
Quantum Ergodicity in
Theorems and Pictures

Semyon Dyatlov
A popular culture notion of chaos was summed up by
Edward Lorenz: it occurs “when the present determines
the future, but the approximate present does not approxi-
mately determine the future” (or more dramatically “a but-
ter昀氀y 昀氀apping its wings in Brazil could set off a tornado in
Texas”). In quantummechanics there is no clear de昀椀nition
of quantum chaos but its manifestations include properties
of eigenvalues and eigenfunctions. Here eigenfunctions
are interpreted as pure quantum states, yielding the sim-
plest, time-harmonic, solutions to the Schrödinger equa-
tion.

It is natural then to look for distinguishing properties
between quantum systems with underlying completely in-
tegrable (that is, organized and nonchaotic) and chaotic
classical dynamics. At high energies or small wavelengths,
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such classical effects would manifest themselves most
clearly. We should stress though that the validity of such
asymptotics almost always becomes accurate right away.

One classical notion, present in many chaotic systems,
is that of ergodicity. A classical system is ergodic if almost
all classical trajectories equidistribute—see De昀椀nition 1.
This article focuses on the corresponding topic in quantum
chaos: macroscopic behavior of high energy eigenfunctions for
systems with ergodic or more strongly chaotic classical dy-
namics.

We cannot do justice here to the extensive literature
on quantum ergodicity but we refer to the reviews by Sar-
nak [Sar11] and Zelditch [Zel19], as well as the author’s
ICM proceedings [Dya21], for more references, and for yet
another perspective to the article of Rudnick [Rud08].

To see animated versions of the 昀椀gures illustrating both
classical and quantum phenomena, the reader is encour-
aged to visit https://math.mit.edu/~dyatlov/chaos
-movies.html.

1. Eigenfunctions on Planar Domains
Eigenfunctions and eigenvalues of the Laplacian on
bounded planar domains, with either Dirichlet or
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Figure 1. Numerically computed high energy Dirichlet eigenfunctions for two domains: a disk and a stadium. Here darker
shading corresponds to larger values of |��(�)|. The eigenfunctions for the stadium here and in Figure 4 are computed using the
method developed by Barnett, see [BH14].

Neumann boundary conditions, are familiar acrossmathe-
matics and science. Their investigation goes back to the ex-
periments by Chladni over two hundred years ago and in-
cludes such popular questions as “Can one hear the shape
of a drum?” formulated by Kac over sixty years ago. In
theDirichlet case, these eigenfunctions are solutions to the
eigenvalue problem−Δ��(�) = �2���(�), � ∈ Ω, ��|�Ω = 0. (1)

Here Ω ⊂ ℝ2 is a bounded open set with smooth enough
boundary �Ω, Δ = �2�1 + �2�2 is Laplace’s operator, and we
choose, as we may, �� ’s to form an orthonormal basis of
the space of square integrable functions, ÿ2(Ω). Moreover,�� ↑ ∞.

The eigenfunction �� can be thought of as a pure state of
a quantum particle con昀椀ned to the domainΩ, with energy�2� . Since ‖��‖�2(Ω) = 1, the expression |��(�)|2 þ� de昀椀nes
a probability measure on Ω. Following a standard inter-
pretation of quantum mechanics, this measure gives the
probability distribution of the position of the particle. We
will be particularly interested in the quantities∫Ω �(�)|��(�)|2 þ�, � ∈ �(Ω), (2)

which give the expected value of �(�) where � is the posi-
tion of the particle. (If � = �� is the indicator function of
a set ÿ ⊂ Ω, then (2) is the probability of 昀椀nding the par-
ticle in ÿ. However for taking the � → ∞ limit it is better
to restrict to continuous �.)

Figure 1 gives an example of Dirichlet eigenfunctions in
two domains: a disk and a stadium. We observe that:

• The eigenfunction for the disk has a lot of geometric
structure. Moreover, it is small near the center of the
disk.• By contrast, the eigenfunctions for the stadium spread
out evenly on the entire domain. The two eigenfunc-
tions are different when looking closely at the pictures
but they appear similar from far away.

