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ABSTRACT

The Dragonfly networks have been adopted in the current super-
computers, and will be deployed in future generation supercomput-
ers and data centers. Effective routing on Dragonfly is challenging.
Universal Globally Adaptive Load-balanced routing (UGAL) is the
state-of-the-art routing algorithm for Dragonfly. For each packet,
UGAL selects either a minimal path or a non-minimal path based on
their estimated latencies. Practical UGAL makes routing decisions
with local information, deriving the estimated latency for each path
from the local queue occupancy and path hop count information.
In this work, we develop techniques to improve the accuracy of
the latency estimation for UGAL with local information, which re-
sults in more effective routing decisions. In particular, our schemes
are able to proactively mitigate the potential network congestion
with imbalanced network traffic. Extensive simulation experiments
using synthetic traffic patterns and application workloads demon-
strate that our enhanced UGAL schemes significantly improve the
routing performance for many common traffic conditions.
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1 INTRODUCTION

The Dragonfly networks [21] have been deployed in the current
generation supercomputers such as the Frontier supercomputer
[23]. They will be deployed in the future supercomputers and data
centers [16]. The Dragonfly topology has a low diameter while
maintaining high path diversity. To exploit the path diversity, the
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Universal Globally Adaptive Load-balanced routing (UGAL) [18, 21]
has been developed for Dragonfly.

UGAL routes each packet either through a minimal path or a
non-minimal path based on their estimated latencies. It has been
shown that with accurate global latency information, UGAL is able
to achieve high routing performance on Dragonfly [18, 21]. Practical
UGAL, however, does not have the accurate global latency informa-
tion, and uses local queue occupancy and hop count information
to approximate the latency of a path.

Algorithm 1 shows UGAL with local information (UGAL-L) [21].
The latency for the minimal path is approximated with g, X Hp,
where qp, is the queue occupancy and Hy, is the hop count for the
minimal path. Similarly, the latency for the non-minimal path is
approximated with qpm X Hpm where gnm is the queue occupancy
and Hpy, is the hop count for the non-minimal path. The bias b in the
routing allows the routing scheme to favor minimal paths or non-
minimal paths, depending on its value. Clearly, such approximations
may not reflect the actual latencies of the paths, especially in the
case when there is congestion on links along the paths that are not
directly connected to the router, which leads to sub-optimal routing
decisions.

Due to the importance of UGAL with local information, many
improvements have been proposed, including allowing adaptive
routing decisions to be made after the source router [11, 12, 18],
using a static threshold to decide whether to direct the traffic to
the non-minimal path [10], using average queue occupancy to
overcome “phantom” congestion [27], and dynamically adjusting
the bias value based on traffic condition [9, 20]. None of the existing
proposals challenge the latency approximation formula used in
UGAL-L, as shown in Algorithm 1.

In this work, we show that the main reason that causes UGAL-L
to make sub-optimal routing decisions with imbalanced traffic is
the inaccurate approximation of minimal path latency under such
conditions. To overcome this problem, we propose to change the
latency approximation formula for minimal paths by introducing
a contention term that reflects the effect of link congestion with
imbalanced traffic. We further develop techniques to derive the
contention term using information local to each router. Based on our
new latency approximation method, we develop an enhanced UGAL
with a local information scheme called UGAL-LE. By incorporating
the contention term, UGAL-LE is able to proactively mitigate the
potential network congestion for imbalanced traffic. Moreover, our
technique for improving the accuracy of latency approximation is
orthogonal to the techniques in the recently developed schemes
that dynamically adjust the bias to achieve high performance. We
combine our techniques with the Decoupled Gradient descent-based
Bias global adaptive routing algorithm (DGB) [20], and obtain an
enhanced DGB, which we call EDGB. The simulation experiments
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show that UGAL-LE and EDGB significantly outperform other
UGAL-based routing schemes, including DGB, for many common
traffic conditions. In many cases, UGAL-LE and EDGB perform very
similar to the theoretical UGAL with global information (UGAL-G)
[21]. The contributions of this work include the following:

e We identify that the inaccurate latency approximation for
minimal paths is the major cause of performance issues with
UGAL-L when the traffic is imbalanced.

e We develop UGAL-LE with improved latency approximation
for minimal paths using local information. Additionally, we
develop EDGB, an enhanced DGB scheme, by combining our
techniques with DGB.

o We evaluate our proposed UGAL-LE and EDGB with existing
UGAL-based routing schemes using synthetic traffic patterns
and real application workloads. Our techniques significantly
improve the baseline routing schemes in many situations,
which indicates that our techniques are robust and effective.

Algorithm 1: UGAL with local information (UGAL-L)
qm(qnm): queue occupancy for minimal (non-minimal) path
Hy,(Hpm): hop count for minimal (non-minimal) path
b: bias or constant offset

1 if g X Hpn < qnm X Hpm + b then
2 ‘ route minimally

else
3 L route non-minimally

2 BACKGROUND

2.1 Dragonfly

Detailed description of the Dragonfly topology can be found in [21].
Here, we briefly introduce the topology for the completeness of
this paper.

