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A B S T R A C T

In this work, a long-established but sparsely documented method of obtaining semi-analytic derivatives of
thermodynamic properties with respect to equilibrium conditions is briefly reviewed and rigorously derived.
This procedure is then leveraged to construct general forms of derivatives of the residual driving force, a
metric for measuring phase stability used in CALPHAD model optimization, with respect to overall system
and individual phase compositions. Applied examples – calculating heat capacity in the Al-Fe system,
thermodynamic factors in the Nb-V-W system, and residual driving force derivatives in the Ni-Ti system –
demonstrate the versatility, accuracy, and extensibility of this method. Using the developed method, residual
driving force gradients can be applied directly in CALPHAD model optimizers, as well as in materials design
frameworks, to identify regions of phase stability with an efficient, gradient-based approach.
1. Introduction

Thermodynamics provides an elegant and rigorous analytical frame-
work for describing how the internal state of a given system changes as
a function of changes in external conditions. Application of these foun-
dational principles to explain and predict the behavior of real systems
led to the development of the Calculation of Phase Diagram (CALPHAD)
method [1]. In this method, parametric models for the Gibbs energies of
ndividual phases are built as functions of temperature, pressure, and
onstitution and fit to empirical and/or computational data. Further
ndependent variables and corresponding physics can be added to the
odels if the system experiences additional types of work.
Given a set of external conditions, the equilibrium state of the

ystem is then determined through a constrained minimization of the
otal Gibbs energy. Constraints can be external—applying to the system
s a whole—or internal—applying to an individual phase—and they
ange from setting the equilibrium temperature and composition of the
ystem, to assigning the phase fraction of a given phase or enforcing
variety of internal and external conservation laws. The outcome
f this minimization is the overall specification of the system and
nternal phase degrees of freedom, such as phase fraction and sublattice
ite fractions, respectively, at the thermodynamic equilibrium state
orresponding to the provided external conditions.

∗ Corresponding author.
E-mail address: cjkunselman18@tamu.edu (C. Kunselman).

While this outcome is extremely useful for applications requiring the
equilibrium Gibbs energy description and/or corresponding external
and internal degrees of freedom of the equilibrium system, it is not eas-
ily extensible to all other equilibrium thermodynamic properties that
may be of interest. In theory, properties derived from the fundamental
thermodynamic equation or its Legendre transforms can be obtained by
taking derivatives of the Gibbs energy with respect to the appropriate
external conditions. However, solving the constrained optimization
problem introduces dependent variables into the equilibrium model
of the Gibbs energy, making the recovery of analytic expressions for
the dependence of these degrees of freedom on external conditions
generally nontrivial. Thus, analytic expressions for equilibrium ther-
modynamic properties outside of Gibbs energy are not always readily
evident at the conclusion of an equilibrium calculation.

Of course, derivatives of the Gibbs energy can be approximated
numerically. However, these approximations can be both computa-
tionally expensive for high-throughput, multi-component calculations,
and extremely sensitive to even small discontinuities in the underlying
thermodynamic functions. Seeking to avoid numeric differentiation
and recognizing that all necessary information to calculate analytic
derivatives is encoded in the minimized Gibbs energy functional, Bo
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Jansson developed and implemented the ‘‘dot derivative’’ method in the
commercial Thermo-Calc software in the 1980s [2,3]. More recently,
open-source thermodynamic equilibrium calculation software such as
OpenCalphad [4] and PyCalphad [5] also allow users to leverage
the dot derivative method. As explained in [6,7], the dot derivative
approach allows for point queries of the analytic derivative of thermo-
dynamic quantities with respect to external conditions at the conclusion
of an equilibrium calculation through the application of an adjoint-like
procedure [8] in which the assigned external conditions are treated as
design variables. Since the term dot derivative is also used to refer
to derivatives with respect to time in many engineering applications,
the remainder of this work will refer to this technique of calculating
analytic thermodynamic derivatives at equilibrium as the ‘‘Jansson
derivative’’ method.

The specific procedure for calculating a Jansson derivative can
vary based on the applied Gibbs energy minimization method. In [6],
Larsson and Jansson provide a rigorous mathematical description of a
general Jansson derivative method that couples well with a Newton–
Raphson minimizer which optimizes phases’ internal degrees of free-
dom and overall system constraints all in one step for each iteration [9].
In [7], Sundman et al. document a Jansson derivative procedure that
couples well with a sequential quadratic programming (SQP) minimizer
defined by the Lagrange–Newton method in which the optimization
of internal phase degrees of freedom are decoupled for each phase
through fixing the values of the overall system constraints at the newly-
calculated value for that iteration [10,11]. However, Sundman et al. [7]
only outline the procedure for taking a derivative with respect to a
potential, and they do not provide rigorous proof for why the method
works.

The ability to efficiently calculate analytic derivatives of thermo-
dynamic properties at equilibrium with respect to conditions of the
equilibrium calculation is extremely useful for a variety of applications.
Basic applications of these derivatives include calculating properties
such as heat capacity, thermal expansion, and isothermal compress-
ibility as they are defined in terms of derivatives of the thermody-
namic potentials. More sophisticated applications include the calcula-
tion of derivatives of temperature with respect to composition—or vice
versa—in order to explore the behavior of phase boundaries in high-
dimensional systems. Additionally, thermodynamic factors, or deriva-
tives of chemical potential with respect to composition, can be cleverly
employed to compute curvature of the Gibbs energy surface in com-
position space. Recent publications treat CALPHAD model parameters
as thermodynamic potentials to demonstrate how Jansson derivatives
with respect to these parameters can be used for sensitivity analy-
sis [12] and uncertainty quantification (UQ) [13]. Looking forward,
UQ methods similar to that employed in [13], which showed drastic
improvements in efficiency over widely-used Monte Carlo approaches,
could be applied to systems described by more complex models such as
the modified quasichemical model [14]. Similarly, analytic gradients
of error functions with respect to model parameters would allow for
efficient gradient-based optimization approaches, compared to state-
of-the-art approaches using least-squares [2], or ‘‘black box’’ Bayesian
inference through Markov Chain Monte Carlo [15]. Furthermore, the
residual driving force can also be viewed as a differentiable metric
for phase stability for the problem of alloy design in high-dimensional
composition spaces, and derivatives of this quantity with respect to
composition would allow for much more efficient searches through vast
alloy design spaces [16,17].

