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Abstract

We studyℓ∞norms ofℓ2-normalized eigenfunctions of quantum catmaps. Formapswith short
quantumperiods (constructed by Bonechi and de Biévre in F Bonechi and SDe Bièvre (2000,
Communications inMathematical Physics, 211, 659–686))we show that there exists a sequence of
eigenfunctions uwith ( )ùu Nlog 1 2 ¥ - . For general eigenfunctions we show the upper bound

( )øu Nlog 1 2 ¥ - . Here the semiclassical parameter is ( )h N2 1p= - . Our upper bound is
analogous to the one proved by Bérard in PBérard (1977,Mathematische Zeitschrift, 155, 249-276) for
compact Riemannianmanifolds without conjugate points.

1. Introduction

In this paper, we build on an existing body of work that examines the extreme values of eigenfunctions of
classically chaotic quantum systems. Specifically, we examine the quantum catmap, one of the best-studied
models. First introduced by Berry andHannay in [1], catmaps are the quantization of hyperbolic linearmaps in

( )SL 2, on the 2-dimensional torus.
The quantum catmap is a toymodel in quantum chaos. Another standard class of quantum chaosmodels is

given by Laplacian eigenfunctions on negatively curved compactmanifolds (M, g), satisfying−Δgu= λ2u and
normalized so that u 1L

2  = . Estimating the suprema of these Laplacian eigenfunctions has been an area of
great interest. For example, Rudnick and Sarnak in [2] showed that on hyperbolic 3-manifolds, there exists a
sequence of eigenstates uk such that uk L

1 4   l¥ . In regard to upper bounds, Levitan, Avakumović and
Hörmander in [3–5], respectively, proved thewell-known result that on a compact Riemannianmanifold,

øu L
n 1

2  l¥
-
where n Mdim= . However, it is conjectured thatmuch stronger results hold. Specifically, in [6],

Iwaniec and Sarnak conjectured that for surfaces of constant negative curvature, øu L  le e¥ for all ε> 0; in the

special case ofHecke eigenfunctions on arithmetic surfaces they obtained the bound øu L
5

12  le e+¥ . The best
known bound outside of the arithmetic cases is the result of Bérard [7]: when (M, g) has no conjugate
points, ( )u O logL

n 1
2  l l=¥
-

.
In this paper, we are concernedwithmetaplectic transformations, the quantizations of hyperbolicmaps

⎡£ ¤⎦ ( ) ∣ ∣ ( ) A
a b
c d

a d ab cdSL 2, , 2, , 2 . 1= Î + > Î

Wedecompose ( )L n2 into a direct integral of finite-dimensional spaces ( )N q , where 2q Î and N Î . As
shown in section 2, the condition that ab, cd be even is needed tomake sure that themetaplecticmap associated
to A descends to amap from ( ) 0N to itself.We denote the resulting quantum catmap byMN,0. An explicit basis
for each ( )N q is given by lemma 3. For ( )u N qÎ , we use ℓu p  to denote the standardℓ pnorms applied to
coefficients of this basis.We prove theorem 1 and theorem2, bounds on theℓ∞normof eigenfunctions
on ( ) 0N . See figure 1 for a numerical illustration.Note that due to the normalization in the spacesℓ2 andℓ∞,
the standard bound on Laplacian eigenfunctions ø øu u uL L L

n
2

1
2 2     l¥
-

becomes the

bound ℓ ℓ ℓô ôu u u
N

1
2 2     ¥ .

In [8], Bonechi andDeBièvre prove that for eachA, there exists a sequence ofMN,0with ‘short’ periods.
Faure,Nonnenmacher, andBièvre use this result in [9] to show that there exists a sequence of eigenfunctions
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that are localized, as quantified by semiclassicalmeasures.We also utilize [8] to show there exists a sequence of
MN,0with localized eigenfunctions, as demonstrated by the following lower bound.

Theorem1. SupposeA is amatrix satisfying (1) with positive eigenvalues, even trace, and coprime off-diagonal terms

Thenwe can find a sequence of odd integers Nk  ¥ such that for all 0e > , there exists k0 such that for all õk k0,

there exists an eigenfunction u of MN ,0 with ℓu 12  = and

( )ℓ õu
N

1

2 log
. 2

k

  e-

l

¥

Undermore general assumptions, for all oddN, we have the following upper bound.

