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ARTICLE INFO ABSTRACT
Keywords: Evaporative Stress Index (ESI), also sometimes referred as Evaporative Stress Ratio (ESR), has been widely used
Drought as an indicator of vegetation evaporative stress, and is often used to track forest and agriculture droughts. Lower
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the stress, higher is the value of ESI or ESR. The goal of this study is to assess the suitability of these indices for
tracking vegetation evaporative stress. As the dynamics of water loss from vegetation through transpiration (T)
can be different than that of evapotranspiration (ET) from the ecosystem, it is hypothesized that ESI or ESR may
not be sufficiently representative of the vegetation evaporative stress. Using eddy covariance flux tower data of
518 site years, distributed across 49-sites and 9 land covers globally, our findings reveal underestimation of
vegetation evaporative stress by ESI during periods of high vapor pressure deficit (VPD) and overestimation
during dry, low-VPD periods. The results highlight the need to improve representativeness of ESI for monitoring
vegetation evaporative stress. Notably, this may entail accurate estimation of ecosystem T in systems lacking in-
situ data, a challenge that warrants further attention.

mortality (Blackman et al., 2016; Liu et al., 2017; McDowell et al., 2008;

Key Points Niu et al., 2014). Dry spells have been known to affect swaths of forests
and cropped areas (Littell et al., 2016; Ray et al., 2018) with significant

e Ecosystem-level Evaporative Stress Index (ESI) tends to under- consequences on water, nutrient, and energy cycling (Adams and War-
estimate the vegetation evaporative stress, especially during ren Jr, 2005; Bond et al., 2008; Meng et al., 2014; Miralles et al., 2019;
high vapor pressure deficit periods. Ronda et al., 2001; Schumacher et al., 2022; Van Dijk et al., 2013).

e Discrepancies between ESI and ESI, are larger during non- Given that these impacts often cause debilitating economic losses
growing seasons and small during growing seasons. (Zamuda et al., 2013), it becomes imperative to establish reliable in-

e The Variati'on of ESI between dry and wet periods can be dicators for vegetation stress (Bachmair et al., 2018; Brown et al., 2008;
markedly different from that of ESI,. Gouveia et al., 2017). These indicators could play a crucial role in
tracking the level of stress that plants may experience due to soil

moisture limitation and increasing atmospheric aridity. Moreover, these
indicators can be used to establish an early warning system that enables
users to assess and monitor the plant’s health to make well-informed
management choices. In other words, these indices may also help sup-
port efforts to mitigate drought-related challenges and enhance climate
adaptation measures.

1. Introduction

Global climate change in the recent decades has intensified both the
frequency and intensity of the extreme drought events across several
parts of the world (Perkins et al., 2012; Seneviratne, 2022). Prolonged One of the most widely used ecosystem-level stress indices is the
dry spells give rise to increase in atmospheric water demand that further Evaporative Stress Index (ESI) or the Evaporative Stress Ratio (ESR)
depletes the soil moisture availability for plant’s photosynthetic activity, (Anderson et al., 2011, 2007; Otkin et al., 2013). These indices are
thus inducing plant stress. This can affect the overall plant health from defined as the ratio of actual ET to potential evapotranspiration (PET), i.

germination to maturity (Alamri et al., 2020; Rai et al., 20215 Reich ¢ ESI—ET/PET. Both indices are used interchangeably, although the
et al., 2018; Yang et al., 2019) and may also eventually trigger plant
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term ESI is generally used when it is derived based on remote sensing
data, while ESR is used when both ET and PET are obtained using
observed or reanalysis meteorological data. These indices have been
used extensively to infer flash drought stress (Christian et al., 2019;
Lorenz et al., 2021; Zeng et al., 2023) and track agricultural and forest
droughts (Anderson et al., 2016a, 2016b; Gazol et al., 2017; Nguyen
et al., 2019; Vicente-Serrano et al., 2020; Yang et al., 2021). In this
study, for the sake of brevity, we will only use ESI to refer to
ecosystem-level evaporative stress. The ensuing analysis, however, is
valid for both ESI and ESR.

The evaluation of ecosystem-level ESI uses ET, which is composed of
two primary components: 1. abiotic component (E) (direct evaporation
from soil and other open surfaces) and 2. biotic component (T) (plant
transpiration). Relative contributions of E and T to ET vary in space and
time, in part due to the varied environmental controls on E and T
(Unkovich et al., 2018). For instance, in addition to the meteorological,
soil, and plant morphometric properties that influence E, T is also
majorly influenced by plant physiology (Liu et al., 2020; Stoy et al.,
2019; Sun et al., 2019). Given that T and E respond to hydrometeoro-
logical conditions differently, it is possible that the ESI, which uses ET,
may not accurately represent the true evaporative stress experienced by
vegetation, which instead is a function of T. Additionally, to capture the
vegetation evaporative stress or the constraint on potential water loss by
plants due to hydroclimatic-stress driven restriction of stomatal
conductance, the potential water loss should ideally be evaluated using
place-specific vegetation properties instead of a vegetation-agnostic
potential loss, which is often how the ESI has been evaluated in previ-
ous literature. While this evaluation is certainly challenging over large
areas, at sites where evapotranspiration is observed, there is an oppor-
tunity to derive the vegetation properties and then assess the repre-
sentativeness of ecosystem-level evaporative stress indices for capturing
evaporative stress of vegetation.