In a Dragonfly topology, multiple routers are interconnected to
form a group where routers within a group collectively act as a
virtual router. The groups are interconnected to form the topology
[21]. A Dragonfly topology has four parameters: p, a, h, and g. Each
router has p channels to connect to terminals, a — 1 local channels
to connect to other routers in the same group, and h global channels
to connect to routers in other groups. g is the number of groups
in the Dragonfly. The router radix is, thus, k = p+h+a—-1. A
load balanced Dragonfly should have a = 2p = 2h [21]. We will
use notation dfly(p, a, h, g) to represent such a Dragonfly topology.
Each group consists of a routers interconnected via an intra-group
interconnection network. In canonical Dragonfly, the intra-group
topology is the fully-connected topology, although other intra-
group topologies such as the 2D all-to-all structure in Cray Aries[3]
are also allowed. This study focuses on canonical Dragonfly with
fully-connected groups.

The maximum-sized Dragonfly has exactly one global connection
between each pair of groups. Each group has ah connections to
other groups, and thus there are g = ah+ 1 groups in the maximum-
sized Dragonfly. An example maximum sized Dragonfly with p = 2,
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a=4,h=2,and g = 9 is shown in Figure 1. Practical Dragonfly
can be constructed with multiple global links connecting each pair
of groups. When the number of global links connecting each pair
of groups is [, the number of groups is g = # + 1. Common global
connectivity for both maximum-sized and practical Dragonflies can
be found in [4].

Figure 1: An example maximum sized Dragonfly topology
dfly(p=2,a=4h=2,g=9)

For Dragonfly topologies with a fully connected intra-group
topology, the minimal path from a source router (S) to a destination
router (D) has at most 3 hops: one hop in the source group to get to
the router that has a global link connecting to the destination group,
one hop for the global link (to the destination group), and one hop
for the link in the destination group to get to the destination router.
A non-minimal path from router S to router D is obtained by first
randomly selecting an intermediate router (I) that is not in the
source and destination groups, and combine the minimal path from
S to I and then from I to D. In Figure 2, the path in the blue dashed
line is a minimal path from S to D, while the path in the red solid
line is a non-minimal path.

Source Group Destination Group

Intermediate Group

Figure 2: Minimal and non-minimal paths in Dragonfly
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2.2 UGAL

The routing scheme that always sends traffic using minimal paths
is the minimal routing (MIN), while the routing scheme that al-
ways sends traffic through non-minimal paths is the Valiant Load-
balanced routing (VLB) [21]. MIN routing performs well for uniform
traffic. However, for adversarial traffic patterns such as shift traf-
fic patterns, it performs poorly. On the other hand, VLB routing
performs well for adversarial traffic, but poorly for uniform traffic
[21].

Universal Globally-Adaptive Load-balanced routing (UGAL) com-
bines MIN and VLB in one routing system. The idea is to route
packets with minimal paths when the traffic is uniform, and with
non-minimal paths when the traffic is adversarial. In [21], two
versions of UGAL schemes are discussed: UGAL with global in-
formation (UGAL-G) and UGAL with local information (UGAL-L).
UGAL-G is a theoretical (not practical) routing scheme that as-
sumes that the accurate global latency information is available. It
was shown that UGAL-G achieves high performance on Dragon-
fly, while UGAL-L, depicted in Algorithm 1, performs significantly
worse than UGAL-G in many situations.

3 RELATED WORK

In the seminal Dragonfly paper [21], Kim et al. discussed UGAL
and suggested the random selection of intermediate groups for
non-minimal routing in order to load-balance adversarial traffic
patterns. Jiang et al. [18] proposed several indirect global adaptive
routing schemes where adaptive routing decisions are made using
information that is not directly available at the source router to
approximate UGAL-G. Since then, various enhancements for the
UGAL routing scheme have been developed. Garcia et al.[11] iden-
tified local congestion inside intermediate groups and improved
UGAL by randomly selecting intermediate nodes for non-minimal
routing. Garcia et al. [11] proposed the on the fly adaptive routing
(OFAR) that can dynamically change the packet routes from mini-
mal to non-minimal on both intra- and inter-group communication.
Additional congestion management mechanisms have been stud-
ied in OFAR-CM [13]. Opportunistic local misrouting (OLM) and
restricted local misrouting (RLM) [12] are other in-transit adaptive
routing schemes that offer deadlock-free mechanisms that work
with virtual cut-through and wormhole flow-control. Thresholds
were proposed to redirect traffic away from the minimal path when
the local contention and buffer usage surpass a specific limit [10].
Won et al. [27] identified phantom congestion due to the higher link
latency and estimated the delay using the history window approach.
Topology custom UGAL (T-UGAL) has been proposed for practical
Dragonfly networks. T-UGAL [24] employs a subset of all possible
VLB paths in UGAL that has a smaller average path length. Various
machine learning-based routing schemes for Dragonfly were also
proposed [5, 19]. Q-adaptive [19] routing leverages multi-agent
reinforcement learning (MARL) to train routers. Similarly, UGAL-
ML [5], a deep learning-based routing algorithm, utilizes the local
router information like queue occupancy, hop count, and link-usage
statistic counters to make a routing decision. The bias was initially
introduced in UGAL to filter out the transient load imbalances on
the minimal path [18]. UGAL can leverage bias to favor minimal or
non-minimal paths. Several techniques were proposed to improve
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UGAL performance by adapting the bias value to the traffic condi-
tion. Traffic pattern-based adaptive routing (TPR) enhances UGAL
by utilizing local router counters to infer global traffic patterns
based on different operating regions and a static bias value for each
operating region [9]. Decoupled Gradient descent-based Bias adap-
tive routing (DGB) [20] proposed a gradient descent-based method
to set bias values dynamically based on network congestion. Our
approach is different from all of the existing work in that we employ
a mechanism to more accurately approximate the latency for the
minimal path by using local information to infer the link contention
on the global link in the minimal path. This reduces the number of
sub-optimal routing decisions and improves the performance.