Theorem2. Suppose A is amatrix satisfying (1). Then for 0 1e< < , there exists N0 such that for all odd õN N0, if

u is an eigenfunction of MN ,0 with ℓu 12  = then

( )
( )ℓ ôu

N

1

1 log
. 3 

e- l

¥

Analogous statements can be proven for a sequence of evenN and any θ, using similar proofs to those of
theorems 1 and 2.However, we exclude these arguments as they are overly technical and do not introduce any
novel ideas.

Theℓ∞ bounds on eigenfunctions of quantum catmaps have been extensively studied in arithmetic
quantum chaos, see [10–14]. Theseworks have focused onHecke eigenfunctions, which are joint eigenfunctions
of the quantum catmapMN,0 and theHecke operators, constructed in this setting byKurlberg–Rudnick [15].
There always exists an orthonormal basis of ( ) 0N consisting ofHecke eigenfunctions; however, due to the
possibility of largemultiplicities of the eigenspaces ofMN,0 (see [15], footnote3) an upper bound on theℓ∞

normofHecke eigenfunctions does not imply the same bound for general eigenfunctions.We list below the
knownbounds onℓ2-normalizedHecke eigenfunctions u:

• Kurlberg–Rudnick [10] proved the upper bound ℓ øu N
1
8  e
e- +¥ .

• Building on [10] (which handled roughly half of the prime values ofN), Kurlberg [11] showed that for all but
finitelymany prime values ofN one has the upper bound ℓ ôu N2

1
2  -¥ , and deduced the upper bound

ℓ øu N
1
2  e
e- +¥ for square-free values ofN.

Figure 1.The plot of themaximalℓ∞-normof anℓ2-normalized eigenfunction ofMN,0whereMN,0 is associatedwith ⎡£ ¤⎦A 2 3
1 2

= .

The lower and upper bounds from theorems 1 and 2, ( )N2 log 1 2
l

- and ( )Nlog 1 2
l

- , respectively, give the solid red lines. The dotted
blue line is the trivial lower boundN−1/2. Finally, the large red dots correspond to the sequenceNk from theorem 1.
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• Olofsson [12, 13] showed an upper bound ℓ øu N
1
4  -¥ formost values ofN (in the sense of density as

N→∞ ). On the other hand, these papers also construct eigenfunctions satisfying a lower bound

ℓ ùu N
1
4  -¥ formost values ofNwhich are not square-free.

2. Preliminaries

Webeginwith a review of the necessary definitions for this paper. First, recall the semiclassicalWeyl
quantization. For ( )a 2Î S and a semiclassical parameter h ä (0, 1],

⎛
¿

À
⎠( ) ( ) ( ) ( )( ) 


a f x

h
e a

x x
f x dx d fOp :

1

2 2
, , .h

x xi
h

2òp x x=
+ ¢

¢ ¢ Îx- ¢ S

Define the symbol class

§
©̈

«
¬­

( ) ( ) ∣ ∣
( )

( ) 


S a C a1 : sup forall ,
x

x
2

,
,

2

2

a= Î ¶ < ¥ Î
x

x
a¥

Î

which naturally induces the seminorms ∣ ∣∣ ∣ ( )ô a a: max supC m x,
m 2  = ¶a x

a for m 0Î . From [16, Theorem4.16],
we know for a ä S(1), Oph(a) acts on both ( )S and ( )¢S .

Now, let ( ) ( ) y z x, , , 2w h x= = Î . Define the standard symplectic formσ on 2 byσ(z,ω):=ξy− xη and

define the quantum translation byUω:=Oph(aω), where ( )( ) ( )a z z: exp ,
i

h
s w=w . Noting that aω(z) ä S(1), we

seeUω is well-defined and acts on ( )S . In [16, Theorem4.7], it is shown that

Figure 2.The plots of amaximalℓ∞-norm,ℓ2-normalized eigenfunction ofMN,0, whereMN,0 corresponds to ⎡£ ¤⎦A 2 3
1 2

= .

