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ABSTRACT: The synthesis of one-dimensional van der Waals
heterostructures was realized recently, which offers alternative
possibilities for prospective applications in electronics and
optoelectronics. The even reduced dimension will enable
different properties and further miniaturization beyond the
capabilities of their two-dimensional counterparts. The natural
doping results in p-type electrical characteristics for semi-
conducting single-walled carbon nanotubes and n-type for
molybdenum disulfide with conventional noble metal contacts.
Therefore, we demonstrate here a one-dimensional hetero-
structure nanotube, 11 nm wide, with the coaxial assembly of a
semiconducting single-walled carbon nanotube, insulating
boron nitride nanotube, and semiconducting molybdenum
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disulfide nanotube, which induces a radial semiconductor—insulator—semiconductor heterojunction. When opposite potential
polarity was applied on a semiconducting single-walled carbon nanotube and molybdenum disulfide nanotube, respectively,

the rectifying effect was materialized.

KEYWORDS: single-walled carbon nanotubes, one-dimensional heterostructure, heterojunction diode, boron nitride nanotubes,

molybdenum disulfide, van der Waals

emiconductor p—n junctions are fundamental to build
up state-of-the-art optoelectronic architectures.’ The
emerging two-dimensional (2D) van der Waals
assemblies,”” including atomically thin semiconducting tran-
sition metal dichalcogenides (TMDs) and engineered
graphene, have pushed p—n junctions to an ultimate thickness
limit, which enable tunneling diodes with a negative differential
resistance (NDR),* tunneling transistors,”® unusual photo-
voltaic devices,”® and quantum well light-emitting diodes
(LEDs).” With further dimension confining, the rolled-up
graphene one-dimensional (1D) single-walled carbon nano-
tube (SWCNT) can induce a direct bandgap, therefore
allowing various applications in optoelectronics.'*~"* Efforts
have been made to realize a single SWCNT diode through
chemical doping,'*"> which suffers from short durability, by
introducing asymmetric metal contacts,'® which involve
multiple intricate metal deposition processes, or via electro-
static doping,”’18 which, however, is limited by the gate
leakage and also requires processing with multiple metals'” in
order to generate a built-in potential to drive flow of carriers
unidirectionally.
The considerable performance improvement of 2D elec-
tronic devices by van der Waals layer stacking”””' as well as
the versatilities it presents”” have intrigued the exploration of
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van der Waals heterostructures in a 1D field, and such 1D
counterpart templating with SWCNT has been synthesized by
chemical vapor deposition (CVD) recently.”* Therefore, a 1D
ultrathin heterojunction can be expected from a naturally p-
doped semiconducting SWCNT** and an n-doped molybde-
num disulfide nanotube (MoS,NT)** heterostructure. In the
present work, we propose a radial semiconductor—insulator—
semiconductor (S—I-S) heterojunction with a 1D hetero-
structure composed of a coaxial SWCNT, boron nitride
nanotube (BNNT), and MoS,NT. In contrast to lateral 1D
devices that suffer from fringe fields and incomplete electro-
static gating, radial (wrap-around) geometry gives the ultimate
control of 1D charge density.”>>® We synthesized micrometer-
long SWCNT bridging over silicon poles and then coated it
with a BNNT to increase the diameter in order to complete
the ultimate coating of MoS,NT. This 1D S—I-S hetero-
junction results in a significant rectifying effect with one
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Figure 1. Characterizations of the suspended SWCNT/BNNT/MoS,NT heterostructure nanotube. (a) SEM image of the suspended
nanotube. Raman spectrum (the laser spot was focused on the red-circle area in (a)) shows the fingerprint peaks from MoS, in (b) as well as
D and G peaks from the SWCNT in (c). (d) AES spectrum from the suspended nanotube area.

electrode touching the inner semiconducting SWCNT while
the other is in contact with the outmost MoS,NT. The 1D S—
I-S heterojunction diode gresented in this work as scalable as
single-molecule diodes”””” can readily fit into the current
semiconducting industry, providing an alternative method to
further miniaturize optoelectronic building blocks. The
feasibility shown by the current 1D heterojunction diode and
the multifunctionalities inherent in the heterostructure imply
the tremendous potential in near-future electronic and
optoelectronic applications.

