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Abstract

We study #°° norms of #>-normalized eigenfunctions of quantum cat maps. For maps with short
quantum periods (constructed by Bonechi and de Biévre in F Bonechi and S De Bievre (2000,
Communications in Mathematical Physics, 211, 659—686)) we show that there exists a sequence of
eigenfunctions u with ||u||,, > (log N)~!/?. For general eigenfunctions we show the upper bound
|ullo < (logN)~'/2. Here the semiclassical parameteris h = (2N )~'. Our upper bound is
analogous to the one proved by Bérard in P Bérard (1977, Mathematische Zeitschrift, 155, 249-276) for
compact Riemannian manifolds without conjugate points.

1. Introduction

In this paper, we build on an existing body of work that examines the extreme values of eigenfunctions of
classically chaotic quantum systems. Specifically, we examine the quantum cat map, one of the best-studied
models. First introduced by Berry and Hannay in [ 1], cat maps are the quantization of hyperbolic linear maps in
SL(2, Z) on the 2-dimensional torus.

The quantum cat map is a toy model in quantum chaos. Another standard class of quantum chaos models is
given by Laplacian eigenfunctions on negatively curved compact manifolds (M, g), satisfying —Agu = Muand
normalized so that ||u||;2 = 1. Estimating the suprema of these Laplacian eigenfunctions has been an area of
great interest. For example, Rudnick and Sarnak in [2] showed that on hyperbolic 3-manifolds, there exists a
sequence of eigenstates uy such that ||u; || > X/%.In regard to upper bounds, Levitan, Avakumovi¢ and
Hoérmander in [3-5], respectively, proved the well-known result that on a compact Riemannian manifold,
lullx < A2 where n = dim M. However, it is conjectured that much stronger results hold. Specifically, in [6],
Iwaniec and Sarnak conjectured that for surfaces of constant negative curvature, || u||;~> <. X foralle > 0; in the
special case of Hecke eigenfunctions on arithmetic surfaces they obtained the bound [|u/[;~ <. X2 *¢. The best
known bound outside of the arithmetic cases is the result of Bérard [7]: when (M, g) has no conjugate
points, ||u]|;~> = O()\ngl/« /log A).

In this paper, we are concerned with metaplectic transformations, the quantizations of hyperbolic maps
A= [a Z] € SL(2,7Z), la+d|>2, ab,cde?2Z. (1)
¢

We decompose L?(R") into a direct integral of finite-dimensional spaces Hy (6), where § € T?and N € N. As
shown in section 2, the condition that ab, cd be even is needed to make sure that the metaplectic map associated
to A descends to a map from Hy (0) to itself. We denote the resulting quantum cat map by My o. An explicit basis
for each Hy(0) is given by lemma 3. For u € Hy(6), we use ||ul|z» to denote the standard #? norms applied to
coefficients of this basis. We prove theorem 1 and theorem 2, bounds on the #°° norm of eigenfunctions
on Hy(0). See figure 1 for a numerical illustration. Note that due to the normalization in the spaces #* and £,
the standard bound on Laplacian eigenfunctions ||ul|;> < [|ul[;> < X2 ||u/[;2 becomes the
bound - lull < flull~ < Julle

In [8], Bonechi and De Biévre prove that for each A, there exists a sequence of My, with ‘short’ periods.
Faure, Nonnenmacher, and Biévre use this result in [9] to show that there exists a sequence of eigenfunctions

©2023 IOP Publishing Ltd
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Figure 1. The plot of the maximal #°°-norm of an #?-normalized eigenfunction of Mo where My is associated with A = [f ;]
The lower and upper bounds from theorems 1 and 2, (2log, N)~'/2 and (log, N)!/2, respectively, give the solid red lines. The dotted
blue line is the trivial lower bound N~ /2, Finally, the large red dots correspond to the sequence Ny from theorem 1.

that are localized, as quantified by semiclassical measures. We also utilize [8] to show there exists a sequence of
My with localized eigenfunctions, as demonstrated by the following lower bound.