Specifically, each plot point corresponds to the absolute value of the ith coordinate of the eigenfunction for 0 � i � N − 1.Note that
N = 2911 is an element of the sequenceNk in corollary 6, whileN = 991 is not.
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( ) ( )U f x e f x y .x yi
h

i
h2= -w

h h-

Thus,Uω is a unitary operator on ( )L2 that satisfies the following exact Egorov’s theorem,

( ) ( ˜) ( ) ˜( ) ( ) ( )U a U a a S a z a zOp Op forall 1 , : . 4h h
1 w= Î = +w w

-

From the fact that ( )U U e U,i
h2=w w
s w w

w w¢
¢

+ ¢, we deduce the following commutator formula,

( )( )U U e U U . 5,i
h=w w
s w w

w w¢
¢

¢

Now let ( )Sp 2, be the group of real symplectic 2× 2matrices. In other words, ( )A Sp 2,Î if and only if
σ(Az,Aω)= σ(z,ω). Note that in this specific 2-dimensional case, ( ) ( ) Sp 2, SL 2,= . For each

( )A SL 2,Î , denote byA the set of all unitary transformations ( ) ( ) M L L: 2 2 satisfying the following
exact Egorov’s theorem,

( ) ( ◦ ) ( ) ( )M a M a A a SOp Op forall 1 . 6h h
1 = Î-

From [16, Theorem 11.9], we have both existence of these transformations and uniqueness up to a unit factor.
Then, ( ) : A ASL 2,È= Î is a subgroup of unitary transformations of ( )L2 called themetaplectic group

and themapMa A is a group homomorphism ( ) SL 2, . As a corollary of equation (6), we obtain the
following intertwining of themetaplectic and quantum transformations: M U M UA

1
1=w w

- - for all
M AÎ ,  .2w Î

We turn our attention to quantizations of functions on the torus   :2 2 2= . Each ( )a C 2Î ¥ can be
identifiedwith a 2-periodic function on 2. Note that any ( )a C 2Î ¥ is also an element of S(1), therefore its
Weyl quantizationOph(a) is an operator on ( )L2 .

By equation (5), we have the following commutation relations,

( ) ( ) ( ) ( ) a U U a a COp Op forall , . 7h h
2 2w= Î Îw w

¥

These commutation relationsmotivate a decomposition of ( )L2 into a direct integral offinite dimensional
spaces ( )N q , where 2q Î , such thatOph(a) descends onto these spaces. From [17, Proposition 2.1], to ensure
the these spaces are nontrivial, for the rest of the paper, we assume

( ) h N N2 where .1p= Î-

Wecall ( )N q the space of quantum states. Specifically, for each 2q Î , set

( ) { ( ) }( ) ( )  f U f e f: : for all ,N
i N iQ2 , 2q w= Î ¢ = Îw
p s q w p w+S

where the quadratic formQ on 2 is defined byQ(ω)= yη for ( ) y, 2w h= Î . The following lemma gives an
explicit basis for ( )N q .

Lemma3 [18], lemma2.5.The space ( )N q is N-dimensional with a basis { }ej
q defined for { }j N0, , 1Î ¼ - and

( ) ,x
2q q q= Îx . In particular,

⎛
¿

À
⎠( )


e x

N
e x

Nk j

N
:

1
.j

k

i k x2å d
q

= -
+ -q p q

Î

- x

Wefix an inner product · · ,á ñ on each quantum state ( )N q by requiring { }ej
q to be an orthonormal basis. It can

be shownusing translation idenitities for ej
q (see [18, (2.35)]) that although each { }ej

q depends on the choice of

the representative xq Î , the inner product depends only on 2q Î .We often denote the normdefined by this
inner product by · ℓ

2  . Using the bases { }ej
q , we can consider the spaces ( )N q asfibers of a smoothN

dimensional vector bundle over 2, whichwe callN .

For u ej
N

j j0
1a= å q

=
- , we set

( )ℓ ℓu : , , .N0 1
p p   a a= ¼ -

Fix N Î and ( )a C 2Î ¥ to define the quantization

( ) ( )∣ ( ) ( )( )   a aOp : Op : , ,N h N N,
2

N
q q q=  Îq q

which depends smoothly on θ. This restriction holds by definition of ( )N q and the commutation relations
given in equation (7).