We also see that both pictures show a lot of oscillation. In
fact, �� oscillates on the scaleℎ� = 1/�� , (3)

so �� can be interpreted as the frequency of oscillation
(which is why we denoted the eigenvalue by �2� and not ��).
To illustrate this, consider the case when Ω = (0, �)2 is a
square, with eigenfunctions ��ℓ = sin(��1) sin(ℓ�2) where�, ℓ ∈ ℕ. Then ��ℓ oscillates at frequency ��ℓ = √�2 + ℓ2.

What makes eigenfunctions look so different for the
disk and for the stadium? The answer lies in the behav-
ior of the corresponding classical dynamical system. For
domains with boundary, this system is the billiard ball 昀氀ow,
modeling a classical particle inΩwhichmoves in a straight
line until collision with the boundary and then follows the
standard law of re昀氀ection.

Figure 2 shows a single longtime billiard ball trajectory
in the disk and two such trajectories in the stadium. In
the disk, the trajectory follows a regular pattern (perhaps
reminding one of a ball of twine) and leaves out a re-
gion near the center. In the stadium, the trajectories ap-
pear chaotic, in particular covering the whole domain. In
fact, they equidistribute: the amount of time the trajectory
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Figure 2. Typical billiard ball trajectories in a disk and a stadium after many bounces.

spends in a set ÿ tends to the ratio of the area of ÿ to the
area of the domain, asymptotically as the length of the tra-
jectory tends to in昀椀nity.

From now on we focus on the chaotic case. The goal
of this section is to formulate precisely a result known as
quantum ergodicity, which informally states that

If most billiard trajectories equidistribute,
then most eigenfunctions equidistribute.

We 昀椀rst explain what it means for most billiard trajectories
to equidistribute, which is naturally given by the concept
of ergodicity. Denote the billiard ball 昀氀ow by (see Figure 3)�� ∶ Ω × �1 → Ω× �1, � ∈ ℝ. (4)

Here Ω × �1 consists of all possible positions and (unit)
velocity vectors and ��(�0, �0) gives the position and the
velocity after time � of the billiard ball particle starting at
position �0 and velocity �0. The billiard ball 昀氀ow might
be unde昀椀ned for some (�0, �0) and � because of various
problems that can happen at the boundary, but under rea-
sonable assumptions these form a measure 0 set and thus
will not matter for the de昀椀nition below—see [ZZ96]. We
use the natural ��-invariant volume measure on Ω × �1�� = ýþ�þÿ(�)
with the constant ý > 0 chosen so that �� is a probability
measure.

De昀椀nition 1. We say that the billiard ball 昀氀ow �� is ergodic
(with respect to ��) if for ��-almost every (�0, �0), the trajectory��(�0, �0) equidistributes, namely for any � ∈ �(Ω × �1) we
have as Ā → ∞1Ā ∫�

0 �(��(�0, �0)) þ� → ∫Ω×�1 �(�, �) þ��.

Note that we require equidistribution in both position
(�) and velocity (�) variables.

Coming back to Figure 2, we remark that the billiard
ball 昀氀ow is not ergodic for the disk (in fact, it has a con-
served quantity: the angle at which the trajectory intersects
the boundary circle stays the same with each bounce), but
it is ergodic for the stadium, as proved by Bunimovich in
1974.

Next, we give a de昀椀nition of equidistribution for eigen-
functions, taking the limits of expressions (2):

De昀椀nition 2. Assume that ��� , �� → ∞, is a sequence of
eigenfunctions from (1). We say that ��� equidistributes in
position if for each � ∈ �(Ω)∫Ω �(�)|���(�)|2 þ� → 1vol(Ω) ∫Ω �(�) þ�.

The above de昀椀nition talks about themacroscopic behavior
of ��� since we 昀椀rst 昀椀x the classical observable � and then
take the limit � → ∞. A quantum mechanical interpre-
tation of equidistribution of eigenfunctions is as follows:
in the high energy limit, the probability of observing the
pure state quantum particle in a “nice” set ÿ ⊂ Ω becomes
proportional to the area of ÿ.

We are now ready to state a version of quantum er-
godicity. In the present setting it is due to Zelditch–
Zworski [ZZ96], with an earlier contribution by Gérard–
Leichtnam which covered the example of the stadium. In
the setting of manifolds without boundary, the result goes
back to the seminal works of Shnirelman, Zelditch, and
Colin de Verdière in the 1970s–1980s.