Theorem 1. Suppose A is a matrix satisfying (1) with positive eigenvalues, even trace, and coprime off-diagonal terms
Then we can find a sequence of odd integers Ny, — oo such that forall € > 0, there exists ko such that forall k > ko,
there exists an eigenfunction u of My o with ||ul|,2 = 1and

1—¢

4/210g>\Nk.

Under more general assumptions, for all odd N, we have the following upper bound.

(@)

[l >

Theorem 2. Suppose A is a matrix satisfying (1). Then for 0 < e < 1, thereexists Ny such that forallodd N > N,, if
uis an eigenfunction of My o with ||ul|,2 = 1then

1
N s)logAN'

Analogous statements can be proven for a sequence of even N and any 6, using similar proofs to those of
theorems 1 and 2. However, we exclude these arguments as they are overly technical and do not introduce any
novel ideas.

3

lulle <

The £°° bounds on eigenfunctions of quantum cat maps have been extensively studied in arithmetic
quantum chaos, see [10—14]. These works have focused on Hecke eigenfunctions, which are joint eigenfunctions
of the quantum cat map My and the Hecke operators, constructed in this setting by Kurlberg—Rudnick [15].
There always exists an orthonormal basis of HHy(0) consisting of Hecke eigenfunctions; however, due to the
possibility of large multiplicities of the eigenspaces of My (see [15], footnote3) an upper bound on the £~
norm of Hecke eigenfunctions does not imply the same bound for general eigenfunctions. We list below the
known bounds on #>-normalized Hecke eigenfunctions u:

+ Kurlberg-Rudnick [10] proved the upper bound ||ul|,~ <. N-s+<.

+ Building on [10] (which handled roughly half of the prime values of N), Kurlberg [11] showed that for all but
finitely many prime values of N one has the upper bound ||ul|,~ < 2N~2, and deduced the upper bound
llullo~ <. N-27<for square-free values of N.

2
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Figure 2. The plots of a maximal #°°-norm, #*-normalized eigenfunction of My, where My corresponds to A = [ f ; ]

Specifically, each plot point corresponds to the absolute value of the ith coordinate of the eigenfunction for 0 < i < N — 1. Note that
N = 2911 is an element of the sequence Ny in corollary 6, while N = 991 is not.

« Olofsson [12, 13] showed an upper bound ||u||;~ < N~ for most values of N (in the sense of density as
N — 00). On the other hand, these papers also construct eigenfunctions satisfying a lower bound
[|ullp~ > N~ for most values of N which are not square-free.

2. Preliminaries

We begin with a review of the necessary definitions for this paper. First, recall the semiclassical Weyl
quantization. For a € & (R?) and a semiclassical parameter k € (0, 1],

x + x'

Op,(a)f (x):== ﬁ eL'<”’>fa( , 5) f(xhdx'ds, fe L R).

RZ
Define the symbol class

S(1) = Ja € C¥(R): sup |9 ¢ al < ooforallar € N?¢,
(x,6)eR?

which naturally induces the seminorms || al|c7:= max|q| < SUpg2|9(y. ¢ al for m € Ny. From [16, Theorem 4.16],
we know for a € S(1), Opy,(a) acts on both & (R) and .’ (R).
Now, let w = (y, 1), z = (x, £) € R2, Define the standard symplectic form o on R? by 0(z, w): =&y — xnand

define the quantum translation by U_:=Opy(a,,), where a,(z):= exp (h o(w, 2) ) Noting thata,(z) € S(1), we
see U, is well-defined and acts on & (R). In [16, Theorem 4.7], it is shown that
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U f () = e 30f (x — y).
Thus, U, is a unitary operator on L?(R) that satisfies the following exact Egorov’s theorem,
U,;lOph(a) U, = Op,(a@) foralla € S(1), da(z):=a(z+ w). 4)
From the fact that U, U, = 2 @) U, 4. we deduce the following commutator formula,
U U, = e @ U, UL, (5)

Nowlet Sp(2, R) be the group of real symplectic 2 x 2 matrices. In other words, A € Sp(2, R) ifand only if
0(Az, Aw) = 0(z, w). Note that in this specific 2-dimensional case, Sp(2, R) = SL(2, R). For each
A € SL(2, R), denote by M, the set of all unitary transformations M: [?(R) — L*(R) satisfying the following
exact Egorov’s theorem,

M~'0Op,(a)M = Op,(acA) foralla € S(1). 6)

From [16, Theorem 11.9], we have both existence of these transformations and uniqueness up to a unit factor.

