
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 4, JULY/AUGUST 2024 3785

PKVIC: Supplement Missing Software Package
Information in Security Vulnerability Reports

Jinke Song , Qiang Li , Haining Wang , and Jiqiang Liu

Abstract—Nowadays security vulnerability reports contain com-
mercial vendor-centric information but fail to include accurate in-
formation of open-source software packages. Open-source ecosys-
tems use package managers, such as Maven, NuGet, NPM, and
Gem, to cover hundreds of thousands of free code packages. How-
ever, we uncover that vulnerability reports frequently miss the vul-
nerable software package information when the software package
comes from open-source ecosystems. To fill in this gap, we pro-
pose a framework called PKVIC (software package vulnerability
information calibration), as the first tool to automatically associate
security vulnerability reports with affected software packages from
different open-source ecosystems. Specifically, PKVIC designs an
ecosystem classifier to determine which ecosystem a vulnerability
report belongs to. From the reports written in natural language,
PKVIC extracts the entities closely related to software names in
ecosystems. To efficiently and accurately locate the affected soft-
ware packages from millions of packages, we propose a recursive
traversal method to generate the package identifier based on the
naming scheme and candidate named entities. We implemented the
prototype of PKVIC and conducted comprehensive experiments
to validate its efficacy. In particular, we ran PKVIC over 421,808
vulnerability reports from 20 well-known sources of security vul-
nerabilities and identified 11,279 unique vulnerability reports that
affected 2,703 open-source software packages. PKVIC successfully
found the accurate reference URLs for these 2,703 software pack-
ages across 6 open-source ecosystems, including Pypi, Gem, NPM,
Packagist, Nuget, and Maven.

Index Terms—Software security, vulnerability analyze.

I. INTRODUCTION

V
ULNERABLE software components are becoming the
major risk for cyber-security breaches. Indeed, recent

years have seen a wave of vulnerabilities from open-source soft-
ware packages, with prominent examples including Lodash [1],
jackson-databind [2], and HtmlUnit [3]. The security community
has made significant efforts to aggregate and distribute vulnera-
bility reports to the public through various online sources (blogs,
security forums, vulnerability databases, and mail lists) in a
timely fashion. In general, a vulnerability report should contain

Manuscript received 5 October 2022; revised 5 September 2023; accepted
12 November 2023. Date of publication 28 November 2023; date of current
version 11 July 2024. This work was supported by the National Natural Science
Foundation of China under Grants 61972024 and 62272029. (Corresponding

author: Qiang Li.)

Jinke Song, Qiang Li, and Jiqiang Liu are with the Beijing Jiaotong University,
Beijing 100044, China (e-mail: jikesog@gmail.com; qiangcas@gmail.com;
jqliu@bjtu.edu.cn).

Haining Wang is with the Virginia Tech, Blacksburg, VA 24061 USA (e-mail:
hnw@vt.edu).

Digital Object Identifier 10.1109/TDSC.2023.3334762

Fig. 1. Illustrations of one vulnerability example represented by three different
sources.

vulnerability descriptions and the affected product’s information
(accurate and unambiguous name and URL), and then users
are capable of rapidly locating affected software without any
professional security background. The Common Vulnerabilities
and Exposures (CVE) system provides a reference-method for
publicly known vulnerabilities and exposures, which is widely
used by security research and industry. In CVE, Common Plat-
form Enumeration (CPE) [4] is used to denote the affected
products of a vulnerability, and reference URLs might point
to webpages of the affected products. However, it is not the case
when a vulnerability report meets an open-source ecosystem’s
package. Many vulnerability reports lack accurate and complete
information of the affected software in open-source ecosystems.

Understanding the Gap: We identify a gap between vulner-
ability reports and software packages in open-source ecosys-
tems, which is manifest in the following aspects. (1) The name
convention of affected software in a security report is differ-
ent from the corresponding identifiers in open-source ecosys-
tems. A full package identifier is usually long and ecosystem-
dependent, therefore, it is common that only abbreviations and
a fraction of entities from the identifier appear in vulnera-
bility reports. For example, CVE-2021-22095 only contains
“Spring”, “AMQP” and “Message”, but the complete identifier
is “org.springframework.amqp.core.Message”. Our results in
Table VI reveal that only 44.75% reports contain complete
entities of the package identifier. (2) Many vulnerability reports
do not provide reference links to affected software packages
from open-source ecosystems. Our data analysis reveals that
12.3% of links are missing. In the rest 87.7% reports, there are
more than 40% reports are about open-source software, however,
there are only 4.84% reports providing accurate reference links
to affected software packages in open-source ecosystems. For
better understanding the gap, Fig. 1 presents one vulnerability

1545-5971 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on September 01,2024 at 22:02:10 UTC from IEEE Xplore. Restrictions apply.

3786 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 4, JULY/AUGUST 2024

example represented by two different sources: the CPE for-
matted string from NVD [5] and the textual description from
SecurityTracker [6], as well as the missing package identifier
and URL in NPM [7]. Though a complete package identifier
and an accurate reference link are supposed to appear in the
vulnerability report, the aforementioned gap still exists due to
different background knowledge and focus between the security
community and the open-source software community. Since
vulnerability reports are scattering across the Internet, includ-
ing archives, forums, security advisory, and software packages
come from various open-source ecosystems, it would require
tremendous efforts to link reports and affected open-source
software manually. Filling in the information gap between secu-
rity reports and open-source ecosystems is by no means trivial
in practice.

Motivation: To fill the gap, we aim to automatically match vul-
nerability reports to their affected software packages in different
open-source ecosystems. Such calibrated reports can bring sig-
nificant benefits to both vulnerability management and depen-
dency checking. (1) Vulnerability management, which aims to
identify, assess and remediate potential threats, heavily depends
on vulnerability database. Many prior works [8], [9], [10], [11],
[12] have investigated data quality concerns in vulnerability
databases. The vulnerability database and reports have several
different audiences, such as software maintainers, developers
and end-users. When a gap exists between reports and affected
packages, it is difficult for them to be aware of the vulnerabilities
in time, leading to delayed fixations and high risks. (2) Today’s
software reuses numerous open-source packages and there is an
increasing trend of supply chain attacks [13], [14]. Dependency
checking becomes a prerequisite for ensuring the quality and
security of reusable packages, and heavily relies on vulnerabil-
ity reports from online sources. A dependency checking tool,
e.g., OWASP [15], conducts vulnerability scan by matching
the product information from CPE with package identifiers in
the Manifest file. Current CPE lacks complete identifier and
accurate link of affected packages, leading a high false negative
rate for dependency-checking tools, resulting high potential
threats. Besides, automatic mapping between vulnerabilities and
source codes can further enable deeper security analysis, such
as analyzing features of source codes corresponding to different
vulnerabilities.

Technical Challenges: Accurate and efficient matching be-
tween vulnerability reports and software packages in open-
source ecosystems faces several technical challenges. First, a
report is written in natural language and unstructured text,
lacking well-formatted information of the affected software.
Besides, the software name in the report could be inconsis-
tent with its identifier in the ecosystem, which could be only
abbreviations or a fraction of entities. Leaving aside the fact
that named entity recognition (NER) is a difficult problem
in the NLP area, it is even more difficult to extract entities
that are relevant to the software name in a target ecosystem,
because different ecosystems use different naming schemes, as
examples in Table III, and there is no high-quality corpus for
such an NER task. Second, even if all relevant entities have been
extracted, they often cannot constitute the complete software

Fig. 2. Increasing number of packages on Maven per year.

Fig. 3. Increasing number of security reports on different sources per year.

identifier, since there may be only a fraction of entities from
the identifier. Third, an active open-source software ecosystem
generates millions of new packages each year (Fig. 2), and many
packages may have very similar identifiers (as shown in Fig. 15).
Meanwhile, the number of reports also grows rapidly (Fig. 3).
To link extracted entities from reports to the accurate packages,
simple text similarity calculation will lead to a high false positive
rate and an expensive computational cost. How to accurately and
quickly locate the target package from millions of packages is
also challenging.

Our Work: We propose a framework called PKVIC (software
Package Vulnerability Information Calibration) to establish
the information connection between vulnerability reports and
software packages of ecosystems. PKVIC consists of four major
components to address above challenges. (1) To deal with diverse
naming schemes of different ecosystems, we propose a novel
ecosystem classifier. Given a vulnerability report, the classifier
determines which ecosystem the report belongs to. (2) To accu-
rately extract package-related entities from textual descriptions,
for each ecosystem, PKVIC automatically generates an NER
corpus and then builds an NER model. (3) To address the prob-
lem that those entities cannot constitute the package’s full-name,
we propose to extend those entities via today’s search engines
and generate a candidate set for the full coverage of package
names. (4) For efficient and accurate matching, PKVIC uses a
recursive traversal method to generate a package identifier based
on the naming scheme and entity candidate set. Every ecosystem
has its naming scheme and package identifier index dataset. In
particular, we compare the generated identifiers with those in
the ecosystem package dataset. If matched, PKVIC outputs a
software package identifier for the vulnerability report.

