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Asynchronous Multi-Information
Source Bayesian Optimization
Resource management in engineering design seeks to optimally allocate while maximizing
the performance metrics of the final design. Bayesian optimization (BO) is an efficient
design framework that judiciously allocates resources through heuristic-based searches,
aiming to identify the optimal design region with minimal experiments. Upon recommend-
ing a series of experiments or tasks, the framework anticipates their completion to augment
its knowledge repository, subsequently guiding its decisions toward the most favorable next
steps. However, when confronted with time constraints or other resource challenges, bot-
tlenecks can hinder the traditional BO’s ability to assimilate knowledge and allocate
resources with efficiency. In this work, we introduce an asynchronous learning framework
designed to utilize idle periods between experiments. This model adeptly allocates
resources, capitalizing on lower fidelity experiments to gather comprehensive insights
about the target objective function. Such an approach ensures that the system progresses
uninhibited by the outcomes of prior experiments, as it provisionally relies on anticipated
results as stand-ins for actual outcomes. We initiate our exploration by addressing a
basic problem, contrasting the efficacy of asynchronous learning against traditional syn-
chronous multi-fidelity BO. We then employ this method to a practical challenge: optimizing
a specific mechanical characteristic of a dual-phase steel. [DOI: 10.1115/1.4065064]

Keywords: data-driven design, design of experiments, design optimization, design process,
machine learning, simulation-based design

1 Introduction
Recent developments in efficient design and optimization frame-

works have prominently featured Bayesian optimization (BO) as a
central element. This efficient technique significantly reduces the
cost demands tied to optimizing expensive objective functions.
BO approaches are capable of working with minimal data and are
driven via a heuristic-based search in the design space to discover
optimal design regions. Such characteristics have established BO
as an exceptionally efficient design technique. It adeptly allocates
resources to the most potentially informative experiments, facilitat-
ing enhanced learning and yielding superior estimates of the
optimal solution.
In BO, a surrogate of the objective function f (x) is constructed,

given existing observations, to predict the response across the
design domain at unobserved locations. A Gaussian process (GP)
is a popular surrogate regression model that is easy to manipulate,
for instance, by adding new observations or updating the hyperpara-
meters, as well as being a computationally cheap source for proba-
bilistic prediction of the objective function response [1]. BO
heuristic-based search relies on GP probabilistic predictions to eval-
uate the potential improvement of the system’s knowledge using an
acquisition function. A proper acquisition function should

balance the exploitation of the current system’s knowledge and
exploration of unobserved design regions. Accordingly, BO itera-
tively proposes new experiments to learn and discover the
optimal regions with minimal resource investment [2,3].
BO establishes an efficient learning framework by allocating

resources to the experiment (or, more generally, design point)
with a higher chance of improving the knowledge of the system
being optimized. However, the characteristics of a particular
design problem may drastically increase the need for more observa-
tions to make reliable decisions. For instance, increasing the
number of design variables requires learning and exploring a vast
design space, similarly, confronting an irregular objective function
response surface necessitates the need for making more observa-
tions to build more accurate GPs. To address the deteriorating per-
formance of BO in such conditions, different BO-based design
frameworks have been developed by integrating computational
tools to improve modeling and decision-making procedures.
For example, batch BO [4,5], suggests parallel experiments to

increase the learning rate within a limited time window. It also elim-
inates the GP hyperparameter tuning step by considering every pos-
sible representation of the objective function. This essentially
addresses the issue of working with minimal data in sparse spaces
where any systematic hyperparameter tuning approach can fail.
Another example is the use of the active subspace method (ASM)