Theorem 1. Assume that the billiard ball 昀氀ow �� is ergodic.
Then there exists a density 1 increasing sequence �� →∞ such
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Figure 3. The billiard ball flow trajectory (�(�), �(�)) = ��(�0, �0).
Here � is the distance traveled by the billiard ball. The study of
such billiard ball flows is an old and subtle subject—see for
instance Avila–De Simoi–Kaloshin [ADSK16] for recent
progress.

that the corresponding sequence of eigenfunctions ��� equidis-
tributes in position. Here “density 1” means that#{� ∣ �� ≤ ā}ā → 1 as ā → ∞.
2. Semiclassical Measures
We now discuss semiclassical quantization and classi-
cal/quantum correspondence, which underlie the proof of
Theorem 1 and other results given below. This leads us to
semiclassical measures, which are a way to capture the con-
centration of high-energy eigenfunctions simultaneously
in position and frequency, and to a more re昀椀ned version
of quantum ergodicity.

A quantization maps smooth functions �(�, �) on ℝ2�,
interpreted as classical observables, to operators �(�, ��)
on �∞(ℝ�), interpreted as the corresponding quantum ob-
servables. Here the coordinate functions �ℓ should be
mapped to the multiplication operators � ↦ �ℓ�, while �ℓ
should be mapped to the differentiation operators ��ℓ =−���ℓ . One can de昀椀ne a quantization procedure using the
Fourier transform:�(�, ��)�(�) = (2�)−�∫ℝ� ÿ��⋅��(�, �)�̂(�) þ�.
By the Fourier inversion formula, if � is a function of �
only, then �(�, ��)� = �� is the corresponding multi-
plication operator; in particular, 1(�, ��) is the identity.
More generally, if � is a polynomial in �, then �(�, ��)
is a differential operator. Since differential operators do
not in general commute with each other, the map � ↦�(�, ��) cannot be an algebra homomorphism; however,�(�, ��)�(�, ��)−(��)(�, ��) consists of lower-order terms.
This is related to the product rule (6) below.

In the theory of PDE, operators of the form �(�, ��)
are called pseudodifferential operators. In mathematics they
were originally motivated by singular integral operators,
boundary value problems, and several complex variables.
Eventually, that mathematical theory merged with the
the theories of quantization from quantum mechanics—
see [Zwo12] for general properties of quantization and for
pointers to the vast literature on the subject.

As remarked in (3) above, the eigenfunction �� oscil-
lates on scale ℎ� = �−1� . Thus we expect��ℓ�� to be roughly
of size ��. It then makes sense to multiply � by ℎ�, which
gives the semiclassical quantization procedureOpℎ(�) ∶= �(�, ℎ��). (5)

Semiclassical quantization has several algebraic properties,
such as the product ruleOpℎ(�)Opℎ(�) = Opℎ(��) + �(ℎ) (6)

and the commutator rule[Opℎ(�), Opℎ(�)] = −�ℎOpℎ({�, �}) + �(ℎ2). (7)

Here {�, �} = ∑�ℓ=1(��ℓ�)(��ℓ�) − (��ℓ�)(��ℓ�) is the Pois-
son bracket of � and �, and the remainders are understood
in the sense of operator norm on appropriate spaces. An-
other key property, connecting classical and quantum dy-
namics, is Egorov’s theorem:ā(−�)Opℎ(�)ā(�) = Opℎ(� ∘ ��) + �(ℎ) (8)

where � is a smooth compactly supported function onΩ × ℝ2, ā(�) = ÿ��ℎ∆/2 is the Schrödinger group asso-
ciated to the Dirichlet Laplacian on the domain Ω, and�� is the billiard ball 昀氀ow (4) extended appropriately to(�, �) ∈ Ω × ℝ2. Note that ā(�) describes evolution of
quantum wave functions by the Schrödinger equation and�� describes evolution of classical particles in Ω. (Some
care is needed at the boundary of Ω but we omit the de-
tails here.)

We now introduce semiclassical measures correspond-
ing to eigenfunctions:

De昀椀nition 3. Assume that ��� is a sequence of eigenfunctions.
We say that ��� converges semiclassically to a Borel measure� on Ω × ℝ2 if for each (suf昀椀ciently regular) function �(�, �)
on Ω × ℝ2 we have (putting ℎ�� ∶= �−1�� )⟨Opℎ�� (�)��� , ���⟩�2(Ω) →∫Ω×ℝ2 �þ�. (9)

We say that a measure � onΩ×ℝ2 is a semiclassical measure
if there exists a sequence of eigenfunctions converging to it.