The main contributions of this work are summarized as
follows:
� New problem: This paper reveals an information gap

between vulnerability reports and software packages of
open-source ecosystems, including the inconsistent nam-
ing conventions and missing URL links to affected
packages.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on September 01,2024 at 22:02:10 UTC from IEEE Xplore. Restrictions apply.

SONG et al.: PKVIC: SUPPLEMENT MISSING SOFTWARE PACKAGE INFORMATION IN SECURITY VULNERABILITY REPORTS 3787

� New approach: We propose a framework PKVIC to au-
tomatically fill in the missing information between vul-
nerability reports and software packages of open-source
ecosystems. We implement a prototype of PKVIC and
validate its effectiveness.

� New findings: We collected over 421,808 reports cover-
ing 20 popular online sources and 2,673,313 software
packages across 6 popular open-source ecosystems, in-
cluding NuGet [16], PyPi [17], Maven [18], Gem [19],
NPM [20], and Packagist [21]. First, we revealed and quan-
tified the missing connection between vulnerability reports
and packages from open-source ecosystems. Only 44.75%
reports contain complete entities of the package identifier.
Reference links to affected software packages are missing
in 12.3% reports, and only 4.84% reports in open-source
ecosystems provide accurate links. Then, we ran PKVIC
over the 421,808 reports and found 11,279 unique reports
related open-source software. PKVIC automatically found
2,703 packages affected by the vulnerabilities in the 11,279
unique reports and their accurate links to the packages in
open-source ecosystems, as well as their CPE strings. We
released this calibrated dataset, which is new to the public.1

� Extensive evaluation: In the experiments of classification
evaluation, our ecosystem classifier achieves 97% average
accuracy and 95% average F1 score. For the entity ex-
traction module, PKVIC achieves the average F1 score at
the token level of 91.64%, compared with the F1 score
of 24.23% for directly extracting software full names
from vulnerability reports. For software package identifier
generation, the top-1 rate of PKVIC is around 85%, and
the top-5 rate is about 90%. Our results demonstrate that
PKVIC can automatically pinpoint affected open-source
software in the vulnerability reports, which enables a quick
notification to software developers and users, provides
a guideline for patching, and facilitates the dependency
checking tool to locate vulnerable packages.

We have made our tool, prototype, and dataset openly avail-
able on GitHub at the following repository: https://github.com/
inksong/pkvic. The data set is also available at https://ieee-
dataport.org/documents/calibdb.

II. DATA-DRIVEN ANALYSIS AND MOTIVATION

To gain deeper insights into the missing connections between
vulnerability reports and their corresponding software packages
across diverse open-source ecosystems, this section presents a
large-scale data analysis. Specifically, we have gathered 421,808
vulnerability reports from 20 well-known sources of security
vulnerabilities and 2,673,313 software package names and asso-
ciated metadata from 6 primary open-source ecosystems. Lever-
aging these extensive datasets, we present a quantitative analysis
that sheds light on the missing information linkage between
vulnerability reports and software packages. This analysis serves
as the driving force behind our proposal for a novel framework
that automatically bridge the gap.

1https://drive.google.com/file/d/11HOUsUMQxlddJ9UTclFV9W
wy1xD_qrvU/view?usp=drive_link

A. Data Collection

We utilize a web crawler to collect security reports and soft-
ware packages. Specifically, we utilize the Scrapy library [22] to
crawl websites of online sources. BeautifulSoup [23] is used to
parse the HTML files and extract various vulnerability reports.

Dataset for Security Reports: We run our crawler across the
online security website sources listed in Table I, including vul-
nerability databases (e.g., NVD and Exploit Database), security
advisories (e.g., Ubuntu Security Advisory), and Vendor Alerts
(e.g., IBM X-Force Exchange). The vulnerability databases are
archives that collect security vulnerability information of inter-
esting software and PoC (proof of concept) of vulnerabilities.
The security advisories either come from a software vendor
or a third-party organization for providing information security
services. In total, we collect 421,808 vulnerability reports from
those 20 well-known online sources.

Note that a vulnerability report may not always represent
a unique vulnerability. Different security reports from various
sources can point to the same vulnerability. In this study, we em-
ploy a heuristic rule to establish a mapping relationship between
these different sources. If a security report contains a CVE-ID
(Common Vulnerabilities and Exposures Identifier), we estab-
lish a mapping between the report’s ID and the corresponding
CVE-ID. CVE-ID is widely used by cybersecurity vendors and
researchers as a standardized method for identifying vulnerabil-
ities. Additionally, other security sources assign their own IDs to
vulnerability reports, such as OSVDB-ID and RHSA-ID. These
sources also include a CVE-ID in their reports as an additional
link to the official vulnerability database. For example, a Redhat
security advisory may have an ID like “RHSA-2018:0548”
associated with “CVE-2018-7262,” while VULDB may have an
ID like “VDB-116326” linked to “CVE-2018-9990.” To extract
the vulnerability ID from security reports, we utilize regular
expressions as outlined in Table II. As a result, we establish an
information connection among these vulnerability reports in the
form of a two-tuple, such as (RHSA-ID, CVE-ID).

Dataset for Software Ecosystems: A package management
system is a repository that automatically installs, upgrades,
configures and removes software. Table III lists the package
manager for different software packages in various ecosys-
tems, including NuGet [16], PyPi [17], Maven [18], Gem [19],
NPM [20], and Packagist [21]. In total, we collect 2,673,313
software package names and associated metadata. We also
obtain the package identifiers name index database for each
ecosystem. Those ecosystems cover 6 primary programming
languages, including Java, Python, Ruby, Node.js, PHP and C#.
The detailed naming scheme of each ecosystem is presented in
Table III.

B. Quantitative Analysis About Missing Connections

Leveraging the aforementioned datasets, we conducted a com-
prehensive quantitative analysis to examine the missing infor-
mation connections between vulnerability reports and packages
from open-source ecosystems.

Enlarging Gap: The number of software packages and their
vulnerabilities has been rapidly increasing in the past few

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on September 01,2024 at 22:02:10 UTC from IEEE Xplore. Restrictions apply.

3788 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 4, JULY/AUGUST 2024

TABLE I
VARIOUS SOURCES OF VULNERABILITY REPORTS

TABLE II
REGEX INFORMATION FOR VULNERABILITY REPORTS FROM DIFFERENT

SECURITY SOURCES

decades. Fig. 2 depicts the timeline of the number of newly added
software packages in the Maven ecosystem before Dec. 2020,
showing that the number increases quickly over time. The num-
ber of newly added Maven packages is 4,219,314 in 2020, nearly
9 times of that in 2013. Fig. 3 plots the number of vulnerability
reports from all these sources bucketed by the publication year.
During the past two decades, the number of security reports in the
first five years (2000-2005) is less than 26,757 and grows rapidly
to 314,304 until Sep. 2020. In short, the increasing number leads
to an enlarging information gap between vulnerability reports
and software packages of ecosystems.

TABLE III
SOFTWARE PACKAGES FROM DIFFERENT ECOSYSTEMS (UNTIL SEP. 2020)

Fig. 4. Distribution of reference URL pointing to webpages.

Missing URLs to Ecosystems: We conducted a detailed anal-
ysis to determine the extent of vulnerability reports lacking
reference URLs to open-source software package webpages. We
extracted a total of 663,886 reference URLs from vulnerability
reports sourced from the NVD. Fig. 4 illustrates the distribution
of these reference URLs, with the X-axis representing the URL

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on September 01,2024 at 22:02:10 UTC from IEEE Xplore. Restrictions apply.

SONG et al.: PKVIC: SUPPLEMENT MISSING SOFTWARE PACKAGE INFORMATION IN SECURITY VULNERABILITY REPORTS 3789

Fig. 5. Distribution of software attributes of CPE formatted strings.

type and the Y -axis denoting the number of URLs (scaled
logarithmically). Our analysis revealed a significant observation:
the vast majority of URLs (99.9%), the URLs in the “unknown”
category, do not direct to webpages associated with open-source
software packages. Since vulnerability reports cover a wide
range of product types, the “unknown” category include URLs
pointing to various hardware, operating systems, embedded de-
vices, and non-open source software. Remarkably, only 61 URLs
were found to point to software package webpages. Among these
URLs, 33 were associated with NPM, 19 with GEM, 8 with PyPI,
and 1 with NuGet. This observation underscores the pressing
need to include the missing reference URLs in the corresponding
vulnerability reports.

Missing Software Attribute in CPE Strings: Now we focused
on examining the software attributes present in the “target_s”
field of CPE strings associated with vulnerabilities. The software
attribute, also known as software type, provides information
about the specific software mentioned in the CPE strings. To
conduct our analysis, we extracted a total of 532,481 CPE strings
from 147,245 CVE items sourced from the NVD. Fig. 5 visually
represents the distribution of software attributes within the CPE
formatted strings. The X-axis denotes the software type, while
the Y -axis represents the number of vulnerabilities associated
with each corresponding software type, using a logarithmic scale
(base 10) on the Y -axis. Our findings indicate that a significant
majority of vulnerability CPE strings (522,481 or 95%) have
“NA” (Not Available) in the “target_s” field, indicating miss-
ing or unspecified software attributes. It is common for CPE
formatted strings to have the “NA” or “*” notation when the
software attribute is absent. Among the non-“NA” attributes,
the software attribute ‘node.js’ exhibits the largest number of
occurrences with 684 CPE strings, followed by ‘jenkins’ with
322, and ‘ruby’ with 134. Considering the vast number of
software packages present within ecosystems, the substantial
amount of missing software attribute information in CPE strings
is noteworthy. Addressing this missing information is crucial for
a more comprehensive understanding of vulnerabilities within
these ecosystems.