In this study, we investigate whether the dynamics of ESI is suffi-
ciently representative of evaporative stress in vegetation (ESIL,, hence-
forth). We specifically analyze the extent of differences between ESI and
ESI, under different regimes of soil moisture (SM) and vapor pressure
deficit (VPD). We also compare the spatial variation of evaluated stress
across sites, which can be useful to identifying locations that experience
more/less evaporative stress. To achieve the aforementioned goals, we
use eddy covariance flux tower data of 518 site years across 49 sites
distributed across 9 land covers globally and model outputs from a
physics-based two-source model for evaluating evapotranspiration.

2. Materials and methods

The methodologies for calculating ESI and ESI, are elaborated below
in Sections 2.1 to 2.7. The datasets utilized for these evaluations are
described in Section 2.8.

2.1. Calculation of ESI and ESI,

ESI, which represents evaporative stress index at ecosystem scale, is
quantified as the ratio of the total evapotranspiration (ET) to the po-
tential evapotranspiration (PET):

ET
ESI = ——, 1
PET M

Evaporative stress index for vegetation, hereafter referred as ESIy,
can be evaluated as the ratio of the plant transpiration (T) to the plant’s
potential evapotranspiration (PETy):

T
ESI, = —— 2
SI, PET, (2)
Both ESI and ESI, can have values between 0 (high stress) and 1 (no
stress). When ESI (ESI,) equals 1, it signifies that ET (T) has reached its
maximum potential value with soil and stomatal conductance reaching
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their peak values, unrestricted by hydrometeorological conditions such
as limited soil moisture, light, or unfavorable temperature. A reduction
in ESI or ESI, from 1 indicates the presence of various environmental
stresses that constraint the evaporation rate below its potential value.
Calculation of ET, PET, T, and PET, are presented in the subsequent
subsections.

2.2. Modeling ET and T
In this study, ET is estimated utilizing a dual-source ET model based

on Shuttleworth and Wallace (1985), where ET is computed as the sum
of soil evaporation (E) and plant transpiration (T) as:

AET = 2E + AT = f,PM; + f.PM, (3a)

pu, = A (0aGples — €0) = 5Tas(A — Ay)) /(Faa + Tas) (3b)
s+ }’(1 + rxx/(raa + ras))

A (0o~ ) ) -

S+ (1 +re/(Taa +Tac))

In Egs. (3a-3c), subscripts s and ¢ represent soil and canopy com-
ponents, respectively. f; and f, are the weighting factors for soil and
canopy, respectively, which are calculated using Eqgs. (3d-3h). PM; and
PM, represent the soil evaporation flux and transpiration flux, respec-
tively, before weighting, similar to the Penman-Monteith method
(Monteith, 1965b) under bare soil conditions and closed canopy con-
ditions, respectively. s (Pa K™') is the slope of the saturated vapor
pressure curve. A (W m~2) is the total available energy for sensible and
latent heat flux (i.e., A = R, — G, where R, (W m~2) is net radiation and
G (W m2) is the ground heat flux), A; (W m~2) is the part of A available
to soil, y (Pa K™!) is the psychrometric constant, C,(J kg~* K™') is the
specific heat of dry air at constant pressure, p, (kg m~3) is the density of
the air, VPD (Pa) is the vapor pressure deficit, r,, (s m™!) is the aero-
dynamic resistance between the canopy source and a reference height,
res (s m™1) is the resistance of vapor transfer between the soil surface and
the canopy layer, rq (s m™!) is the canopy boundary layer resistance,
rs (s m™!) is the soil surface resistance for vapor transfer (see Section
2.4), and ry. (s m™!) is the canopy-scale stomatal resistance (see Section
2.5).

Furthermore,
f- ! 3d)
¢ 1+R.-Ry/(Rs"(R. +Ry))
fio ! 3e)
* 1+ RyRy/(R+(Rs +Ry))
R = (S + 7)'rac + 7T (Sf)
Ry = (SJ’_}/)'ras + 7 Tss 3 g)
Ry = ($+7)Ta (3h)
Additionally,
A=R,-G (3i)
A;=Rp— G 3
Rps = Ryexp(—k,-LAI) (3k)

where k, (=0.6) is the canopy extinction coefficient of net radiation, and
LAI [m? m2] is the all-sided leaf area index. R,s (W m2) is the net
radiation flux available for the soil which is estimated using Beer’s law
(Ross and Ross, 1981). Subsequent sections describe the calculation of
different resistance terms used in the above equations.
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2.3. Calculating aerodynamic resistances

Calculation of different aerodynamic resistances follow the method
presented in Wei et al. (2017) and is described below. Aerodynamic
resistance between the canopy source height and reference level (rq,) is
calculated as:

1 Zm — do h, do + 20
ao = o 108 <hz - do> kK (exp (k""(l )Y @™
Aerodynamic resistance between the substrate and canopy source
height (r,) is calculated as:

_ he-exp(kn) —km.205\ . (ot 2
fe == (&P exp( —kn h (4b)

In above equations, k (=0.41 [-]) is a Karman’s constant, u* (m s~!) is
friction velocity, z, (m) is the measurement/reference height, d, (m) is
the zero-plane displacement height (see Eqn. (4c) below), h, (m) is the
canopy height, k,, ( = 4.5 m2s71) is the extinction coefficient of eddy
diffusion, K;, (m?s7!) is the eddy diffusion coefficient at the top of the
canopy (see Eqn. (4f) below), 2, (m) is the roughness length (see Eqn.
(4d)), and 2zps (=0.01 m) is the effective roughness length.

d = 1.1hc-log<1 +x%) (40)

1
Zos + 0.3h.- X2 0 < X < 0.2

20 = do (4d)
0.3h, (1 - h—> 02<X<15

X = C4-LAI (4e)

Ky = k-u'-(h, — dy) (4H)

The bulk boundary layer resistance of the vegetative elements in the
canopy (ry) is calculated as:
T 2LAI

Tac (48

where, r, (s m™!) is the mean boundary layer resistance per unit area of
vegetation and is calculated as:

10 (ﬂ)
km uy
1 —exp (7"7"‘>

In Eqn. (4e), C4 [-] is the drag coefficient, and in Eqn. (4h), d; [m] is
the characteristic leaf dimension.

(4h)

I, =

2.4. Calculating soil surface resistance

The calculation of soil surface resistance (r) is presented in Sellers
etal. (1992) where r is defined as the function of soil wetness of the top
soil layer.

I = exp(a— -6/ 6;) (5a)

In Eq. (5a), 0 (m®> m~?) is the actual surface soil moisture content,
and 6, (m® m2®) is the saturated soil moisture content. 6, is obtained
using the empirical relations provided in Clapp and Hornberger (1978).
a and f are the two empirical parameters of Sellers’ equation with
suggested values of 8.2 and 4.3 for a and p, respectively (Kustas and
Norman, 1999). However, choice of these empirical parameters can
introduce large uncertainty in the calculation of r, and thus soil evap-
oration (E). In this study, we use the following procedure to obtain a and
p for each site. First, the ecosystem conductance (G;) is obtained by
inverting the Penman-Monteith equation using flux tower data as:
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y-Go-LE

G, =
$(Ry — G) + po-Cp-Ga-VPD — (s + y)-LE

(5b)

where G, is the aerodynamic conductance (m s~!), and LE is the latent
heat flux (W m~2). Rest of the terms in the Eq. (5b) are already defined
above. G, is calculated following Lin et al. (2018) including corrections
factors for stability. Ideal gas law is used to convert G; from m s7! to
mol m~2 s, Ecosystem conductance calculated above is the sum of soil
conductance (G), canopy conductance (Gs), and conductance of
intercepted water. As this study does not include periods during rainfall
(see Section 2.8 below for more information on data quality control), G
is only the sum of G and Gy, i.e.,

G; = G + Gy (50

To obtain G from G, here we use a generalized ecosystem
conductance model described in Li et al. (2019):
G = Gy + G % (5d)

Next, we sort the data of G;, GPP, and VPD into different categories
(0-15th, 15-30th, 30-50th, 50-70th, 70-85th, and 85-100th percen-
tiles) of soil moisture at each site. A non-linear regression is fitted to Eq.
(5d) to obtain regression parameters (G, G;, and m) for each soil
moisture category at each site (see Li et al. (2019) for more details.). The
values of G obtained above are then used to obtain « and f in Eq. (5a)
(note that ry; = 1/G,;). For the few sites where either a or f is negative,
we use standard values of 8.2 and 4.3 respectively, following previous
studies (Kustas and Norman, 1999; Wei et al., 2018).

2.5. Calculating canopy conductance

To calculate ET and/or T, one critical variable that still needs to be
computed is g.. To compute g, here we use a plant physiological
approach based on (Ronda et al., 2001) as described below.

At the leaf scale, the CO, stomatal conductance can be characterized
using a photosynthesis-stomatal conductance model, which is defined as
(Ronda et al., 2001):

a1~Ag
(Cs—T) (1 + %)

where g™ (mol m~2s~1) is the cuticular conductance, a; is an empirical

=g+ (6a)

parameter (= 9.1 for C3 plants, and 6.6 for C4 plants), A, (umol m=2 s71)
is the gross assimilation rate (see Eq. (6b)), C; (ppm) is the CO5 con-
centration at leaf level, I" (umol mol 1) is CO, compensation point that is
a function of the canopy temperature, D; (kPa) is the vapor pressure
deficit at leaf level, and D, (which represents the value of D, at which all
stomata are closed) is a tunable parameter (see Section 2.7 for the
estimation of different parameters).