2. Theory and definitions

2.1. Modeling the Gibbs energy

The foundational elements of thermodynamic calculations within

the CALPHAD method are the parametric models that describe the

2 
Gibbs energies of individual phases. The construction of these mod-
els is not constrained to a singular approach. However, given that
equilibrium in a closed system at constant temperature and pressure
is characterized by a minimum in the Gibbs energy, these models
are typically formulated as functions dependent on temperature (𝑇 ),
ressure (𝑃 ), and constitution (𝐘)
𝛼
𝑀 (𝑇 , 𝑃 ,𝐘) (1)

where 𝐺𝛼
𝑀 is the Gibbs energy per mole formula unit of phase 𝛼. Note

that in Eq. (1) and throughout the rest of this work, italic typeface
indicates a scalar value while boldface indicates a vector quantity. The
overall Gibbs energy is then given by

𝐺 =
∑

𝛼
 𝛼𝐺𝛼

𝑀 (2)

where  𝛼 is the moles of formula units of phase 𝛼. Defining 𝐺𝛼
𝑀 in

terms of constitution instead of composition allows for the modeler
to account for internal degrees of freedom within a phase. If the
Compound Energy Formalism (CEF) [18] is used, these internal degrees
of freedom are modeled using sublattices. Then, for phase 𝛼, 𝑦𝛼𝑖𝑠 is the
site fraction of constituent 𝑖 on sublattice 𝑠. Similar to composition, the
sum of site fractions for a given sublattice must equal one, creating one
dependent site fraction on each sublattice. Site fractions are related to
𝑀𝛼

𝐴, moles of component 𝐴 per mole formula unit of phase 𝛼, through

𝑀𝛼
𝐴 =

∑

𝑠
𝑎𝛼𝑠

∑

𝑖
𝑏𝐴𝑖𝑦

𝛼
𝑖𝑠 (3)

where 𝑎𝛼𝑠 is the ratio of sites on sublattice 𝑠 and 𝑏𝐴𝑖 is the moles of
component 𝐴 in a mole of constituent 𝑖. 𝑀𝛼

𝐴 is then connected to the
total moles of component 𝐴, 𝑁𝐴 through

𝑁𝐴 =
∑

𝛼
 𝛼𝑀𝛼

𝐴, (4)

and to 𝐺𝛼
𝑀 through

𝐺𝛼
𝑀 =

∑

𝐴
𝑀𝛼

𝐴𝜇𝐴 (5)

where 𝜇𝐴 is the chemical potential of component 𝐴. The overall mole
fraction of component 𝐴, 𝑥𝐴, is then given by

𝑥𝐴 =
𝑁𝐴

∑

𝐵 𝑁𝐵
=

∑

𝛼  𝛼𝑀𝛼
𝐴

∑

𝛼  𝛼 ∑
𝐵 𝑀𝛼

𝐵
. (6)

2.2. Differentials and derivatives

In thermodynamics, many important properties of a system are
related through partial derivatives. A common way of representing
these relationships is through a total differential form of one quantity
in terms of independent variables of interest. For example, the total
differential of enthalpy (𝐻) as a function of temperature, pressure, and
moles of components for an otherwise simple system is given by

𝑑𝐻 =
( 𝜕𝐻
𝜕𝑇

)

𝑃 ,𝐍
𝑑𝑇 +

( 𝜕𝐻
𝜕𝑃

)

𝑇 ,𝐍
𝑑𝑃 +

( 𝜕𝐻
𝜕𝐍

)

𝑇 ,𝑃
𝑑𝐍. (7)

In this total differential form, all influences of how 𝐻 varies with a
iven independent variable are captured in its corresponding partial
erivative. That is, there are no lurking dependent variables.
Now, it is commonly understood that the partial derivative of

nthalpy with respect to temperature in Eq. (7) is equal to the isobaric
heat capacity, 𝐶𝑃 ∶
( 𝜕𝐻
𝜕𝑇

)

𝑃 ,𝐍
= 𝐶𝑃 . (8)

However, if the model described in Section 2.1 is used to define
enthalpy of the system as

𝐻 =
∑

𝛼
 𝛼𝐻𝛼

𝑀 (9)

where 𝐻𝛼
𝑀 = 𝐺𝛼

𝑀 +𝑇𝑆𝛼
𝑀 , 𝐻 is now a function of independent variables

𝑇 , 𝑃 , 𝐘, and  . If there is specific interest in the functional form of 𝐻
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at equilibrium for fixed 𝑇 , 𝑃 , and 𝐍, the procedure given in Section 3
outlines how numerical optimization techniques can be used to solve a
point calculation for 𝐘 and . That is, at equilibrium, and 𝐘 become
dependent variables which are functions of independent variables 𝑇 ,
𝑃 , and 𝐍. Additionally, because these dependent variables are being
solved-for numerically, there are no readily evident analytic functional
forms that can be substituted into the model of 𝐻 in order to represent
quilibrium 𝐻 as a function of only independent variables. Thus, if the
artial derivative of the model of 𝐻 at equilibrium with respect to 𝑇
is computed while holding 𝑃 and 𝐍 constant, the incorrect value of 𝐶𝑃
would be calculated because contributions from changes in the amounts
of phases or in the internal degrees of freedom of these phases that are
caused by a change in temperature would not be taken into account.

The above discussion illustrates the need for a procedure that cal-
culates the total derivative for models optimized to be at equilibrium.
For the model of 𝐻 at equilibrium, this would be

𝑑𝐻
𝑑𝑇

= 𝜕𝐻
𝜕𝑇

+ 𝜕𝐻
𝜕

𝑑
𝑑𝑇

+ 𝜕𝐻
𝜕𝐘

𝑑𝐘
𝑑𝑇

. (10)

While analytic functional forms of all of the partial derivatives
n Eq. (10) are straightforward to derive by taking the appropriate
artial derivative of the unoptimized enthalpy displayed in Eq. (9), the
otal derivatives of the dependent variables need to be solved through
nother method because the minimizer only provides point calculations
f the functional relationship between  , 𝐘, and 𝑇 . Thus, the purpose
f the Jansson derivative procedure is to solve for the total derivatives
f the dependent variables with respect to a given condition of the
quilibrium calculation.
Since lurking dependent variables are present in many quantities

hat are of interest to differentiate, this work will break from con-
ention and represent derivatives of thermodynamic properties with
espect to one independent variable while holding all other inde-
endent variables constant as total derivatives. Partial derivatives in
his work will imply that all other variables (including any depen-
ent variables apart from the quantity being differentiated) are held
onstant.
Interestingly, it can be shown for first derivatives of the Gibbs

nergy in a closed system that the contributions to the total derivative
rom the dependent variables sum to zero, leading to the partial deriva-
ive equaling the total derivative. This means that partial derivatives
f 𝐺 at equilibrium with respect to temperature and pressure provide
nough information to produce analytic functional forms of entropy,
nthalpy, and volume. A proof is presented in Appendix A.

. Equilibrium calculations

This section provides a sprint through the Lagrange-Newton opti-
izer implemented in [4] and [5] for the constrained minimization of
ibbs energy. For a more detailed description, see [7].