We set

⎡£ ¤⎦ ( ) ( )A
a b
c d

SL 2, 8= Î

and choose ametaplectic operator M AÎ . Recall that for ( ) ( ) y z x, , , 2w h x= = Î ,σ(z,ω)= ξy− xη
andQ(ω)= yη. By [18, Lemma 2.9], there exists a unique ( ) 2A

2j Î such that for all 2w Î ,

4
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( ) ( ) ( ) Q A Q , mod 2A
1w w s j w- =- . Using the definition of ( )N q and that fact that M U M UA

1
1=w w

- - , we

can verify that ( )( ( )) M AN
N

2

Aq qÌ + j
for all 2q Î .

Denote ( )∣ ( )( )  M M A: :N N N
N

, 2N

Aq q=  +q q
j

, which depends smoothly on 2q Î .We require the

domain and range ofMN,θ to be the same, in other words, wemust have

( ) ( )I A
N

2
mod . 9A 2q

j
- =

Thus, when θ= 0, condition (9) is satisfiedwhenN is even orjA= 0.
We henceforth assume thatjA= 0, which gives ( ) , 0 mod 2As j w = . Noting that for allω= (y, η),

( ) ( ) ( )( )Q A Q dy b cy a y dcy bcy ba2 ,1 2 2w w h h h h h- = - - + - = - + --

wemust have dcy ba 0 mod 22 2h+ = .We conclude that dc and abmust be even.
Assuming condition (9), we have the following exact Egorov’s theorem for all ( )a C 2Î ¥ ,

( ) ( ◦ )M a M a AOp Op .N N N N,
1

, , ,=q q q q
-

Essential to our proof of theorem2 is the following explicit formula forM.

Lemma4.WhenA is given by (8) and b 0¹ , an element ofA is given by

( )
∣ ∣

( ) ( )( )


Mu x

N

b
e u y dy, 10Ni x y2 ,ò= p F

where

( ) ( )x y
d

b
x

xy

b

a

b
y,

2 2
. 112 2F = - +

Weprovide a short outline of this formula’s derivation; for further details see theorem 11.10 and its following
remark in [16]. SetΛ= {(x, y, ξ,− η): (x, ξ)= A(y, η)} and note thatΛ is a Lagrangian submanifold of 4.
Additionally, as b≠ 0,Λ å (x, y, ξ, η)a (x, η) is surjective. Therefore, there exists a generating functionΦ(x, y)
such thatΛ= {(x, y,∂xΦ,∂yΦ)}. As η=−∂yΦ and ξ= ∂xΦ, we knowΦ(x, y) is given by (11).We then have
(10), where the coefficient ensuresM is unitary, up to a unit factor.

3. Proof of theorem1

First, following the presentation in [8], in section 3.1, we show that for a sequenceNk, MN ,0k
has a large

degenerate eigenspace. In section 3.2, we then reduce the proof of theorem 1 to a linear algebra argument.

3.1. Eigenspace of MN ,0k

ConsiderA given by (8) such that b and c are coprime andTrA is even and greater than 2. Letλ be the largest
eigenvalue ofA. Then for each t Î ,

( ) ( )A p A p I p, Tr A p p , where p . 12t
t t t t t t

t t

1 1 1 1

l l
l l

= - = - =
-
-

Î- + -

-

-

Set { }T t A Imin : modNN
t= = and, for k Î , define

{ }N N A I: max : modN .k
k¢ = =

Essential to our proof of theorem1 is the following statement from [8]. For the reader’s convenience, we
replicate their proof here.

Theorem5 [8], Prop. 11. For each k Î , we have N p2k k2¢ = , N p pk k k2 1 1
¢ = ++ + , andT kNk

=¢ .