In this study, A, is computed as a function of photosynthetically
active radiation (PAR), canopy temperature (T;), and the intercellular
CO, concentration (Cj) as:

aPAR

Ay = (An+Rq) |1—e Antha (6b)

Here, A,, (umol m=2 s7!) is the net primary productivity which is
computed as:

_&n(Gi—T)
Am = Am.max 1—e Amma (6C)

and Ry (umol m~2 s~1) is the dark respiration which is computed as:
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Ry =0.114A, (6d)

where « is the light use efficiency which is calculated as:

C.—T
@ =% or (6e)

with ap = 0.017 (mg/J) for C3 plants and ap= 0.014 (mg/J) for C4
plants. Ap max is the maximal primary productivity under high light and
high CO; concentrations, and g, is the mesophyll conductance for CO,
which are functions of T, (Ronda et al., 2001). T, is solved iteratively by
combining a photosynthesis model (Eq. (6b)) with stomatal conductance
model (Eq. (6a)) along with the T fluxes predicted by S-W model as
detailed elsewhere in Wei et al. (2018). For detailed calculation of gp,
Ammax, and T, readers are encouraged to refer to Ronda et al. (2001).

Furthermore, we also consider the effects of water stress on Ay and g,
by applying a soil-moisture dependent function to A, as:

Ag = Af(0) 69

where A; is the unstressed A, rate, and f(0) is computed as:

£(0) =2p(0) — B*(0) 62
with
BO) = max(O,min <1,;9 i%“*’)) (6h)

where 6 (m®* m~3), 6,,, (m® m~3), and 0, (m® m~3) are actual soil mois-
ture content, soil moisture content at permanent wilting point, and soil
moisture content at saturation, respectively. 6,, and ¢; are obtained
using the empirical relations provided elsewhere (Clapp and Horn-
berger, 1978; Saxton et al., 1986) based on basic soil properties (i.e.,
sand-silt-clay fractions) (Dai et al., 2019).

Leaf scale g (gic) is upscaled to canopy scale g, following Ronda
et al. (2001). Finally, ry. (s m™1) is calculated as:

1

1.62. (60)

Tse =
where 1.6 is used to account for the diffusion of water vapor and carbon
dioxide by the same stomata.

2.6. Calculating potential evapotranspiration

Many different methods have been proposed for the calculation of
PET (Hargreaves and Samani, 1985; Monteith, 1965a; Oudin et al.,
2005; Penman, 1948; Priestley and Taylor, 1972; Thornthwaite, 1948).
In this study, we use three different methods for obtaining potential
evapotranspiration as described below. The use of multiple methods
allows assessment of the influence of PET formula on ESI estimation. It is
to be noted that only the S-W model is used to obtain PET of plant (i.e.,
PET,) as described below. S-W model and two other methods (i.e.,
Penman method and Priestley-Taylor method) are used to obtain PET of
the ecosystem.

2.6.1. S-W model-based potential evapotranspiration

To obtain PET and PET, from the S-W model (see Eqn. 3), g is set to
unstressed conditions of soil moisture, temperature, radiation, VPD, and
COy. In other words, the predicted ET (T) from S-W model is equivalent
to PET (PET,) when the model is run under the aforementioned un-
stressed conditions. Obtaining PET from this approach ensures that PET
calculation uses the site-specific parameters of the plants.

2.6.2. Potential evapotranspiration from penman equation
Second approach to obtain PET is based on Penman (1948). Here,
PET (mm day!) is computed as:

Agricultural and Forest Meteorology 357 (2024) 110195

A(Ry — G) +7-2.6-(1 4 0.536u,)-(e; — €,)

PET =
AA+7y)

7

where A (Pa K1) is the slope of the saturation vapor pressure curve,
v (Pa K1) is the psychrometric constant, R, (MJ m 2day!) is the net
radiation, G (MJ m 2day ') is the ground heat flux, u, is the wind speed
at 2 m height, e; (kPa) is the saturation vapor pressure, e, (kPa) is actual
vapor pressure of the near surface atmosphere, and A (MJ kg™!) is the
latent heat of vaporization.

2.6.3. Potential evapotranspiration from priestley-taylor equation

Third approach to obtain PET is based on the Priestley-Taylor
equation (Priestley and Taylor, 1972). Here, PET (mm day™!) is
computed as:

ARy — G)

PET = app—n—
N

®

where apr is an empirical constant (=1.26 in this study). All other terms
have the same meaning as described for Eqn. (7).

2.7. Estimation of model parameters for ET prediction

The S-W model is trained for each site individually to ensure that
model performs optimally for each site. Notably, combining S-W model
with g leaves six unknown parameters, viz. Do, km, Zos, dj, Cg, and gmin,
These parameters are optimized using the Shuffled Complex Evolution
approach (Duan et al., 1993) while ensuring that the mean square errors
between observed and modeled ET fluxes are minimized.