.1. The Lagrangian

As stated above, equilibrium calculations aim to minimize Eq. (2)
ubject to both internal phase and overall system constraints. Internal
hase constraints include the set of site fractions corresponding to a
iven sublattice 𝑠 summing to one:

−
∑

𝑖
𝑦𝛼𝑖𝑠 = 0. (11)

verall system constraints include mass balance when the system is
losed:

𝐴 −
∑

𝛼
 𝛼𝑀𝛼

𝐴 = 0. (12)

dditional constraints (such as charge balance for phases with ions)

re added as required for the specific system being minimized. Then,

3 
hrough the method of Lagrange multipliers, the constraints are con-
eniently added as multiples of zero to the unconstrained objective
unction, resulting in the constrained Lagrangian:

( ,𝐘,𝝁, 𝜼) =
∑

𝛼
 𝛼𝐺𝛼

𝑀 +
∑

𝐴
𝜇𝐴

(

𝑁𝐴 −
∑

𝛼
 𝛼𝑀𝛼

𝐴

)

+
∑

𝛼

∑

𝑠
𝜂𝛼𝑠

(

1 −
∑

𝑖
𝑦𝛼𝑖𝑠

)

(13)

where 𝜼 and 𝝁 are the vectors of multipliers corresponding to the site
fraction and mass balance constraints, respectively.

Calculating the gradient of 𝐿 with respect to phase amount, site
fraction, and the multipliers and setting that gradient equal to zero
gives
𝜕𝐿
𝜕 𝛼

= 𝐺𝛼
𝑀 −

∑

𝐴
𝑀𝛼

𝐴𝜇𝐴 = 0, (14)

𝜕𝐿
𝜕𝑦𝛼𝑖𝑠

=  𝛼 𝜕𝐺
𝛼
𝑀

𝜕𝑦𝛼𝑖𝑠
− 𝛼

∑

𝐴
𝜇𝐴

𝜕𝑀𝛼
𝐴

𝜕𝑦𝛼𝑖𝑠
− 𝜂𝛼𝑠 = 0, (15)

𝜕𝐿
𝜕𝜂𝛼𝑠

= 1 −
∑

𝑖
𝑦𝛼𝑖𝑠 = 0, (16)

𝜕𝐿
𝜕𝜇𝐴

= 𝑁𝐴 −
∑

𝛼
 𝛼𝑀𝛼

𝐴 = 0. (17)

s Sundman et al. point out in [7], Eq. (14) implies that the mass
balance constraint multiplier 𝜇𝐴 is the chemical potential of component
𝐴.

3.2. Building the phase and equilibrium matrices

To build the phase matrix, 𝜕𝐺𝛼
𝑀

𝜕𝑦𝛼𝑖𝑠
is expanded in a first-order Taylor

series with respect to 𝑇 , 𝑃 , and 𝐘:

𝜕𝐺𝛼
𝑀

𝜕𝑦𝛼𝑖𝑠
=

𝜕𝐺𝛼
𝑀

𝜕𝑦𝛼𝑖𝑠
+

𝜕2𝐺𝛼
𝑀

𝜕𝑦𝛼𝑖𝑠𝜕𝑇
𝛥𝑇 +

𝜕2𝐺𝛼
𝑀

𝜕𝑦𝛼𝑖𝑠𝜕𝑃
𝛥𝑃 +

∑

𝑡

∑

𝑗

𝜕2𝐺𝛼
𝑀

𝜕𝑦𝛼𝑖𝑠𝜕𝑦
𝛼
𝑗𝑡
𝛥𝑦𝛼𝑗𝑡 (18)

where the derivatives on the right-hand side are evaluated at the
current values of 𝑇 , 𝑃 , and 𝐘, and the term on the left-hand side is the
linear response of 𝜕𝐺𝛼

𝑀
𝜕𝑦𝛼𝑖𝑠

after some change in the independent variables.
Substituting Eq. (18) into Eq. (15) and omitting phase and sublattice
indices gives the system of equations for each phase:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜕2𝐺𝑀
𝜕𝑦21

𝜕2𝐺𝑀
𝜕𝑦1𝜕𝑦2

… 1 …
𝜕2𝐺𝑀
𝜕𝑦1𝜕𝑦2

𝜕2𝐺𝑀
𝜕𝑦22

… 1 …

⋮
1 1 … 0 …
⋮

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝛥𝑦1
𝛥𝑦2
⋮
𝜂𝑠

⋮

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∑

𝐴 𝜇𝐴
𝜕𝑀𝐴
𝜕𝑦1

− 𝜕𝐺𝑀
𝜕𝑦1

− 𝜕2𝐺𝑀
𝜕𝑦1𝜕𝑇

𝛥𝑇 − 𝜕2𝐺𝑀
𝜕𝑦1𝜕𝑃

𝛥𝑃
∑

𝐴 𝜇𝐴
𝜕𝑀𝐴
𝜕𝑦2

− 𝜕𝐺𝑀
𝜕𝑦2

− 𝜕2𝐺𝑀
𝜕𝑦2𝜕𝑇

𝛥𝑇 − 𝜕2𝐺𝑀
𝜕𝑦2𝜕𝑃

𝛥𝑃
⋮
0
⋮

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (19)

Sundman et al. [7] name the matrix on the left-hand side the phase
matrix. Denoting the entries in the inverted phase matrix as 𝑒𝛼𝑖𝑗 :

⎛

⎜

⎜

⎝

𝑒11 𝑒12 …
𝑒21 𝑒22 …
⋮

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜕2𝐺𝑀
𝜕𝑦21

𝜕2𝐺𝑀
𝜕𝑦1𝜕𝑦2

… 1 …
𝜕2𝐺𝑀
𝜕𝑦1𝜕𝑦2

𝜕2𝐺𝑀
𝜕𝑦22

… 1 …

⋮
1 1 … 0 …
⋮

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

−1

, (20)

the corrections for site fractions are expressed as

𝛥𝑦𝛼𝑖𝑠 = 𝑐𝛼𝑖𝐺 + 𝑐𝛼𝑖𝑇 𝛥𝑇 + 𝑐𝛼𝑖𝑃𝛥𝑃 +
∑

𝑐𝛼𝑖𝐴𝜇𝐴 (21)

𝐴
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where 𝑐𝛼𝑖𝐺, 𝑐
𝛼
𝑖𝑇 , 𝑐

𝛼
𝑖𝑃 , and 𝑐𝛼𝑖𝐴 are given by

𝛼
𝑖𝐺 = −

∑

𝑗
𝑒𝛼𝑖𝑗

𝜕𝐺𝛼
𝑀

𝜕𝑦𝛼𝑗
, (22)

𝑐𝛼𝑖𝑇 = −
∑

𝑗
𝑒𝛼𝑖𝑗

𝜕2𝐺𝛼
𝑀

𝜕𝑦𝛼𝑗 𝜕𝑇
, (23)

𝑐𝛼𝑖𝑃 = −
∑

𝑗
𝑒𝛼𝑖𝑗

𝜕2𝐺𝛼
𝑀

𝜕𝑦𝛼𝑗 𝜕𝑃
, (24)

𝛼
𝑖𝐴 =

∑

𝑗
𝑒𝛼𝑖𝑗

𝜕𝑀𝛼
𝐴

𝜕𝑦𝛼𝑗
. (25)

As evidenced by Eq. (21), corrections to site fraction values for
each phase are connected to movement of the overall system through
changes in the system potentials. What Sundman et al. label as the
equilibrium matrix system of equations calculates these new values as
well as corrections to the phase amounts.