RESULTS AND DISCUSSION

The micrometer-long suspended SWCNT was prepared over
Si poles with confined Co catalysts on the top as illustrated in
Figure S1. The small patterned catalyst areas effectively
avoided SWCNT bundles during growth. Thereafter, BNNT
and MoS,NT coating were sequentially conducted. More
detailed growth preparations can be found in Figure S2.
Nonuniformities accumulated along suspended nanotubes after
BNNT coating because of the rather randomly distributed
nucleation sites. Further MoS,NT coating along the suspended
nanotube presents sharp contrasts as shown in the scanning
electron microscope (SEM) images of Figure S3. A confocal
Raman spectrum with a laser wavelength of 532 nm focusing
on the red-circle site in Figure 1(a), which is seemingly thicker
and brighter under SEM, exhibits the fingerprint peaks of
molybdenum disulfide (MoS,) located at 385 and 405 cm™
Raman shifts in Figure 1(b), respectively, as well as D and G
peaks from the SWCNT shown in Figure 1(c). The weak
nonresonant boron nitride (BN) Raman scattering that
overlaps with the D peak of CNT”’ is unable to manifest
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here. The full spectrum including the radial breathing mode
(RBM) from SWCNT as well as arrow-marked peaks from the
substrate are presented in Figure S4. Auger electron spectros-
copy (AES) was employed to verify the composition of the
suspended heterostructure nanotube. Figure 1(d) demon-
strates an AES spectrum from an as-grown heterostructure
nanotube with an excitation electron beam of 10 kV and 10
nA, which detected carbon, boron, nitrogen, molybdenum, and
sulfur atoms from the suspended nanotube as shown in Figure
1(a), where oxygen is originated from environmental
adsorption or substrate. From the above analysis, we can
draw a conclusion that the relatively brighter parts in SEM
images surfaced after the second and third CVD processes on
the suspended heterostructure nanotube can be attributed to
the successful coating of BNNT and/or MoS,NT van der
Waals layers.

The prepared 1D heterostructures were then face-trans-
ferred, taking advantage of a water vapor assisting technique,’
onto the target chip, and a schematic illustration about this
process is presented in Figure SS. The SEM images captured
after wet transfer present obvious contrasts from some
nanotubes but are absent from some others as compared in
Figure S6. As characterization results revealed in Figure 1, the
thick and bright parts were successfully covered by BNNT
and/or MoS,NT, so we could roughly identify heterogeneous
parts on a specific post-transferred nanotube by SEM and
design the metal contacts accordingly to fabricate a possible
S—I-S heterojunction diode. A scattering-type scanning near-
field optical microscope (s-SNOM) has been utilized to
explore hexagonal boron nitride (hBN).>'7** 5s-SNOM allows
the optical material signatures to be detected with the highest
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Figure 2. (a) AFM topography image of the heterostructure nanotube. Height profiles show that (b) the thick part of the nanotube (purple
line in (a)) is about 20 nm, while (c) the thin part (blue line in (a)) is around 2 nm. (d) s-SNOM S,-amplitude image of a heterostructure
nanotube at IR frequency @ = 1350 cm™'; the thick part in purple square area is enlarged in (e). (f) s-SNOM hyperspectral cross section:
profiles taken along the dashed white line in (e) and normalized to the background, from scans at IR frequencies of 1310~1573 cm™". Scale

bars: (a) 2 pm, (d) 1 gm, and (e) 400 nm.
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Figure 3. SEM images of the 1D heterostructure (a) before and (b) after metal contact deposition. (c) AFM mapping of (b) and the profiles
1 and 2 are shown in (d) and (e), respectively. Scale bars: (a) 1 gm, (b) 1 gm, and (c) 500 nm.

spatial resolution, limited only by its tip radius and signal-to-
noise ratio. Here, we resolved the 2 nm thin heterostructure
nanotube, smeared in a wider pattern by the instrumental tip
function in Figure 2, which was because of a high optical
contrast achieved when tuning the excitation laser to a
peculiarly strong phonon resonance of hBN. Figure 2(d)
shows the s-SNOM map of one device along with the thick
part of the heterostructure nanotube enlarged in Figure 2(e) at
an infrared (IR) frequency @ = 1350 cm™". The images were
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collected in pseudoheterodyne (PsHet) mode of a Neaspec s-
SNOM (tapping amplitude ~ 70 nm, ARROW-NCPt tips by
Nanoworld < 25 nm radius, excitation by quantum cascade
laser MIRCat by Daylight in CW mode at power < 2 mW in
focal aperture), tuned to show a strong s-SNOM signal in all
PsHet harmonics S;—S,. S, was used for Figures 2 and S7,
where a sequence of images at 26 different frequencies is
shown, constituting a hyperspectral cube: S,(f, x, y) for
amplitude vs. frequency and two spatial coordinates. Taking a
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Figure 4. (a) Schematic cross-sectional view of the measured 1D heterojunction diode. (b) Electrical characteristics: the red dots are
measured when electrode E1 (denoted in the schematic and SEM image of Figure 3(b)) is grounded while electrode E2 is sweeping from —2
to 2 V, and the orange solid line is the fitting for experimental data; the olive dots are from the reverse situation, and the blue solid line is the
fitting for experimental data. The inset shows the same curves in the semilogarithmic axis. (c) Electrical characteristics: the red dots are
measured when electrode E1 is applied with a constant voltage of —2 V while electrode E2 is sweeping from —2 to 2 V, and the olive dots are
from the reverse situation; the inset is of the same curves in the semilogarithmic axis.