4 PROPOSED TECHNIQUES

We will first discuss the issues with the latency approximation in
UGAL-L, which gives the motivation and intuition of our proposed
techniques. We will then describe our techniques in detail.

4.1 Motivation and intuition

Our proposed techniques are based on some unique features of
UGAL and UGAL-L. We will discuss these features, which motivate
and give the intuition of our proposed techniques. In practice, UGAL
considers a small number of minimal paths and a small number of
non-minimal paths as candidate paths for each packet. To simplify
the discussion, we will assume that only one minimal path and one
non-minimal path are considered. Our techniques can be extended
naturally to the case when more than one minimal and non-minimal
paths are considered.

Observation 1: With a UGAL based scheme like UGAL-L, a
minimal path has a much higher chance of being considered to
route a packet than a non-minimal path. This is because for each
pairs of source-destination routers in different groups, the number
of minimal paths in a Dragonfly network is much smaller than the
number of non-minimal paths. For example, in the maximum sized
dfly(4,8,4,33), for each pair of source and destination routers in
different groups, the number of minimal paths is 1 while the number
of non-minimal paths is 248. In d fly(4, 8, 4, 9) with 4 links between
each pair of groups, for each source and destination routers in
different groups, the number of minimal paths is 4, and the number
of non-minimal paths is 896. Since UGAL selects one minimal and
one non-minimal path from all possible paths, it inherently has a
much higher chance to consider a given minimal path than a given
non-minimal path.

Observation 2: Although the latency estimations of both the
minimal path and non-minimal path are used in making the rout-
ing decision in UGAL-L (Algorithm 1, Line 1), the impact of the
inaccuracy in latency estimation for minimal path is very different
from that for non-minimal path.

We will use an example to illustrate this observation. Consider
the scenario shown in Figure 3 with three active flows from one
group (source group) to a destination group: Sy — Dy, S1 — Dy,
and S; — D3. Let us assume that the three flows send packets at
the same rate. In this scenario, the global link between R3 and R4
can be under heavy load even before the local links in Ry, R1, and
Ry are heavily loaded: the load of the global link shared by the three
flows should be three times the load on the local link. In this case,
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when UGAL-L approximates the latency for the minimal path with
qm X Hp, it assumes that the load on the global link is the same as
the local link and significantly underestimates the latency on the
minimal path, which results in sub-optimal routing decisions being
made.

During the time before the back pressure from router R3 cause
buffers in routers Ry, R, and Ry to fill up, UGAL-L will push too
many packets in the minimal path and congested link due to the
latency under-estimation. After the link is saturated (the buffer
in the link between R3 and Ry is full), and the situation persists,
back pressure from router R3 will result in buffers in routers Ry,
Ry, and R being filled up. In this situation, UGAL-L’s estimation is
a reasonable estimation of the total queue length along the path.
However, this estimation significantly under-estimates the latency
in terms of time experienced by a packet. Given that three flows
share the global link, the movement of packets in the local links
is three times slower compared to the packets in a normal queue
(without contention in the downstream link). Consequently, the
delay experienced by a packet in the local link is three times greater
than that in the other links. Hence, in the congestion situation
as depicted in Figure 3, due to the under-estimation of the
minimal path latency, UGAL favors minimal path more and
affects the routing decision of every packet in the affected
flows, causing a persistent congestion situation.

Now, let us consider the impacts of the under-estimation of the
latency of non-minimal paths. In a situation shown in Figure 3, a
congested link (the link from R3 to Ry in the figure) can also cause
the latency of a non-minimal path that uses this link to be under-
estimated, which also leads to sub-optimal routing decisions. How-
ever, such sub-optimnal routing decisions will not cause persistent
congestion. In fact, they will not cause significant problems in the
network. This is because for each flow there are many non-minimal
paths. For example, in dfly(4, 8, 4, 33), the number of non-minimal
paths for each source-destination node is 248; and for each routing
decision, one of the non-minimal paths will be randomly selected.
Thus, a congested link such as the link from R3 to R4 in Figure 3
will only affect 1/248 = 0.4% routing decisions for an active flow.

Hence, although one should try to improve the latency estima-
tion for both minimal and non-minimal paths, the performance of
UGAL-L is likely to be significantly improved by having more accu-
rate latency estimation for minimal paths only. We will show later
that there are effective methods to obtain more accurate latency
estimation for minimal paths using local information.

