61
Monkl1 0.8 0.92 0.12 28x%25 27x24 0.84 0.76
Statlog-shuttle 1.00 1.00 0 178 x167 384385 5.8 15.02
MNIST 0.86 0.90  0.04 | 3391x3237  14068x13935 118.12  506.16

processed further. We utilize the majority class proportion-
based stopping criteria proposed in [20].

the feature index and the bit value. Once the crossbar design
is ready, depending on the input, the values for the labels are
loaded with either O or 1. During execution a current is applied
to the bottommost row and the output is received in one of the
top M rows, M being the number of classes, which is 2 in this

IV. RESULTS

We train our HDT algorithm on multiple datasets from the

UCI machine learning repository and the MNIST dataset [13],
[30]. The crossbar design is synthesized from the obtained tree
and is compared with the ones generated through the univariate
decision tree proposed in [14] on the basis of accuracy, size
and energy utilization. We performed all the tests on an AMD
Ryzen 9 7950X 5.7 GHz CPU with 128 GB of memory.
Figure 2 shows the crossbar design generated from the
BCG. Each memristor has a label associated with it. The label
decides whether the memristor is configured with the same
value as the input or the negation (—) of the input. It also tells

case. The memristor values decide the route the current takes
in the crossbar, and since the current ends up in the Class 0
line, we classify the input to be of Class 0.

We also tune hyperparameters to obtain the best accuracy.
We primarily make use of three hyperparameters: maximum
features to utilize K, J to calculate the stopping criteria, and
maximum tree depth. We perform a grid search with a range of
[2, number of features] for K, [0.85, 0.995] for ¢, and [1, 10]
for the maximum tree depth. To train the decision trees, each
feature of the input is scaled to be between 0 and 2°—1, where
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Fig. 2. (a) Crossbar design for classifying the MONK'’s problem dataset with labeled memristors, obtained from the BCG from Figure 1 and (b) loading and
execution of the crossbar for input data in class 0. Current is initially applied to the lowest row and all the wires with a current in them have been shown in

green. A green class 0 wire indicates the classification output as 0.

TABLE II
COMPARISON OF OUR METHOD TO THE SOTA. WE REPORT TREE-DEPTH, ENERGY, AREA, AND ACCURACY NUMBERS FOR THE MNIST DATASET.

Method Process (nm) | Tree Depth | Energy (nJ) Area (mm?) Accuracy

Tntel X5560 [36] 45 6 2.04x 107 | - -

Nvidia Tesla M2050 [36] 40 6 L10x 107 | - -

Xilinx Virtex-6 [36] 40 6 3.51 x 10° - -

ASIC [37] 65 - 1.87 x 10° 6.50 -

ASIC [38] 65 - 4.60 x 10° 2.30 -

ASIC IMC [39] 65 6 19.4 0.56 -

ACAM [40] 65 10 1.28 1.80 .

DT (worst-case) [14] 70 10 2.05x 102 | 5.23x 103 -

DT (MNIST) [14] 70 10 1.74 x 1072 | 9.40 x 10~* 0.82

HDT (MNIST) 70 10 0.5 0.96 0.90
L is the bit length of the feature. The decision tree is trained energy [14]. However, when we incorporate multiple features
on 80% of the dataset while keeping the rest for testing. The using the hybrid decision tree, we obtain a test accuracy of
memristors used are the ones synthesized by Goux et al. which 0.90 with a crossbar area of 0.96mm? consuming 0.5nJ of
have energy utilization and cell width of 10 fJ and 70 nm energy. The increase in size can be attributed to the increase
respectively [41]. The number of programmable memristors in in the number of features that were considered while training
the crossbar multiplied by 10 fJ yields the energy utilization the hybrid decision tree.
of the complete crossbar design. To compare univariate and
hybrid decision trees, we report the best accuracy among V. CONCLUSION
feature bit lengths from 1 to 8 and their corresponding energy We develop high-accuracy decision tree acceleration circuits
utilization, and the crossbar size of the design. based on flow-based memristor crossbars. These circuits in-

Table I shows the comparison between the univariate and corporate sneak paths and OT1R memristor crossbars to resist
hybrid decision trees based on their highest accuracy among issues like resistance drift and radiation-induced degradation.
the tested 1 to 8-bit length, energy consumption and space Our approach termed the hybrid decision tree, combines a
utilization. As expected, the test accuracy of HDT outperforms MLP to create flexible, nonlinear decision boundaries. We
the univariate DT. However, this increase in accuracy comes also experimentally verify that our HDTs produce flow-based
with a substantial increase in the crossbar size which leads to designs that are more accurate compared to univariate DTs.
a higher energy consumption. We verify this by testing the proposed algorithm on various
The comparison of our designs to the SOTA is presented in datasets including the MNIST dataset where we achieve a test
Table II. In our setup, we follow a strategy of [14] where we accuracy of 0.90, which outperforms the SOTA.
train our model for the popular MNIST dataset with 80% of
the data for training and the rest for testing. The maximum tree VI. ACKNOWLEDGMENT
depth is set to be 10. The univariate test accuracy is 0.82 with a We acknowledge support from NSF Award #2245756 to
crossbar area of 9.40 x 10~*mm? consuming 1.74 x 10~2nJ of Sunny Raj.
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