cross section at the fixed vertical coordinate, y, (the dashed
white line in Figure 2(e)), reveals spectral dependence of the s-
SNOM heterostructure nanotube contrasts as shown in Figure
2(f). The frequency dependence of amplitude normalized to
the SiO, background, S,"(f, x; y,), shows negative contrast
(absorption of the excitation light by the nanotube) in the
whole spectral region except for a narrow band of positive
contrast. This narrow band corresponds to the strongest
phonon—polariton resonance of BNNT,”* which happens at a
frequency of 1370 cm™' and is consistent with the Fourier
transform IR (FTIR) measurement in previous reports.’*>
The IR active mode of MoS,NT is out of the examining range
for BNNT. Instead, AES mapping of the post-transferred
heterostructure nanotube resolved the difficulty of capturing
signals from the three materials at the same time, and the
results are presented in Figure S8.

Figure 3 exhibits the first diode device we discuss in this
work. The SEM image in Figure 3(a) shows the nanotube
before metal contact deposition, and the striking contrasts
indicate that the bottom part of the nanotube is thicker than
the upper part. Thereupon, the designed metal contacts, which
were sputtered with 2 nm Cr and 20 nm Pd into the patterned
trenches, are in touch with these two obviously different parts
of the nanotube and denoted as electrodes El1 and E2,
respectively, as shown in Figure 3(b). Atomic force microscope
(AFM) mapping in Figure 3(c) confirms the previous
interpretation and assumption that the contrast appearance
along nanotube in SEM images is indeed reflecting the
thickness of the nanotube. The height profiles on the two
electrodes are illustrated in Figure 3(d,e), quantifying the
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bottom part of the nanotube as thick as 11 nm, while the upper
part is as thin as only 1.4 nm, which is a common diameter of
an SWCNT from our CVD system.’® Therefore, we can
tentatively conclude that electrode E1 is in contact with
MoS,NT, while electrode E2 is attached to SWCNT.
Current—voltage (I-V) measurements were conducted on
the heterostructure device, and a schematic cross-sectional
view is depicted in Figure 4(a). When one electrode is
grounded while the other is applied with a driving bias
sweeping from —2 to 2 V, there is a strong rectifying effect no
matter if the charge carriers were injected from either
electrode. The noticeable difference from sweeping voltages
on the two electrodes is the voltage polarity of the ON state.
As shown in Figure 4(b), I-V curves from the two situations
seem centrosymmetric, which is bespeaking a common source
for the rectifying effect, but electrode E1 prefers a negative
voltage polarity while electrode E2 prefers the opposite. To
verify that the rectifying effect is originated from the S—I-S
heterojunction but not from the metal—semiconductor inter-
face, namely, the Schottky barrier, a normal SWCNT device
with the same configuration on the same target chip and
transferred from the same as-grown substrate is comparatively
analyzed alongside the heterostructure device as a reference,
and it is presented in Figure S9. First of all, unlike the
unevenness of the heterostructure shown in Figure 3, the
referential SWCNT device shows a uniform surface in SEM as
can be found in Figure S9(ab) before and after metal
deposition, respectively. The metal contacts in this work are
basically Pd (Cr as an adhesive layer and its thickness of 2 nm
are not enough to form an intact thin film), which is believed
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Figure S. (a) SEM image of the diode device. (b) Electrical characteristics: the purple dots are measured when electrode Els (denoted in
(a)) is grounded while electrode E2s is sweeping from —2 to 2 V, and the yellow dots are from the reverse situation; the inset shows the
same curves in the semilogarithmic axis. (c) Electrical characteristics: the purple dots are measured when electrode Els is at a constant of —2
V while electrode E2s is sweeping from —2 to 2 V, and the yellow dots are from the reverse situation; the inset is of the same curves in the

semilogarithmic axis.