Naming Conventions for CPE Strings: In addition to ana-
lyzing software attributes, we further investigated the naming
conventions present within the 532,481 CPE strings, focusing on

the vendor and product fields. Our analysis revealed that 107,436
CPE strings exhibit identical vendor and product names. This
finding is intriguing as it implies that certain products share the
same name as their respective vendors. Upon closer examina-
tion, we identified two underlying causes for this phenomenon.
First, in some cases, a product assumes the same name as its
vendor because it is the sole offering in the market. This scenario
often occurs with smaller corporations, such as the opendnssec
corporation, where their product bears the name “opendnssec.”
Second, there are instances where open-source packages are
developed by small groups without a formal vendor or manufac-
turer. Numerous projects hosted on platforms like GitHub fall
under this category, resulting in missing vendor names within the
CPE strings. For example, the project “omniauth” [24] lacks a
vendor name. Consequently, there is a pressing need to automat-
ically rectify CPE strings by aligning them with the respective
affected software names within open-source ecosystems. This
calibration process will enhance the accuracy and completeness
of vulnerability information in relation to software packages.

III. DESIGN OF PKVIC

To address aforementioned challenges, we propose PKVIC to
build the information connections between vulnerability reports
and affected software packages. Fig. 6 shows the overview of
PKVIC, including an ecosystem classifier (EC), a package-
related entity extractor (PET), a package-related entity search
and extend (PESE) module, and a package identifier generator
(PIN). The input is a vulnerability report, and the output is its
package identifier in ecosystems.

Architecture: First, given a vulnerability report written in nat-
ural language, we design an EC module to map it to a correspond-
ing ecosystem through a set of classification models. Different
ecosystems have different naming schemes, and many software
package names might be similar or overlapped across different
ecosystems. For accurate matching, it is necessary to determine
which ecosystem the vulnerability report belongs to. Second, we
build an NER model for every software ecosystem in the PET
module. The NER model is to extract package-related entities
from the vulnerability report. Note that existing NER techniques
are highly domain-specific, and there is no existing corpus for
training a model to extract package-related information from the
texts of vulnerability reports. By using indexes from different
software ecosystems, PKVIC automatically annotates package-
related entities in vulnerability reports and constructs a high-
quality corpus. Third, the PESE module further extends those
package-related entities by leveraging today’s search engines.
The reason is that extracted entities in reports cannot provide a
full coverage on package names in ecosystems, due to different
naming conventions, abbreviations and errors. We search the
extracted entities and generate a richer candidate entity set
to cover all possible entities in package identifiers. Fourth, to
locate the affected package, the PIN module generates package
identifiers based on the naming scheme and the candidate entity
set. Every software ecosystem has a unique naming scheme,
and candidate entities will be used to construct validate pack-
age identifiers. Then, the PIN module searches those package

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on September 01,2024 at 22:02:10 UTC from IEEE Xplore. Restrictions apply.

3790 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 4, JULY/AUGUST 2024

Fig. 6. Overview of PKVIC: build the mapping between security reports and software packages from various ecosystems.

Algorithm 1: Algorithm of PKVIC.

identifiers in the ecosystem package dataset. If there is a match,
the information connection between a vulnerability report and
an affected software package is built. The procedure of PKVIC
is listed in Algorithm 1. Below, we present the details of the
four modules.

A. Ecosystem Classifier

A vulnerability report is written in natural language, which is
too complicated for handcraft features to classify its ecosystem.
To this end, we develop a deep neural network (DNN) model
for each ecosystem to capture long-term dependencies of textual
words and classify reports.

Preprocessing: We use the CPE string and a textual descrip-
tion in the report as the input. The report description is to detail
and summarize the relevant information of the vulnerabilities.
We convert every word in the plaintext into a token. The CPE
string has 12 fields, each of which is divided by a colon, such as

the “vendor” field and “product” field. Every field is converted
into a word token. Since the DNN classifier cannot directly
process text inputs and requires input in vector format, we
utilize the pre-trained Bert model [25] to convert those word
tokens into vectors, called word embedding. Bert is a powerful
language model that has been trained on a large corpus and can
effectively encode textual information into meaningful vector
representations. By leveraging the pre-trained Bert model, we
are able to transform the text inputs into vector representations
that can be easily consumed by the DNN classifier. In short,
the preprocessing converts a textual input into a vector for the
classification model. The cost for preprocessing is presented in
Table VII. It takes only 1.2–7.1 ms to process each package.
The software packages that have already been processed do
not require repetitive processing. As the number of packages
within each ecosystem increases, we can periodically execute
the preprocessing step on the newly added packages, making
the system stay up-to-date with the evolving ecosystems.

DNN Model: We utilize a recurrent neural network (RNN)
to learn and derive the classification. RNN leverages a long
short-term memory (LSTM) in the network to capture the inputs’
long-term dependencies. Particularly, LSTM uses three gates
(input gate, forget gate, and output gate) to store long-term
dependencies of textual words. We connect an LSTM with
a fully-connected layer, followed by a softmax layer, which
outputs the ecosystem category’s probability. Here, we train the
models for each ecosystem individually, including NuGet [16],
PyPi [17], Maven [18], Gem [19], NPM [20], Packagist [21],
and unknown. Here, “unknow” is the category for reports that
do not belong to any of the six ecosystems under consideration.
We choose the maximum probability as the output for the
vulnerability report.

B. Package-Related Entity Extractor

PKVIC utilizes name entity recognition (NER) to extract
package-related names from the texts of vulnerability reports.
Those names are not the package identifiers in software ecosys-
tems because of different naming conventions.

The NER model belongs to sequence labeling, which maps an
observed sequence to a sequence of labels, denoted as f : x → y,
where x and y have the same length. Fig. 7 provides a graphical
illustration of the NER model that tags a sentence with a label
sequence. First, words and characters in the sentence are embed-
ded into vectors, which is necessary for NER tasks. Then, these

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on September 01,2024 at 22:02:10 UTC from IEEE Xplore. Restrictions apply.

SONG et al.: PKVIC: SUPPLEMENT MISSING SOFTWARE PACKAGE INFORMATION IN SECURITY VULNERABILITY REPORTS 3791

Fig. 7. NER extracts software package-related names in the vulnerability
report.

vectors are fed into a Bi-LSTM network to capture the context of
words in their sentence. Given the training set (X, Y), the NER
needs to learn the model (θ = argminθ ΣX,Y L(y, f(x, θ))),
where θ is the model parameter and L is the loss function. After
that, this word-contextual network’s output can be directly fed
into a fully connected layer followed by a softmax layer to output
the probability distribution over the possible tags. We provide
labels to every word in a sentence for maximizing the condi-
tional probability P (y|x, θ). Below, we introduce the details
of three components of NER tasks: embedding, Bi-LSTM, and
tag sequence.

Embedding: In our work, PKVIC utilizes two embedding
methods to encode plaintext, including character-level and word-
level. (1) The character-level embedding is to capture the char-
acter information of a word, e.g., prefix [26] and suffix [27]. The
reason is that many software package names do not exist in the
word vocabulary, due to the limitations in building the dictionar-
ies and pre-trained model. Such words have to be replaced by a
special word (e.g., unknown), and the character-level embedding
method encodes morphological features of characters. (2) The
word-level embedding is to encode the semantic content of
words. We use the Bert model [25] as the embedding model,
which is a well-known text embedding model, and directly con-
catenate those two (word and character) embeddings to create a
vector that represents rich semantic and grammatical aspects of
the input sentence.

Bi-LSTM: We utilize the Bi-LSTM to extract semantic mean-
ing from the (word&character) vector, identifying the sequen-
tial relationship among words. For example, CVE-2020-28052
states, “An issue was discovered in Legion of the Bouncy Castle
BC Java 1.65 and 1.66”, where “Bouncy Castle” is behind
“in Legion of” and “discovered”. To obtain a backward se-
quential relationship among words, we use LSTM to conduct
a bi-directional scan of the sequence. In our implementation,
we use Bi-LSTM [28] to extract the sequential relationship
of words in combination with their left and right contexts.
Bi-LSTM checks the sentences in both directions, forwards and
backward, using two parallel LSTM networks, and combining
their outputs.

Tagged Sentence: The input to Bi-LSTM is the (word&
character) vectors for sentences, and the output is the conditional
probability distribution over the output vocabulary. We utilize a
fully connected layer followed by a softmax layer to output the
probability distribution over the possible tags. Recall that our
task is to identify the entities of our interest, which pertain to
software packages. To achieve this, we assign each word with

one of the following labels B (begin of tag), I (inside of tag), and
O (outside of tag).