Then, M :=U, 51 2,r) Ma is asubgroup of unitary transformations of L*(R) called the metaplectic group
and the map M +— A isa group homomorphism M — SL(2, R). As a corollary of equation (6), we obtain the
following intertwining of the metaplectic and quantum transformations: M~'U,M = U1, forall
Me My, we R

We turn our attention to quantizations of functions on the torus T2 := R?/Z2. Each a € C*°(T?) canbe
identified with a Z2-periodic function on R?. Note thatany a € C>(T?)is also an element of S(1), therefore its
Weyl quantization Opy,(a) is an operator on L2(R).

By equation (5), we have the following commutation relations,

Op, (@)U, = U,Op,(a) foralla € C*(T?), w e Z% ?)
These commutation relations motivate a decomposition of L?(R) into a direct integral of finite dimensional

spaces Hy(0), where 6 € T?, such that Op;,(a) descends onto these spaces. From [17, Proposition 2.1], to ensure
the these spaces are nontrivial, for the rest of the paper, we assume

h = @nN)"' whereN € N.
We call Hy (6) the space of quantum states. Specifically, for each 6 € T2, set
Hyn(O):={f € L' (R): U, f = e¥oOIINTQW for all w € 72},
where the quadratic form Q on R? is defined by Q(w) = ynfor w = (y, 7) € R%. The following lemma gives an
explicit basis for Hy (0).
Lemma 3 [18],lemma 2.5. The space Hy (0) is N-dimensional with a basis {ef} defined for j € {0,...,N — 1} and
0 = (b, O) € R In particular,
1

\/ﬁ kez

We fix an inner product (-,-)3; on each quantum state Hy () by requiring { ef } to be an orthonormal basis. It can

ef (x):=

627ri9£k6(x _ Nk +j — QX)‘

N

be shown using translation idenitities for e]e (see[18,(2.35)]) thatalthough each {eje} depends on the choice of
the representative 6, € R, the inner product depends only on § € T2. We often denote the norm defined by this
inner product by ||-||.2. Using the bases { ef }, we can consider the spaces Hy(6) as fibers of a smooth N
dimensional vector bundle over T2, which we call Hy.

Foru = Z?I:’OI ozjef,we set
[uller:=(|(gs...,an—1)ler-
Fix N € Nand a € C*®(T?) to define the quantization
Opy,4(@):= Op,(@) 1y Hn(0) — Hn(0), 6 € T?,

which depends smoothly on 6. This restriction holds by definition of Hy(#) and the commutation relations
given in equation (7).
We set

A= [i Z] € SL(2, Z) ®)

and choose a metaplectic operator M € M. Recall that for w = (y, ), z = (x, §) € Z?,0(z,w) = &y — xn)
and Q(w) = yn. By [18, Lemma 2.9], there exists a unique ¢, € (Z/2)? such thatforall w € Z2,

4
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QA 'w) — Q(w) = 0 (i, w)ymod 2Z. Using the definition of Hy (f) and that fact that M 'U,M = Uy 1, we
can verify that M (Hy (0)) C H(Ae + NT*") forall € T2.

Denote My, g:= M|, 9): Hn(0) — HN(AQ + %), which depends smoothlyon § € T?. We require the

domain and range of My 4 to be the same, in other words, we must have

N
(I — A)f = % mod Z2. ©)

Thus, when 6 = 0, condition (9) is satisfied when Nis even or 4 = 0.
We henceforth assume that ¢, = 0, which gives o (¢,, w) = 0mod Z/2. Noting that for allw = (y, n),
QA 'w) — Qw) = (dy — by)(—cy + an) — yn = —dcy?* + 2bcyn — ban?,

we must have dcy? + ban? = 0 mod 27Z. We conclude that dc and ab must be even.
Assuming condition (9), we have the following exact Egorov’s theorem forall a € C>®(T?),

My yOpy 4(@) Mg = Opy g(acA).