[6–8] to define the design problem on low-dimensional spaces to
speed up the learning process. ASM-based BO focuses on sub-
spaces with larger objective function variability to maximize poten-
tial improvements of a target value in a fewer number of iterations
by ignoring less informative regions of the design space.
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To significantly decrease the number of expensive experiments in
Bayesian design campaigns, multi-fidelity BO frameworks [9–13]
have been proposed to exploit information from multiple sources
instead of relying on one expensive model or experiment. In
many engineering applications, there exists more than one experi-
ment/model, which we call an information source, to estimate a
target property, each with a different fidelity level and evaluation
cost. It is assumed that any information source has potentially
useful information about the target property, thus, BO leverages
resources to exploit multiple information sources. Then, a fused
model is constructed by fusing information from all contributing
sources. The information is perceived by correlating the responses
of lower fidelity models to each other and to the highest fidelity
source, known as the ground truth. The queries from the ground
truth model are driven via information learned from low-fidelity
sources to get the most out of the limited allowed number of
experiments.
Physics-informed BO is another proposed methodology to

augment knowledge from underlying governing laws of physical
phenomenons or partially observable behavior of systems to
lower the dependency on statistical information in the form of
input–output data [14–17].
The aforementioned BO-based frameworks have been shown to

outperform conventional BO by allocating resources effectively to
more valuable experiments to collect information whether from
multiple cheaper sources or a single source. However, a common
limitation of any BO-based design framework is that the design
process comes to a halt while waiting for completion of the required
experiments. Once the BO suggests the next experiment to run, it
has to wait until the result is returned to make the next decision.
This so-called synchronous learning prevents the framework from
optimally learning the objective function under a time constraint.
Some works have been done to propose asynchronous learning

scenarios to get over the halting challenge. One suggested approach
to handling multiple independent experiments [18,19] is to do
Thompson sampling to ensure variety in experiments. Additionally,
penalizing already sampled regions is proposed to force the system
to explore non-sampled or less-sampled regions [20] while previ-
ously selected experiments are still running. Another technique is
to sample from GP posterior to estimate an experiment’s
outcome, then, temporarily update the GP and compute possible
acquisition function values to make the next decision [21]. This,
in fact, follows a Monte Carlo sampling approach to generate a suf-
ficiently large number of samples from a yet-to-be-completed
experiment posterior to compute the expected value of the acquisi-
tion function. However, this latter approach can get computationally
intractable if multiple sequential decisions should be made.
In Ref. [22], an asynchronous framework is suggested that dis-

tributes experiments among multiple workers (cores) and as soon
as one core is released, the system uses the result to make the
next decision. Thus, the process is not “bottlenecked” by the
slowest experiment. However, the downside of this approach is
that assuming a batch of m experiments are running, the next deci-
sion is made while no information is available on m − 1 experi-
ments. Although the system is moving forward and proposing
asynchronous experiments, it may not be the most efficient
approach to decision-making.
In this work, we propose an asynchronous multi-fidelity BO with

a decision-making strategy to partially incorporate information
from running experiments yet to be completed. This is done by trig-
gering an experiment and temporarily augmenting the optimistic
expected outcome, based on the expected improvement computa-
tion, to update the system’s knowledge to move forward while
the experiment is still running.
Accounting for expected improvement is crucial. Augmenting the

mean prediction of a GP, as the expected outcome, at a location x to
itself does not change the mean response surface of the GP since it is
essentially passing through the predicted value. The immediate
impact, however, is shrinkage of the uncertainty around x as it is
assumed to be the new observed data with no uncertainty. The

reduction in uncertainty results in potentially smaller expected
knowledge gain evaluated by the acquisition function in the neigh-
borhood of x and BO ignorance to explore there. Thus, not much
information is added to the system to impact the next decision
other than suggesting a different experiment—which could be
done by batch BO—without interaction among the selected exper-
iments. Our proposed approach also enables us to perform multi-
fidelity BO to select both design and information source to query
since each information source could be updated independently.
This is also computationally cheaper in comparison to the Monte
Carlo sampling method to compute the expected value of an acqui-
sition function while multiple experiments are still running.
In the following, we first introduce the ingredients of our multi-

fidelity BO framework such as GPs, information fusion, and the
search policy. Then, the main steps taken to complete each iteration
of the framework are discussed. In Sec. 3, we use a synthetic func-
tion to show how the framework exploits multiple information
sources in both synchronous and asynchronous scenarios. Then,
we show the application in designing a dual-phase steel. In Sec.
4, we summarize the work and discuss potential improvements to
the framework to address more realistic applications.

