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Abstract— Planning informative trajectories while consid-
ering the spatial distribution of the information over the
environment, as well as constraints such as the robot’s lim-
ited battery capacity, makes the long-time horizon persistent
coverage problem complex. Ergodic search methods consider
the spatial distribution of environmental information while
optimizing robot trajectories; however, current methods lack
the ability to construct the target information spatial distri-
bution for environments that vary stochastically across space
and time. Moreover, current coverage methods dealing with
battery capacity constraints either assume simple robot and
battery models or are computationally expensive. To address
these problems, we propose a framework called Eclares,
in which our contribution is two-fold. 1) First, we propose a
method to construct the target information spatial distribution
for ergodic trajectory optimization using clarity, an information
measure bounded between [0, 1]. The clarity dynamics allow us
to capture information decay due to a lack of measurements and
to quantify the maximum attainable information in stochastic
spatiotemporal environments. 2) Second, instead of directly
tracking the ergodic trajectory, we introduce the energy-aware
(eware) filter, which iteratively validates the ergodic trajectory
to ensure that the robot has enough energy to return to the
charging station when needed. The proposed eware filter is
applicable to nonlinear robot models and is computationally
lightweight. We demonstrate the working of the framework
through a simulation case study. [Code]a[Video]b

I. INTRODUCTION

Autonomous robots are widely used in tasks that involve
data acquisition over long time horizons, such as search-
and-rescue [1], [2], characterization of ocean currents such
as the Gulf Stream to study cross-shelf exchanges [3], [4],
water body exploration [5], [6] and wildfire monitoring
[7]. Coverage planning for data acquisition poses diverse
challenges, including considering the spatial distribution of
environmental information while optimizing search trajecto-
ries [8]–[10]. This is important because some regions have a
higher density of information as compared to others. Other
challenges involve persistently monitoring a spatiotemporal
environment that varies across space and time [7], [9], [11],
[12], and ensuring task persistence by enabling the robot to
return to the charging station and recharge when/as needed
during persistent coverage tasks [13]–[16]. In this paper, we
consider these problems and propose a solution framework
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Eclares. Moreover, we also consider the case when a
spatiotemporal environment has process uncertainty, i.e., we
consider a class of stochastic spatiotemporal environments.
Probabilistic methods can be used to compute estimates
of the environmental variation. However, in general, the
stochastic variations in the environment can result in infor-
mation decay without continuous monitoring.

Recent advances in ergodic search [8]–[10], [17], [18]
consider the spatial distribution of the information over
the environment while generating coverage trajectories. This
is achieved by constructing a target information spatial
distribution (TISD) over the environment and then adjust-
ing the time spent in specific regions according to the
TISD. However, these methods either assume spatiostatic
environment [8], [10], which only varies through space, or
spatiotemporal environment with known variation model [9],
[19], [20]. Therefore, these methods can not incorporate
potential information decay, which will result from the
environment’s stochastic variation across space and time. To
address this problem, we use clarity [21], an information
measure bounded between [0, 1], to construct the TISD. The
proposed method to construct the TISD captures information
decay due to a lack of measurements and quantifies the
maximum attainable information in stochastic spatiotemporal
environments.

To ensure persistent monitoring of a stochastic spatiotem-
poral environment for a long time horizon, the robot’s limited
battery capacity must be taken into consideration so that it
can return to a charging station when needed. Most of the
recent work on task persistence mainly either uses control
barrier function (CBF)-based methods [13]–[15], [22] or
Hamilton-Jacobi reachability-based methods [16], [21], [23].
CBF-based methods are computationally efficient; however,
they only assume simple robot and battery models (such as
single integrator and linear battery discharge models respec-
tively). Alternatively, reachability-based methods can handle
nonlinear systems and are robust to external disturbances,
but they are mostly used offline, suffer from the curse of
dimensionality, and are computationally expensive. The pro-
posed online filter eware inspired by [24] addresses these
problems. eware iteratively validates the ergodic trajectory
based on the robot’s current battery levels, ensuring that the
robot is aware of its remaining battery energy during the
coverage task and returns to the charging station before the
energy is depleted.