Proof.Using equation (12), we see that Nk¢ is the greatest integer such that

⎡
£⎢

¤
⎦⎥

⎡£ ¤⎦
p a p p b

p c p d p

1

1
0 0
0 0

modN .k k k

k k k
k

1

1

- -
- -

= ¢-

-

Recall that we assumed b and c are coprime. Therefore, p 0modNk k= ¢ and p 1modNk k1 = - ¢- , which gives

( )N p pgcd , 1k k k 1
¢ = +- .We claim that for s k0, , 1= ¼ - ,

5
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( ) ( )( )N p p p pgcd , . 13k k s s k s s1 1
¢ = + +- - + +

Weproceed by induction. Note that p 00 = and p 11 = , therefore, (13) clearly holds for s= 0.Now supposewe
know (13) for some õs 0. Using (12) and the identity ( ) ( )a ca b a bgcd , gcd ,- = , we have

( )

( ( ) )

( )( ) ( )

N

p p p p

gcd TrAp p p , p p

gcd TrA p p TrAp p p , p p

gcd , ,

k k s k s s k s s

k s s s k s s k s s

s k s k s s

1 2 1 1

1 1 1 2 1 1

2 2 1 1

¢ = - + +

= + - - + +

= + +

- - - - - - +

- - + + - - - - +

+ - + - + +

which completes the induction.We set ℓk 2= , ℓs = in (13) to conclude

( ) ( )ℓ ℓ ℓ ℓ ℓ ℓ ℓ
N p p p pgcd 2 , gcd 2 , TrAp 2p ,2 1 1
¢ = + = =- +

where the last equality follows fromour assumption that TrA is even. Similarly, setting ℓk 2 1= + and ℓs =
in (13) gives ℓ ℓ ℓ

N p p2 1 1
¢ = ++ + .

Nownote that for each k, we have

( )A 1modN , 14k
k= ¢

( )A 1modN , and A 1modN . 15T
k

T
T

Nk Nk
Nk

= ¢ = ¢¢ ¢
¢

From the definition ofT Nk
¢ and (14), we see that ôT kNk

¢ . From the definition of Nk¢ and (15), we see that

ôN Nk T Nk

¢ ¢
¢ . As { }Nk¢ is increasing, we conclude that õT kNk

¢ . Therefore,T kNk
=¢ .

,

Now, let n(N) denote the period ofMN,0; specifically

( ) { }n N t M e: min : forsome .N
t i

,0 j= = Îj

SupposeAN is thematrix with integer entries that satisfies A NA1T
N

N = + . From [1, (36)–(46)], we know that
n(N)= TN ifN is odd or ifN is even and ( )AN 12 and ( )AN 21 are even. Otherwise, n(N)= 2TN.

Using this formula for n(N) and theorem5, following [8], we show an upper bound for n(N) that depends
only onλ andN.

Corollary 6. Letλ be the largest eigenvalue ofA. Then, there exists a sequence of oddNk such

that ( )õN n N2 log 1k k+l .

Proof.Using our assumption that TrA is even, we note that p2k is even and p k2 1+ is odd.

Thus, ( )n N T k2 1k N2 1 k2 1
¢ = = ++ ¢

+
.

We now formulate a bound for ( )n N k2 1¢ + in terms of N k2 1¢ + . As TrA 2> , we know 1l > . Additionally using

theorem5, õN k
k

2 1

k k k k1 1

1 l¢ = l l l l
l l+

+ - -
-

+ - - -

- . Therefore, õN klog k2 1¢l + , which gives

( ) ( )õN k n N2 log 1 2 1k k2 1 2 1¢ + + = ¢l + + . Labeling, N k2 1¢ + asNk, we are done. ,

Note that the same proof ideas can be adapted for a sequence of evenN, using the fact that N k2¢ is even.
However, as the odd case is the simpler of the two, ourmain theorem is proven for a sequence of oddN.

For ease of notation, again using N N:k k2 1= ¢ + , set

( )t n N: .k k=

Therefore, if u is an eigenfunction of MN ,0k
with eigenvalueλ, M u e u uN

t i t
,0k

k k kl= =j . Thus, each eigenvalue of

MN ,0k
satisfies et ik kl = j , giving an eigenvaluewhosemultiplicity is at least N

t

k

k

. In other words, MN ,0k
has a

degenerate eigenspace with dimension at least .
N

t

k

k

3.2. Lower bound

Nowwe are ready to state the lower bound in linear algebraic terms

Proposition 7. Suppose V is subspace of N with dimension at least
N

t
. Then,

( )ℓ

ℓ

ô
t

u
1

max . 16
u V u, 12

 
 Î =

¥

Proof.Define  V: NP  to be the orthogonal projection ontoV and let ej denote the jth coordinate vector.
Note that