2 Methods
We consider an optimization problem as

x∗ = argmax
x∈χ

f (x) (1)

where f (x) is an expensive-to-evaluate black-box objective function
defined on the design space χ. The goal of the optimization process
is to approximate x∗ as accurately as possible by spending limited
resources assigned to the task. We assume that more than one com-
putational model or experiment exists to approximate the objective
function at different design points. Thus, we seek a multi-fidelity
approach, suggesting a more efficient optimization scheme to
locate the optimum design region by lowering the number of expen-
sive function evaluations. By using a multi-fidelity setting, we build
a predictive model to approximate the response of the expensive
black-box objective function by fusing information from multiple
models/experiments, known as information sources. In the follow-
ing, we discuss different ingredients of the optimization framework
and then, the approach to learn from multiple information sources
asynchronously.
The first step to employing a multi-fidelity Bayesian optimization

framework is constructing surrogates of each information source to
connect the design space to each source’s response. A Gaussian
process is commonly used as the surrogate to not only predict the
response but also provide the uncertainty associated with its predic-
tions [1]. A Gaussian process conditions a probabilistic function to
the training data and provides a normal distribution as its prediction
at an unobserved location.
In the presence of i information sources and Ni previously eval-

uated points: {XNi , yNi
}, where XNi = (x1,i, . . . , xNi ,i) are Ni input

samples and yNi
= fi(x1,i), . . . , fi(xNi ,i)
( )

are the respective objective
values, information source imodeled by a Gaussian process at input
location x is represented by

fGP,i(x) ∣ XNi , yNi
∼ N μi(x), σ

2
GP,i(x)

( )
(2)

where

μi(x) = Ki(XNi , x)
T [Ki(XNi , XNi ) + σ2n,iI]

−1yNi

σ2GP,i(x) = ki(x, x) − Ki(XNi , x)
T

[Ki(XNi , XNi ) + σ2n,iI]
−1Ki(XNi , x)

(3)

where ki is a real-valued kernel function over the input space,
Ki(XNi , XNi ) is the Ni × Ni matrix with m, n entry as ki(xm,i, xn,i),
and Ki(XNi , x) is the Ni × 1 vector with mth entry as ki(xm,i, x).
The term σ2n,i models observation error that stems from experiments.
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A common choice for kernel is the squared exponential covari-
ance function

ki(x, x′) = σ2s exp −
∑d
h=1

(xh − x′h)
2

2l2h

( )
(4)

where d indicates the dimensionality of the input space, σ2s is the
signal variance, and lh, where h = 1, 2, . . . , d, is the characteristic
length-scale that defines the correlation strength in each dimension.
The next step in constructing a multi-fidelity framework is to

employ information fusion technique to integrate information
from all sources into a single predictive model. This way, we are
able to spend resources on evaluating different information
sources such that the predictive model encapsulates the highest
amount of information about the optimum design at each stage of
the optimization process [23–25].
There are different information fusion techniques such as Baye-

sian modeling averaging [26–31], the use of adjustment factors
[32–35], covariance intersection methods [36,37], and fusion
under known correlation [38–40]. In our multi-fidelity optimization
framework, the optimization is performed with respect to the
ground truth regardless of the hierarchy of fidelity. This technique
uses reification to calculate the correlation between pairs of infor-
mation sources to fuse their information and approximate the
ground truth [23,25].
Reification has been proposed in Ref. [40] as a technique to

combine (fuse) multiple normal probability distributions as depen-
dent information sources. Here, since information sources are repre-
sented via Gaussian processes, “Reification” is an appropriate
approach to fuse multiple information sources assuming they are
all correlated as they are approximating the same objective function.
Following Ref. [40], the fused mean and fused variance estimates
from multiple predictions in the forms of normal distributions are
defined as

E[ f̂ (x)] =
eTΣ̃(x)−1μ(x)
eTΣ̃(x)−1e

(5)

Var f̂ (x)
( )

=
1

eTΣ̃(x)−1e
(6)

where e = [1, . . . , 1]T, μ(x) = [μ1(x), . . . , μm(x)]
T given m

information sources estimating the objective value at input
location x, and Σ̃(x) is the covariance matrix between information
sources

Σ̃(x) =

σ21(x) . . . ρ1m(x)σ1(x)σm(x)
ρ12(x)σ1(x)σ2(x) . . . ρ2m(x)σ2(x)σm(x)

..