Based on our network design, we consider two types of
NER approaches. The first one, NER-Package, represents the
conventional approach that aims to extract the complete pack-
age identifier, such as ‘zhmc-ansible-modules’, that is labeled
as “B I I I” directly. This method serves as the baseline for
comparison. On the other hand, we introduce our proposed
solution, NER-Token, which focuses on extracting package-
related tokens, for example, ‘zhmc’ and ‘ansible’, which are
labeled as “B”. These extracted tokens are then utilized as
input for the PESE module. We compare the performance of
NER-Package and NER-Token in Section IV. The results clearly
indicate that our NER-Token design outperforms NER-Package
significantly. Specifically, NER-Token achieves an F1 score of
91.64%, whereas NER-Package only achieves an F1 score of
24.23%. The main reason NER-Package performs poorly across
all ecosystems is that many reports do not contain the complete
package identifier. This lack of complete identifiers creates two
challenges: first, there is a scarcity of labeled training data that
can assist the NER-Package model in learning the position and
contextual relationships of complete identifiers in text. Second,
in practice, it becomes infeasible for NER-Package to extract
package-related information from reports that lack complete
identifiers. Moreover, the complex naming conventions within
open-source ecosystems further increase the difficulty of NER
models in extracting complete package names. Maven and Pack-
agist, for instance, have unique naming conventions. In contrast,
vulnerability reports consistently contain entities related to pack-
age names. This substantial difference in performance highlights
the superiority of our proposed NER-Token approach in accu-
rately identifying and extracting package-related information.

C. Package-Related Entity Search and Extend

Aforementioned, package names of software ecosystems
might not exist on a vulnerability report, due to different naming
conventions among various sources. Our package-related enti-
ties extracted by PET might not be enough for generating a full
coverage on package identifiers.

To fill in the vulnerability report’s missing information, we
have a practical observation that today’s search engines rank web
pages based on the correlated degree between a search query
and a search engine result, e.g., PageRank [29]. If we utilize
those entities extracted by the PET module as the search query
to a search engine, the search results may contain the missing
package names of software ecosystems. Then, the problem is
how to identify which part of the search results are the missing
package names. Here, we leverage a trick that a software ecosys-
tem (e.g., NPM [20]) provides the package index dataset to the
public. If the content of the search result appears in the package
index dataset, we extract the related words as the package-related
entities for filling in the missing information.

Fig. 8 depicts how the PESE module find more package-
related entities for generating package identifier of a software
ecosystem. First, we use all package-related entities extracted
from a vulnerability report as the search query. We send the

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on September 01,2024 at 22:02:10 UTC from IEEE Xplore. Restrictions apply.

3792 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 4, JULY/AUGUST 2024

Fig. 8. PESE extends package-related entities.

search query to a search engine and gain the search result that
has a high correlation with package-related entities. Second,
we collect the ecosystem package index dataset. For instance,
NPM [20] provides 1,357,880 full package names. Third, we use
the package name list to filter out the search result and extract
those matched package-related entities. If a word is matched,
we directly add it into the set of candidate entities as the PIN
module’s input. In our implementation (Section IV), we detail
the specific parameters for our PESE module.

Example: As shown in Fig. 8, we provide an example to
illustrate the PESE module. The entity set is “microsoft research
javascript cryptography library”, encapsulated into a query. We
send it to the Google search engine, in the form of “search
engine/search?q=microsoft+research+javascript+cryptography
+library+&btnG=Search”, where the mark (?) indicates the end
of the URL and (&) separates arguments, q is the start of the
query, the plus mark (+) represents space, and “btnG = Search”
denotes that the search button is pressed on the web interface.
We obtain the search result that may include package-related
names. The word “msCrypto” also appears in the NPM [20]
package index dataset. We extract this word and add it into the
set of package-related entities, as “microsoft research javascript
cryptography library msCrypto”.

D. Package Identifier Generation

A package identifier is unique for representing a software
package in an ecosystem. Every software ecosystem contains
its own namespace, and we use the Trie tree [30] to index
the ecosystem package name dataset. Given an ecosystem’s
namespace, the PIN module generates package identifiers based
on those package-related entities from the PESE module.

Algorithm 2 describes how to generate package identifiers
in terms of package-related entities. Our idea is to enumerate
all possible combinations of those entities to find a matched
package identifier. If we find a matched w (Line 4), we use it
to represent the vulnerability report’s package identifier. Our
matching process is a strict string match rather than approx-
imation matching. The reason is that various package names
are similar. Approximation matching could lead to a high false
positive rate for finding package identifiers. For instance, in the

Algorithm 2: Generating Package Identifier of Software
Ecosystem Based on Package-Related Entities.

Pypi ecosystem [17], the package “color-palette” (a package
for easy coloring) is very similar to the package “color-pallete”
(creating color pallete of the provided input image), where fuzzy
matching will cause a false positive.

Pruning: Our enumeration procedure belongs to the depth-
first search (DFS) but with expensive time cost, as the running
time grows exponentially with the problem size. Given n candi-
date entities, the total number of enumerations is Θ((n+ 1)L)
for a vulnerability report, where L is the maximum length of
package names of software ecosystems. The algorithm time cost
is related to two factors: the branching factor n of the tree, which
is the maximum number of children generated at any node, and
the search depth L of the tree, which is the longest path from
the root to a leaf. Directly searching through the entire space
of package name entities would result in a time cost of over 15
minutes when the search depth reaches 6. Such a time expense
is not acceptable in practical applications. Therefore, PKVIC
incorporates pruning methods to significantly reduce the search
time cost. The n is the package-related entity set from the PESE
module, and we cannot revise it. Instead, we use a heuristic
pruning policy to reduce the longest path L for reducing the
time cost. The first pruning rule is: if a generated enumerated
identifier g is not the package identifier’s prefix, we skip the
corresponding branch (Line 8). The second pruning rule is: if we
find a match, we skip the rest search space and return the matched
identifier (Line 4); otherwise, return a leaf node (Line 10). Such
a pruning rule won’t cause the occurrence of missing the correct
package identifier. First, a vulnerability report usually refer to
only one software package. We further analyze the identifiers
of 2,673,313 packages across 6 ecosystems and present the
statistics in Table IV. It shows that the majority of packages
possess unique names. In other words, their identifiers have
unique sets of tokens. Hence, the percentages of missing the
correct package identifier due to the pruning rule range from
0.04% to 1.6% across various ecosystems.

Furthermore, if we compare the generated package identifiers
with all full package names of a software ecosystem (e.g.,
1,357,880 packages in NPM), the time cost is prohibitively high

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on September 01,2024 at 22:02:10 UTC from IEEE Xplore. Restrictions apply.

SONG et al.: PKVIC: SUPPLEMENT MISSING SOFTWARE PACKAGE INFORMATION IN SECURITY VULNERABILITY REPORTS 3793

TABLE IV
POSSIBLE FALSE NEGATIVE (FN) RATE CAUSED BY PRUNING

Fig. 9. PIN generates a package identifier by enumerating all possible com-
bination and pruning unnecessary parts.

in practice. Hence, it is crucial to significantly reduce the search
space of software package names to ensure practical computa-
tional cost. To achieve this, we propose another pruning policy is
that we only compare a small set of full package names (w) with
our generated identifiers. Specifically, we first index the software
package names using TF-IDF. Then, for the input entity list, we
obtain sorted package names from the TF-IDF index based on
the similarity between the package names and the input entity
list, sorted in descending order. We select the top 30 package
names as the search space for the generated package identifiers.
The utilization of TF-IDF indexing makes the aforementioned
similarity based ranking and retrieval process more efficient.
If Algorithm 2 can find a matched identifier, the PIN module
outputs it as the package identifier for the vulnerability report.
The parameter 30 is chosen based on the following rationale.
As shown in Table IV, software package names exhibit strong
specificity, with the majority being unique. After generating
package identifiers using the PIN algorithm and performing
similarity-based searches using tf-idf, in most cases, there is
only one full package name (i.e., the correct target package)
with a 100% similarity to the generated identifier. Addition-
ally, there are fewer instances where multiple package names
are highly similar, and the similarity decreases rapidly when
full package names are sorted by similarity using TF-IDF. We
randomly selected 100,000 packages from six ecosystems for
analysis and found that, on average, there were 18.08 packages
with a cosine similarity greater than 0.5 to the PIN-generated
identifier. Therefore, the target full package name is highly likely
to appear within the top 20 names. Selecting the top 30 package
names based on similarity provides a safe coverage of the
target package.

Example: As shown in Fig. 9, we provide an example to
illustrate how to generate a package identifier. The full package

name is “zhmc-ansible-modules”, and our candidate set is the
{ansible, modules, zhmc, morpheus, selvpc} and the naming
scheme regex is {‘.’, ‘-’, ‘|’ }. We enumerate all possible combi-
nations and prune unnecessary branches. Once a match is found,
the “zhmc-ansible-modules” will be returned.

IV. EXPERIMENT EVALUATION

In this section, we present the experimental evaluation for
validating the efficacy of PKVIC.