The paper is organized as follows: Section II introduce pre-
liminaries, Section III formulates the problem statement, Sec-
tion IV present the proposed solution framework Eclares
and Section V discuss simulation setup and results.
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II. PRELIMINARIES

1) Notation: Let N = {0, 1, 2, ...}. Let R, R≥0, R>0 be
the set of reals, non-negative reals, and positive reals re-
spectively. Let Sn++ denote set of symmetric positive-definite
in Rn×n. Let N (µ,Σ) denote a normal distribution with
mean µ and covariance Σ ∈ Sn++. The space of continuous
functions f : A → B is denoted C(A,B). The Q ∈ Sn++

norm of a vector x ∈ Rn is denoted ∥x∥Q =
√
xTQx.

2) Dynamics Model: Consider the continuous-time sys-
tem dynamics comprising the robot and battery discharge
dynamics:

χ̇ =

[
ẋ

ė

]
= f(χ, u) =

[
fr(x, u)

fe(e, x, u)

]
(1)

where χ =
[
xT , e

]T
∈ Z ⊂ Rn+1 is the system state

consisting of the robot’s state x ∈ X ⊂ Rn and robot’s
State-of-Charge (SoC) e ∈ R≥0. u ∈ U ⊂ Rm is the control
input, f : Z×U → Rn+1 defines the continuous-time system
dynamics, fr : X × U → Rn define robot dynamics and
fe : R≥0 ×X × U → R define battery discharge dynamics.

3) Ergodic Search: Ergodic search [8], [9] is a technique
to generate trajectories x : [t0, T ] → X that cover a
rectangular domain P = [0, L1]×· · · [0, Ls] ⊂ Rs, matching
a specified target information spatial distribution (TISD)
ϕ : P → R, where s is the dimensionality of the environment
and ϕ(p) is the density at p ∈ P . Moreover, the spatial
distribution of the trajectory x(t) is defined as

c(x(t), p) =
1

T − t0

∫ T

t0

δ(p−Ψ(x(τ )))dτ (2)

where δ : P → R is the Dirac delta function and Ψ : X → P
is a mapping such that Ψ(x(τ)) is the position of the robot
at time τ ∈ [t0, T ]. In other words, given a trajectory x(t),
c(x(t), p) represents the fraction of time the robot spends at
a point p ∈ P over the interval [t0, T ]. Then, the ergodicity
of x(t) w.r.t to a TISD ϕ is

Φ(x(t), ϕ) = ∥c− ϕ∥H−(s+1)/2 (3)

where ∥·∥H−(s+1)/2 is the Sobolev space norm defined
in [8], i.e., Φ is a function space norm measuring the
difference between the TISD ϕ and the spatial distribution
of the trajectory c. In [9] a Projection-based Trajectory
Optimization (PTO) method is proposed to generate ergodic
trajectories. It optimizes (over the space of trajectories x(t) ∈
C([t0, T ],X ), u(t) ∈ C([t0, T ],U))

min
x(t),u(t)

[
Φ(x(t), ϕ) + Jb(x(t)) +

∫ T

t0

∥u(τ)∥2 dτ
]

s.t. ẋ = fr(x, u)

x0 = x(t0)

(4)

where Jb penalizes trajectories that leave the domain, and
x0 is the robot’s state at time t0. The algorithm uses Fourier
decomposition of c and ϕ to numerically evaluate Φ and
its gradients with respect to x(t) and u(t). This enables an

efficient gradient descent algorithm to optimize (4). In this
paper, we do not modify the algorithm in [9]. Instead, we
focus on developing a strategy to systematically construct
the TISD ϕ given the environment model and the robot’s
sensing model, as discussed later.