. . .
. ..

.

ρ1m(x)σ1(x)σm(x) . . . σ2m

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ (7)

where ρi,j is the correlation coefficient between the deviations of
information sources i and j at x. To estimate the correlation coeffi-
cient, information sources are reified in turn which means they are
treated as ground truth. Then the correlation between deviations is
calculated as

ρij(x) =
σ2j (x)

σ2i (x) + σ2j (x)
�ρij(x) +

σ2i (x)
σ2i (x) + σ2j (x)

�ρ ji(x) (8)

where �ρij and �ρ ji are

�ρij(x) =
σi(x)

























μi(x) − μj(x)
( )2+σ2i (x)√ (9)

�ρ ji(x) =
σj(x)

























μi(x) − μj(x)
( )2+σ2j (x)√ (10)

The root squared term in the denominators in Eqs. (9) and (10) are
representing the total uncertainty of each information source as the
sum of the information source variance and square of the deviation
with respect to the reified information source. The information
source variance itself is defined as

σ2i (x) = σ2GP,i(x) + σ2disc,i(x) (11)

that is the total uncertainty that stems from the GP probabilistic
modeling and the discrepancy with respect to the ground truth
model. A higher fidelity information source has less discrepancy
with respect to the ground truth. Consequently, it is less correlated
to lower fidelity sources. In general, the reification process puts
larger weights on less uncertain information sources when calculat-
ing the linear combination of the distributions.
The fused model, also a Gaussian process, is then created using

fused means and fused variances as

f̂ fused(x) ∼ N (μfused(x), Σfused(x)) (12)

The heuristic we employ in the context of BO should address the
trade-off between the exploration of unobserved locations and the
exploitation of the current system’s knowledge. In a multi-fidelity
setting, the decision should be made on what design and which
information source to query to gain the most information out of
an experiment. Here, we use the knowledge gradient (KG) policy
[41–43] as the metric that quantifies the expected change in the
system’s knowledge of the optimum quantity of interest when eval-
uating a potential design point using a given “information source.”
To evaluate the expected knowledge gain if a design point x is
added, we define information sources, already queried design
points, and corresponding objective values by (i1 :N , x1 :N , y1 :N )
for the first N queries. f̂ is the posterior distribution of the fused
model and the expected improvement is given as

EI(x) = E max
x′∈X

E[ f̂ (x′)|i1 :N , x1 :N , xN+1 = x, y1 :N ] −max
x′∈X

E[ f̂ (x′)|i1 :N , x1 :N , y1 :N ]
[ ]

= E max
x′∈X

E[ f̂ (x′)|i1 :N , x1 :N , xN+1 = x, y1 :N ]
[ ]

−max
x′∈X

E[ f̂ (x′)|i1 :N , x1 :N , y1 :N]
(13)

Note that the last expression is known and can be removed
from the expectation operator as it is conditioned on the first N
queries. Then, using KG policy to maximize this expectation, the
value of being at the knowledge state HN is defined as
VN (HN ) =maxx∈X HN , where the knowledge state itself is pre-
sented by HN = E[ f̂ (x′)|i1 :N , x1 :N , y1 :N]. The KG as a measure
of expected improvement is written as

νKG(x) = E[VN+1(HN+1(x)) − VN (HN )|HN] (14)

The decision on the information source to query is made by repeat-
ing the calculations, each time updating a different information
source to select the best pair of a design point and an information
source that maximizes νKG(x) as the next BO experiment.
A multi-fidelity BO framework is created by implementing