Observation 3: With UGAL, it is possible to have a good esti-
mation of the number of active flows that are sharing the global
link (on their minimal path) with information local to the routers in
the same group. This is because when the minimal paths are under
heavy loads, UGAL will route packets through VLB paths. These
VLB packets will be routed to a random intermediate router and
will pass other routers in the same group with an equal probability.
For example, consider routing packets in flow Sy — Dy in Figure 3.
When UGAL starts to route such packets through VLB paths, those
packets will have an equal probability to be routed through routers
R1, Ry, and R3. Hence, by observing through traffic, routers Ry, Ry,
and R3 will know that there is an active flow Sy — Dy. Since the
number of routers within a group is not large, routers in a group
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Source Group

Destination Group

Figure 3: A motivating example

can learn all active flows in their groups quickly when UGAL starts
routing packets through VLB paths.

4.2 Contention factor

To more accurately approximate the latency for minimal paths, we
introduce a contention term in the latency approximation formula.
More specifically, we define a contention factor (C) for each out-
going global link in a group to be the number of routers with active
flows to the destination group connected by the global link. For
example, in Figure 3, the contention factor for link from R3 to Ry is 3.
Note that the contention factor tracks the flows from router instead
of from compute node to the destination group. So if there is another
compute node attached to Ry starts a flow to the destination group,
the contention factor will still be 3. On the other hand, if there is
another active flow from the compute node in R3 to a compute node
in the destination group, the contention factor for the link will be
4.

4.2.1 Obtaining and maintaining contention factors with local infor-
mation. To obtain the contention factor for all global links of the
group, each router maintains a X g counters, where a is the number
of routers in the group, and g is the total number of groups. We will
use F; j, 0 < i < a (the router id in the group) and 0 < j < g (group
id) the counter that counts the number of packets from the router i
proceeding to the destination group j that this router observed in
a window of time (e.g. last 50 cycles).

Figure 4 illustrates the counters for dfly(2,4,2,9), where a = 4
and g = 9. When the router receives a packet, it checks whether the
packet is originated from the same group. If the packet is originated
from the same group, the router determines the source router (s)
and the destination group (g), and updates the counter Fs 4. In the
example in Figure 4, the router receives a packet from router 1 in
the same group proceeding to destination group 5 and updates the
entry Fys.

The routing algorithm can determine a counter threshold value
(e.g. 5) for a flow to be considered active. The threshold is a param-
eter for the routing algorithm. For each group j, the counters F can
give the number of routers with active flows to the group. We will
denote this value as Cj, which is computed using equation 1.

a—1
Cj= Z(lf (Fi,j > threshold) then 1 otherwise 0) (1)
i=0
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Groups
0 |1 |2 |3 |4 |5 |6 |7 |8
0
Router i
Index
2
3

Figure 4: Example of the data structure maintained in each
router to keep track of contention factors for df1y(2,4,2,9).
The router receives a packet from router 1 in the same group
to destination group 5, and updates entry Fj s.

4.3 UGAL-LE

Our proposed UGAL-LE, an enhanced UGAL with local informa-
tion, is depicted in Algorithm 2. UGAL-LE distinguishes between
two types of routers. If the source router directly connects to the
destination group (Lines 2 to 4), gp, is the queue occupancy on the
global link. In this case, the g, for the global link is accurate and
qm X Hp, is used to approximate the path latency like the tradi-
tional UGAL-L. If the source router does not directly connect to
the destination group (Lines 5 to 7), g, is the queue occupancy
on the local link. In this case, the queue occupancy on the global
link should be approxmiated as g, X C: UGAL-LE adds the term
qm X max(C — 1,0) to the minimal path latency approximation to
make the routing decision. Note that the contention term will make
the approximated queue occupancy for the global link to be g, X C
since in the ¢m X Hy, term, g;, queue occupancy for the global link
has already been counted.

Algorithm 2: UGAL-LE: an enhanced UGAL with local
information

qm(qnm): queue occupancy for minimal (non-minimal) path
Hpm(Hpm): hop count for minimal (non-minimal) path

C: contention factor for the global link in minimal path

R: source router making the routing decision

Gp: destination group

1 if R has a global link connecting to Gp then
2 if gm X Hy < qnm X Hpm + b then

3 ‘ route minimally
else
4 L route non-minimally
else

5 if gm X Hp + g X max(C — 1,0) < qnm X Hpm + b then
6 ‘ route minimally

else

7 L route non-minimally
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4.4 Enhanced DGB (EDGB)

DGB [20] leverages both local information and global information
for latency estimation. The local information (queue occupancy
and hop count) is used to estimate the latency of minimal and
nonminimal paths. The global information (end-to-end latency of
each packet) is used to tune the bias value with an online gradient
descent algorithm. Here, the global information is obtained from the
feedback sent by the destination router through piggybacking. The
bias value is dynamically adjusted with gradient descent, using the
current bias value, the learning rate, and the gradient of latency with
respect to bias. The gradient is derived using the global information.
Details of DGB can be found in [20].