4) Clarity: Consider a stochastic variable (quantity of
interest) h ∈ R governed by the process and output (mea-
surement) models:

ḣ = w(t), w(t) ∼ N (0, Q) (5a)
y = C(x)h+ v(t), v(t) ∼ N (0, R) (5b)

where Q ∈ R≥0 is the known variance associated with the
process noise, y ∈ R is the measurement, C : X → R is the
mapping between robot state and sensor statec, and R ∈ R
is the known variance of the measurement noise.

In [21], we introduced the notion of clarity q of the random
quantity h, which lies between [0, 1] and is defined such that
q = 0 represents h being unknown, and q = 1 corresponds
to h being completely known. The clarity dynamics for the
subsystem (5a), (5b) are given by [21]

q̇ =
C(x)2

R
(1− q)2 −Qq2 (6)

If C(x) = C is constant, (6) admits a closed-form solution
for the initial condition q(0) = q0:

q(t; q0) = q∞

(
1 +

2γ1
γ2 + γ3e2kQt

)
(7)

where q∞ = k/(k + 1), k = C/
√
QR, γ1 = q∞ − q0,

γ2 = γ1(k − 1), γ3 = (k − 1)q0 − k.
Notice that as t → ∞, q(t; q0) → q∞ ≤ 1 mono-

tonically. Thus q∞ defines the maximum attainable clarity.
Equation (7) can be inverted to determine the time required to
increase the clarity from q0 to some q1. This time is denoted
∆T : [0, 1]2 → R≥0:

∆T (q0, q1) = t s.t. q(t, q0) = q1 for q1 ∈ [q0, q∞) (8)

For q1 < q0, we set ∆T (q0, q1) = 0 while ∆T (q0, q1) is
undefined for q1 ≥ q∞.

III. PROBLEM FORMULATION

A. Environment Specification

Consider the coverage space P . We discretized the domain
into a set of Nc cells each with size V .d Let mc : [t0,∞)→
R be the (time-varying) quantity of interest at each cell
c ∈ C = {1, ..., Nc}. We model the quantities of interest
as independent stochastic processes:

ṁc = wc(t), wc(t) ∼ N (0, Qc) (9a)
yc = Cc(x)mc + vc(t), vc(t) ∼ N (0, R) (9b)

where yc ∈ R is the output corresponding to cell c. R is the
measurement noise, and Qc ∈ R>0 is the process noise vari-
ance at each cell c. Since mc varies spatially and temporally

cC is set to 1 when sensed by the robot and 0 otherwise.
dSize is width in 1D, area in 2D, and volume in 3D.
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Fig. 1. The high-level overview of the proposed framework. Blocks (a) and (c) are the proposed modules of the framework, while block (b) is borrowed
from [9].

under process noise Qc for each cell c ∈ C, the environment
becomes a stochastic spatiotemporal environment.

B. Problem Statement
Consider a robotic system performing persistent coverage

of a stochastic spatiotemporal environment (9), i.e., over a
time interval [0,∞). Assume the desired quality of informa-
tion at each cell has been specified. This is encoded using a
target clarity qc < q∞,c for each cell c ∈ C. The target clarity
can be different at each cell, indicating a different desired
quality of information at each cell, but must be less than
q∞,c, the maximum attainable clarity of the cell. If qc ≥ q∞,c

for a cell c ∈ C, then the robot would try to spend infinite
amount of time at a cell c, which is undesirable.

We use clarity as our information metric since it is partic-
ularly effective for stochastic spatiotemporal environments:

• The clarity decay rate in cell c, i.e. −Qcq
2
c , is explicitly

dependent on the stochasticity of the environment Qc in
(9). This allows the information decay rate to be deter-
mined from the environment model, and not set heuris-
tically [21]. Furthermore, spatiostatic environments are
a special case: by setting Qc = 0, clarity cannot decay.

• While taking measurements of cell c, clarity qc mono-
tonically approaches q∞,c < 1 for Qc, R > 0. This
indicates that maximum attainable information is upper
bounded.