To start building the equilibrium matrix, 𝐺𝛼
𝑀 in Eq. (14) is expanded

n a first-order Taylor series with respect to 𝑇 and 𝑃 :

𝛼
𝑀 =

∑

𝐴
𝑀𝛼

𝐴𝜇𝐴 −
𝜕𝐺𝛼

𝑀
𝜕𝑇

𝛥𝑇 −
𝜕𝐺𝛼

𝑀
𝜕𝑃

𝛥𝑃 . (26)

ext, the differential of 𝑁𝐴 in the mass balance constraints (Eqs. (12)
nd/or (17)) is computed and set equal to zero. Continuing with finite
ifference notation, this gives

𝑁𝐴 =
∑

𝛼
 𝛼𝛥𝑀𝛼

𝐴 +
∑

𝛼
𝛥 𝛼𝑀𝛼

𝐴 = 0. (27)

emembering that 𝑀𝛼
𝐴 is a function of 𝐘 and omitting sublattice

ndices, 𝛥𝑀𝛼
𝐴 can be expressed as

𝑀𝛼
𝐴 =

∑

𝑖

𝜕𝑀𝛼
𝐴

𝜕𝑦𝛼𝑖
𝛥𝑦𝛼𝑖 . (28)

Inserting Eq. (21) into Eq. (28) gives

𝛥𝑀𝛼
𝐴 =

∑

𝑖

𝜕𝑀𝛼
𝐴

𝜕𝑦𝛼𝑖

(

𝑐𝛼𝑖𝐺 + 𝑐𝛼𝑖𝑇 𝛥𝑇 + 𝑐𝛼𝑖𝑃𝛥𝑃 +
∑

𝐵
𝑐𝛼𝑖𝐵𝜇𝐵

)

, (29)

and this relation is inserted into Eq. (27) to make it a function of the
potentials.

If composition is specified as a condition, the differential of Eq. (6)
is computed and set equal to zero. Once again continuing with finite
difference notation, this gives

𝛥𝑥𝐴 = 1
∑

𝛼  𝛼 ∑
𝐵 𝑀𝛼

𝐵

[

∑

𝛼
 𝛼(𝛥𝑀𝛼

𝐴 − 𝑥𝐴
∑

𝐵
𝛥𝑀𝛼

𝐵)

+
∑

𝛼
(𝑀𝛼

𝐴 − 𝑥𝐴
∑

𝐵
𝑀𝛼

𝐵)𝛥
𝛼

]

= 0 (30)

here similar to Eq. (27), Eq. (29) is substituted for 𝛥𝑀𝛼
𝐴.

The equilibrium matrix system of equations is then constructed
rom Eqs. (26), (27), and (30) based on the specified conditions for
he system. For example, a ternary A-B-C system with one stable
hase in which temperature, pressure, amount of each component, and
omposition are conditions gives the linear system in Box I. Note that
omponent 𝑥𝐶 is the dependent composition variable and the second
ow of the equilibrium matrix (left-hand side) corresponds to a sum of
q. (27) over all components. See [7] for many more examples.
Once the phase matrix and equilibrium matrix linear systems are

stablished, suitable starting values for the set of stable phases and their
orresponding site fractions are determined through either a stochas-
ic or grid-based sampling strategy (Newton’s method is sensitive to
tarting values, and appropriate sampling procedures are paramount
o ensuring a global minimum is reached). The algorithm then iterates
etween the equilibrium matrix and phase matrix linear systems until
orrections are sufficiently small, signaling that equilibrium has been

eached.

4 
. Derivatives with respect to equilibrium conditions

As mentioned in Section 2.2, the purpose behind the Jansson deriva-
ive procedure is to solve for the total derivatives of the dependent
ariables of an equilibrium calculation with respect to a given equi-
ibrium condition. In this section, the method will be derived for an
rbitrary condition and then applied in examples for both a derivative
ith respect to a potential and a derivative with respect to a compo-
ition variable. The section concludes with applied examples for using
hese derivatives to calculate constant pressure heat capacity in the Al-
e system and thermodynamic factors for the BCC phase in the Nb-V-W
ystem.

.1. Jansson derivatives with respect to an arbitrary equilibrium condition

Let 𝐊 be the vector of external conditions, 𝐘 be the vector of site
ractions for all stable phases, and 𝐖 be the vector of overall system-
ependent variables (e.g. the vector of unknowns in Eq. (31)). As
heir label implies, overall system-dependent variables are functions of
xternal conditions, 𝐖(𝐊). Similarly, Eq. (21) shows that site fractions
re functions of conditions and overall system-dependent variables,
(𝐊,𝐖). Thus, the total derivative 𝑑𝑦𝛼𝑖𝑠

𝑑𝑘𝑗
for some 𝑦𝛼𝑖𝑠 ∈ 𝐘 and 𝑘𝑗 ∈ 𝐊

can be expressed as
𝑑𝑦𝛼𝑖𝑠
𝑑𝑘𝑗

=
𝜕𝑦𝛼𝑖𝑠
𝜕𝑘𝑗

+
∑

𝑙

𝜕𝑦𝛼𝑖𝑠
𝜕𝑤𝑙

𝑑𝑤𝑙
𝑑𝑘𝑗

(32)

where the sum is capturing all contributions from dependent variables
𝑤𝑙 ∈ 𝐖. At the conclusion of an equilibrium calculation consisting of
𝑛 iterations before converging, 𝐘 can be expressed as

𝐘 = 𝐘𝑛−1 + 𝛥𝐘𝑛 (33)

where 𝛥𝐘𝑛 is the 𝑛th addition of the site fraction correction given in
Eq. (21). Treating 𝐘𝑛−1 as a constant (i.e. as an arbitrary starting value
for the 𝑛th iteration) allows Eq. (32) to be rewritten as
𝑑𝑦𝛼𝑖𝑠
𝑑𝑘𝑗

=
𝑑𝛥𝑦𝛼𝑖𝑠
𝑑𝑘𝑗

=
𝜕𝛥𝑦𝛼𝑖𝑠
𝜕𝑘𝑗

+
∑

𝑙

𝜕𝛥𝑦𝛼𝑖𝑠
𝜕𝑤𝑙

𝑑𝑤𝑙
𝑑𝑘𝑗

(34)

where 𝛥𝑦𝛼𝑖𝑠 is given by Eq. (21) at equilibrium.
While calculation of 𝜕𝛥𝑦𝛼𝑖𝑠

𝜕𝑘𝑗
is straightforward, calculating the total

derivatives of 𝐖 with respect to 𝑘𝑗 requires a different approach. The
strategy employed here entails setting up a system of equations similar
to the equilibrium matrix linear system where the vector of unknowns
is 𝑑𝐖

𝑑𝑘𝑗
. To start, consider the differential form of Eq. (14).