2.8. Datasets and site properties

The S-W model is run at 49 flux tower sites (Fig. 1) using the
PLUMBER2 dataset (Ukkola et al., 2022). Sites are chosen to ensure that
soil moisture data are available, and all other required variables are
available for at least over 5 years (see Table S1). These flux sites are
located in 9 different landcover types including closed shrublands (CSH,
N = 1), croplands (CRO, N = 9), deciduous broadleaf forests (DBF, N =
5), evergreen broadleaf forests (EBF, N = 2), evergreen needleleaf for-
ests (ENF, N = 15), grasslands (GRA, N = 9), mixed forests (MF, N = 2),
savannas (SAV, N = 3), and woody savannas (WSA, N = 3), where N
represents the number of flux sites in each landcover type. PLUMBER2
dataset has been compiled from the FLUXNET2015, OzFlux, and La
Thuile collections, after quality control and gap-filling to make it suit-
able for land surface modeling. The sampling frequency of data is either
half-hourly (for 44 sites) or hourly (for 5 sites) across the sites. The
measurements of LE and H are corrected for energy balance closure
using a Bowen ratio method (Barr et al., 2006; Xu et al., 2013) when the
energy imbalance, i.e., (LE4+H)/(Ry-G) is less than 0.8. Reference heights
of flux measurement and mean canopy heights are obtained from
site-specific metadata information. PLUMBER2 dataset also provides
leaf area index (LAI) for each site derived from MODIS (Moderate Res-
olution Imaging Spectroradiometer) product (MCD15A2H.006) with a
temporal resolution same as the flux measurements. Basic soil properties
including sand-silt-clay fractions are obtained from the soil map used in
Noah-LSM (Dai et al., 2019).

To validate the transpiration estimates from the S-W model, sap flow
data from SAPFLUXNET database (Poyatos et al., 2020) is obtained for
the sites used in this study (Table S3). The SAPFLUXNET datasets
contain sub-daily sap flow rates that are scaled to the stand level using
site-specific procedures, as detailed in the dataset metadata (Poyatos
et al., 2019). To derive stand-level transpiration (T), we first aggregate
the sub-daily data to obtain daily sap flow values per tree (kg/day).
Subsequently, we apply a correction factor of 1.405 to the sap flow
values based on an extensive analysis of sap flow calibrations (Bright
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Fig. 1. Spatial distribution of eddy covariance sites (shown as colored circular dots) utilized in this study. Colors of the dots indicate the land cover types, while their
size represents the aridity index of each site. A smaller aridity index (i.e., smaller dot size) indicates a drier site and a larger aridity index (i.e., larger point size)
indicates a wetter site. Number in the parenthesis besides each land cover in the legend indicate the number of sites in that land cover type.

et al., 2022; Flo et al., 2019). Next, we normalize the sap flow per unit
basal area for each tree and calculate the average values for each species
present in the datasets. Notably, the species included in the sap flow
measurements accounted for over 90 % of the stand basal area
(Table S3) at the sites. The species-specific sap flow per basal area is then
multiplied by the basal area of each species in the stand, and the
resulting values are summed across all species to obtain stand-level
transpiration (mm/day). All tree and stand-level variables required for
this upscaling process are extracted from the corresponding dataset
metadata (Poyatos et al., 2019).

We next conduct simulations using the S-W model, as well as the
Penman and Priestley-Taylor methods, at the same temporal resolution
as the original dataset, which is half-hourly for most of the sites. This
generates half-hourly estimates of ET, T, PET, and PET,. For sites where
data are available only at an hourly scale (5 out of 49 sites), we obtain
hourly estimates of these fluxes instead. Subsequently, we aggregate
these fluxes to derive daily estimates of ET, T, PET, and PET,, and ul-
timately, ESI and ESI,. It is important to note that during this process,

some calculated ESI or ESI, values are deemed unrealistic, such as when
ESI falls below 0 or exceeds 1. These occurrences may be attributed to
uncertainties in input data or model performance. To ensure a fair
comparison between these indices, we exclude such instances from our
analysis both for ESI and ESI,. We quantify the differences in the indices
for the full length of record as well as for specific regimes of soil moisture
and VPD. These regimes are delineated using cutoffs at the 75th and
25th percentiles, to identify high and low extremes, respectively, of the
variable under consideration at each site.

3. Results and discussion
3.1. Performance of the S-W model across different flux sites

We first compare the performance of S-W model for predicting ET at
all selected sites. In general, the model successfully predicts the ET for

most of the sites in different land cover types (Fig. 2). The overall model
performance across all the sites is shown in Fig. S1. The coefficient of