A. System Implementation

We implement a prototype of PKVIC as a self-contained
piece of software, including four key functional components: the
ecosystem classifier (EC), the package-related entity extractor
(PET), the package-related entity search and extend (PESE)
module, and the package identifier generation (PIN) module.
Those components are extensively used across the whole proto-
type, and their implementations are described as follows.

1) The EC module: We use the Bert model as the pre-trained
model for our ecosystem classifier. We utilize the deeppavlov
framework [31] to process a vulnerability report, including
text tokenization, encoding with the pre-trained model, creating
segment masks. We use the TensorFlow framework [32] to
implement the ecosystem classification.

2) The PET module: We implement the Bi-LSTM-CNN-CRF
(NER) model by leveraging the deeppavlov framework [31].
Given a report, it is first segmented into word tokens, and then is
converted to vectors. For every word token, the NER provides a
tag “B”/“I”/“O” to it. To find more package-related entities, we
collect words with “B” tag.

3) The PESE module: We use GoogleScraper [33] to query
output entities of the package entity extractor and save the top 30
search results. Based on our experiments, top 30 search results
are sufficient for package entity searching and extending. For
each search result, we only extract the title and brief description
of the result item. We use the regex to identify and extract
package-related entities from the search results. If a string in
the search result matches any package identifier tokens in the
ecosystem index dataset, the PESE module will add it into a
package-related entity set.

4) The PIN module: For each ecosystem (NuGet [16],
PyPi [17], Maven [18], Gem [19], NPM [20], and Packag-
ist [21]), we build a Trie-Tree to build their package name
indexes. Specifically, we use Elastic Search [34] to store the
ecosystem’s package identifiers. Our enumeration algorithm is
a custom Python script to generate a package identifier of a
vulnerability report.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on September 01,2024 at 22:02:10 UTC from IEEE Xplore. Restrictions apply.

3794 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 4, JULY/AUGUST 2024

TABLE V
LABELED DATASET FOR VULNERABILITY REPORTS

Fig. 10. Performance of ecosystem classifiers.

B. Experimental Setting

Our experiments are conducted on Ubuntu 18.04, Intel i9-
9820X 3.30 GHz, 64 G memories, 4*GeForce RTX 2080 Ti.
Here we explain the datasets used in the study.

Labeled Datasets: We utilize a set of vulnerability tracker
databases to manually label the vulnerability reports, including
ruby-advisory-db [35], GitHub Advisory [36], gemnasium [37],
safety-db [38], nodejs-security-advisories [7], and php-db [39].
The file formats in the tracker databases include. toml,. yaml,.
yml, or json. Note that their package identifiers are manually
calibrated by software developers. We manually identify and
extract full package identifiers to create a database as the ground
truth of our experiments, where each package identifier is labeled
by the BIO (Beginning, Inside, Outside) scheme. We obtain
2,575 ground truths from 6 different ecosystems and 1,000
reports that do not belong to any ecosystem. We use the labeled
database as the training dataset for both NER-Package and
NER-Token approaches. These two approaches differ in their use
of this training set. NER-Package aims to recognize the complete
package identifiers and directly uses the standard ‘B’, ‘I’ and ‘O’
labels. NER-Token aims to recognize the tokens in package iden-
tifiers, therefore, it splits each package identifiers into multiple
tokens and labels each token as ‘B’. In the controlled experi-
ments, we use 80% of data for training data, 10% for validation
data, and the rest 10% for test data, and conduct 5-fold cross-
validation. Table V lists the number of vulnerability reports from
different ecosystems.

C. Performance

We first validate the performance of the ecosystem classi-
fier. Fig. 10 shows two performance metrics for the EC mod-
ule, including the accuracy (ACC) and F1-score. Overall, our
classification results are promising for identifying 6 different
ecosystems, where the average classification accuracy is 97.9%,
and the average F1 score is 95.5%. The classifier for Nuget

Fig. 11. ROC of ecosystem classifiers.

Fig. 12. Performance of PET over six ecosystems.

ecosystem [16] has worst performance (92.79% F1-score) com-
pared with others. The reason is that its training dataset is
small, with only 41 vulnerability reports. We also depict receiver
operating characteristic (ROC) of 6 ecosystem classifiers, as
shown in Fig. 11. The ROC value is the area computed based
on the true positive rate (TPR) and the false positive rate (FPR).
The average AUC score is larger than 98%. In short, our ecosys-
tem classification model achieves high accuracy to determine
whether a vulnerability report involves a specific ecosystem.

Then, we evaluate the performance of the PET module. We
also use the F1-score as the evaluation metric. As introduced
in Section III-B, we measure two types of NER approaches:
NER-Package that extracts full package names and NER-Token
that extracts package-related tokens. Here NER-Package serves
as the baseline and our PET module utilize NER-Token.

We train an NER model for each ecosystem. Fig. 12 depicts
the performance of two NER approaches across six ecosystems.
The average F1 score for NER-Package is only 24.23%. As
mentioned in Section III-B, the main reason NER-Package
performs poorly across all ecosystems is that many reports do not
contain the complete package identifier. The complex naming
conventions within open-source ecosystems further increase the
difficulty of NER models in extracting complete package names.
For example, we cannot even find a complete package name
(0% F1 score) in the vulnerability reports for the Maven [18]
and Packagist [21] ecosystems. Maven and Packagist use a
more complicated naming scheme, leading to that their com-
plete package identifiers never exist in any vulnerability report.
Therefore, conventional NER techniques are unable to extract
package identifiers with high precision and recall. In contrast,
the average F1 score for NER-Token reaches 91.64%, indicat-
ing that NER-Token can effectively extract entities belonging
to package identifiers. In other words, we can leverage those
correct tokens to generate a package identifier in the subsequent
process. Among six different ecosystems, the NER-Token model
achieves better accuracy for NPM, Pypi, and Gem ecosystems
because they have more training data and their package naming

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on September 01,2024 at 22:02:10 UTC from IEEE Xplore. Restrictions apply.

SONG et al.: PKVIC: SUPPLEMENT MISSING SOFTWARE PACKAGE INFORMATION IN SECURITY VULNERABILITY REPORTS 3795

TABLE VI
COVERAGE RATE IMPROVEMENT BY THE PESE MODULE

conventions are clearer and shorter. The results demonstrate
that the PET model with NER-Token is capable of obtaining
a sufficient set of package-related tokens for generating an
ecosystem’s package identifiers.

Third, we evaluate the performance of the PESE module.
Aforementioned, the PESE module is to extend more package-
related entities for filling in the missing information of a vul-
nerability report. We use the coverage rate to measure the
effectiveness of the PESE module as follows:

Rcoverage =
Σ(e|e ∈ E&e ∈ w)

Σ(token|token ∈ w)
,

where E is the entity set extracted by the PET module, and w is
a package identifier of an ecosystem. The range of Rcoverage

is [0.0, 1.0]. The larger Rcoverage is, the higher chance of
generating a correct packager identifier. When Rcoverage is
equal to 1.0, it indicates that the package-related entities cover
a package identifier. By contrast, when Rcoverage is equal to
zero, our package-related entities are missing the information of
a package identifier.

Table VI lists the coverage rate improvement by the PESE
module. For vulnerability reports from different ecosystems, the
PESE module can significantly improve the entity coverage rate
by 40.52% on average. In terms of those extended entities, it has
a higher probability to generate a package identifier. In partic-
ular, Maven [18] has zero coverage for package-related entities
extracted by PET. The reason is that, in the Maven ecosystem,
the identifier of a complete package often includes groupID and
artifactID. Here we take “org.dynamoframework|dynamo-impl”
as an example, which is a software development framework.
The entities “org”and “impl” are very ecosystem-characterized
words and often do not appear in vulnerability reports, resulting
in a low coverage rate before search. The PESE module increases
the coverage rate from 0% to 37.95% for Maven. One concern
is that today’s search engine is a black box for finding relevant
entities for software identifiers. We conduct experiments to
assess the impact of different search engines, including Google,
Bing, and DuckDuckGo. Our experiments show that the search
engine selection has little impact on the performance of the
PESE module.

Overall Performance: In terms of extended entities (Table VI),
the PIN module generates package identifiers of corresponding
software ecosystems. As the PIN module is the last component
in the workflow of PKVIC, the overall performance of PKVIC

Fig. 13. Overview performance of the PKVIC.

TABLE VII
TIME COST FOR PREPROCESSING

is represented by the output of PIN module, which also depends
on the first three modules.

Fig. 13 shows the performance of generating package identi-
fiers. For Pypi, Gem, and NPM, the hit rate of the top-1 generated
identifier is 85%, and the hit rate of the top-5 generated identifier
is 93%. For Packagist and Nuget, the top-1 hit rate is around
62%, and the top-10 hit rate is 86%. The Maven’s accuracy
is much lower than that of other ecosystems. The reason is that
Maven’s naming scheme of “group:package:version” is the most
complicated. So far, the state-of-art tools cannot extract any
Maven full package name. Note that some software ecosystems’
hit rates cannot reach their Rcoverage scores. The reason is
that there exist software packages with similar names, and a
simple similarity-based match algorithm will hit false-positive
packages with similar names.