𝑑𝐺𝛼
𝑀 =

∑

𝐴
𝜇𝐴𝑑𝑀

𝛼
𝐴 +

∑

𝐴
𝑀𝛼

𝐴𝑑𝜇𝐴. (35)

A more familiar way of expressing the differential of 𝐺𝛼
𝑀 is given by

𝑑𝐺𝛼
𝑀 =

𝜕𝐺𝛼
𝑀

𝜕𝑇
𝑑𝑇 +

𝜕𝐺𝛼
𝑀

𝜕𝑃
𝑑𝑃 +

∑

𝐴
𝜇𝐴𝑑𝑀

𝛼
𝐴 (36)

where 𝑀𝛼
𝐴 becomes the natural conjugate variable for 𝜇𝐴 due to the

definition of 𝐺𝛼
𝑀 . Comparing Eqs. (35) and (36) reveals the following

form of the Gibbs–Duhem equation:
∑

𝐴
𝑀𝛼

𝐴𝑑𝜇𝐴 =
𝜕𝐺𝛼

𝑀
𝜕𝑇

𝑑𝑇 +
𝜕𝐺𝛼

𝑀
𝜕𝑃

𝑑𝑃 . (37)

ividing both sides of Eq. (37) by the differential of 𝑘𝑗 (or, rather,
ecognizing the relationship between total derivative and differential
orms) gives

𝐴
𝑀𝛼

𝐴
𝑑𝜇𝐴
𝑑𝑘𝑗

=
𝜕𝐺𝛼

𝑀
𝜕𝑇

𝑑𝑇
𝑑𝑘𝑗

+
𝜕𝐺𝛼

𝑀
𝜕𝑃

𝑑𝑃
𝑑𝑘𝑗

. (38)

Next, taking the derivative of 𝑁𝐴 from Eq. (17) with respect to
condition 𝑘𝑗 and setting it equal to zero gives

𝑑𝑁𝐴 =
∑ 𝑑 𝛼

𝑀𝛼
𝐴 +

∑

 𝛼 𝑑𝑀
𝛼
𝐴 = 0. (39)
𝑑𝑘𝑗 𝛼 𝑑𝑘𝑗 𝛼 𝑑𝑘𝑗
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∑

𝐷 𝑀𝐷

∑

𝑖 𝑐𝑖𝐴
( 𝜕𝑀𝐴

𝜕𝑦𝑖
−𝑥𝐴

∑

𝐷
𝜕𝑀𝐷
𝜕𝑦𝑖

)

∑

𝐷 𝑀𝐷

∑

𝑖 𝑐𝑖𝐵
( 𝜕𝑀𝐴
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∑

𝐷
𝜕𝑀𝐷
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∑
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∑

𝐷
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)
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𝐷 𝑀𝐷
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∑
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

∑

𝐷 𝑀𝐷
∑

𝑖 𝑐𝑖𝐴
( 𝜕𝑀𝐵
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∑

𝐷
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∑

𝐷 𝑀𝐷

∑

𝑖 𝑐𝑖𝐵
( 𝜕𝑀𝐵

𝜕𝑦𝑖
−𝑥𝐵

∑

𝐷
𝜕𝑀𝐷
𝜕𝑦𝑖

)
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−𝑥𝐵

∑

𝐷
𝜕𝑀𝐷
𝜕𝑦𝑖

)

∑

𝐷 𝑀𝐷

𝑀𝐵−𝑥𝐵
∑

𝐷 𝑀𝐷


∑

𝐷 𝑀𝐷

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝜇𝐴
𝜇𝐵
𝜇𝐶
𝛥

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐺𝑀


∑

𝑖 𝑐𝑖𝐺
∑

𝐷
𝜕𝑀𝐷
𝜕𝑦𝑖

∑

𝑖 𝑐𝑖𝐺
( 𝜕𝑀𝐴

𝜕𝑦𝑖
−𝑥𝐴

∑

𝐷
𝜕𝑀𝐷
𝜕𝑦𝑖

)

∑

𝐷 𝑀𝐷
∑

𝑖 𝑐𝑖𝐺
( 𝜕𝑀𝐵

𝜕𝑦𝑖
−𝑥𝐵

∑

𝐷
𝜕𝑀𝐷
𝜕𝑦𝑖

)

∑

𝐷 𝑀𝐷

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(31)

Box I.
a
t
t
a
w
o
i
a
c

4

w
t
a
o
C

imilar to Eq. (28), 𝑑𝑀𝛼
𝐴

𝑑𝑘𝑗
can be expressed as

𝑑𝑀𝛼
𝐴

𝑑𝑘𝑗
=
∑

𝑖

𝜕𝑀𝛼
𝐴

𝜕𝑦𝛼𝑖

𝑑𝑦𝛼𝑖
𝑑𝑘𝑗

. (40)

here 𝜕𝑀𝛼
𝐴

𝜕𝑘𝑗
= 0 and sublattice indices are omitted. Eq. (40) is then

nserted into Eq. (39) to give

𝑑𝑁𝐴
𝑑𝑘𝑗

=
∑

𝛼

𝑑 𝛼

𝑑𝑘𝑗
𝑀𝛼

𝐴 +
∑

𝛼
 𝛼

∑

𝑖

𝜕𝑀𝛼
𝐴

𝜕𝑦𝛼𝑖

𝑑𝑦𝛼𝑖
𝑑𝑘𝑗

= 0. (41)

Lastly, when composition is specified as a condition, the total
derivative of Eq. (6) with respect to 𝑘𝑗 is derived and set equal to zero.
With application of Eq. (40), this gives
𝑑𝑥𝐴
𝑑𝑘𝑗

=

∑

𝛼
𝑑 𝛼

𝑑𝑘𝑗
𝑀𝛼

𝐴 +
∑

𝛼  𝛼 ∑
𝑖
𝜕𝑀𝛼

𝐴

𝜕𝑦𝛼𝑖

𝑑𝑦𝛼𝑖
𝑑𝑘𝑗

− 𝑥𝐴
(

∑

𝛼
𝑑 𝛼

𝑑𝑘𝑗

∑

𝐵 𝑀𝛼
𝐵 +

∑

𝛼  𝛼 ∑
𝐵
∑

𝑖
𝜕𝑀𝛼

𝐵

𝜕𝑦𝛼𝐵

𝑑𝑦𝛼𝑖
𝑑𝑘𝑗

)

∑

𝛼  𝛼 ∑
𝐵 𝑀𝛼

𝐵

= 0. (42)

The conditions of the equilibrium calculation and the assignment of
𝑘𝑗 produce the specific form of Eq. (34) that is inserted into Eqs. (41)
and (42). Then, similar to the construction of the equilibrium matrix
linear system, Eqs. (37), (41), and (42) are used to solve for 𝑑𝐖

𝑑𝑘𝑗
. Finally,

he calculated values of 𝑑𝐖
𝑑𝑘𝑗

are substituted into Eq. (34) to compute
𝑑𝑦𝛼𝑖𝑠
𝑑𝑘𝑗

. Two examples are given below.