The left-hand side of (9) has a natural quantum me-
chanical interpretation: it is the expected value of the ob-
servable �(�, �)where � is the position and � is themomen-
tum of the quantum particle. Thus the limiting measure �
describes the probability distribution of the particle in po-
sition and momentum in the high energy limit along the
sequence of quantum pure states ��� . From a mathemat-
ical point of view, � captures the distribution of mass of��� in position (�) and frequency (�).

Each semiclassical measure � has the following proper-
ties:

(a) � is a probability measure;
(b) the support of � is contained in Ω × �1;
(c) � is invariant under the billiard ball 昀氀ow ��.
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Figure 4. An example of an anomalous, nonequidistributing, eigenfunction for the stadium (left); such eigenfunctions were
numerically observed by Heller in Physical Review Letters in 1984. Its existence is related to the presence of “mildly chaotic”
billiard ball trajectories which take a long time to exhibit chaotic behavior, like the one pictured on the right. A generic stadium
has a sequence of nonequidistributing eigenfunctions. However, it is an open problem to show that such eigenfunctions localize
precisely on the mildly chaotic trajectories.

Here (a) corresponds to the normalization ‖���‖�2(Ω) = 1
and the fact that Opℎ(1) is the identity. The property (b)
corresponds to the correct choice of the semiclassical scal-
ing parameter ℎ�� = �−1�� , so that after rescaling ��� oscil-
lates at unit length frequency. Finally, the property (c) fol-
lows from Egorov’s theorem: indeed, pairing both sides
of (8) with ��� and passing to the limit we see that ∫(� ∘��) þ� = ∫�þ� for all �.

There are many measures satisfying properties (a)–(c)
above. Of particular importance is the Liouville measure�� = ýþ�þÿ(�) featured in De昀椀nition 1, which is in some
sense the most “spread-out” invariant measure. The oppo-
site, most “concentrated” case, is the delta measure on a
periodic trajectory of ��. One of the central questions in
quantum chaos is:

What measures can arise as semiclassical limits of high
energy eigenfunctions?

This question is discussed in more detail in §4. It is not
restricted to the chaotic case: even for tori it is a nontrivial
question which attracted the attention of many including
Jean Bourgain; see Lester–Rudnick [LR17] for a recent con-
tribution.

We can now state a stronger version of quantum ergodic-
ity, giving equidistribution in both position and frequency.
Following De昀椀nition 2, we say that a sequence of eigen-
functions semiclassically equidistributes if it converges to the
Liouville measure in the sense of (9).

Theorem 2. Assume that the billiard ball 昀氀ow �� is ergodic.
Then there exists a density 1 sequence �� → ∞ such that
the corresponding sequence of eigenfunctions ��� semiclassically
equidistributes.

Note that semiclassical equidistribution implies
equidistribution in position of De昀椀nition 2, taking ob-
servables of the form �(�, �) = �(�) in (9); thus Theo-
rem 2 implies Theorem 1. On the other hand, for gen-
eral (not necessarily ergodic) domains one might have

equidistribution in position without semiclassical equidis-
tribution, see Marklof–Rudnick [MR12].

We alsomention brie昀氀y the case ofmixed systems, having
a positive measure subset of Ω × �1 on which the billiard
ball 昀氀ow is ergodic. For a special class of these systems,
namely generic mushroom billiards, Galkowski [Gal14]
and Gomes [Gom18] showed Percival’s conjecture, giving a
positive density sequence of eigenfunctions equidistribut-
ing in the ergodic region; for earlier numerics in this set-
ting, see Barnett–Betcke [BB07].

3. QUE and Strongly Chaotic Systems
A natural question to ask, known as the quantum unique
ergodicity (QUE) conjecture, is whether Theorem 2 holds
without passing to a density 1 subsequence:

Is Liouville measure the only semiclassical measure?

For general ergodic settings this can fail. In fact, this is
the case for a generic stadium domain as shown by Has-
sell [Has10]; see Figure 4.