Essential to our proof of theorem 2 is the following explicit formula for M.

Lemma 4. When A is given by (8) and b = 0, an element of M is given by

Mu(x) = ﬂf eZ™NIPEY) y (1) dy, (10)
Vil Je
where
Bx, y) = a2 = Py A (11)
IR T T

We provide a short outline of this formula’s derivation; for further details see theorem 11.10 and its following
remarkin [16]. Set A = {(x, y, &, — 1): (%, &) = A(y, 1)) } and note that A is a Lagrangian submanifold of R*.
Additionally,as b = 0, A 3 (x, y, &, ) — (x, n) is surjective. Therefore, there exists a generating function ®(x, y)
suchthat A = {(x, y, 0,®,0,®)}. Asn = — 9,® and £ = 0, P, we know P(x, y) is given by (11). We then have
(10), where the coefficient ensures M is unitary, up to a unit factor.

3. Proof of theorem 1

First, following the presentation in [8], in section 3.1, we show that for a sequence Ny, My, o has alarge
degenerate eigenspace. In section 3.2, we then reduce the proof of theorem 1 to a linear algebra argument.

3.1. Eigenspace of My, o
Consider A given by (8) such that b and c are coprime and TrA is even and greater than 2. Let A be the largest
eigenvalue of A. Then foreach t € N,

N — Xt
A =pA—p_ L pyy=Tr(A)p, — p,_, where p, = T € Z. (12)

Set Ty = min{t: A = ImodN}and, for k € N, define
N{:=max{N: A* = ImodN}.

Essential to our proof of theorem 1 is the following statement from [8]. For the reader’s convenience, we
replicate their proof here.

Theorem 5 [8], Prop. 11. Foreach k € N, we have Ny, = 2p;, Nyt = py + py,pand Ty = k.

Proof. Using equation (12), we see that N} is the greatest integer such that

a— -1 b
pra — Py Pr _ [0 O]modef.
pie pd—py -1 00
Recall that we assumed b and care coprime. Therefore, p, = 0modNj and p, , = —1modNy, which gives

ng = ged(py, pp_; + 1). Weclaimthatfors = 0,....,k — 1,

5
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Ny = ged(py_, + Do Pr_esny + Pos)- (13)
We proceed by induction. Note that p, = 0and p, = 1, therefore, (13) clearly holds for s = 0. Now suppose we
know (13) for some s > 0. Using (12) and the identity gcd(a, ca — b) = ged(a, b), we have
Nj=ged(TrAp, | = Py 5 + Po Pps 1 + Piy))

= ng(TrA(pkfsfl + p5+1) - TrAPs+l — Pr—s—2 + Po Pr—s—1 + ps+1)

=8ed(Py + Pr—ss2p Proerny T Pop1)>
which completes the induction. Weset k = 2¢, s = £ in(13) to conclude

Ny = ged(2p,, ps_y + Priy) = g0d(2p,, TrAp,) = 2p,,

where the last equality follows from our assumption that TrA is even. Similarly, setting k = 2 4+ lands = ¢
in(13) gives Nyy oy = Py + Py -
Now note that for each k, we have

AF = 1modN}, (14)
ATV, = ImodN}, and AT~ = ImodN7 . (15)
Nk

From the definition of T N, and (14), we see that T NS k. From the definition of N} and (15), we see that
N,é < N}Né.As { N,ﬁ} is increasing, we conclude that T N, > k. Therefore, T N = k. O

Now, let n(N) denote the period of My, o; specifically
n(N):=min{t: M, = e’*forsomeyp € R}.

Suppose Ay is the matrix with integer entries that satisfies A™v = 1 + NAy. From [1, (36)—(46)], we know that
n(N) = Tyif Nis odd orif Nis even and (Ay ), and (Ay ),; are even. Otherwise, n(N) = 2Ty.