4.2. Example: Jansson derivatives with respect to temperature

Assume a ternary A-B-C system with one stable phase in which
temperature, pressure, amount of each component, and composition are
conditions. Let 𝑥𝐶 be the dependent composition variable, and assign
𝑗 = 𝑇 . Then Eqs. (21) and (34) take the below forms, respectively:

𝑦𝛼𝑖𝑠 = 𝑐𝛼𝑖𝐺 +
∑

𝐴
𝑐𝛼𝑖𝐴𝜇𝐴, (43)

𝑑𝑦𝛼𝑖𝑠
𝑑𝑇

=
𝑑𝛥𝑦𝛼𝑖𝑠
𝑑𝑇

= 𝑐𝛼𝑖𝑇 +
∑

𝐴
𝑐𝛼𝑖𝐴

𝑑𝜇𝐴
𝑑𝑇

. (44)

To clarify, 𝑐𝛼𝑖𝐺 is an explicit function of 𝑇 , and the partial derivative of
𝑐𝛼𝑖𝐺 with respect to 𝑇 is 𝑐𝛼𝑖𝑇 . Inserting Eq. (44) into Eqs. (41) and (42)
results in the linear system presented in Box II: Note that to recover
the finite difference notation that Sundman et al. use in [7], start by
representing the derivatives in the column vector on the left-hand side
as ratios of finite differences. Then, multiply the whole system by 𝛥𝑇 ,
5 
add another row and column to the matrix on the left-hand side to
accommodate adding 𝛥𝑇 to the vector of values to be solved for, move
ll values that are now multiplied by 𝛥𝑇 from the right-hand side to
he left-hand side, and set 𝛥𝑇 = 1. Thus, the two methods produce
he same answer. However, the method proposed in this work removes
redundant equation from the linear system (the assignment 𝛥𝑇 = 1),
hich allows for the equilibrium matrix to be reused for the calculation
f derivatives (see the equilibrium matrix in Eq. (31)). Since matrix
nversion can be an expensive computation, avoiding the construction
nd inversion of a new matrix for these calculations can lead to greater
omputational efficiency.

.3. Example: Jansson derivatives with respect to composition

Once again, assume a ternary A-B-C system with one stable phase in
hich temperature, pressure, amount of each component, and composi-
ion are conditions. Let 𝑥𝐶 be the dependent composition variable, and
ssign 𝑘𝑗 = 𝑥𝐵 . Then, because Eq. (21) depends only on the conditions
f the equilibrium calculation, 𝛥𝑦𝛼𝑖𝑠 is once again given by Eq. (43).
onversely, Eq. (34) becomes
𝑑𝑦𝛼𝑖𝑠
𝑑𝑥𝐵

=
𝑑𝛥𝑦𝛼𝑖𝑠
𝑑𝑥𝐵

=
∑

𝐴
𝑐𝛼𝑖𝐴

𝑑𝜇𝐴
𝑑𝑥𝐵

. (46)

Note that the partial derivative of 𝛥𝑦𝛼𝑖𝑠 with respect to 𝑥𝐵 equals zero
because all composition dependencies in these models are given as
functions of 𝐘, not 𝐱. Since composition is now changing, Eq. (42)
is no longer set equal to zero for the derivatives of the independent
composition variables. That is, for this system, 𝑑𝑥𝐵

𝑑𝑥𝐵
= 1 and the sum of

𝑑𝑥𝐴
𝑑𝑥𝐵

and 𝑑𝑥𝐶
𝑑𝑥𝐵

must equal −1. Setting 𝑑𝑥𝐴
𝑑𝑥𝐵

= − 1
2 and inserting Eq. (46)

into Eqs. (41) and (42) gives the linear system in Box III: As with the
example in Section 4.2 where the derivative is taken with respect to
a potential, the equilibrium matrix is recovered for the calculation of
derivatives with respect to composition and requires only that a new
column vector for the right-hand side be constructed.

4.4. Applied examples

For the two examples below and for those in Section 5.2, all phase
diagrams are plotted using an in-development mapping module found
in the PyCalphad GitHub repository under pull request #517 [19], and
all Jansson derivatives are calculated using the PyCalphad development
branch under pull request #432 [20]. All finite difference approxima-
tions are computed using the second-order central difference technique
employed by NumPy’s gradient function [21].
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Box II.
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Box III.
.4.1. Calculating heat capacity in the Al-Fe system
This example uses the thermodynamic description of the Al-Fe

ystem provided in [22], and a phase diagram generated from this
escription is provided in Fig. 1. Recalling Section 2.2, in the context
of equilibrium calculations, isobaric heat capacity is the total derivative
of equilibrium enthalpy with respect to temperature while holding
pressure and amounts of components constant:

𝐶𝑝 =
𝑑𝐻
𝑑𝑇

= 𝜕𝐻
𝜕𝑇

+ 𝜕𝐻
𝜕

𝑑
𝑑𝑇

+ 𝜕𝐻
𝜕𝐘

𝑑𝐘
𝑑𝑇 .

(48)

Equilibrium enthalpy of the system is calculated over the tempera-
ure interval [1600 − 2000 𝐾] at constant composition 𝑥𝐴𝑙 = 0.25. These
onditions were deliberately chosen to capture enthalpy and isobaric
eat capacity through a phase change, which is the B2 phase melting
o form the Liquid phase in this case. Following the same conditions,
hree methods are used to calculate the isobaric heat capacity: Jansson
erivatives, partial derivatives of equilibrium enthalpy computing only
he first term on the right-hand side of Eq. (48), and finite differences.
he results are plotted in Fig. 2.
Fig. 2 shows that when only a single phase is stable, all three
ethods of calculating the constant pressure heat capacity agree well.
owever, for temperatures in which both the B2 and Liquid phases are
table, the Jansson derivative and finite difference methods predict a
onstant pressure heat capacity approximately two orders of magnitude
igher than the partial derivative technique. This is because the partial
erivative method does not account for latent heat contributions to the
6 
heat capacity. Similarly, significant changes in constitution/ordering
can lead to changes in configurational entropy which, if neglected, can
also lead to large under-predictions of the heat capacity.

This example illustrates the danger of neglecting contributions to
the heat capacity from dependent variables of the Gibbs energy mini-
mization (i.e. neglecting the second and third terms on the right-hand
side of Eq. (48)).