A natural setting in which QUE is more feasible (and
was explicitly conjectured by Rudnick–Sarnak in 1994) is
that of strongly chaotic systems, which is a subclass of er-
godic systems for which small perturbations of any trajec-
tory lead to exponentially fast divergence from the original
trajectory. More precisely, for such a system the tangent
space to Ω × �1 splits into the 昀氀ow, unstable, and stable
subspaces, and the differential of the 昀氀ow is exponentially
expanding on the unstable spaces and contracting on the
stable spaces as time goes to in昀椀nity. This implies that the
昀氀ow has a positive Lyapunov exponent and is related to
the “butter昀氀y effect” mentioned in the opening paragraph
of this article.

To give an example of a strongly chaotic system, we
move away from planar domains to the setting of mani-
folds without boundary. Let (Ā, ā) be a compact Riemann-
ian manifold. The analog of Dirichlet eigenfunctions (1)
is given by eigenfunctions of the Laplace–Beltrami
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Figure 5. An eigenfunction (left) and a geodesic (right) on a genus 2 hyperbolic surface obtained by gluing together the same
color sides of the pictured dodecagon, embedded in the Poincaré disk model of the hyperbolic plane. The eigenfunction is
computed using the method developed by Strohmaier–Uski [SU13].

operator Δ� induced by the metric ā:−Δ���(�) = �2���(�), �� ∈ �∞(Ā). (10)

The semiclassical quantization introduced in (5) can be
de昀椀ned on manifolds, if we take � to be a function on the
cotangent bundle Ā∗Ā. The appearance of the cotangent
bundle is already evident for differential operators: if� is a
vector 昀椀eld on Ā, then the 昀椀rst order differential operator−�ℎ� is equal to Opℎ(�) + �(ℎ) where �(�, �) = ⟨�, �(�)⟩
is the linear function on the 昀椀bers of Ā∗Ā de昀椀ned by � .
Note also that the Poisson bracket featured in the commu-
tator rule (7) is well-de昀椀ned on functions on Ā∗Ā since
the latter has a natural symplectic form.

The corresponding classical dynamical system is the ge-
odesic 昀氀ow �� ∶ ÿ∗Ā → ÿ∗Ā
where ÿ∗Ā is the unit cotangent bundle of Ā, consisting
of pairs (�, �) where � ∈ Ā and � ∈ Ā∗�Ā satis昀椀es |�|� = 1.
Here � is the cotangent vector dual to the velocity vector of
the geodesic via the metric ā.

It is a result of Anosov in the 1960s that if the met-
ric ā has negative curvature, then the geodesic 昀氀ow �� is
strongly chaotic. An important family of examples of nega-
tively curved manifolds, appearing in many areas of math-
ematics, is given by hyperbolic surfaces which are surfaces of
Gauss curvature −1; see Figure 5.

In the setting of Riemannian manifolds, semiclassical
measures are supported on ÿ∗Ā and invariant under the
昀氀ow ��, and an analog of quantum ergodicity (Theorem 2)
holds.

Coming back to QUE, in a special setting of arithmetic
hyperbolic surfaces QUE for joint eigenfunctions of the
Laplacian and all Hecke operators (which are additional
symmetries commuting with the Laplacian) was proved by
Lindenstrauss [Lin06]. However, in general this conjecture
is completely open and in fact there are toy models where
it fails; the most celebrated one is described in §5 below.

4. More on Semiclassical Measures
With QUE seeming out of reach, we return to the ques-
tion asked in §2, now in the setting of manifolds without
boundary: what measures can arise as semiclassical lim-
its of high energy eigenfunctions? We discuss two results
giving restrictions on such measures.

We start with the more recent result, due to the author,
Jin, and Nonnenmacher [DJN22], and relying on earlier
work of Bourgain and the author on the fractal uncertainty
principle:

Theorem 3. Let � be a semiclassical measure on a negatively
curved surface. Then supp� = ÿ∗Ā, that is �(ā) > 0 for any
nonempty open set ā ⊂ ÿ∗Ā.

Theorem 3 together with the unique continuation prin-
ciple implies a lower bound on themass of eigenfunctions:
for any nonempty open set Ă ⊂ Ā we have‖ 1l� ��‖�2 ≥ ý� > 0
where the constant ý� is independent of the eigenvalue ��.
This can be thought of as having no whitespace in Figure 5:
for any given macroscopic ball, the probability of 昀椀nding
the quantum particle in that ball is separated away from 0.