to provide Ohmic contacts for hole injections to CNT,** while
in reality, the contact resistance is impeding the smooth
transfer of charge carriers, as shown in Figure S9(c). Electrode
E2r is end-bonded with the SWCNT and has a larger contact
area in comparison with the side-bonded electrode Elr, so the
resistance is much smaller when the charge carriers are
introduced from electrode E2r, as reflected by the I-V curves
in Figure S9(c). Although the contact condition has a strong
influence on the I-V curves, the rectifying effect deriving from
the Schottky barrier between the metal and semiconducting
SWCNT is allowing hole injection and hindering electron
injection from both electrodes. For the Schottky barrier
between MoS, and Pd, a similar behavior can be anticipated.
Consequently, we can exclude the Schottky barrier as the main
origin of the rectifying effect from the heterostructure device in
Figure 4, and there leaves no other factor but the S—I-S
heterojunction to account for the effect. The I-V curves in the
range from —1 to 1 V of Figure 4(b) were also finely fitted by a
modified diode equation®” expressed as

14
_1)+_
sh

I=1 (eq(V—LRS)/nkBT
S

(1)

in which n, g, kg, and T are constants of the ideality factor (n =
1.2),17 electron charge, Boltzmann constant, and absolute
temperature, respectively. I, R, and Ry, are fitting parameters
of the dark saturation current, series resistance, and shunt
resistance, respectively. Details of the fitting parameters can be
found in Table SI.
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As analyzed before and illustrated in Figure 4(a), electrode
E1 is in contact with MoS,NT, which is expressing as an n-type
semiconductor due to natural doping, although it is linked to
high work function metal such as Pd, as a result of strong
Fermi level pinning;*® and electrode E2 is covering the
SWCNT, which shows p-type semiconductor characteristics.*
Therefore, we can expect that a negative voltage polarity on
electrode E1 and a positive voltage polarity on electrode E2
will supply a forward bias for this S—I—S heterojunction diode,
while the reverse scenario will block the flow of current. In
Figure 4(c), one electrode of the heterostructure was applied
with a constant voltage of —2 V, while the other was driven by
a sweeping voltage from —2 to 2 V. With the forward bias, the
current is rapidly increasing with the voltage drop, while the
reverse bias results in a much lower current. With a bias drop
of 4V, therectification ratio is 24, outperforming the previously
reported 2D S—I-S diode.”® On the other side, if a 2D S—I—S
diode is as narrow as the 1D heterojunction diode presented
here, it will result in degradation of the conductance due to
disordered edges and will be inadaptable to the need of high-
resolution and high-sensitivity photodetectors. Additionally,
the same measurements were also performed on the referential
SWCNT device as shown in Figure S9(d). Because both
electrodes were biased in these measurements, the effect of the
voltage barrier caused by contact resistance is indistinguishable
no matter which electrode is constantly negatively biased while
the driving bias on the other electrode is sweeping. Therefore,
I-V curves are almost identical when the status of bias is
switched between the two contact electrodes. Moreover, as was
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Figure 6. Schematics of the energy band diagram of the 1D S—I—S heterojunction diode: (a) flat band, (b) equilibrium, (c) forward bias, and

(d) reverse bias.

compared in ref 20, the existence of insulating BNNT is of
crucial importance to guarantee the tunneling transport of
charge carriers that leads to a higher current and improved
rectification ratio. The ON current density of the diode device
in Figure 4 is shown in Figure S10, which is comparable to that
in 2D BN tunneling devices."” We also observed an improved
rectification ratio from a follow-up heterostructure nanotube
device over 10°> with a driving bias of 2 V, and the diode
characteristics are presented in Figure S. The current carrying
capability is closely related to the band gap of SWCNT
channel; therefore, it is impractical to evaluate this figure of
merit by comparing the present S—I—S heterojunction diode
and normal SWCNT device.