As we mentioned before, a package identifier in a specific
software ecosystem is a unique and unambiguous index, and
we can use it to locate the corresponding software package
accurately. Overall, our experiment results show that PKVIC
extracts package identifiers and use them to build the accurate
information connection between vulnerability reports and soft-
ware ecosystems.

D. Overhead

We first processed all 2,673,313 packages and measure the
time cost for the preprocessing phase (Line 1–5) in Algorithm 1.
Table VII provides the cost breakdown and the preprocessing
time for each package is only 1.5–7.1 ms. It’s worth noting that
the preprocessing phase can be carried out offline. As the number
of packages within each ecosystem increases, it is efficient to
periodically process the newly added packages. Therefore, the
system can stay up-to-date with the latest additions to the ecosys-
tem with reasonable processing time. Furthermore, we randomly
selected 1,000 vulnerability reports that related to open-source
software packages from 6 ecosystems. We sequentially ran the

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on September 01,2024 at 22:02:10 UTC from IEEE Xplore. Restrictions apply.

3796 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 4, JULY/AUGUST 2024

TABLE VIII
TIME COST OF EACH MODULE OF PKVIC

four modules of PKVIC on these reports and record the time cost
of each module. The detailed implementation of each module
is introduced in Section IV-A and the hardware environment is
described in Section IV-B. Table VIII lists the time cost for the
four modules, i.e., the EC, PET, PESE, and PIN modules. The
primary time cost lies in that PKVIC needs to use a web crawler
to search and extend the package-related entities. In short, the
time overhead of PKVIC is moderate and easily affordable
in practice.

E. Building the Connections

In this subsection, we utilize PKVIC to process the exten-
sive datasets that we have collected. For specific information
regarding the datasets used, please refer to Section II-A. We ran
PKVIC over 421,808 vulnerability reports from 20 well-known
sources of security vulnerabilities and found a total of 11,279
unique vulnerability reports related to open-source software. It
is worth noting that the majority of the vulnerability reports
do not pertain to open-source software. Since different reports
can refer to the same affected software, upon further examina-
tion, we discovered that the 11,279 reports contain duplicated
software packages. After eliminating these duplicates, we were
left with 2,703 unduplicated software packages. PKVIC accu-
rately located reference URLs for these 2,703 software packages
across six different open-source ecosystems. Table IX lists the
connections between IDs in vulnerability reports and software
packages of ecosystems. The most related work is a commercial
vulnerability database – Snyk [40], which disclosed 1177 reports
for npm, maven and rubygems, and provided manually built
connections to affected packages. We manually verified that all
1177 packages have also been identified by PKVIC. Note that,
PKVIC has located more vulnerable packages in an automatic
manner, which proves the great value of PKVIC.

CPE String Revision: We propose to revise CPE strings to
correctly represent those software packages, including: (1) re-
naming the product name in CPE strings with the same name of
the software package in their ecosystems; (2) supplementing the
missing software attribute information in the“target_sw” field
of CPE strings. Note that our revised CPE strings need to be
compatible with the original ones.

URL Linked to the Affected Software: Given a package iden-
tifier, we leverage structured information (e.g., URL prefix)
from software ecosystems to automatically generate a package-
specific reference URL for the vulnerability. We use regular
expressions to generate different kinds of structured informa-
tion for URLs. For each URL of the software ecosystem, we
build a parser to transform it into a general template: https:

// prefix/{parameterspkg/, where prefix is the domain name of

the software ecosystem, pkg is the package entity calibrated
by PKVIC, {parameters} is the directory structure of websites.
For each generated URL, we check whether it is accessible
and available.

Table X presents an example of generating URLs for software
packets in ecosystems, showing how we generate a reference
URL based on package entity extracted by PKVIC for a vul-
nerability report. The table’s rightmost column shows the ex-
amples of generated URLs based on the structured information
and package entities. The rest of columns are the structured
information, which is determined by package ecosystems. Every
row shows a specific URL based on its corresponding ecosystem.
Table XI lists the ratio of software packages with missing links in
CPE strings under different open-source ecosystems. In this way,
we build a reference URL for a vulnerability report that lacks
a relevant URL to its software package. Note that our template
can be updated with a little modification when the structured
information of websites is changed.

Calibration Dataset: We will distribute the calibrated dataset
to the research community. The dataset consists of a set of 4-tuple
records (CVE ID; Other ID; Package name; URL). Each entry of
the dataset represents a vulnerability from security sources, and
thus we assign it to relevant project URL. The dataset is released
under the Apache 2.0 license, available for free download.

F. Case Study

We present a simple case study to demonstrate how PKVIC
enhances software security, besides directly informing the secu-
rity community of those vulnerable software packages.

Package Dependency Defense: The reuse of software pack-
ages is pervasive in today’s software community, where
numerous applications have been developed by reusing pack-
ages in the package manager. Here we draw 20 vulnerabil-
ity reports from NVD, Securityfocus, and Ubuntu Security
Notices. PKVIC builds the information connections between
those reports and software packages in ecosystems, reveal-
ing that the following three software packages are vulnerable,
“org.apache.storm|storm-core” in Maven, “urllib3” in Pypi, and
“prismjs” in NPM. A simple case study in Fig. 14 depicts
that many libraries are directly dependent on those three vul-
nerable software packages. When a reused software package
involves a vulnerability, its dependent projects will likely suffer
a similar risk, implying the need to ensure the security of di-
rectly and indirectly reused packages. Therefore, our calibration
connections provided by PKVIC can help package managers
to isolate untrusted packages, evaluate risks, and remediate
issues.

V. DISCUSSION

While PKVIC is the first work to fill in the missing connection
between vulnerability reports and software packages. In this
section, we first discuss the validity and then the limitations
of PKVIC.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on September 01,2024 at 22:02:10 UTC from IEEE Xplore. Restrictions apply.

SONG et al.: PKVIC: SUPPLEMENT MISSING SOFTWARE PACKAGE INFORMATION IN SECURITY VULNERABILITY REPORTS 3797

TABLE IX
CONNECTION BETWEEN IDS IN SECURITY REPORTS AND SOFTWARE PACKAGES OF ECOSYSTEMS

TABLE X
EXAMPLES OF GENERATING URLS

Fig. 14. Graph of software package dependency.

TABLE XI
RATIO OF SOFTWARE PACKAGES WITH MISSING LINKS IN CPE UNDER

DIFFERENT OPEN-SOURCE ECOSYSTEMS

A. Validity

Internal Validity: In our work, we employ classification and
embedding deep learning models as our building blocks. In our
implementation, we utilized the popular LSTM, Bert, Bi-LSTM.
For the ecosystem classification, we have tried a series of learn-
ing models, including logistic regression, SVM, LSTM and Bert.
The results show that the deep learning models achieve better and

similar performance. For example, the F1 score is 0.95 when we
use LSTM and 0.93 if we use Bert instead, which are very close.
Therefore, the choice of classification models doesn’t have a
significant impact on the effectiveness of PKVIC. We use LSTM
in the implementation due to its slightly better performance,
which may be attributed to LSTM’s ability to effectively capture
both long-term and short-term dependencies in the input reports.
With the continuous advancement of machine learning models,
PKVIC can leverage any advanced text classification and em-
bedding models to further enhance its performance. Regarding
the dataset, we collected over 421,808 reports covering 20 pop-
ular online sources and 2,673,313 software packages across 6
popular open-source ecosystems. Therefore, these datasets offer
extensive coverage, substantial volume, and strong representa-
tiveness, effectively demonstrating the effectiveness of PKVIC.
For the PESE module, we compared its performance using three
mainstream search engines (Google, Bing, and DuckDuckGo),
as shown in Table VI. The results indicate that the choice of
search engine has minimal impact on the module’s performance.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on September 01,2024 at 22:02:10 UTC from IEEE Xplore. Restrictions apply.

3798 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 4, JULY/AUGUST 2024

Fig. 15. Name similarities for top 20 packages in 6 ecosystems.

Construct Validity: To evaluate the performance of PKVIC,
we employed several standard and widely-used metrics. These
metrics include accuracy (ACC), F1 score, ROC curve, and hit
rate. These metrics are well-established and capable of suffi-
ciently reflecting the performance of PKVIC. Additionally, we
used runtime as a metric to measure the overhead introduced by
our approach.

B. Discussion

No-CVE-ID Reports: The vulnerability reports come from
different security sources (listed in Table I). Not all reports from
those sources that contain a CVE-ID due to various reasons.
28.04% of our collected vulnerability reports do not have corre-
sponding CVE-IDs. We conducted experiments and analysis to
evaluate the influence when there is no CVE-ID. First, for the
ecosystem classification, we compared the performance of clas-
sification with and with not CVE-ID. For nuget, packagist, and
maven, the classification accuracy is 0.998, 0.976 and 0.983 with
CVE-ID, and decreases slightly to 0.997, 0.973 and 0.981 with-
out CVE-ID, respectively. For pypi, npm and gem, the classifi-
cation accuracy remains unchanged. Overall, the classification
performance is virtually unchanged even there is no CVE-ID,
which means the textual descriptions of reports already provide
sufficient information for ecosystem classification. Second, for
the NER and subsequent steps, 90.5% reports in six ecosystems
already have all tokens in the CVE-ID fully included in their
textual description. Hence for 90.5% reports, the absence of
CVE-ID has no effect on the subsequent performance of PKVIC.
For the remaining reports, PESE is designed to significantly re-
duce the impact of missing CVE-ID by searching and extending
the potentially missing tokens, as shown in Table VI. Therefore,
PKVIC is still capable of building the information connection
between non-CVE-ID reports and software packages.