(2 (b) (©
1.0 80/ 50 !
0.9 701 45
0.8 : o 4 T 601 A0 !
° £ &35 . r s
0.7 t—% = 507 ° e L . e 8
E: c e . e 230 8 s
L] e e 1 8 a L
0.6 ] 3 (2)40 : - PR . !
0.5 2 307 | . e 20
0.4 20 ( . 15
03 101 10
T O B R o< k> < =l I T
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Fig. 2. Performance statistics of the S-W model for prediction of evapotranspiration (ET) at the temporal resolution of flux measurements (i.e., 30 min or 1 h). R?,
RMSE, and MAPE (shown using gray dots for the considered eddy covariance sites) represent the coefficient of determination, root mean square error, and mean
absolute percentage error, respectively, between the observed ET fluxes and predicted ET fluxes. Red dot represents the mean values. Performances are shown for
sites belonging to different biomes (X-axis). CSH: Closed Shrublands, CRO: Croplands, DBF: Deciduous Broadleaf Forests, EBF: Evergreen Broadleaf Forests, ENF:
Evergreen Needleleaf Forests, GRA: Grasslands, MF: Mixed Forests, SAV: Savannas, WSA: Woody Savannas.
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determination (R?) varies between 0.36 to 0.94 with an average value of
0.69. The Root Mean Square Error (RMSE) varies between 13.3
W m~2 to 71.3 W m~2 with an average value of 32.4 W m~2. The Mean
Absolute Percentage Error (MAPE) varies between 10.8 % to 63.7 %
with an average value of 32.1 %. The S-W model performs the best in
cropland, mixed forest, and grassland settings with an average R of
0.78, 0.78, and 0.77, respectively. Fig. S2 (see supplementary docu-
ment) shows the comparison of modeled ET with observed ET for all the
time periods as well as during different regimes of SM and VPD across all
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the sites. More details on the model performance for each site under
different regimes of SM and VPD can be found in Table S2 in the sup-
plementary document. The model shows satisfactory performance (R?
>0.5) in all the scenarios including the extreme regimes (Fig. S2). When
compared to independent sap flow measurements at the only three sites
out of 49 with such data available, transpiration estimates from the S-W
model show a high correlation (0.76-0.87) to sap flow-based T estimates
demonstrating effectiveness of the S-W model for both ET predictions
and T predictions (Fig. S3).
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Fig. 3. Comparison of traditional Evaporative Stress Index (ESI) and ESI for vegetation (ESI,) across all the sites: Panel (a) shows the variation of mean ESI and ESI,
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calculated using the Shuttleworth-Wallace model. For additional insights based on alternative PET methods, refer to supplementary Figures S4-S5.
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3.2. Comparison between ESI and ESI,, vis-a-vis moisture deficit regimes
of the soil and atmosphere

We compare the estimates of ESI with that of ESI; at each site for all
periods, and also under different regimes of soil moisture (SM) and
vapor pressure deficit (VPD). Fig. 3 illustrates the mean ESI and mean
ESI, at each site under different regimes of SM and VPD. Here, “high”
and “low” periods within a specific regime is based on “larger than 75th
percentile” and “smaller than 25th percentile” thresholds of the
respective variable (i.e., SM or VPD) at each site as described in Section
2.8. It is evident from Fig. 3 that ESI is consistently higher (i.e., the
evaporative stress is lower) than ESI; under high VPD periods regardless
of whether SM levels fall within high or low regimes. Notably, ESI and
ESIy are significantly different with p-value < 0.05 based on the Mann-
Whitney U test during high VPD periods. This is true irrespective of the
PET method used (Figures S4-S5). The results indicate that plants are in
more stress than predicted by the ESI during the periods of low SM and
high VPD when vegetation is expected to experience higher stresses.
These results are further supported by Fig. S6 in the supplementary
document where we can see that the difference of ESI and ESIy is always
positive for high VPD periods irrespective of the PET method used. In
contrast, during low VPD and low SM periods, ESI is lower than ESI,
irrespective of the method used for evaluating PET. It means that plants
are in less stress than indicated by the ESI during low SM and low VPD
periods. Notably, during low SM and low VPD periods, ESI and ESI, are
not significantly different (p-value > 0.05) when considering PET from
the S-W model. Overall, the conclusions drawn from comparisons be-
tween ESI and ESI, for different VPD and SM regimes are observed to be
valid for other quantiles of SM and VPD as well (see Fig. 3b and
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Figures S4b-5b). When all the time periods are considered, ESI is overall
higher than ESI;, thus indicating that ESI underestimates vegetation
stress (Fig. 3, Fig. S4-S6). It is worth mentioning that the performance of
the S-W model for predicting ET may be inadequate for certain sites. To
ensure that such sites do not unduly influence the conclusions of this
study regarding the significant difference between ESI and ESI, during
periods of high VPD, we conduct further investigations. Even after
excluding sites with suboptimal performance, our analysis reveals a
consistent pattern in our findings, as illustrated in Figure S7.

3.3. Temporal dynamics of ESI and ESI, during wet and dry years

Next, we investigate the temporal dynamics of ESI and ESI, during
wet and dry years to understand the behavior of these indices within,
and between a dry and a wet year. For this, we select two sites (US-Ne3
and US-MMS) (see Table S1 in the supplementary document) as example
sites for analysis. Site US-Ne3 is a rainfed cropping site with a maize-
soybean rotation cropping system (Suyker and Verma, 2010). At this
site, we identify the year 2012 as the dry year with a total yearly rainfall
of about 428 mm, and the year 2008 as the wet year with a total yearly
rainfall of about 1000 mm (see Fig. S8 in the supplementary document).
Site US-MMS at the Morgan-Monroe State Forest is a deciduous broad-
leaf forest characterized by an average canopy height of ~27 m and
stand age of ~80-90 years (Brzostek et al., 2014). At site US-MMS also,
we identify the year 2012 as the dry year with a total yearly rainfall of
about 780 mm, and the year 2008 as the wet year with a total yearly
rainfall of about 1478 mm (see Fig. S8 in the supplementary document).