Gaussian processes as surrogates, an information fusion technique,

Journal of Mechanical Design OCTOBER 2024, Vol. 146 / 101708-3

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/146/10/101708/7327321/m
d_146_10_101708.pdf?casa_token=M

uLl52qfF-U
AAAAA:sFfiEcZJH

JVKaXBrXrM
XuPdYH

fu6R
cB2N

O
IpA-erXC

oS-8bZ8j6pTAYgQ
0O

W
o4XnC

fAfH
tIf2w

 by Siem
ens Energy, Inc user on 18 Septem

ber 2024



which is reification here, and an acquisition function such as KG.
Then heuristic-based decisions are made based on the constructed
fused model’s predictions and acquisition function evaluations on
potential next experiments to select the most informative experi-
ments to discover the optimum design [5,8,10,11,13,24,44–46].
While it has been shown that taking a multi-fidelity approach

increases the design efficiency significantly, it may not use available
resources as efficiently considering there is idle time while waiting
for the completion of an experiment. More specifically, once a deci-
sion is made about the next experiment to run, an information
source will be called and the BO loop will be paused, awaiting
the experiment to be completed.
Here, we propose an approach to exploit resources more effi-

ciently by preventing a halt in the optimization process. In this
approach, an experiment is triggered, but the optimistic expected
outcome of the experiment is taken as a temporary result as long
as the experiment is running. Then, the optimization loop moves
on to make the next decision based on the temporary updated
system knowledge. This leads to asynchronous calculations while
the process is iterating forward.
To calculate the optimistic expected outcome of an experiment,

we use expected improvement, EI(x), as a systematic prediction
of the expected improvement at x. Then the optimistic expected
outcome is μ(x) + EI(x) where μ(x) is the mean of the GP posterior
distribution at design point x. The expected improvement formula,
assuming the GP posterior distribution defined by N (μ(x), σ2(x)),
is calculated as

EI(x) = E[max(y, fbest) − fbest]

= (μ(x) − fbest)Φ(
(μ(x) − fbest)

σ(x)
) + σ(x)ϕ(

(μ(x) − fbest)
σ(x)

)

(15)

whereΦ andϕ are cumulative distribution function (CDF) and prob-
ability density function (PDF) of the standard normal distribution
respectively. However, we are using expected improvement as a
systematic way to define how optimistic the framework should be,
thus, the expected improvement is calculated with respect to μ(x)
and Eq. (15) reduces down to approximately 0.4 × σ(x). In the syn-
chronous scenario, a GP is updated once the experiment is completed

by augmenting the result as a new training data {x, f (x)}, however, in
the asynchronous scenario, a GP is updated immediately after
decision-making using the expected outcome, {x, μ(x) + EI(x)}.
Once the experiment is completed, the augmented data point in the
GP will be updated with the actual experimental value.
Here, we assume that the budget for optimization is given as a

specific number of cores (or compute resources) under a time con-
straint. We point out that this assumption is made to motivate the
case study. However, the same framework can potentially be used
in a non-computational setting as long as there are hard resource
constraints (e.g., time) and there are multiple tasks that one can
carry out asynchronously.
Figure 1 illustrates the steps in our proposed approach. The

overall goal here is to allocate resources as efficiently as possible
to the optimization process. Each step is explained in more detail
in the following:

(1) The system picks information sources that, if selected, can be
completed in the remaining time window.

(2) Multi-fidelity BO calculations are performed by creating a
fused model from temporary updated information sources.
The experiment that maximizes the acquisition function
will be selected.

(3) A selected experiment is triggered and if any cores are left, it
moves forward.

(4) While the experiment is running, the optimistic expected
outcome, μ(x) + EI(x), is temporarily augmented to the
respective GP. Once the experiment is completed, the exper-
imental value replaces the augmented expected value.

(5) The ground truth model is queried on a timely basis to update
system knowledge regarding information source deviations
from the true model. Since only one ground truth calculation
is allowed at any time, a queue of queries is created to ensure
queries are done in order.

With this approach, if multiple cores are given to a design task, it
is ensured that all cores carry out calculations at all times and the
resources are fully exploited to increase the learning rate of the
Bayesian design campaign. The only situation in the optimization,
when the iterative loop comes to a halt is when all cores are
being used to run experiments. However, as soon as one experiment

Fig. 1 Schematic of the proposed asynchronous multi-information source Bayesian optimization. The
main loop starts by filtering information sources, then, making the decision on design and information
source to query. Once the experiment is triggered, the result is temporarily augmented until the true
result is returned. The ground truth is queried on a timely basis to update information source discre-
pancy terms.
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is completed, the core is released and carries the rest of the calcula-
tions. Once the time is up, the framework returns the best estimate
of the optimum design predicted by the fused model.
Note that with this framework, experiments are triggered regard-

less of other experiments’ status, which leads to asynchronous
learning from multiple sources. To program this framework, we
used asynchronous functions in MATLAB to create future objects
that store the status of the experiment and the final results when
completed. Thus, the status of a future object can be monitored to
read the final result as soon as the calculations are finished.