DGB allows the bias value to be dyanmically adjusted, its basic
latency estimation is still based on local queue occupancy and
hop count, like UGAL-L. Our technique, which improves the basic
latency estimation for UGAL-L, is orthogonal to the techniques in
DGB and can combine with DGB in a straight-forward manner. We
develop the combined routing scheme and name it enhanced DGB
(EDGB).

4.5 Discussion

Due to the statistical nature of UGAL to send packets over VLB
paths, routers in the same group may not have the accurate infor-
mation about all active flows from the group, resulting in inaccurate
contention factor estimation. However, since contention factor adds
amulticative term to the latency estimation for minimal paths, even
when it is not accurate, it will still be much better than the latency
estimation in UGAL-L. For example, consider a traffic pattern that
contention factor for a global link is 5. Let us assume that a router
only observes a contention factor of 2. Although the router’s latency
estimation is not accurate, it is still much higher and more accurate
than the estimation with UGAL-L. In other words, UGAL-LE will
make much less sub-optimal routing decisions than UGAL-L in
such a situation.

5 EVALUATION WITH SYNTHETIC TRAFFIC
PATTERNS

Extensive simulation experiments have been performed to evalu-
ate the performance of our proposed routing schemes using both
synthetic traffic patterns and HPC application workloads. Book-
sim2.0 [17], a cycle-accurate interconnect simulator, is used to study
packet latency and saturation throughput of synthetic traffic pat-
terns. CODES [6], an event-driven interconnect simulator, is used
to evaluate the performance of the proposed routing schemes with
HPC application workloads. In this section, we provide a compre-
hensive evaluation of our proposed routing scheme with synthetic
traffic patterns using Booksim. In section 6, we will present the
results for HPC workloads.

5.1 Methodology

5.1.1 Topology. We evaluated our routing schemes on topologies
dfly(4,8,4,33) and dfly(4,8,4,9). More information for the topolo-
gies is summarized in the table 1. These topologies are built with
15 port switches and have the same intra-group connectivity with
different numbers of groups and different numbers of global links
connecting each pair of groups.
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Num of | Noof | Noof | linksper
Topology .

nodes | routers | groups | group pair
dfly(4,8,4,33) | 1056 264 33 1
dfly(4,8,4,9) | 288 72 9 4

Table 1: Topologies Used in Experiments

5.1.2  Routing variations and simulator setting. We conducted a
comprehensive evaluation of our enhanced UGAL schemes in di-
verse traffic scenarios, comparing their performance against other
UGAL variants. Booksim offers a basic implementation of UGAL-L,
serving as a baseline adaptive routing. We have added PAR, UGAL-
G, DGB, UGAL-LE, and EDGB.

We have modified the Booksim simulator to support different sizes
of dragonfly topologies and implement an absolute global links
arrangement[14].

On Booksim, the routing parameters for UGAL-LE and EDGB are
configured as follows. The window size for counters was set to
500 cycles and the counter threshold to decide whether a flow is
active is set to 5. The counter threshold value is chosen empirically
to effectively distinguish meaningful flow patterns from sporadic
or random occurrences within a given window period. The learn-
ing rate for DGB is 0.1 (same as in [20]) and the learning rate for
EDGB is set to 0.001. We use different learning rates for DGB and
EDGB because EDGB incorporates an adjustment term for minimal
path latency estimation, which acts as a negative bias that favors
nonminimal paths. Setting the learning rate lower (0.001) for EDGB
compared to DGB (0.1) helps stabilize the bias values, preventing
abrupt changes and allowing them to stay within the optimal range
for better performance.

The Booksim simulation results were collected over 10,000 cycles
and the simulator is warmed up for 30,000 cycles, ensuring the
steady state is reached. The router speedup is set to 2.5 to prevent
the router from becoming the bottleneck. We have used 4 virtual
channels for UGAL to ensure deadlock-free routing as illustrated
by Won et al. [27] for all routing schemes except PAR uses 5 virtual
channels. We have set local link latency to 10 cycles and global link
latency to 15 cycles to mimic Cascade [8] interconnect where local
link latency to global link latency is 1:1.5 ratio. Similar parameters
are also used in [4, 24]. Buffer size is set to 256. We have used single
flit packet in the study to avoid any potential flow control issues.
The routing and simulation parameters are listed in the table 2.

5.1.3 Synthetic traffic patterns. Four different types of synthetic
traffic patterns are used in the experiments with Booksim: random
uniform, shift, random permutation, and mixed traffic. In a random
uniform traffic pattern, each packet has an equal probability of
being transmitted to any destination within the network. In the
shift traffic pattern, all nodes connected to group(i) send all their
traffic to group(i+1 mod g), stressing inter-group channels. In a
random permutation traffic pattern, each node is assigned a unique
random destination node. Mixed traffic patterns are mixed between
shift/permutation and uniform traffic. We use two types of mixed
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Parameter Value

number of 5 for PAR

virtual channels | 4 for other routing functions
buffer size 256

10 cycles (local)

15 cycles (global)

switch speedup | 2.5

UGAL-L, PAR,

DGB, UGAL-LE, EDGB, UGAL-G
0.1 - DGB, 0.001 - EDGB

link latency

routing

learning rate

Table 2: Routing and Simulation Parameters

traffic patterns: router-level mixed traffic where a certain percent-
age of routers are randomly selected and all compute nodes con-
nected to these routers are participated in a shift/permutation pat-
tern, and node-level mixed traffic where a certain percentage of com-
pute nodes randomly selected to participate in the shift/permutation
pattern. The rest of nodes in the mixed traffic patterns generate
uniform traffic. Mixed traffic patterns help us to evaluate the be-
havior of routing algorithms when different parts of the network
exhibit different behaviors.