Package Name Similarity: With the rapid growth of the num-
ber of software packages, more similar package names appear in
the ecosystems. We manually selected the top 20 recommended
software packages in the six ecosystems and used Jaccard dis-
tance to search for similarity among the million-level software
packages’ names. As shown in Fig. 15, if the similarity is higher
than 90%, we consider the two packages’ names to be similar.
We observed that more than 60% of the software packages’
names are similar to at least 10 other software packages’ names.
Further, malicious users intentionally create a similar name
against an original package, so-called “Bogus Packages”. For

instance, crypt impersonates crypto, urlib3 impersonates urllib3,
and jeIlyfish impersonates jellyfish. As we mentioned before,
the package name similarity would decrease the effectiveness
of PKVIC, but it will has the same negative impacts on all
NLP techniques.

Extension: So far, PKVIC does not support C and C++.
However, there are many vulnerabilities exposed to software
packages written in C and C++. Conan [41] is the software
ecosystem for C/C++. However, we do not have its package
index dataset. Even so, we provide the largest and most com-
prehensive dataset, covering 20 security sources and 6 popular
software ecosystems. In our future work, we will apply PKVIC
for other project management tools.

Errors and Misses: PKVIC provides the calibrated mappings
between vulnerability reports and software packages of ecosys-
tems, which inevitably suffer errors and misses when applying
to the full dataset across different types over time. In our future
work, we will apply crowdsourcing and peer-review calibrations
for generating more accurate and complete information connec-
tions between vulnerability reports and software packages.

VI. RELATED WORK

Online Security Sources: Today, professionals provide a vari-
ety of online security sources to the public, and prior works [12],
[42], [43], [44], [45], [46], [47] have made great efforts of
distributing online security information, such as vulnerabil-
ity patch, exploit behavior, and threat intelligence. Sabottke
et al. [42] extracted tweets of Twitter to assess the vulnerability
impacts (similar as CVSS) and alert users. Liao et al. [43]
proposed to extract machine-readable threat intelligence infor-
mation from thousands of technical articles. Li and Paxson [48]
utilized the NVD and Github websites to investigate the life cy-
cles of security vulnerabilities and their patches. Feng et al. [46]
crawled multiple online security sources for generating specific
signatures to detect exploit attempts on embedded devices. Dong
et al. [12] built the customized NLP models to extract vulner-
able software names and versions from vulnerability reports.
Due to different naming schemes and missing information, the
techniques of prior works [12], [43], [46] cannot be applied for
addressing our problem. Li et al. [45] leveraged several online
sources (e.g., Facebook ThreatExchange and AlienVault) to
conduct the analysis of threat intelligence. Bouwman et al. [47]
assessed the empirical quality of online sources (threat intelli-
gence) by interviewing 14 security professionals.

Similarly, our work also leverages 20 security sources for
obtaining vulnerability reports. By contrast, we are the first to fill
in the information gap between today’s online security sources
and ecosystems’ software packages.

Software Ecosystem: Numerous applications have been de-
veloped by reusing open-source libraries from software ecosys-
tems, and there are previous works [49], [50], [51], [52] studying
on vulnerabilities caused by those reused components. Neuhaus
et al. [49] proposed combining software version archives and
vulnerability databases to detect vulnerable components in the
Mozilla software system. Zimmermann et al. [50] conducted
a large-scale empirical study on the Windows Vista system,

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on September 01,2024 at 22:02:10 UTC from IEEE Xplore. Restrictions apply.

SONG et al.: PKVIC: SUPPLEMENT MISSING SOFTWARE PACKAGE INFORMATION IN SECURITY VULNERABILITY REPORTS 3799

indicating that metrics such as code churn, code complexity, and
organizational measures allow vulnerabilities to be detected with
high precision but low recall rates. Edwards and Chen [51] ex-
plored the version archive of Sendmail, Postfix, Apache HTTPd,
and OpenSSL and utilized the CVE information to identify
exploitable bugs/vulnerable components. Scandariato et al. [53]
studied and explored features of a bug or flaw (e.g., code churn
size and exposure time) to audit source code repositories. Perl
et al. [54] proposed to utilize metadata features of a project
on GitHub, including programming language, author credit,
keyword, code size, and star and fork counts, in order to find
vulnerabilities in open-source projects.

Gkortzis et al. [55] manually built a dataset of security vul-
nerabilities in open-source systems. Duan et al. [14] proposed a
patching mechanism to fix and maintain open-source software
applications. Zimmermann et al. [13] studied the NPM ecosys-
tem’s threats, such as malicious packages, package takeover, and
account takeover. Quiring et al. [52] designed a set of simple
mutations to change the programming style of software code to
determine authorship attributes. Duan et al. [56] investigated the
supply chain attack of the NPM ecosystem and proposed several
mitigation strategies to packages with public and disclosed
CVEs.

Similarly, our work also focuses on open-source packages in
software ecosystems. Different from prior works, the objective
of PKVIC is to fill in the missing information, i.e., establish the
information connection, between vulnerability reports and soft-
ware packages of ecosystems, which is the prerequisite for de-
tecting and securing software packages in the real world. There
are six popular software ecosystems being thoroughly studied
in our work, including NuGet [16], PyPi [17], Maven [18],
Gem [19], NPM [20], and Packagist [21].

VII. CONCLUSION

The information of open-source software packages in vul-
nerability reports is critical for software developers to build a
secure software. However, in this work, we reveal that current
vulnerability reports are mainly from a commercial vendor-
centric point of view, missing the the information of the affected
software packages in open-source ecosystems. This observation
is based on 421,808 vulnerability reports collected from 20
security sources and 6 open-source software package ecosys-
tems. To address this problem, we develop a framework PKVIC
to automatically fill in the missing information of software
packages in vulnerability reports. We validate the effectiveness
of PKVIC by building the accurate information connections
between 421,808 vulnerability reports and 2,673,313 pack-
agers from 6 ecosystems, generating 2,703 reference URLs and
11,279 package identifiers, which fill in the missing informa-
tion in vulnerability reports and significantly enhance software
development security.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
detailed and insightful comments, which have helped to greatly
improve the quality of the paper.

REFERENCES

[1] J. Foundation, “Lodash,” 2021. [Online]. Available: https://github.com/
lodash/lodash

[2] J. community, “jackson_databind,” 2021. [Online]. Available: https://
github.com/FasterXML/jackson-databind

[3] A. License, “Htmlunit,” 2021. [Online]. Available: https://github.com/
HtmlUnit/htmlunit

[4] U. N. I.for Standards and T. (NIST), “NVD-CPE, Computer Security
Resouce Center for Official Common Platform Enumeration (CPE) Dic-
tionary,” 2017. [Online]. Available: https://nvd.nist.gov/products/cpe

[5] NVD, “U. S. National Institute of Standards and Technology National
Vulnerability Database,” 2007. [Online]. Available: https://nvd.nist.gov/
home.cfm

[6] SecurityGlobal.net, “Securitytracker,” 2018. [Online]. Available: https://
www.securitytracker.com

[7] I. npm, “NPM Security advisories,” 2021. [Online]. Available: https://
www.npmjs.com/advisories

[8] V. H. Nguyen and F. Massacci, “The (un) reliability of NVD vulnerable
versions data: An empirical experiment on Google chrome vulnerabilities,”
in Proc. 8th ACM SIGSAC Symp. Inf. Comput. Commun. Secur., 2013,
pp. 493–498.

[9] C. Sabottke, O. Suciu, and T. Dumitras, “Vulnerability disclosure in the
age of social media: Exploiting twitter for predicting Real-World exploits,”
in Proc. 24th USENIX Secur. Symp., 2015, pp. 1041–1056.

[10] F. Li and V. Paxson, “A large-scale empirical study of security patches,” in
Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2017, pp. 2201–2215.

[11] D. Mu et al., “Understanding the reproducibility of crowd-reported
security vulnerabilities,” in Proc. 27th USENIX Secur. Symp., 2018,
pp. 919–936.

[12] Y. Dong, W. Guo, Y. Chen, X. Xing, Y. Zhang, and G. Wang, “Towards
the detection of inconsistencies in public security vulnerability reports,”
in Proc. 28th USENIX Secur. Symp., 2019, pp. 869–885.

[13] M. Zimmermann, C.-A. Staicu, C. Tenny, and M. Pradel, “Small world
with high risks: A study of security threats in the npm ecosystem,” in Proc.

28th USENIX Secur. Symp., 2019, pp. 995–1010.
[14] R. Duan et al., “Automating patching of vulnerable open-source software

versions in application binaries,” in Proc. Netw. Distrib. Syst. Secur.