The calculation of the effective heat capacity across a phase change
is important in a number of practical applications. For example, in
the context of Additive Manufacturing (AM), the prediction of the
characteristics of the melt pool as a function of process conditions
is essential [23,24]. Thermal models that neglect accounting for the
latent heat of melting (or boiling) tend to overestimate the temperature
excursions within the melt pool, leading to significant discrepancies in
the predicted melt pool characteristics relative to the ground truth [25,
26]. Most implementations of AM-relevant thermal models incorpo-
rate the effects of the latent heat by using a lumped capacitance
approach—i.e. they assume a constant heat capacity that, when in-
tegrated over the coexistence temperature range equals the latent
heat. A more thermodynamically-rigorous approach would avoid using
these ad-hoc methods and instead rely on the formal definition of the
heat capacity and its implementation through the Jansson derivative
approach, as done in this section. Thermo-Calc’s new Additive Man-
ufacturing module implements this approach in the computation of
effective thermo-physical properties needed for the calculations of the
melting/solidification behavior.



C. Kunselman et al.

Fig. 1. Phase diagram of the Al-Fe system.

Fig. 2. (a) Equilibrium enthalpy, (b) Jansson derivative, partial derivative, and finite difference approximations of the constant pressure heat capacity, and (c) phase fractions all
as functions of temperature for the Al-Fe system at 𝑥𝐴𝑙 = 0.25.
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Fig. 3. Direction of single-phase equilibrium calculation composition conditions through composition space in the Nb-V-W system.
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4.4.2. Calculating thermodynamic factors for the BCC phase in the Nb-V-W
system

In this example, single-phase equilibrium calculations are used to
calculate the chemical potentials of all components of the BCC phase in
the Nb-V-W system along the direction in composition space displayed
in Fig. 3. That is, starting at conditions 𝑥𝑉 = 0.1 and 𝑥𝑁𝑏 = 𝑥𝑊 = 0.45
ith 𝑥𝑊 assigned as the dependent composition variable, 𝑥𝑁𝑏 and 𝑥𝑊
ecrease symmetrically as 𝑥𝑉 increases to 𝑥𝑉 = 0.9 while temperature
s held at 1200 K. Adhering to the same conditions, thermodynamic
actors of all three components with respect to 𝑥𝑉 were calculated using
ansson derivatives and finite differences. In the Jansson derivative
alculations, 𝑥𝑊 is the dependent composition variable and 𝑑𝑥𝑁𝑏

𝑑𝑥𝑉
was

hosen to equal − 1
2 . Data for the thermodynamic description of the BCC

hase for this system was generated in [27] and compiled into database
ormat using [28].
The results are displayed in Fig. 4. For all calculated thermodynamic

actors, the Jansson derivative and finite difference methods show
xcellent agreement.
The ability of Jansson derivatives to efficiently calculate analytic

erivatives of chemical potential with respect to composition (and even
emperature and pressure) could lead to more robust multi-physics-
nformed phase field and other mass transport simulations in which the
riving force for transport relies on the spatial gradient of chemical
otential. In a recent study [29], interdiffusion of U and Zr in U-Pu-
r nuclear fuel rods was investigated by coupling the thermodynamic
quilibrium calculation engine Thermochimica [30] with BISON [31], a
uclear fuel performance software used to model thermomechanics and
ass transport. More specifically, BISON was used to solve the below
iffusion equation using chemical potential and composition inputs
alculated in Thermochimica:
𝜕𝑛𝐴
𝜕𝑡

+ ∇ ⋅
(

−𝐴𝑛𝐴∇𝜇𝐴
)

= 0 (49)

here 𝑛𝐴 is the volumetric density of component 𝐴, 𝑡 is time, 𝐴 is
he mobility of component 𝐴, and ∇𝜇 is the spatial gradient of the
𝐴 d

8 
hemical potential of component 𝐴. Applying the chain rule, ∇𝜇𝐴 can
e further expressed as a function of 𝑥𝐴, 𝑇 , and 𝑃 :

𝜇𝐴 =
𝑑𝜇𝐴
𝑑𝑥𝐴

∇𝑥𝐴 +
𝑑𝜇𝐴
𝑑𝑇

∇𝑇 +
𝑑𝜇𝐴
𝑑𝑃

∇𝑃 . (50)

As evidenced by Eqs. (49) and (50), injecting Jansson derivatives
of chemical potential into the mass transport solver of such a multi-
physics setup could facilitate more efficient and robust solutions of
Eq. (49) because only the spatial gradients of 𝑥𝐴, 𝑇 , and 𝑃 would need
o be solved for numerically.

. Derivatives of residual driving force with respect to composi-
ion

The residual driving force—a measure of the distance between the
ibbs energy of a metastable phase and the current stable common
angent hyperplane—is a useful phase stability metric. This informa-
ion, for example, could be used to inform a thermodynamic modeling
ptimizer as it navigates the parameter space in order to agree with
xperimental observations attesting to the presence (or absence) of
phase under specific thermodynamic conditions. In other cases, in-
ormation about the residual driving force can be used to inform
he exploration of high-dimensional composition spaces. For example,
alvan et al. [16] mapped the search over an alloy space in order
o meet specific phase constitution constraints to the solution of a
onstraint satisfaction problem. In their setup, once a region was identi-
ied as meeting such phase constitution requirements, the now deemed
easible space was expanded through an active learning procedure. The
ramework, however, could only work once a feasible region had been
dentified in the first place. In general, all alloy search approaches
hat rely exclusively on the outcome of Gibbs minimization without
ccounting for changes in phase stability of metastable phases would
ave to first discover a feasible region in order to then expand the
easible space. This discovery process could be quite expensive and
ime-consuming if the feasible space is a small fraction of the total alloy
esign space.
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Fig. 4. (a) Chemical potentials of all components and Jansson derivative and finite difference approximations of (b) 𝑑𝜇𝑉

𝑑𝑥𝑉
, (c) 𝑑𝜇𝑁𝑏

𝑑𝑥𝑉
, and (d) 𝑑𝜇𝑊

𝑑𝑥𝑉
where 𝑑𝑥𝑁𝑏

𝑑𝑥𝑉
= 𝑑𝑥𝑊

𝑑𝑥𝑉
= − 1

2
for the

CC single phase equilibrium in the Nb-V-W system at 1200 K.
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A much better approach would be to consider the residual driving
orce as a differentiable—and optimizable—quantity. Residual driv-
ng force derivatives with respect to composition would allow for
he employment of gradient-based optimization tools, which have the
otential to lower the computational cost associated with the tar-
eted exploration of vast alloy spaces—e.g. the high entropy alloy
pace [17]—by several orders of magnitude. To this end, this section
escribes two different constructions of the residual driving force,
erives gradients of these quantities with respect to overall system and
ndividual phase compositions, and provides an example of calculating
hese gradients for residual driving forces of the B2 phase in the Ni-Ti
ystem.

.1. Formulation of residual driving force and its derivatives

Adopting the definition from [15], the residual driving force for
hase 𝛼 is given by
𝛼 = 𝐺𝛼 −

∑

𝐴
𝜇̄𝐴𝑥

𝛼
𝐴 (51)

here 𝜇̄𝐴 is the chemical potential of component 𝐴 defining the target
yperplane, 𝑥𝛼𝐴 is the composition of component 𝐴 at the 𝛼 phase
ertex, and 𝐺𝛼 is the single-phase, composition-constrained minimum
ibbs energy conditioned on the composition at the 𝛼 phase vertex. In
his work, two constructions of the target hyperplane are considered,
nd the derivatives of their corresponding residual driving forces with
 i

9 
espect to overall system composition and individual phase vertex
ompositions are discussed below.