The carrier transport mechanism of the S—I-S hetero-
junction diode is explained in schematics of the energy band
diagram illustrated in Figure 6. The band gap of SWCNT is
determined by its chirality.*’ As the measured diameter is
around 1.4 nm, the chiralities with a close diameter possess a
band gap around 1.0 eV.*” Moreover, the band gap of BNNT
is referenced as to be 5.5 eV, and we measured the
photoluminescence (PL) signal from the suspended hetero-
structure nanotube to be 1.88 eV as shown in Figure S11, close
to the previous reports about 2D MoS,, """ so we assigned the
contribution of the emerging PL signal to be from MoS,NT.
The work function of the SWCNT is 5.05 eV,*® while the
electron affinities of MoS,NT and BNNT are taken from the
literature as 4.2 and 2 €V,"" respectively. On the basis of
these parameters, the flat band of the SWCNT/BNNT/
MOoS,NT sandwich structure is depicted in Figure 6(a). If the
insulating BNNT is very thick, it will stop any carriers
transporting, and the band diagram will remain flat as in Figure
6(a). Otherwise, little resistance is met by majority carriers
from both sides with a very thin BNNT (monolayer for
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instance) in between, and an equilibrium status can be reached
with the small band bending on the edge, exerting a small built-
in potential radially on the enveloped thick heterostructure
nanotube as shown in Figure 6(b). Also, the built-in potential
will slightly deplete the inner SWCNT, while outside the
coaxial structure, the exposed SWCNT is still intrinsically p-
doped, which will make for an electrostatic potential laterally
along the SWCNT, i.e., a lateral p~—p junction in series with a
radial S—I—S heterojunction. When a forward bias is executed
on the heterostructure device, which refers to a positive
polarity on the SWCNT side while there is negative polarity on
MoS,NT side, as demonstrated in Figure 6(c), majority
carriers from both sides of insulator are rapidly accumulating at
the interface driven by potential and flattening the initial band
bending (if there is) with an increase of the bias; the
accumulated carriers swiftly tunnel through the insulting layer
and lead to a raising current. On the other hand, a reverse bias
will build up a high potential barrier to immobilize majority
carriers, and minority carriers can only provide a small current
flow as schematically illustrated in Figure 6(d). This tunneling
mechanism provides explanation for the rectifying effect
measured in Figures 4/5, and the aforementioned lateral p~™—
p junction in series will additionally contribute to the overall
rectifying effect. Furthermore, comparing the I-V curves of the
heterojunction diode (in Figures 4/5) and the normal
SWCNT device (in Figure S9), we can conclude that the
metal contact effect is negligible to the overall performance of
the diode, considering that the condition of the two contacts
are very different in the heterojunction diode, but no
noticeable influence is present when the driving bias switches
from one electrode to the other.

To further elucidate the underlying working mechanism of
the S—I—S heterojunction diode, we performed field effect
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Figure 7. Channel current as a function of back-gate voltages: (a) the magenta solid line is when the applied voltage on electrode E1 is —1 V
and that on electrode E2 is 1 V; the blue solid line is when the applied voltage on electrode E1 is 1 V and that on electrode E2 is —1 V. (b)
The red solid line is when the applied voltage on electrode E1 is —1 V and that on electrode E2 is 0 V; the olive solid line is when the applied

voltage on electrode El is 0 V and that on electrode E2 is —1 V.

measurements on the former device (Figure 4) as shown in
Figure 7. When electrode E1 was supplied with a constant
voltage of —1 V and electrode E2 was supplied with 1V, it was
the ON state of the diode, and the current flow between the
two electrodes was barely affected by the back-gating on
silicon, which was sweeping from —10 to 10 V, as the magenta
solid curve in Figure 7(a) demonstrates. On the other hand,
when the device was under the OFF state, which was
experiencing a reverse bias with electrode E1 of 1 V and
electrode E2 of —1 V, the current was more than 1 magnitude
lower than the ON current, as the blue solid curve in Figure
7(a) shows, and it starts decreasing slightly with the gating
voltage, rendering an improved rectification ratio. This is
analogous to the transfer characteristics of the CNT Schottky
diode enabled by asymmetric metal contacts.”” Reducing the
driving bias on the diode from 2 to 1 V by decreasing the
voltage on electrode E2 from 1 to 0 V, as shown in Figure
7(b), the ON current was rapidly dropping, and the field effect
was starting to play a role to tune the ON current as the
changes from the magenta solid curve to red solid curve imply.
The OFF current was experiencing similar changes when the
voltage on electrode E1 decreased from 1 to 0 V, but the
current drop was smaller than that of the ON current. A
negative back-gate bias (less than 10 V, see Figure S12) could
turn the Schottky contact between Pd and SWCNT into an
Ohmic contact. Respectively, to turn the Schottky contact
between Pd and MoS, into an Ohmic contact, a relatively
larger back-gate bias is needed.”® This is to say the Schottky
barrier between Pd and MoS, is higher than that between Pd
and SWCNT, and for the two back-to-back Schottky barriers, a
slight advantage should be for a negative back-gate bias. In
agreement, it can be noticed that the devices are more sensitive
to the gate bias for a smaller forward/reverse bias that leads to
less drive force for carriers to penetrate the barriers, as
demonstrated in Figure 7. On the other hand, the back-gate
bias has an indistinguishable influence on the rectification ratio
of the diode, which is more proof that the rectifying effect has
little to do with the Schottky junctions. Although the
performance of n-type MoS, transistor”’ was not as good as
the p-type SWCNT transistor’' with regard to a unified
geometry because of a much lower carrier mobility, the field-
unaffected ON current presented here indicating a competition
from both factors that offset the gating effect so that the
functionality of MoS,NT in the present work was comparable
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to SWCNT to some extent. Therefore, apart from the
tremendous potentialities exhibited by the current 1D S—I-S
heterostructure diode in applications such as a photodetector
and solar cells, after the inner SWCNT is removed, the
MoS,NT can be a very promising candidate for the next
generation electronics or optoelectronics with a steady large
bandgap regardless of the chirality. As a good comparison, the
transfer characteristics of the normal SWCNT device are
presented in Figure S12.