NOVEMBER 2023 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 1597



� = 0 � = 1 � = 2 � = 3 � = 4 � = 5 � = 6
Figure 6. Evolution of an image by the map ��, � = 0, … , 6, where � ∶ �2 → �2 corresponds to the matrix � = (2 31 2).
It is an open question whether Theorem 3 holds in dimen-
sions ≥ 3.

Theorem 3 also implies that the delta measure on a
closed geodesic cannot be a semiclassical measure. How-
ever, the latter fact (conjectured by Colin de Verdière in the
1980s) was already known as a corollary of entropy bounds
of Anantharaman and Nonnenmacher. These bounds are
true for general strongly chaotic systems, but for simplicity
we state the result of [AN07] in a special case:

Theorem 4. Let � be a semiclassical measure on a hyperbolic
surface. Then the Kolmogorov–Sinai entropy of � satis昀椀eshKS(�) ≥ 12 . (11)

We do not give a de昀椀nition of the entropy hKS(�) here
but remark that it measures the complexity of the 昀氀ow ��
with respect to the measure �. In particular, the entropy of
a delta measure on a closed geodesic is equal to 0, while
the entropy of the Liouville measure is equal to 1, so in
some sense (11) excludes half of ��-invariant measures as
candidates for semiclassical measures.

5. Quantum Cat Maps
We 昀椀nally discuss semiclassical measures in the toy model
setting of quantum cat maps, where a striking counterex-
ample to QUE is known.

For quantum cat maps, the phase space Ā∗Ā is replaced
by the torus �2 = ℝ2/ℤ2 and the geodesic 昀氀ow ��, by
a linear map. This has the advantage that the underly-
ing dynamics, while still strongly chaotic, is simpler to
understand; moreover, it is easier to compute eigenval-
ues and eigenfunctions numerically. On the other hand,
it is harder to explain the analog of the eigenvalue prob-
lems (1), (10).

We 昀椀rst discuss linear maps on the torus, which in this
setting are analogs of the time-one map of the geodesic
昀氀ow. Let � ∈ SL(2, ℤ) be a 2×2matrix with integer entries
and determinant 1. The linear map on ℝ2 induced by �
descends to a diffeomorphism of the torus �2, which we
we still denote by �. The matrix � is called hyperbolic, and
the corresponding map on �2 is called a cat map (a term
coined by Arnold), if | tr �| > 2. In this case � has two
real eigenvalues �,�−1 with |�| > 1; the corresponding
eigenspaces give the unstable and stable directions for the

cat map and can be used to show that it is ergodic. See
Figure 6.

We next discuss discrete microlocal analysis and semi-
classical quantization. The space ÿ2(Ā) of square-
integrable functions on amanifold is replaced by the 昀椀nite
dimensional space ℂ� . Here the semiclassical parameter
is ℎ = 12�ā .
The discrete version of the Fourier transform, ℱ� ∶ ℂ� →ℂ� , is given by

(ℱ�Ā)� = 1√ā �−1∑ℓ=0 ÿ− 2���ℓ� Āℓ.
We note that this is the Fourier transform used in signal
processing and FFT algorithms.

One can de昀椀ne an analog of the quantization proce-
dure (5), mapping a smooth function �(�, �) on the torus�2 to a sequence of operatorsOp�(�) ∶ ℂ� → ℂ� .
We do not give a proper de昀椀nition here but note that sim-
ilarly to semiclassical quantization on ℝ�• if � is a function of � only, then Op�(�) is a multipli-

cation operator: (Op�(�)Ā)� = �(�/ā)Ā�;• if � is a function of � only, then Op�(�) is a Fourier
multiplier: (ℱ� Op�(�)Ā)� = �(�/ā)(ℱ�Ā)�.

One also has analogues of the product rule (6) and the
commutator rule (7). For the latter, the Poisson bracket is
de昀椀ned as before and corresponds to the symplectic formþ� ∧ þ�. Implicit in the construction below is the fact that
the map � preserves the symplectic form on �2, just as the
geodesic 昀氀ow �� preserves the symplectic form on Ā∗Ā.