In this persistent task, the robot replans a trajectory every
TH ∈ R>0 seconds, i.e., at times {t0, t1, ...} for tk = kTH ,
k ∈ N. At the k-th iteration, the objective is to minimize the
mean clarity deficit qd(tk + TH), which is defined as

qd(tk + TH) =
1

Nc

Nc∑
c=1

max(0, qc − qc(tk + TH)) (10)

where qc(tk + TH) is the clarity at time tk + TH of cell
c ∈ C. However, in order to persistently monitor a stochastic
spatiotemporal environment over a long time horizon, the
robot’s energy constraints must be taken into consideration.
Thus, the overall problem can be posed as follows:

min
χ(t),u(t)

qd(tk + TH) (11a)

s.t. χ(tk) = χk (11b)
χ̇ = f(χ, u) (11c)
q̇c = g(x, qc) ∀c ∈ C (11d)
e(t) ≥ emin (11e)

where qd(tk + TH) is the mean clarity deficit at the end of
system trajectory χ(t; tk, χk), ∀t ∈ [tk, tk + TH ] given by

(10), g : X × [0, 1] → R≥0 define the clarity dynamics (6),
and emin is the minimum energy level allowed for the robot.

IV. ENERGY AWARE CLARITY DRIVEN ERGODIC
SEARCH (ECLARES)

In this section, we introduce Eclares as a solution to
the optimization problem (11). We first provide the solution
overview and discuss its motivation. Next, we provide details
on the method to construct the TISD and lastly, we introduce
the eware filter.

A. Method Motivation & Overview

In order to solve problem (11), we take inspiration from
ergodic search [8], [9]. As discussed in Section II-.3, ergodic
search can generate trajectories by solving problem (4). If
the construction of TISD ϕ is based on the current clarity
qc(t) and the target clarity qc at each cell, then ergodic
search can be used to minimize the mean clarity deficit (10).
Therefore, in this work, we propose a method to construct
ϕ using clarity. However, the ergodic trajectory optimization
in (4) does not consider the energy constraint (11e). One
approach would be to add the energy constraint in (4), but the
non-convexity of (4) implies that guaranteeing convergence
and feasibility is challenging. Therefore, we propose the
framework Eclares, shown in Figure 1, as an approximate
solution to the problem (11).e

Our solution involves decoupling (11) into two sub-
problems: (A) we design a trajectory that maximizes infor-
mation collection without the energy constraint (referred to
as the ergodic trajectory), and (B) we construct a trajectory
that tracks part of the ergodic trajectory but also reaches the
charging station before the robot’s energy depletes (referred
to as the committed trajectory). The low level controller
of the robot always tracks the last committed trajectory. In
this way, we ensure that the robot persistently explores the
domain without violating the energy constraint. We run these
steps at different rates. The ergodic trajectory is replanned
every TH seconds, while the committed trajectory is updated
every TE < TH seconds.f That is,

• at each time tk = kTH , k ∈ N,
– recompute the TISD ϕ using genTISD.
– recompute an ergodic trajectory using PTO [9].

• at each time τj = jTE , j ∈ N,
– update the committed trajectory using eware.

eIt is also important to note qd(T ) is not differentiable so computing
gradients for optimization problem (11) can be challenging. However, the
problem (4) is differentiable and can be approximately solved using PTO [9].

fTE , TH ∈ R>0 are user-defined parameters.
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Algorithm 1 The genTISD algorithm
1: function genTISD (qc, qc, environment model (9))
2: for c ∈ {1, ..., Nc} do
3: k ← 1/

√
QcR

4: q∞ ← k/(k + 1)
5: q ← min(qc, q∞,c − ϵ)
6: ϕc ← ∆T (q, qc)
7: end for
8: ϕc ← ϕc/(

∑Nc

c=1 ϕc), ∀c ∈ {1, ..., Nc}
9: return ϕc ∀c ∈ {1, ..., Nc}

10: end function

Algorithm 2 The eware algorithm
1: function eware(τj , x

ergo
k , xcom

j−1 )
2: Solve back-to-base trajectory (12a)
3: Solve initial value problem (13a)
4: τf ← τj + TN + TB