3 Results
To investigate the performance of our proposed asynchronous

active learning framework, first, we solve two synthetic test prob-
lems and then we apply it to a real-world engineering application
to optimize the mechanical response of dual-phase steel. In all
test problems, the information source GPs are initialized with
one random training data and we assumed there is no observa-
tion from the ground truth yet at the beginning of the optimiza-
tion process. In all cases, the results will be compared to the
synchronous version of our multi-fidelity Bayesian optimization
framework.
The maximization test problem is designed by creating a ground

truth model and two information sources to approximate the
response of the ground truth model as shown in Fig. 2. We
assume that running each ground truth query requires 10 s and low-
fidelity sources each require 2 s to be completed. For this problem,
we assume the budget is given as four cores for 100 s to return the
best estimate of the optimum design. This is equivalent to 400 s of
calculations. The way resources are distributed between a number
of cores and wall-time is a subject of future study, however, here,
to avoid the complexity caused by varying the number of cores
and time window, we stick to four cores and 100 s of computation
for each core.
Note that in both the asynchronous and synchronous versions, the

same amount of computational resources is allocated. The asyn-
chronous version uses cores to run more experiments to increase
the learning rate, however, the synchronous version can only use
cores to do parallel computations of acquisition functions in the
decision-making step. In both versions, the ground truth query is

Fig. 2 Synthetic functions representing a ground truth model
and two lower fidelity sources. The goal is to find the ground
truth’s maximizer.

Fig. 3 Exploitation of information sources in (a) asynchronous and (b) synchronous sce-
narios. Asynchronous learning enables more queries from information sources by recover-
ing the idle times between experiments and increasing the system’s knowledge at a faster
pace.

Fig. 4 The mean and standard deviation of the estimated optimum design over 100 repli-
cations of simulations as a function of time. More information source queries in asynchro-
nous scenario enhances the system’s learning capability and leads to faster convergence
to the optimum design region.
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initiated every 20 s to ensure the expensive model is queried on the
same basis for fair comparison.
The number of queries from low-fidelity sources and the ground

truth model are shown in Fig. 3 for both asynchronous and synchro-
nous versions. As shown in the figure, the asynchronous version
makes a larger number of calls to the low-fidelity sources and
fully exploits the computational resources while the synchronous
version comes to a halt every time an experiment is initiated.
To obtain the average performance of both asynchronous and

synchronous versions, the estimated optimum design and corre-
sponding objective function value as a function of time are averaged
over 100 replications of simulations, as shown in Figs. 4 and 5,
respectively.

On average, asynchronous optimization rapidly finds the
optimum design region since the system’s knowledge is increasing
at a faster pace. This, in fact, shows that if the system exploits other
cores’ (or other resources) idle time to actively learn by making
more observations from information sources, it enhances the
overall performance of the system. Note that the synchronous
version makes all decisions based on actual experimental values
at all times, but the asynchronous version relies on the estimated
outcomes of the experiments and continues collecting information.
However, making more observations overcompensates the inaccu-
racy that stems from using expected results.
The decision-making in asynchronous optimization relies on the

uncertainties associated with each information source. Therefore,
there is a possibility that in initial iterations, when there are not
enough ground truth observations, the decision-making is adversely
influenced by inaccurate discrepancy calculations. The question
here is: what if an information source is very inaccurate and ini-
tially, there is not enough evidence to determine such discrepancy
to the ground truth? While this is usually the scenario in any multi-
fidelity BO process, it may deteriorate the asynchronous optimiza-
tion performance due to the initial reliance on all sources for a
longer time window and the accumulation of GP errors. In such sit-
uations, the rationale behind decision-making in the early stages
would be the predicted objective function value regardless of its
credibility. For instance, in the case of maximizing the objective
function, the framework relies on information sources that
suggest a larger objective function. Eventually, it learns the discre-
pancy of sources to the ground truth and decides to discard or keep
querying a source. To confirm the capability of the asynchronous
scenario to handle such situations, another test problem is defined
in Fig. 6 where the second source has a large discrepancy to the
ground truth while also showing an opposite trend in objective func-
tion variability. We use similar design settings as the previous test

Fig. 5 The fused mean and standard deviation of the discovered optimum objective func-
tion value over 100 replications of simulations. The jumps in the left panel are attributed to
the initial exploration of the space by the Bayesian optimization framework.