(NDSS) Symp., 2019.
[15] T. O. Foundation, “Dependency-check tool,” 2020. [Online]. Available:

https://owasp.org/www-project-dependency-check/
[16] Microsoft, “Nuget is the package manager for.net,” 2020. [Online]. Avail-

able: https://www.nuget.org/
[17] P. S. Foundation, “The Python package index (PyPI) is a repository of soft-

ware for the Python programming language,” 2020. [Online]. Available:
https://pypi.org

[18] T. A. S. Foundation, “Apache maven is a software project management and
comprehension tool,” 2020. [Online]. Available: https://maven.apache.
org/

[19] R. community, “Rubygems.org is the ruby community’s gem hosting
service,” 2020. [Online]. Available: https://rubygems.org/

[20] I. npm, “npm is the package manager for node.js,” 2020. [Online]. Avail-
able: https://www.npmjs.com/

[21] P. PACKAGIST, “Packagist is the main composer repository,” 2020. [On-
line]. Available: https://packagist.org/

[22] Zyte, “Scrapy, An open source and collaborative framework for extracting
the data you need from websites,” 2021. [Online]. Available: https://scrapy.
org

[23] BeautifulSoup, “A Python package for parsing html and xml docu-
ments,” 2012. [Online]. Available: https://www.crummy.com/software/
BeautifulSoup/

[24] M. Bleigh and Intridea, “A flexible authentication system utilizing rack
middleware,” 2022. [Online]. Available: https://github.com/omniauth/
omniauth

[25] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language understanding,”
2018, arXiv:1810.04805.

[26] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional networks
for text classification,” 2015, arXiv:1509.01626.

[27] Y. Kim, Y. Jernite, D. Sontag, and A. Rush, “Character-aware neural
language models,” in Proc. AAAI Conf. Artif. Intell., 2016, pp. 2741–2749.

[28] Z. Huang, W. Xu, and K. Yu, “Bidirectional LSTM-CRF models for
sequence tagging,” 2015, arXiv:1508.01991.

[29] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank citation
ranking: Bringing order to the web,” Stanford InfoLab, Tech. Rep., 1999.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on September 01,2024 at 22:02:10 UTC from IEEE Xplore. Restrictions apply.

3800 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 21, NO. 4, JULY/AUGUST 2024

[30] C. Douglas and S. Ravi, “17th annual symposium on foundations of com-
puter science SFCs 1976,” 1976. [Online]. Available: http://IEEExplore.
ieee.org

[31] M. Burtsev et al., “DeepPavlov: Open-source library for dialogue systems,”
in Proc. ACL Syst. Demonstrations, 2018, pp. 122–127.

[32] M. Abadi et al., “TensorFlow: Large-scale machine learning on heteroge-
neous distributed systems,” 2016, arXiv:1603.04467.

[33] N. Tschacher, “Googlescraper, GoogleScraper parses Google search en-
gine results easily and in a fast way,” 2020. [Online]. Available: https:
//github.com/NikolaiT/GoogleScraper

[34] elastic.co, “elasticsearch: Free and open, distributed, restful search en-
gine,” 2021. [Online]. Available: https://github.com/elastic/elasticsearch

[35] rubysec, “Ruby advisory database, community effort to compile all secu-
rity advisories that are relevant to ruby libraries,” 2021. [Online]. Available:
https://github.com/rubysec/ruby-advisory-db

[36] GitHub, “Github security advisory database,” 2018. [Online]. Available:
https://github.com/advisories

[37] GitLab, “Gitlab secure, maintenance and update of the vulnerabili-
ties database,” 2019. [Online]. Available: https://docs.gitlab.com/ee/user/
application_security/

[38] pyup.io, “Safety DB, A database of known security vulnerabilities in
python packages,” 2021. [Online]. Available: https://github.com/pyupio/
safety-db

[39] FriendsOfPHP, “PHP security advisories database,” 2021. [Online]. Avail-
able: https://github.com/FriendsOfPHP/security-advisories

[40] Synk, “Snyk vulnerability database,” 2019. [Online]. Available: https://
security.snyk.io/disclosed-vulnerabilities

[41] Conan.io, “Conan, The C/C package manager,” 2020. [Online]. Available:
https://conan.io/

[42] C. Sabottke, O. Suciu, and T. Dumitraş, “Vulnerability disclosure in the
age of social media: Exploiting twitter for predicting real-world exploits,”
in Proc. 24th USENIX Secur. Symp., Berkeley, CA, USA, 2015, pp. 1041–
1056. [Online]. Available: [Online]. Available: http://dl.acm.org/citation.
cfm?id=2831143.2831209

[43] X. Liao, K. Yuan, X. Wang, Z. Li, L. Xing, and R. Beyah, “Acing the
IOC game: Toward automatic discovery and analysis of open-source
cyber threat intelligence,” in Proc. ACM SIGSAC Conf. Comput. Commun.

Secur., 2016, pp. 755–766.
[44] X. Shu et al., “Threat intelligence computing,” in Proc. ACM SIGSAC

Conf. Comput. Commun. Secur., 2018, pp. 1883–1898.
[45] V. G. Li, M. Dunn, P. Pearce, D. McCoy, G. M. Voelker, and S. Savage,

“Reading the tea leaves: A comparative analysis of threat intelligence,” in
Proc. 28th USENIX Secur. Symp., 2019, pp. 851–867.

[46] X. Feng et al., “Understanding and securing device vulnerabilities through
automated bug report analysis,” in Proc. 28th USENIX Conf. Secur. Symp.,
2019, pp. 887–903.

[47] X. Bouwman, H. Griffioen, J. Egbers, C. Doerr, B. Klievink, and M. van
Eeten, “A different cup of TI? The added value of commercial threat
intelligence,” in Proc. 29th USENIX Secur. Symp., 2020, pp. 433–450.

[48] F. Li and V. Paxson, “A large-scale empirical study of security patches,” in
Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2017, pp. 2201–2215.
[Online]. Available: http://doi.acm.org/10.1145/3133956.3134072

[49] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, “Predicting vulner-
able software components,” in Proc. 14th ACM Conf. Comput. Commun.

Secur., 2007, pp. 529–540. [Online]. Available: http://doi.acm.org/10.
1145/1315245.1315311

[50] T. Zimmermann, N. Nagappan, and L. Williams, “Searching for a needle in
a haystack: Predicting security vulnerabilities for windows vista,” in Proc.

3rd Int. Conf. Softw. Testing Verification Validation, 2010, pp. 421–428.
[51] N. Edwards and L. Chen, “An historical examination of open source

releases and their vulnerabilities,” in Proc. ACM Conf. Comput. Commun.

Secur., 2012, pp. 183–194.
[52] E. Quiring, A. Maier, and K. Rieck, “Misleading authorship attribution

of source code using adversarial learning,” in Proc. 28th USENIX Secur.

Symp., 2019, pp. 479–496.
[53] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen, “Predicting

vulnerable software components via text mining,” IEEE Trans. Softw. Eng.,
vol. 40, no. 10, pp. 993–1006, Oct. 2014.

[54] H. Perl et al., “VCCFinder: Finding potential vulnerabilities in open-source
projects to assist code audits,” in Proc. 22nd ACM SIGSAC Conf. Comput.

Commun. Secur., 2015, pp. 426–437. [Online]. Available: http://doi.acm.
org/10.1145/2810103.2813604

[55] A. Gkortzis, D. Mitropoulos, and D. Spinellis, “VulinOSS: A dataset of
security vulnerabilities in open-source systems,” in Proc. 15th Int. Conf.

Mining Softw. Repositories, 2018, pp. 18–21. [Online]. Available: http:
//doi.acm.org/10.1145/3196398.3196454

[56] R. Duan, O. Alrawi, R. P. Kasturi, R. Elder, B. Saltaformaggio, and W.
Lee, “Towards measuring supply chain attacks on package managers for
interpreted languages,” in Proc. Netw. Distrib. Syst. Secur. (NDSS) Symp.,
2021.

Jinke Song received the master’s degree in computer
science from Beijing Jiaotong University, in 2017,
and is now working toward the PhD degree with the
School of Computer and Information Technology,
Beijing Jiaotong University, China. His main research
areas are cyberspace security and Internet of Things
security.

Qiang Li received the PhD degree in computer sci-
ence from the University of Chinese Academy of
Sciences, in 2015. Currently, he is an associate pro-
fessor with the School of Computer and Information
Technology, Beijing Jiaotong University, China. His
research interests revolve around Internet of Things,
networking systems, network measurement, machine
learning for cybersecurity, and mobile computing.

Haining Wang received the PhD degree in computer
science and engineering from the University of Michi-
gan, Ann Arbor, Michigan, in 2003. Currently he is
a professor with the Department of Electrical and
Computer Engineering, Virginia Tech. His current re-
search interests include security, networking systems,
and cloud computing.

Jiqiang Liu received the BS and PhD degrees from
Beijing Normal University, in 1994, and 1999, respec-
tively. He is currently a professor with the School
of Computer and Information Technology, Beijing
Jiaotong University. His current research interests
include cryptographic protocols, privacy preserving,
and network security.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on September 01,2024 at 22:02:10 UTC from IEEE Xplore. Restrictions apply.