5: if e(t) ≥ 0 ∀t ∈ [τj , τf ] and x(τf ) = xc then
6: xcom

j ← xcan
j

7: else
8: xcom

j ← xcom
j−1

9: end if
10: return xcom

j

11: end function

In this work, we adopt PTO directly from [9].
Before describing genTISD and eware, we establish

notation for trajectories. Let x([tk, tk + TH ]; tk, xk) be the
ergodic trajectory generated at time tk starting at state xk and
defined over a time horizon TH . For compactness, we refer
to x([tk, tk + TH ]; tk, xk) as xergo

k . We use similar notation
to describe other trajectories later on.

B. Generate Target Spatial Distribution (genTISD)

The genTISD algorithm is described in Algorithm 1. Let
ϕc denote the target information density evaluated for cell c.
At the k-th iteration (i.e, at time tk = kTH ), we set ϕc to
be the time that the robot would need to increase the clarity
from qc(tk) to the target qc by observing cell c (Lines 3-
6). This is determined using (8). The small positive constant
ϵ > 0 in Line 5 ensures that target clarity is always less than
the maximum attainable clarity, i.e., qc < q∞,c. Finally, we
normalize ϕc such that the sum of

∑
c∈C ϕc = 1 (Line 8).

Once ϕ is constructed, PTO method [9] is used to generate
the ergodic trajectory.

C. Energy-Aware (eware)

Inspired by [24], eware is a lightweight filter to ensure
that the robot reaches the charging station before running
out of energy. To do so, it constructs a candidate trajectory
that follows the ergodic trajectory for a short time horizon
TN before attempting to return to the charging station. If
the candidate trajectory is valid (defined below), it becomes
a committed trajectory. The low-level tracking controller
always tracks the last committed trajectory. Algorithm 2
describes the eware algorithm.

Fig. 2. This figure illustrates the generation of candidate trajectory at time
τj , combining a small portion of the ergodic trajectory (shown in red) and
the b2b trajectory (shown in green).

The j-th iteration of eware starts at time τj = jTE . Let
the robot state at time τj be xj ∈ X and the system system
at time τj be χj ∈ Z . Suppose the last ergodic trajectory
generated is xergo

k (defined over the interval [tk, tk + TH ]).
(Line 2) We construct a back-to-base (b2b) trajectory xb2b

j ,
defined over [τj+TN , τj+TN +TB ], by solving the optimal
control problem:

min
x(t),u(t)

∫ τj+TN+TB

τj+TN

∥x(τ)− xc∥2Q + ∥u(τ)∥2R dτ (12a)

s.t. x(τj + TN ) = xergo
j (τj + TN ), (12b)

ẋ = fr(x, u) (12c)

where xc ∈ X is the state of the charging station, Q ∈ Sn++

weights state cost, and R ∈ Sm++ weights control cost.
(Line 3): Once b2b trajectory xb2b

j is generated, we nu-
merically construct the candidate trajectory by solving the
initial value problem

χ̇ = f(χ, u(t)), (13a)
χ(τj) = χj (13b)

u(t) =

{
π(χ, xergo

k (t)), t ∈ [τj , τj + TN )

π(χ, xb2b
j (t)), t ∈ [τj + TN , τj + TN + TB ]

(13c)

where π : Z×X → U is a control policy to track the portion
of the ergodic trajectory and the b2b trajectory. Figure 2
illustrates the generation of a candidate trajectory.

(Lines 5-9): Once the candidate trajectory is constructed,
we check whether the robot can reach the charging station
before running out of energy. If it can, the candidate trajec-
tory replaces the committed trajectory.