Fig. 6 Synthetic functions representing a ground truth model, a
medium-fidelity source, and a low-fidelity source. The goal is to
find the ground truth’s maximizer

Fig. 7 An instance of exploitation of information sources in (a) asynchronous and
(b) synchronous scenarios
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problem. Here, the low-fidelity source also predicts lower objective
function values in comparison to the other source, thus, it is
expected that the framework initially discards the low-fidelity
source.
By looking at the calls to each source in Fig. 7, it is observed that

the framework is now calling the lower fidelity source less as it
finds no value in collecting information from it. However, note
that the low-fidelity source discrepancy to the ground truth is
smaller on the right-end side of the design space, and the framework
still calls it to collect some useful information.
Figures 8 and 9 also illustrate the optimum design point, the

maximum fused objective function, and the standard deviations as

functions of time. In contrast to the first test problem, the asynchro-
nous BO here needs more time to recognize and move toward the
optimum design region as shown in Fig. 8 since it is collecting
information only from one source. After exhausting the first
source, it starts to collect information from the second source as
well. This is not the case in synchronous optimization as 100 s is
probably not enough to exhaust the better source.
We now demonstrate the results of applying our asynchronous

active learning framework to maximize the normalized strain hard-
ening rate (NSHR), (1/τ)(dτ/dε pl) at a plastic strain level of 1.5%,
of a dual-phase (ferrite-martensite) steel by adjusting the volume
fraction of martensite phase—dual-phase steels, a variation of
advanced high-strength steels, have experienced fast growth in
the automotive industry due to desired microstructural properties
[47]. Optimizing their properties requires careful optimization of
their microstructure through chemical or processing tuning.
In dual-phase steels, both ferrite and martensite phases undergo

nonlinear elastic-plastic deformation with significantly different
strength levels and strain hardenability [48,49]. The goal here is
to discover the optimum volume fraction of the martensite phase
that maximizes NSHR at a given strain level.
To model the mechanical behavior of the dual-phase steel, an

expensive finite element model-based simulation is carried out to
compute the mechanical response of a three-dimensional represen-
tative volume elements of the dual-phase steel microstructure—for
more details on this problem, please consult Ref. [44]. However,
since the calculations may take hours, in this work, we replace
the finite element model with a surrogate (a Gaussian process) to
accelerate the design process. On the other hand, there are three sim-
plified lower fidelity models to estimate the mechanical property of
interest at lower costs based on isostrain [50], isostress [51], and
isowork [52] conditions. These models are discussed in more

Fig. 8 The mean and standard deviation of the estimated optimum design over 100 repli-
cations of simulations as a function of time. More information source queries in asynchro-
nous scenario enhances the system’s learning capability and leads to faster convergence
to the optimum design region.

Fig. 9 The fused mean and standard deviation of the discovered optimum objective func-
tion value over 100 replications of simulations. The jumps in the left panel are attributed to
the initial exploration of the space by the Bayesian optimization framework.

Fig. 10 Normalized strain hardening rates as a function of mar-
tensite phase for the ground truth (finite element model) and sim-
plified lower fidelity models: isostrain, isostress, and isowork