We now introduce quantizations of a linear map on�2 induced by a matrix � ∈ SL(2, ℤ), which in this set-
ting are analogous to the time-one map of the Schrödinger
group. For technical reasons we restrict to the case of
even ā. Quantizations of � are sequences of unitary op-
erators ā� ∶ ℂ� → ℂ� which satisfy the following exact
version of Egorov’s theorem (8): for all � ∈ �∞(�2)ā−1� Op�(�)ā� = Op�(� ∘ �). (12)
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� = 7 � = 8 � = 9 � = 10 � = 11 � = 12
Figure 7. Continuation of Figure 6, showing the times � = 7, … , 12. Here we took the special resolution ā = 1560 points per side of
the square; the picture illustrates the fact that �12 mod ā = �. A short period of the discretized classical cat map implies that the
associated quantum cat map also has a short period, which is used in the example (14) below.

One way to compute these explicitly is as follows. Con-
sider the matrices�1 = (1 01 1) , �2 = ( 0 1−1 0) .
Then a quantization of �1 is given by the multiplication
operator (ā�Ā)� = ÿ���2� Ā� (13)

and a quantization of �2 is given by the discrete Fourier
transform ℱ� . The matrices �1, �2 generate the groupSL(2, ℤ) so this gives a way to quantize every linear map on
the torus. One explanation for the formula (13) is as fol-

lows: in the continuous setting the map Ā(�) ↦ ÿ ��(�)ℎ Ā(�)
is a phase shift, quantizing the transformation (�, �) ↦(�, � + �′(�)) (which is most evident for the case when�(�) = �� is a linear function); putting �(�) ∶= �2/2,ℎ ∶= (2�ā)−1, and � ∶= �/ā we get the operator (13) and
the associated transformation (�, �) ↦ (�, � + �) is linear
with the matrix �1.

From now on, let ā� ∶ ℂ� → ℂ� be a quantization of
the linear map on �2 corresponding to a hyperbolic matrix� ∈ SL(2, ℤ). We call this sequence of operators a quantum
cat map. Let ā� → ∞ and ��� ∈ ℂ�� be a sequence of
normalized eigenfunctions of the map ā�� :ā����� = ����� , |��| = 1, ‖���‖ = 1.
Similarly to (9), we say that ��� converges semiclassically
to a measure � on �2 if for all � ∈ �∞(�2) we have⟨Op��(�)��� , ���⟩ → ∫�2 �þ�.
The resulting limitingmeasures are called semiclassical mea-
sures for the quantum cat map ā� . It follows from the nor-
malization and Egorov’s theorem (12) that each semiclas-
sical measure � is a probability measure invariant under
the map �.

In the setting of quantum cat maps, there are versions
of quantum ergodicity (Theorem 2), due to Bouzouina–
De Bièvre in 1996, the full support property (Theorem 3),
due to Schwartz in 2021, and entropy bounds (Theorem4),
due to Faure–Nonnenmacher in 2004 and Brooks in 2010.

However, there is a remarkable counterexample to QUE
due to Faure–Nonnenmacher–De Bièvre [FNDB03]. More
precisely, if � is any given closed orbit of the map �, ��
is the �-invariant probability measure on �, and þ�þ� is
the volume measure on �2, then there exists a sequence of
eigenfunctions ��� converging semiclassically to the mea-
sure � = 12�� + 12 þ�þ�. (14)

Note that the entropy of � is half the entropy of þ�þ�
and (14) shows that the entropy bound for quantum cat
maps is sharp. See Figure 8 for a numerical illustration.

The construction of (14) relies on the fact (observed by
Bonechi–De Bièvre in 2000) that there exists a sequenceā� →∞ such that the restriction of the classical cat map �
to the discrete set of pointsā−1� ℤ2/ℤ2 ⊂ �2 is periodic with
a short period∼ logā�, and correspondingly the quantum
cat map ā�� also has a short period—see Figure 7.

There is also an analogue of arithmetic QUE, due to
Kurlberg–Rudnick in 2000: there exists a basis of eigen-
functions of ā� which converges semiclassically to the
measure þ�þ�. This does not contradict the counterexam-
ple (14) since the operator ā�� used there has eigenvalues
of high multiplicity, and the eigenfunctions used in (14)
do not belong to the arithmetic basis.
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