6
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( )
ℓ

õe Tr Tr dimV
N

t
.

j

N

j

1

2
2 å P = P P = P =

=

Therefore, there exists a j such that ℓ õej t

1
2 P .We then have

∣ ∣ ∣ ∣ℓ ℓ

ℓ ℓ ℓ

õ
 

u u e u e e
t

sup max sup , max sup , max
1

,
u V

u
j u

u

j
j u

u

j
j

j

1 1 1

N N

2 2 2

2   
     

= áP ñ = á P ñ = P
Î
=

Î
=

Î
=

¥

which completes the proof. ,

Weclaim that proposition 7 implies theorem1. In particular, fixingV to be the degenerate eigenspace of

MN ,0k
with dimension at least

N

t

k

k
and using the fact that ( ) 0N

N
k

k
 , proposition 7 implies

( )ℓ

ℓ

ô ô
N t

u
1

2 log 1

1
max . 17

k k u V u, 12

 
 +l

Î =
¥

For an explicit demonstration of this lower bound, see figure 2.

3.3. Eigenfunctions in proposition 7

We further examine the eigenspaceV, which achieved the lower bound in proposition 7. Recall we definedΠ to
be the orthogonal projection ontoV and examined eigenfunctions of the form ( )ej

N
j j0

1 0aP å =
- . Tofind amore

precise formula for these eigenfunctions, we deduce a formula forΠ.
SupposeV corresponds to eigenvalueλ.We know that the spectrumof MN ,0k

is contained in { }z z e: t ik k= j .

Therefore, for some s Î ,λ is of the form ei k s

tk

2j p+
. Thus, on the spectrum,

⎜ ⎟⎛
¿

À
⎠

§̈
©t

z z z1
1

1, if

0, else
.

k

t

t

1

1

k

k


l l
l

+ + + =
=-

-

We then see

( )( )
t

I e M e M
1

.
k

i i t 1k s

tk
k s

tk k
2 2

P = + + +- - -j p j p+ +

Therefore in our proof of the lower bound, we are actually studying the eigenfunctions of the form

( )
t

e M e
1

. 18
k t

t
i t t

j
0

1
0

k
k s

tk

2

å
=

-
- j p+

Similar eigenfunctions were studied in [9]. Specifically, the paper examines eigenfunctions of the form

( ) ( )
t

e M g x
1

, 19
k t

t
i t t

0

1k
k s

tk

2

å
=

-
- j p+

where g(x) is a Gaussian function. The limit of these eigenfuctions was shown to be half ergodic and half
localized, in the sense of semiclassicalmeasures. Although (18) and (19) appear very similar, they actually exhibit

distinct behavior, as demonstrated byfigures 3 and 4. In thesefigures, ⎡£ ¤⎦A 2 3
1 2

= , k= 14, andNk= 5822.

4. Proof of theorem2

Weexamine ( )A SL 2,Î of the form (1). Note that the conditions onA are less restrictive than those in
section 3. LetN be odd.We beginwith the following dispersive estimate.

Proposition 8. ForN odd and ( ) ( ) M : 0 0N N N,0  , we have

∣ ∣
∣ ∣

 ôM e e
b

N
, .N j k,0

0 0á ñ

Proof.Webegin by calculating M eN j,0
0. By lemma 4, for ( )x y x y,

d

b

xy

b

a

b2
2

2
2F = - + ,

⎛
¿

À
⎠

( )( )
∣ ∣ ∣ ∣

( )

  
M e x

b
e y

Nk j

N
dy

b
e

1 1
.N j

iN x y

k k

iN x
,0

0 2 , 2 ,
Nk j

Nò å åd= -
+

=p pF

Î Î

F +
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Thus, we focus on calculating ( )x,
Nk j

N
F +

mod N . In the following, we set k mb r= + for ∣ ∣ô ôr b0 1- .