Plant stress is expected to increase with the dryness of the atmo-
sphere and the ground. This is evident in both ESI and ESI,, which are
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lower during the dry years and higher during the wet years (Fig. 4).
Notably, ESIy is generally smaller than ESI during both years within the
two land covers. Interestingly, a decrease in ESI, due to dryness is much
larger than the decrease in ESI at the cropland site. For example, at the
site US-Ne3, the reduction in ESI (ESL,) from wet year to dry year is ~19
% (~29 %). This reduction is about ~8 % for both ESI and ESI, at the
forested site. These results indicate that assessments regarding the
fractional increase of evaporative stress experienced by vegetation
during dryer periods may get biased if evaluated based on ESI. Notably,
while the intra-seasonal variation of ESI and ESIy are similar during dry
years, for wet years, the variation of the two variables shows contrasts.
For example, at the selected crop site (US-Ne3) during the wet year, ESI
shows an overall decreasing trend while ESI, does not. Overall, the
difference between ESI and ESIy is larger during the early growing
period (see Text S1 for the identification of growing seasons), and it
reduces later in the growing season for both dry and wet years. This is
likely due to increased influence of transpiration on total evapotrans-
piration later in the growing season. Difference between ESI and ESI, is
lower at the forested site and larger at the cropland site. This can again
be attributed to higher transpiration contribution to ET at the forest site.
For example, mean T:ET for US-MMS (mean LAI=2.52) is 0.73, which is
higher than at site US-Ne3 (mean T/ET=0.58). In fact, comparison of ESI
and ESI, across all sites reveals that site-averaged difference between the
two indices increases for sites with higher E/ET ratio (with E being soil
evaporation) (Fig. S9), or smaller overall LAI Larger difference in ESI
and ESI, or high E/ET are largely governed by T/ET rather than PET,/
PET (Fig. S9). Furthermore, it is found that the difference between ESI
and ESI, is larger during non-growing season than that of growing
season (Figures S12-S16). Additionally, the difference between ESI and
ESIy increases with the dryness of the site (Figure S16). Based on these
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findings, it can be inferred that ESI does not accurately capture the
vegetation evaporative stress, especially in settings and periods with
greater dryness or a smaller contribution of transpiration to total ET.

3.4. Spatial rank correlation between ESI and ESI,

Spatial variability of ESI and ESI is compared at different temporal
scales. Notably, ESI, between any two sites can be different even if they
experience identical hydrometeorological conditions depending on the
differences in the plant functional types (PFTs) and the corresponding
stomatal kinetics between the sites. Of course the sites with identical
PFTs but different meterological forcings are expected to have different
vegetation stress as well. One of the goals of this study is to assess
whether the relative order of vegetation evaporative stress magnitude,
as captured by ESIy, is representatively captured by ESI. A poor corre-
lation would indicate that ESI maps, which inherently capture the
relative distribution of evaporative stress over the area of interest, may
not representatively reflect the distribution of plant stress. To assess this,
we calculate the spatial correlation between average ESI and ESI, at
daily, weekly, or monthly timescales across all the flux sites. For
example, to calculate spatial correlation at daily temporal scale, we first
calculate the multiyear mean of daily ESI and ESI, for all the sites. Then,
we calculate the spatial rank correlation of ESI and ESI, for a given day
of the year (say day 145). Similar calculations are performed at weekly
and monthly time scales as well. Fig. 5 shows the spatial rank correlation
between ESI and ESI; at three time scales (daily, weekly, and monthly).
Results indicate that ESI and ESI, have high (> 0.8) spatial correlation in
space during growing periods (Apr.-Sep.). This covariation becomes
poorer during non-growing periods (Oct-Mar). This is overall consistent
across all the three PET methods chosen in this study (Figures S17).
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Lower correlation during non-growing season can be attributed to lower
stress during this period, which results in milder spatial contrasts across
sites. An additional reason for this is the larger difference between ESI
and ESI, during the non-growing season (Figures S12-S16), when
contribution of E to ET is relatively large. Spatial correlation is weaker in
case of Priestley-Taylor PET method. This can be partially attributed to
the fact that Priestley-Taylor PET method does not use any information
regarding the plant properties, but the other two methods use this in-
formation in the calculation of PET, which in turn enhances the spatial
contrasts.

4. Conclusions and synthesis

This study attempted to answer one crucial question: does evapora-
tive stress index (ESI), which is often used to track vegetation health
status, and agricultural and forest droughts, representatively capture the
evaporative stress that the vegetation actually experiences, i.e., the
ESI,? ESI is usually calculated as the ratio of total water loss from the
ecosystem (or total evapotranspiration (ET)) over the potential water
demand (or potential evapotranspiration (PET)). However, as it is the
transpiration flux (T) rather than the total ET that represents the con-
strained evaporative response of vegetation due to hydroclimatic stress,
there is a likelihood of discrepancy between ESI and ESI,. This is espe-
cially expected as the dynamics of T and E with time are usually different
(Gu et al., 2018; Kool et al., 2014; Nelson et al., 2020; Raghav et al.,
2022; Talsma et al., 2018; Wagle et al., 2023; Zhou et al., 2016), and the
contribution of E to ET can be significant (Wei et al., 2017).