5.2 Results and Discussion

In this section, we compare the performance of our proposed UGAL-
LE and EDGB with that of UGAL-L, PAR, DGB, and UGAL-G on
dfly(4,8,4,33) and dfly(4,8,4,9). The latency plot is widely used
to understand the average packet latency under different offered
loads. The x-axis in the latency plot represents the increasing of-
fered load, and the y-axis represents the average packet latency. In
our study, the unit of latency is a cycle. If a link latency is 10 cycles,
10 cycles are required to traverse the link.

Figure 5 shows the latency plot for different routing schemes
with random uniform traffic on dfly(4, 8, 4, 33). All of the routing
schemes perform similarly with PAR slightly worse than others.
This is because PAR can result in longer paths being taken for a
packet, which affect the aggregate throughput. Although UGAL-LE
and EDGB approximate the minimal path latency with contention
factor, it does not affect their performance for uniform traffic. For
this traffic pattern, the contention factor is 0. Thus, UGAL-LE is
equivalent to UGAL-L and EDGB is equivalent to DGB.
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Figure 5: Uniform Random on dfly(4, 8,4, 33)
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Figure 6: Adversarial shift traffic (ADV)

5.2.1 Adversarial Traffic. Figure 6 shows the latency plot of adver-
sarial shift traffic pattern on dfly(4, 8, 4,33). UGAL-LE and EDGB
improve over UGAL-L in latency for lower offered loads and achieve
higher throughput than other routing schemes. Specifically, from
this experiment, UGAL-L saturates at 0.37, while UGAL-LE achieves
a higher saturation throughput of 0.51, reflecting a 37% increase
in throughput than UGAL-L. Similarly, DGB saturates at 0.48, and
EDGB attains a higher saturation throughput of 0.51, signifying a
6% improvement over DGB. PAR and UGAL-G obtain saturation
throughput of 0.42 and 0.47, respectively. Several key observations
underscore the effectiveness of enhanced UGAL variants. Firstly,
the incorporation of the contention term significantly increases
the minimum path delay estimation. This prompts UGAL-LE and
EDGB to send more packets through nonminimal paths. Further-
more, since contention factor is very large for the shift pattern,
UGAL-LE and EDGB effectively transforms into VLB routing, the
best under such a traffic condition.

Second, UGAL-LE and EDGB have slightly higher throughput
than UGAL-G in this experiment. UGAL-G has the up-to-date la-
tency information but does not use the pattern information; UGAL-
LE knows and uses the pattern information, but does not have the
global information. Hence, both have advantages. In this experi-
ment, UGAL-LE is able to direct slightly more traffic to VLB paths
and achieves slightly higher throughput: at the saturated load, with
UGAL-G, 6.5% of packets uses minimal paths while with UGAL-LE,
5.6% of packets uses minimal paths. Note that although UGAL-G
uses current updated information to make routing decision, such
information can still be outdated after the packet travels multiple
hops, leading to sub-optimal routing performance.

Note that in this experiment, under medium loads, for some
routing algorithms such as UGAL-L and DGB, higher offered loads
(in the medium range) can result in lower packet latency. This
phenomenon has also been observed in earlier studies [21]. It is due
to the interaction among routing, back pressure, and buffer size as
explained in [21].

Figure 7, shows the latency plot of random permutation traf-
fic pattern on dfly(4,8,4,33). UGAL-LE and EDGB deliver im-
proved performance than UGAL-L and DGB, respectively. Specif-
ically, UGAL-L is saturated at 0.5, and UGAL-LE is saturated at
0.53, a 6% improvement. DGB saturates at 0.52 and EDGB saturates
at 0.55, reflecting a 5% improvement over DGB. In addition, PAR
is saturated at 0.54, and UGAL-G is saturated at 0.64. Although,
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enhanced UGAL variants outperform their standard UGAL coun-
terparts, but not as much as the adversarial traffic pattern. This is
due to reduced stress on inter-group channels. Moreover, EDGB
avoids congested VLB paths utilizing dynamic nonmin-bias; EDGB
performs better than UGAL-LE.
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Figure 7: Random Permutation