We have

⎛
¿

À
⎠ x

Nk j

N

d

b
x xm

xr

b

xj

Nb

ar

b

arj

bN

aj

bN
,

2 2 2
modN .2

2

2
F

+
= - - - + + +

Figure 3. In each of the two columns, the left image shows theWigner function forM jg. This particular Gaussian is centered at (1/2,
1/2), a fixed point forA. The right images in each of the columns shows theWigner function for M ej N 2

0 . Halfway through the period,
( )W xM ej

N 2
0 becomes less chaotic, something that does not happen for ( )W xM gj .
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Thus, using the Poisson summation formula and the fact that ( ) ( ) ( ) ( )x x f x x x f x0 0 0d d- = - , we know

⎛
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⎛
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2 2 2 2
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1
2 2 2
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2 2

2
2 2
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åå d
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= -

p
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Î

- - -

Î =
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p p

p

Now setting

⎛
¿

À
⎠

∣ ∣

c e ,l

r

b dl
N

lr
lj

N
ar N arj

aj

N

0

1
2 2 2

i
b

2
2 2

å=
=

- - - + + +p

wewant to show that clhas periodN, in otherwords c cl l N= + .We know that

⎛
¿

À
⎠ ( )∣ ∣ ∣ ∣

c e e .l N

dl
N

dl dN lj

N
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-
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=
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+
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Recall in section 2, we showed in order for MN ,0 to descend ( ) 0N to itself, abmust even. Therefore,

( ) ( )e e .l r b
lr lb ar N abrN ab N arj abj lr ar N arj

l r, 2 2 2 ,

i
b

i
b

2
2 2

2
2

b b= = =+
- - + + + + + - + +p p

Therefore, ∣ ∣cl N l N r d
b d

l N r
1

,a b= å+ + =
- +

+ . As ad bc 1- = , we know ad= 1mod b. Then,
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b d
lr Nr ar N arj
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b
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b
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b
2

2
2

2

å åa a= = =+ +
=

- +
- - + +

+
=

-
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Using the fact that c ck k lN= + for all l Î and that { }ej
0 is an orthonormal basis, we have

⎛
¿

À
⎠

⎛
¿

À
⎠

⎛
¿

À
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b ar N arj
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N

,0
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1
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i
b

2
2 2

å å

å

d d
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+

-
+

=

Î
+

Î

=

- + + + - -p

Using the triangle inequality, we conclude ∣ ( ) ( ) ∣
∣ ∣

 ôM e x e x,N j k
b

N,0
0 0á ñ .

,

Figure 4.The left image shows theWigner function for the eigenfunction (19), where theGaussian is centered at (1/2, 1/2), afixed
point. The right image shows theWigner function for the eigenfunction (18). Notice how the left image illustrates localization at (1/2,
1/2), while the right image does not.We conjecture that the limit of eigenfunctions (18) equidistributes in the sense of semiclassical
measures.
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For j> 0, we use the notation ⎡
£⎢

¤
⎦⎥

A
a b

c d
j j j

j j

= . As a direct consequence of proposition 8, for j> 0,

∣ ∣
ℓ ℓ ôM

b

N
.N

j j

,0
1   ¥

Figure 5 compares this upper bound to actual values of ℓ ℓMN
j

,0 1   ¥. Now as TrA> 2,A has eigenvaluesλ,λ−1

withλ> 1. Thenwe have |bj|∼ λ j, giving

ℓ ℓ ôM
C

N
.N

j
j

,0

2

1  l
 ¥

Suppose u is an eigenfunction ofMN,0with eigenvalueμ. AsMN,0 is unitary, |μ|= 1.We have u M un
N
n

,0m= - ,

which gives ( )u M u
T n

T n
N
n1

0
1

,0m= å =
- - .

Setting B M
T n

T n
N
n1

0
1

,0m= å =
- - , we see u= Bu. Again, asMN,0 is unitary,
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We set ( )T N1 2 loge= - l to get

( )
ℓ ℓ ôB B

N

C

N

1

1 2 log
.1 

e l-
+

l
e ¥

Finally, we know that ℓ ℓ ℓ ℓB B B2
2 1   = ¥ ¥. Therefore, for 0< ε< 1, there exists anN0 such that for odd

N�N0,

( )
ℓ ℓ ℓ ℓô ôu B u

N

1

1 log
.2 2     

e- l
¥ ¥

Figure 5.The plot of ℓ ℓMN
j

,0 1   ¥ for 0 � j � 50 and several values ofN.MN,0 corresponds to ⎡£ ¤⎦A 2 3
1 2

= .We also plot the upper

bound ∣ ∣b N forN = 855.
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