V. SIMULATION CASE STUDY

A. Simulation Setup

In this section, we evaluate Eclares using a simulation
case study. We synthesize a hypothetical scenario where a
quadrotor modeled with nonlinear dynamics described in
[25, Eq. (10)] is persistently monitoring a stochastic spa-
tiotemporal environment modeled according to the dynamics
described in (9). The coverage domain is 20×20 meter in
area with grid cells of dimension 0.20×0.20. We use the

14329

Authorized licensed use limited to: University of Michigan Library. Downloaded on September 18,2024 at 16:46:01 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3. The still frames from quadrotor simulation are shown where the quadrotor with a downward-facing camera and a gimbal is persistently monitoring
a stochastic spatiotemporal environment. The TISD is shown as a point cloud in each frame and the colored bar in each frame shows the battery level. The
frame (a) shows the quadrotor starting the coverage mission with full energy. Moving across frames (b) and (c), the quadrotor energy depletes and returns
to the charging station (modeled as the origin of the world frame). After battery swapping, the quadrotor resumes the coverage mission as shown in the
frame (d). The same trend follows in the subsequent frames. Moreover, it can be seen that as the quadrotor explores the environment, the TISD becomes
more sparse, which reflects an increase in clarity in the region. For full simulation video, please see https://youtu.be/i2yD3A2b5nA

PTO method [9] with double integrator dynamics to solve
the optimization problem (4) for the time horizon TH =
30.0s. To generate b2b trajectory, we solve the problem
(12) using model predictive control (MPC) with reduced
linear quadrotor dynamics proposed by [25]. Another MPC
problem with the same reduced linear quadrotor dynamics
was posed to track the ergodic trajectory for a shorter
time horizon TN = 2.0s. Then the committed trajectory
is generated using the eware algorithm. The committed
trajectories are generated in a receding-horizon manner at
0.50 Hz (i.e., TE = 2.0s) and tracked at 20.0 Hz with zero-
order hold.g If one of the committed trajectories returns a
quadrotor to the charging station, it stays there to simulate
recharging. Note that no assumptions are made about the
charging method; it may either involve stationary charging or
battery swapping. We use the battery dynamics described in
[14, Eq. (6)] as it directly incorporates robot control input as
opposed to the worst-case approximation used in other works
[13], [15]. Throughout the simulation, we use the Runge-
Kutta 4th order (RK4) integration scheme. Figure 3 shows
still frames from the light UAV simulator where a quadrotor
with a downward-facing camera is exploring a stochastic
spatiotemporal environment.

B. Results and Discussion

1) Performance Comparison between Spatiostatic and
Stochastic Spatiotemporal Environment: Figure 5(a) and
Figure 5(b) show the evolution of mean clarity deficit qd for
the spatiostatic and stochastic spatiotemporal environments
respectively. For the proposed method, in the case of the
spatiostatic environment, the qd approached almost zero at
time T = 780s; however, for the stochastic spatiotemporal
environment, the qd reduced to a non-zero value. This is
expected due to the inherent stochasticity present in the

gFor more details on algorithm implementation, trajectory gener-
ation, and on the hypothetical stochastic environment, please see
https://github.com/kalebbennaveed/Eclares.git.

environment as the information is decaying constantly due to
the term −Qq2 in (6), and it is not possible to achieve zero
clarity deficit. However, the proposed method does provide
an ability to set realistic expectations on the maximum
possible information that can be collected in a stochastic
environment by computing q∞,c, ∀c ∈ C.

2) Comparison to Baseline methods: We compare the
performance of the proposed methodology genTISD to the
uniform TISD method used in most of the ergodic literature
[8], [10]. The uniform TISD assigns equal importance to all
cells c ∈ C in the domain. As evident from Figure 5(a) and
Figure 5(b), the proposed method shows a faster convergence
rate as compared to the uniform method. This is explained
by the robot trajectory shown in Figure 4 as the robot
spends more time in the region with a higher clarity deficit
as compared to the uniform method. It is important to
note that the past ergodic literature does not consider the
stochastic nature of the environment in their construction of
target distribution. We also evaluate the performance of the
proposed coverage method against the classic lawnmower
coverage method. In the lawnmower coverage method, the
robot follows the prescribed path which covers the whole do-
main. The lawnmower coverage pattern results in repetitive
paths as the robot covers the same areas multiple times while
leaving gaps in some areas. This causes the clarity deficit
to stabilize to a non-zero value as shown in Figure 5(a).
In the case of using the lawnmower coverage method for
a stochastic spatiotemporal environment, the clarity deficit
eventually starts increasing as the information constantly
decays due to the term −Qq2 in (6).