5.2.2  Router Level Shift Mixed Traffic Pattern. Figures 8, 9, and 10
show the latency results for router-level shift mixed traffic with 25%,
50%, 75% of shift traffic on df1y(4, 8,4, 33), respectively. In Figure 8,
UGAL-L saturates at 0.39, and UGAL-LE saturates at 0.53, achieving
35% improvement. DGB saturates at 0.48, and EDGB saturates at
0.55, reflecting a 14% increase in throughput. Additionally, PAR
saturates at 0.54, and UGAL-G saturates at 0.58. In Figure 9, UGAL-
L saturates at 0.33, and UGAL-LE saturates at 0.53 attaining a 60%
improvement. DGB saturates at 0.48, and EDGB saturates at 0.53,
obtaining a 10% improvement. In addition, PAR saturates at 0.51,
and UGAL-G saturates at 0.56. In Figure 10, UGAL-L saturates at
0.37, and UGAL-LE saturates at 0.51, attaining 37% improvement.
DGB saturates at 0.48, and EDGB saturates at 0.51, gaining by 6%
in terms of throughput. Furthermore, PAR saturates at 0.44, and
UGAL-G saturates at 0.5.

Note that a higher percentage of shift traffic should statistically
result in lower throughput on average, it is not always the case
for particular patterns since the throughput of a particular pattern
depends not only on the percentage of the shift traffic, but also
on how the nodes participating in the shift pattern are distributed
in the network. Since Figures 8, 9, and 10 show the results of one
particular pattern for each traffic distribution, the results do not
follow the general trend.

In router level shift mixed traffic pattern, global link contention
in the minimal path increases as the shift percentage increases.
Since UGAL-LE and EDGB adds up the adjustment term propor-
tional to global link contention, it proactively mitigates global link
congestion and achieves better throughput.

Figures 11, 12, 13 show the latency results for node-level per-
mutation mixed traffic patterns with 25%, 50%, 75% of random
permutation traffic on dfly(4, 8, 4, 33), respectively. In Figure 11, all
routing schemes have similar performance. In Figure 12, we observe
UGAL-L achieves the saturation throughput of 0.56, and UGAL-LE
saturates at 0.61, obtaining an 8% improvement. DGB saturates
at 0.58, and EDGB saturates at 0.65, acquiring 12% improvement.
In addition, PAR saturates at 0.64, and UGAL-G saturates at 0.66.
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Figure 8: Router-level mixed pattern (25% shift traffic) on
dfly(4,8,4,33)
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Figure 9: Router-level mixed pattern (50% shift traffic) on
dfly(4,8,4,33)
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Figure 10: Router-level mixed pattern (75% shift traffic) on
dfly(4,8,4,33)

Likewise, from Figure 13 UGAL-L saturates at 0.51, and UGAL-LE
saturates at 0.56, reflecting a 9% improvement. DGB saturates at
0.54, and EDGB saturates at 0.59, gaining by 9% in terms of through-
put. In addition, PAR saturates at 0.57, and UGAL-G saturates at
0.7. Since permutation mixed traffic causes less global link con-
tention compared to mixed traffic with shift pattern, our technique
results in less improvement. None the less, UGAL-LE and EDGB
consistently improves over their corresponding baseline counter-
part across many different traffic patterns, which indicates that our
proposed techniques are robust and effective.
The relative performance of the routing schemes on
dfly(4,8,4,9) is similar to that on dfly(4, 8,4,33). We show the
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Figure 11: Node-level mixed traffic (25% random permutation)
on dfly(4,8,4,33)

—@- UGAL-L

- PAR

-l DGB
—@- UGAL-LE -%- EDGB

300 T
1

1

250

o

150

100

Average Latency

50

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Offered Load

Figure 12: Node-level mixed traffic (50% random permutation)
on dfly(4,8,4,33)
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Figure 13: Node-level mixed traffic (75% random permutation)
on dfly(4,8,4,33)

results for a few traffic patterns. Figure14 shows the results for
shift traffic. UGAL-L saturates at 0.34, and UGAL-LE saturates at
0.54, achieving 58% higher throughput. DGB saturates at 0.48, and
EDGB saturates at 0.55, gaining 14% higher throughput. Moreover,
PAR is saturated at 0.46, and UGAL-G is saturated at 0.51. Figure15
shows the results for node-level mixed traffic with 50% shift traffic.
UGAL-L saturates at 0.37, and UGAL-LE saturates at 0.65, reflecting
a 75% increase in throughput. DGB saturates at 0.63, and EDGB
saturates at 0.66, achieving 4% higher throughput. In addition, PAR
is saturated at 0.63, and UGAL-G is saturated at 0.67. Figure16 shows
the results for a random permutation. UGAL-L saturates at 0.76,
and UGAL-LE saturates at 0.8, acquiring an 5% higher throughput.
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DGB saturates at 0.78 and EDGB saturates at 0.81, signifying 3%
improvement. PAR is saturated at 0.77, and UGAL-G is saturated at
0.89.
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Figure 14: Shift on dfly(4, 8,4,9)
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Figure 15: Node-level mixed traffic with 50% shift on
dfly(4,8,4,9)
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Figure 16: Random Permutation on dfly(4,8,4,9)