Journal of Mechanical Design OCTOBER 2024, Vol. 146 / 101708-7

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/146/10/101708/7327321/m
d_146_10_101708.pdf?casa_token=M

uLl52qfF-U
AAAAA:sFfiEcZJH

JVKaXBrXrM
XuPdYH

fu6R
cB2N

O
IpA-erXC

oS-8bZ8j6pTAYgQ
0O

W
o4XnC

fAfH
tIf2w

 by Siem
ens Energy, Inc user on 18 Septem

ber 2024



detail in Refs. [10,45]. Figure 10 shows the response of all models,
the normalized strain hardening rate as a function of martensite
volume fraction.
For the demonstration problem, the computational resource is

given as four cores for 200 s. Each low-fidelity query takes ∼3 s
and every ground truth query takes 10 s to respond. A ground
truth query is initiated every 25 s to correct the discrepancies
between information sources and the ground truth model for more
accurate correlation calculations between models. The number of
model calls is plotted versus time for both asynchronous and syn-
chronous versions in Fig. 11. As shown in the figure, the asynchro-
nous learning framework is capable of recovering the idle times
between experiments to make a significantly larger number of
observations from each source.

The estimated optimum volume fraction and resulting NSHR
values versus time are averaged over 100 replications of simulations
and are plotted in Figs. 12 and 13 respectively. Similar to the toy
problem’s results, the asynchronous version rapidly recognizes
the optimal volume fraction range and searches to find the best
value. The small jumps are attributed to the fact that the asynchro-
nous framework makes decisions based on temporarily updated
knowledge with expected experiment outcomes. It is eventually
corrected as more observations are made from information
sources and the ground truth. Importantly, as in the case of the
toy problem, in this case the asynchronous-BO framework pro-
duced results that were significantly less uncertain. This lower
uncertainty is an indication of the robustness of the approach and
is also evidence that the asynchronous-BO framework effectively

Fig. 11 Exploitation of information sources in (a) asynchronous and (b) synchronous sce-
narios. The ground truth model is called on a timely basis in both scenarios.

Fig. 12 The mean and standard deviation of the estimated optimum martensite volume
fraction over 100 replications of simulations as a function of time. The asynchronous sce-
nario quickly discovers the optimal region and the jumps are caused by replacing the tem-
porary estimations with the actual experiment results.

Fig. 13 The fused mean and standard deviation of the discovered optimum normalized
strain hardening rate over 100 replications of simulations. Using asynchronous learning
technique, the optimum objective function is discovered rapidly.
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learns more about the problem being solved under the same
resource budget.
Note that our proposed asynchronous learning differs from tradi-

tional parallel experimentation in the sense that, first, an expected
value of previous experiments, even though not completed yet, is
incorporated in the decision-making process, while parallel experi-
ments are only decided based on completed experiments. Second,
our framework is not bottlenecked by the slowest experiment as
is the case in conventional multi-information source BO frame-
works. As soon as one experiment is completed, regardless of the
other experiments’ status, a new decision is made to trigger a new
experiment. Also note that similar to batch BO, our sequential asyn-
chronous version also uses multiple cores to handle multiple calcu-
lations, but any decision has some degree of dependency on the
previously completed or still running experiment(s). In contrast,
in batch BO, there is no such interaction between decisions of the
same batch of experiments.

4 Conclusions
In this work, we proposed an asynchronous multi-fidelity Baye-

sian optimization framework to recover the idle times between
experiments to increase the learning capacity of the system. In con-
trast to the synchronous learning framework, with the asynchronous
version, the system does not come to a halt waiting for any exper-
iment completion, rather, it calculates the expected outcome of the
experiment based on a Gaussian process probabilistic prediction
and moves on to make the next decision. In this study, we
assumed that the computational resources are given as a number
of cores for a limited time window since all the information
sources are computational models. In more realistic examples, an
information source can be an experimental procedure to measure
a property of interest. Then, taking the asynchronous approach sug-
gests initiating the experiment and moving on, however, other types
of resource constraints may apply such as financial considerations.
Future work consists of two main aspects of asynchronous

resource allocation: distribution of (computational) resources, and
decision-making based on additional resource constraints such as
financial considerations. The former addresses the question of
how many cores should be exploited concerning the number of
information sources to maximize the learning rate and the latter
takes into account other resource allocation options in addition to
time to ensure the most efficient decisions are made considering
the respective costs. Additionally, more thoughtful decisions on
the selection of information sources may improve the performance
of the framework. In this study, the basis for the decision-making
process was solely maximization of the knowledge gradient
policy, however, the expected gains could be calculated more
intelligently by considering the improvements per unit cost of
running the experiment or per unit time according to the specific
constraints of a design task.
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