Using this formula for n(N) and theorem 5, following [8], we show an upper bound for n(N) that depends
onlyon Aand N.

Corollary 6. Let X be the largest eigenvalue of A. Then, there exists a sequence of odd Ny such
that 21log, Ny + 1 = n(Ny).

Proof. Using our assumption that TrA is even, we note that p,is evenand p,, _ , is odd.
!/
Thus, n(Ny ) = Ty, = 2k + 1.
We now formulate a bound for 7 (N, ;) in terms of Ny ;. As TrA > 2,weknow A > 1. Additionally using
/ Ak}lJrAkiAkliAk
theorem 5, Ny | = ——— 1+

2log,(N3;, ) + 1 =2k + 1 = n(Nj).Labeling, Ny, as Ny, we are done. O

> M Therefore, log/\Nzlk +1 = k,which gives

Note that the same proof ideas can be adapted for a sequence of even N, using the fact that N, is even.
However, as the odd case is the simpler of the two, our main theorem is proven for a sequence of odd N.
For ease of notation, again using Ni:= Ny, |, set

t:=n(Ny).
Therefore, if u is an eigenfunction of My, o with eigenvalue \, M} u = e*?u = N+u. Thus, each eigenvalue of
My, o satisfies N = e'%, giving an eigenvalue whose multiplicity is at least % In other words, M, o hasa
k

degenerate eigenspace with dimension at least t—"
k

3.2.Lower bound
Now we are ready to state the lower bound in linear algebraic terms

Proposition 7. Suppose V is subspace of CN with dimension at least ¥ Then,

1
— < max ulg>. (16)
\/? uGV,HuHKz:IH H
Proof. Define IT: CN' — V to be the orthogonal projection onto Vand let ¢; denote the jth coordinate vector.
Note that
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N

Z||l_[e]||22 = Tr(IT*II) = TrII = dimV > =

Therefore, there exists aj such that | ITe; ||, > % We then have

1
sup |julls> = max sup [{ITu, ej)| = max sup [(u, Ilej)| = max||Ile;l,> > —,
ueV j j o ueCN J \/?

flull,2=1 (B HKZ 1 [[ull,2=1

which completes the proof. O

We claim that proposition 7 implies theorem 1. In particular, fixing V'to be the degenerate eigenspace of
M, o with dimension at least % and using the fact that CN ~ H, (0), proposition 7 implies
k

max  |julle>. 17)

v
J2log, N + 1 \/t—k ueV,|ull,2=1

For an explicit demonstration of this lower bound, see figure 2.

3.3. Eigenfunctions in proposition 7
We further examine the eigenspace V, which achieved the lower bound in proposition 7 Recall we defined IT to
be the orthogonal projection onto Vand examined eigenfunctions of the form H(Z o a] e)). To find a more
precise formula for these eigenfunctions, we deduce a formula for I1.

Suppose V corresponds to eigenvalue \. We know that the spectrum of My, is contained in {z: z% = ¢}.

. .pp+2ms
Therefore, for some s € Z, Aisofthe form e’ & . Thus, on the spectrum,

1 Zh 1 1, ifz= M\
1 .
tk( " )\+ +)\tk 1) {0, else

Myr).

Therefore in our proof of the lower bound, we are actually studying the eigenfunctions of the form

We then see

1 - t+2ms o+ 2
II = —(I—|— e M4 +(e7 %

13

tk ! - P t2ms
— Z “TRM'e (18)
Ik 1=o
Similar eigenfunctions were studied in [9]. Specifically, the paper examines eigenfunctions of the form

tkl

—Ze Mg (x), (19)
Ik =0

where g(x) is a Gaussian function. The limit of these eigenfuctions was shown to be half ergodic and half
localized, in the sense of semiclassical measures. Although (18) and (19) appear very similar, they actually exhibit

2 3| k= 14,and N, = 5822.

distinct behavior, as demonstrated by figures 3 and 4. In these figures, A = Y

4. Proof of theorem 2

Weexamine A € SL(2, Z) of the form (1). Note that the conditions on A are less restrictive than those in
section 3. Let Nbe odd. We begin with the following dispersive estimate.