We have also studied the transient behavior of different rout-
ing schemes (UGAL-L, DGB, UGAL-LE, EDGB) with the network
traffic changes from the random uniform pattern with a medium
load of 0.6 to a shift traffic pattern with a medium load of 0.25 on
Dfly(4,8,4,33). To support a shift pattern with a load of 0.25, a
large percentage of packets must be routed to VLB paths while
for the uniform traffic with a load of 0.6, all traffic can be routed
through the minimal path. In other words, the shift pattern stresses
the minimal path much more than the uniform traffic. Figure 17 a
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Figure 17: Transient behavior of different routing schemes

illustrates the average estimated MIN path latency after the traffic
pattern switch starts. The average esimated MIN path latency is the
average across all routers with active flows. UGAL-L and DGB have
similar behavior while UGAL-LE and EDGB have similar behav-
ior. This is understandable. It can be seen from the figure that our
UGAL-LE reacts to the pattern change swiftly with a spike (label
C in the figure) of estimated minimal path latency. This indicates
that UGAL-LE detects and reacts to the new traffic pattern very
quickly. At around 200 cycles after the switch (label D in the figure),
UGAL-LE and EDGB reach a new steady state. On the other hand,
UGAL-L and DGB also reacts to the new traffic pattern with an
increasing estimated minimal path latency. However, they reaches
the steady state much slower at about 1200 cycles after the switch
(label B).

Figure 17 b shows the average total minimal path queue occu-
pancy during this period of time. The average total minimal path
queue occupancy is averaged across all active flows. With UGAL-LE
and EDGB, the total minimal path queue occupancy increases to 90
initially and then settles at 45 at around 200 cycles after the pattern
transition. With UGAL-L and DGB, the total minimal path queue
occupancy continues increasing to about 300 at around 1200 cycles
after the pattern transition. This indicates that UGAL-L and DGB
routes many more packets to the minimal path than UGAL-LE and
EDGB, which are sub-optimal for the shift traffic pattern.

6 EVALUATION WITH HPC WORKLOADS

To evaluate the performance with real HPC workloads, we extended
the CODES simulation framework for online or in situ replay of
workloads using the Scalable Workload Models (SWMs) [25] pre-
sented in [15] [22]. We have implemented UGAL-L and UGAL-
LE within the CODES simulator. The evaluation is performed on
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- . Rank-to-Node mapping
Application | Routing Random | Continuous
UGAL-L | 330 401
MILC UGAL-LE | 3.25 3.06
UGAL-L | 2266 22.01
Nekbone = T TE T 2147 19.18
L UGAL-L | 6.029 6.19
ammps - GGALLE | 5.95 5.67
. UGAL-L | 0.694 0.67
Stencil3D =3 T TE T 0681 0.54

Table 3: Communication time (in ms) of HPC applications
on dfly(4,8,4,33) with different routing schemes and different
mappings

the dfly(4, 8, 4, 33) network topology that supports 1056 compute
nodes. For UGAL-LE, the sliding window is set to 500 ns, and the
counter threshold is set to 3. Routers are configured with VC buffer
size of 256 packets. In the experiments, the local and global band-
width is set up to 200Gb/s, same as the latest Slingshot system [7].
Other CODES parameters have the default values. We have evalu-
ated routing schemes by replaying four common HPC applications,
MILC [1], LAMMPS [1], Nekbone [1], and Stencil3D, as standalone
jobs using their SWM code [2]. The parameters for applications
have the default values, similar to prior studies [26] [22]. MILC,
Nekbone, Lammps, and Stencil3D is configured with 1024, 729, 729,
and 1024 ranks respectively. We replay HPC applications with
continuous and random job placement policy to report the aver-
age communication times (output by CODES). The continuous job
placement policy maps the compute node for each rank consecu-
tively. Whereas, the random job placement policy assigns random
nodes for each rank.

The average communication times of HPC applications with
UGAL-LE and UGAL-L routing schemes on dfly(4,8,4,33) are shown
in Table 3. UGAL-LE consistently out-performs UGAL-L in the
experiments. The performance difference varies depending on the
application and the job placement policy. Specifically, with contin-
uous mapping, UGAL-LE achieves improvements of 23.69%, 12.85%,
8.4%, and 19.40% over UGAL-L for MILC, Nekbone, Lammps, and
Stencil, respectively. Under random mapping, UGAL-LE shows im-
provements of 1.52% and 5.25%, 1.31%, and 1.87% for MILC, Nekbone,
Lammps, and Stencil, respectively. Our technique is more effective
when the network operates in the contention situation. A detailed
examination of traffic patterns in these applications shows that con-
tinuous mapping results in more contention links while the traffic
in random mapping is more uniform and thus less improvement
with UGAL-LE.

7 CONCLUSION

We propose novel techniques to improve UGAL-based routing
with local information. Unlike all of existing UGAL enhancement
schemes, our schemes change the fundamental latency estimation
of UGAL with local information, which results in much more accu-
rate latency estimations for minimal paths when the network traffic
is imbalanced. Our experiments demonstrate that our techniques
are robust and effective: UGAL-LE and EDGB improve over their
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corresponding baseline counterparts significantly and consistently
across diverse traffic patterns. In particular, our schemes exhibit a
remarkable performance enhancement on traffic patterns that have
heavy inter-group traffic, and are able to react to traffic pattern
changes quickly.
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