To assess whether the ESI index is limited in capturing the spatio-
temporal variations in evaporative stress, we first implemented a two-
source physical evapotranspiration model (Shuttleworth-Wallace or S-
W) at 49 sites located in 9 different biomes across the globe. After
obtaining the model parameters that ensured efffectiveness of S-W
model at reproducng ET and T observations, we calculated the ESI
(=ET/PET) and ESI, (ESI,=T/PET,). Following the computaion of ESI
and ESI; at daily time scale for each site, we then performed spatio-
temporal comparisons between ESI and ESI,.

The temporal dynamics of ESI and ESI, under different regimes of
soil mositure and atmospheric aridity were first compared. Our results
showed that conventional ESI underestimates the vegetation evapora-
tive stress, especially during the periods of high atmospheric water de-
mand. Furthermore, ESI overestimates the plant stress during the period
of low SM and low VPD which suggests that plants are actually in less
stress during these periods than as indicated by the ESI metric. As these
periods are more likely existent during the winter time, it could be
crucial for tracking plant stress and its consequences on winter crops.
Aforementioned results were consistent irrespective of the selection of
PET method. We also compared the response of ESI and ESI, for dry and
wet periods. Our results showed that both ESI and ESI, significantly
reduce during the dry year. However, reduction in ESI, is much larger
than the reduction in ESI, especially for crops. It indicates that because
of drynesss, the increase of plant stress is significantly greater than what
is depicted by ESI, which indicates a lesser degree of stress. Furthermore,
seasonal variation of ESI and ESI, were found to be very different.

We then analyzed the spatial dynamics of ESI and ESI, at different
temporal scales. Our results showed that the covariation of ESI and ESI,
was strong spatially during the growing periods. But, this relationship
becomes poor during non-growing periods. Generally, growing periods
are the crucial periods when tracking the plant is needed (e.g., for
agricultural or forest drought monitoring). A strong spatial correlation
between ESI and ESI, during the growing periods shows the effective-
ness of current ESI for spatial mapping of areas with higher/lower
drought stress. In other words, though ESI underpredicts the plant stress,
it can still be used to identify locations with relatively higher or lower
stress during the growing season.

The findings of this study lay a crucial foundation for the drought
research community, providing valuable insights into the behavior of
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these indices under varying environmental conditions. This is especially
important for understanding and predicting flash drought occurrences.
Notably, flash drought identification and assessment are often depen-
dent on drought conditions when evaporative stress indices fall below a
defined percentile of their statistical distribution (Christian et al., 2021,
2019; Hobbins et al., 2016; Otkin et al., 2014). Limited length of data at
the eddy-covariance sites pose challenge in assessment of such distri-
butions for ESI, for a given period. Further studies wherein both ESI and
ESI, can be extended for long periods may allow quantitative assessment
of the differences in flash drought estimation due to differences in ESI
and ESI, estimates. Overall, the results from this study underscore the
need to improve the representativeness of currently used evaporative
stress index to monitor the evaporative vegetation stress. Notably,
achieving this improvement may require accurate estimation of
ecosystem T in systems lacking in-situ data, a task that remains chal-
lenging (Stoy et al., 2019). From ease of evaluation standpoint, it is
certainly easier and straightforward to obtain ESI as a function of ET and
PET, and perhaps this ease explains the wide usage of ESI to track
vegetation evaporative stress as well. In contrast, modeling T as well as
potential transpiration flux (PET,), variables needed to obtain ESI, is
relatively challenging because T is modulated by plant physiological
properties related to hydraulics and stomatal kinetics. Deriving these
properties over large areas, in a spatially-explicit manner remains
challenging, and oftentimes need additional data associated with plant
hydraulic status (Liu et al., 2021). Furthermore, validation of modeled T
remains challenging as sources of T data, oftentimes obtained from sap
flux measurements (Flo et al., 2019; Hernandez-Santana et al., 2015;
Mitchell et al., 2009; Poyatos et al., 2016) or from partitioning of ET
(Scott and Biederman, 2017; Zahn et al., 2022; Zhou et al., 2016)
continue to be beset by uncertainties inherent in these methods. Future
studies may focus on deriving remotely sensed data of T and PET, to
extend the utility of ESI, beyond settings with in-situ data. The goal
should include generating the best remote sensing-derived ESI, after
performing validation at eddy-covariance sites. Notably, obtaining
remote sensing-derived ESI, using the methodology outlined in Sections
2.1 to 2.7 would require remotely sensed ET data, soil moisture data (see
Equation 6), and various other meteorological variables (e.g., R,, VPD,
wind speed, etc.). Given the resolution mismatch among these data
products and the inherent uncertainties in each dataset, a thorough
assessment of remotely sensed ESI and ESI, across multiple data prod-
ucts is necessary.
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