Proposition 8. For N odd and My o: Hn(0) — Hy(0), we have
|b]
(Mo, e | < =

IN

Proof. We begin bycalculatmg My, Oe Bylemma 4, for ®(x, y) = —x — —y + Zby ,

i Nk + ] TIND Nkﬂ
eZmN@(x,y) é‘(y ) 2 IN ( )
e g S

My o€} (x) =
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Figure 4. The left image shows the Wigner function for the eigenfunction (19), where the Gaussian is centered at (1/2, 1/2), a fixed
point. The right image shows the Wigner function for the eigenfunction (18). Notice how the left image illustrates localization at (1/2,
1/2), while the right image does not. We conjecture that the limit of eigenfunctions (18) equidistributes in the sense of semiclassical
measures.

Thus, using the Poisson summation formula and the fact that 6 (x — x¢)f (x) = 6 (x — x¢)f (xo), we know
1 Ilﬂil e%ﬁ(%"z+arj+%) Z e

\/m r=0 mez
ZI% zm(dl ZJJ ar;N+mj+%)6(x_i)
~/

|l€Zr 0

i
=X —xr—l

N ( d 2 .
2 N e—Zmem

My e (x) =

Now setting

bl -1 z_m'(d_lz_lr_lj PN i ;)
= Z e \2N Nt 2N
r=0

we want to show that ¢;has period N, in other words ¢; = ¢ y. We know that

A ar j b b
%(%*‘dl‘*‘dTN kA AR )I I~ ( Ir— Nr+arN+mj) 1ol
cun=e doet = QN Z Brin,r-

r=0 r=0

Recall in section 2, we showed in order for My to descend Hy (0) to itself, ab must even. Therefore,

Pluck ) +a )
Birsp=¢e? ( ") = B

Therefore, ¢ n = ap N> 1519 B,y . As ad — be = 1, weknow ad = 1 mod b. Then,
|b|—1+d

ar®N

2 2 .
rflh+@+abrN+“h2N+mj+abj) . e%(flw

i —zr—zd—Nd+@+dTN+mj+j)

b|
ity Nr 0N ) ! —(
et ( r—Nr arj :alJrNZ el

Cl+N = QU4N =a.

r=d r=0

Using the fact that ¢, = ¢y forall ] € Z and that {e]p} is an orthonormal basis, we have
(MN,oef (), e ()
NI+ k 1 NI + k
—> Ck+zN5( ), —> 5(x - —)
lebl */_lez N VN iz N n

Nlbl r=0

Using the triangle inequality, we conclude | (MN,oer (), & ()l < IT;:,l O
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Figure 5. The plot of HMI{, ollei g for 0 < j < 50 and several values of N. My corresponds to A = [ % 3 ] We also plot the upper
bound /|b|/N for N = 855.

4;

b;
! ] As adirect consequence of proposition 8, forj > 0,
¢ d

i 4

For j > 0, we use the notation A/ = [

j < |b;]
||MN,O||fl—’f°° ~ m .
Figure 5 compares this upper bound to actual values of ||MI{, ol e=. Nowas TrA > 2, A has eigenvalues A\, A~
with A > 1. Then we have |b;| ~ ), giving

. CM\/?
M] f1—>f°° < .
|| N,O” ~ \/N

Suppose uis an eigenfunction of Mo with eigenvalue ji. As My is unitary, || = 1. Wehave u = ="My gu,
which gives u = —(Zn oM o) .
Setting B = —Zn oM, N,0> We see u = Bu. Again, as My, is unitary,

1 T-1
B*B = e Z menME,

Then

Oimrflnngl
1 2"
ST & U
0<mn<T—1
1 C
< =T Ny Az
Weset T = (1 — £/2)log, N to get
1B#Blla e < —— ¢

+ .
€/2)log, N AN*®
Finally, we know that ||B||>>_, s~ = ||B*B||si_. s=. Therefore, for 0 < € < 1, there exists an Ny such that for odd
N 2 NO)
1

[ulle~ < [[Bllome=ully < ——=-
J( — ¢&)log, N
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