3) Evaluation of eware Filter: Figure 5(c) compares the
quadrotor flight with and without the eware filter. Evidently,
with the eware filter, the quadrotor safely returns to the
charging station. However, in the absence of eware filter,
the quadrotor unaware of its remaining battery energy keeps
on following the nominal ergodic trajectory, leading to a
crash. Moreover, we observed that although the minimum
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Fig. 4. The clarity deficit Map for the spatiostatic environment at time T = 0 s, T = 210 s, and T = 780 s is shown comparing two methods, uniform
distribution, and the proposed method, with the same clarity q and target clarity q at T = 0 s.

Fig. 5. (a) Plot of the mean clarity deficit (qd) against time is shown for the spatiostatic environment for three methods. (b) The plot of the qd against
time is shown for the stochastic spatiotemporal environment for three methods. It can be seen from both plots that the proposed method outperforms
other methods: Ergodic search with uniform target spatial distribution and classic lawnmower coverage method. Moreover, it is important to note that in
the stochastic spatiotemporal environment, it is not possible to acquire zero clarity error as information is always decaying due to term −Qq2 in (6). (c)
The plot of the quadrotor’s distance to the charging station (∥x−xc∥) against the battery’s State of Charge (SoC) is shown for one quadrotor flight, where
xc is the position of the charging station. In the case of eware, the quadrotor safely returns to the charging station as energy depletes with almost 3 %
SoC. However, without eware, the quadrotor unaware of its remaining energy keeps on following the nominal path, leading to a crash.

SoC specified was 0%, the quadrotor returns to the charging
station with almost 3±1 % remaining SoC. This number can
be brought down by increasing the frequency of the candi-
date trajectory generation from 0.5 Hz to a larger number;
however, this comes at the expense of overall computational
time. We also compared the compute time of the proposed
method eware with that of the CBF-based methods used for
robotic task persistence since both are online methods. The
eware filter, updated at 0.5 Hz, took an average time of 30.2
ms to numerically forward integrate the candidate trajectory
through the quadrotor and battery’s nonlinear dynamics.
Alternatively, the CBF-based method used in [13], updated
at 20 Hz, took an average time of 0.0551 ms to solve the
optimization problem described in [13, Eq. (2)] with single
integrator dynamics. While considering the update frequency,
the CBF-based method [13] is almost 13 times faster than
the proposed method; however, it assumes simple robot
and battery models. Conversely, the proposed eware filter
achieved real-time performance with nonlinear quadrotor and
battery dynamics. This flexibility with robot and battery

models increases the proposed method’s generalizability.

VI. CONCLUSION

In this work, we introduced a framework Eclares, in
which we proposed a method to update target information
spatial distribution for the ergodic trajectory optimization,
which considers the stochastic spatiotemporal environments.
We also integrated a lightweight filter called eware between
the high-level ergodic planner and low-level tracking con-
troller, which iteratively ensures that the robot has enough
battery energy to continue the coverage task. Through a
simulation case study, we demonstrated that the proposed
framework incorporates potential information decay and
quantifies maximum attainable information in a stochastic
environment while ensuring the robot’s safe return to the
charging station before the battery energy depletes. However,
we acknowledge that the decoupling approach in Eclares
may yield suboptimal solutions, particularly as it doesn’t
optimize the b2b trajectory for information collection. We
aim to address this in future work, along with extending the
proposed method to multi-agent exploration scenarios.
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