CONCLUSIONS

A pm-long coaxial van der Waals heterostructure nanotube
composed of an SWCNT, BNNT, and MoS,NT has been
synthesized. An S—I—S architecture can be identified given the
template SWCNT is semiconducting. Without any intentional
interference, semiconducting SWCNT demonstrates p-type
characteristics with conventional noble metal contacts, while
MoS,NT behaves like an n-type semiconductor. On account of
these, we are presenting an S—I—S heterojunction radially,
which results in an SWCNT—-BNNT—-MoS,NT diode as
narrow as 11 nm. The heterojunction diode demonstrates a
rectification ratio of 24 with a bias voltage of 4 V, which is
outperforming a similar 2D heterojunction diode. In addition,
an improved rectification ratio over 10> was observed. The
insulating BNNT is of crucial importance that not only
facilitates the wrapping of MoS,NT and also provides
tunneling media that influences the ON and OFF current of
diode as well as its rectification ratio, so a precise control
growth of the heterostructure layers will benefit the perform-
ance of such heterostructure devices.

METHODS

Fabrication Processes. Electron beam lithography (EBL) was
utilized to make mark and frame patterns, and then, the patterns were
transferred onto a 525-um-thick Si substrate (100 nm SiO, on the
top) by reactive ion etching (RIE), removing about 200 nm of the top
layer. Co catalysts (0.3 nm) were deposited by sputtering in EBL
patterned areas. Catalyst areas were protected by a resist, and the
exposed areas were etched by RIE and deep reactive ion etching
(DRIE) to produce 8-um-high Si poles. SWCNTSs were synthesized
by bridging Si poles by alcohol catalytic chemical vapor deposition
(ACCVD), during which alcohol as a carbon source was introduced
for 10 min at 800 °C. BNNT coating was performed with 30 mg of
ammonia borane (H;NBH;) as a precursor at the upstream and
heated to 70 °C and a sample furnace at 1075 °C for 2 h. MoS,NT
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coating was followed with sulfur (S) powder at the upstream and
heated to 138 °C, while molybdenum oxide (MoO;) and a sample
chip were kept 8 cm apart in the furnace at 530 °C for 50 min. The as-
grown 1D heterostructure nanotubes were face-transferred onto a
target chip assisted by water vapor. Electrical connections were
patterned by EBL and realized by sputtering 2 nm chromium (Cr)
plus 20 nm palladium (Pd) as metal contacts.

Characterization of Heterostructure Nanotubes. Raman and
PL spectra were taken by a Raman spectrometer (inVia, Renishaw)
with the excitation wavelength of 532 nm. An AES spectrum was
obtained through FE-Auger Electron Spectroscopy Model SAM-680.
The hyperspectral imaging of heterostructure nanotubes was
performed using a customized neaSNOM microscope (Neaspec
GmbH): AFM combined with a UV—vis—NIR—MIR excitation
system and electronics. Electrical measurements were conducted in a
back-gate geometry in air at room temperature using a semiconductor
parameter analyzer (Agilent, 4156C).
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