.1.1. Constructing the target hyperplane from a measured overall compo-
ition
Let 𝑥̃𝐴 ∈ 𝐱̃ denote the measured overall system mole fraction of

omponent 𝐴 and 𝑥̃𝛼𝐴 ∈ 𝐱̃𝛼 denote the measured mole fraction of
omponent 𝐴 for the 𝛼 phase vertex at equilibrium. For this case, the
arget hyperplane is defined by a multiphase equilibrium calculation at
he measured overall system composition:

̄𝐴 = 𝜇𝐴 (52)

here 𝜇𝐴 with no symbol above it signifies the chemical potential of
omponent 𝐴 for the multiphase equilibrium conditioned on 𝐱̃.
In contrast, 𝐺𝛼 is determined from a single phase equilibrium calcu-

ation conditioned on 𝐱̃𝛼 . To denote that 𝐺𝛼 is being calculated from a
ifferent equilibrium than the chemical potentials for the target hyper-
lane, any value arising from a single phase equilibrium conditioned
n the corresponding phase vertex composition will be denoted with a
‘hat’’ (e.g. 𝐺̂𝛼). Thus, Eq. (51) takes the form
𝛼(𝐱, 𝐱𝛼) = 𝐺̂𝛼(𝐱𝛼) −

∑

𝐴
𝜇𝐴(𝐱)𝑥̂𝛼𝐴, (53)

where the dependence of each quantity on overall and vertex composi-
tions is emphasized. Fig. 5 provides a visual representation of the terms
n Eq. (53).
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Fig. 5. Schematic of mean hyperplane and residual driving force when the measured overall composition is available. The residual driving force is given by the vertical distance
between 𝐺̂ and the target hyperplane (green line).
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Taking the total derivative of 𝑅𝛼 with respect to 𝑥𝐴 and holding
ertex compositions constant gives

𝑑𝑅𝛼

𝑑𝑥𝐴
= 𝑑𝐺̂𝛼

𝑑𝑥𝐴
−
∑

𝐵

𝑑𝜇𝐵
𝑑𝑥𝐴

𝑥̂𝛼𝐵 −
∑

𝐵
𝜇𝐵

𝑑𝑥̂𝛼𝐵
𝑑𝑥𝐴

= −
∑

𝐵

𝑑𝜇𝐵
𝑑𝑥𝐴

𝑥̂𝛼𝐵 , (54)

where all 𝑑𝜇𝐵
𝑑𝑥𝐴

are calculated from taking the Jansson derivative of the
ultiphase equilibrium calculation conditioned on the measured over-
ll system composition with respect to 𝑥𝐴. Because vertex compositions
re being held constant, all derivatives of phase vertex mole fractions
nd derivatives of values that are only functions of these compositions
ith respect to 𝑥𝐴 in Eq. (54) equal zero.
Now, taking the derivative of 𝑅𝛼 with respect to 𝑥𝛼𝐴 and holding

overall system composition and other vertex compositions constant
gives

𝑑𝑅𝛼

𝑑𝑥𝛼𝐴
= 𝑑𝐺̂𝛼

𝑑𝑥𝛼𝐴
−
∑

𝐵

𝑑𝜇𝐵
𝑑𝑥𝛼𝐴

𝑥̂𝛼𝐵 −
∑

𝐵
𝜇𝐵

𝑑𝑥̂𝛼𝐵
𝑑𝑥𝛼𝐴

= 𝑑𝐺̂𝛼

𝑑𝑥𝛼𝐴
−
∑

𝐵
𝜇𝐵

𝑑𝑥̂𝛼𝐵
𝑑𝑥𝛼𝐴

(55)

where the derivative 𝑑𝐺̂𝛼

𝑑𝑥𝛼𝐵
is calculated from taking the Jansson deriva-

tive of the single phase equilibrium calculation conditioned on the
measured 𝛼 phase vertex composition with respect to 𝑥𝐴. All derivatives
f overall system mole fractions and derivatives of values that are only
unctions of these compositions with respect to 𝑥𝛼𝐴 equal zero since the
verall system composition is held constant. The values of 𝑑𝑥̂𝛼𝐵

𝑑𝑥𝛼𝐴
depend

on the assignments in the Jansson derivative calculation of the single
phase equilibrium calculation conditioned on 𝐱̃𝛼 . That is, 𝑑𝑥̂𝛼𝐴

𝑑𝑥𝛼𝐴
= 1, and

he derivatives of the remaining 𝛼 phase mole fractions with respect
o 𝑥𝛼𝐴 sum to −1 just as in the Jansson derivative calculation (see
ection 4.3).
Inspection of Eq. (53) reveals that no terms are a function of any

ertex compositions of other phases. Thus, for phase 𝛽 ≠ 𝛼, the
erivative of 𝑅𝛼 with respect to 𝑥𝛽𝐴 while holding overall system and
ther vertex compositions constant equals zero.

.1.2. Constructing the target hyperplane from measured vertex composi-
ions
Let 𝑥̃𝛼𝐴 ∈ 𝐱̃𝛼 denote the measured mole fraction of component 𝐴 for

he 𝛼 phase vertex at equilibrium. For this case, there is no measured
verall system composition. Thus, the target hyperplane is defined

y an average of chemical potentials from multiphase equilibrium w

10 
calculations conditioned on the phase vertex compositions:

̄𝐴 = 1
𝑝
∑

𝛼
𝜇̊𝛼
𝐴 (56)

where 𝑝 is the number of measured stable phases at equilibrium and
̊ 𝛼𝐴 denotes the chemical potential of component 𝐴 from the multiphase
quilibrium conditioned on 𝐱̃𝛼 . Similar to the ‘‘hat’’, the ‘‘ring’’ denotes
value from a multiphase equilibrium conditioned on a phase vertex
omposition. Thus, Eq. (51) takes the form

𝛼(𝐱𝛼 , 𝐱𝛽 ,…) = 𝐺̂𝛼(𝐱𝛼) −
∑

𝐴

𝑥̊𝛼𝐴
𝑝

∑

𝛾
𝜇̊𝛾
𝐴(𝐱

𝛾 ) (57)

where the dependence of each quantity on vertex compositions is
emphasized. Note that 𝑥̊𝛼𝐴 could also have a ‘‘hat’’ over it since both
the multiphase 𝛼 vertex and the single phase equilibrium calculations
are conditioned on the same composition. Fig. 6 provides a visual
representation of the terms in Eq. (57).

Inspection of Eq. (57) reveals that no terms are a function of overall
system composition. Thus, the derivative of 𝑅𝛼 with respect to 𝑥𝐴
while holding all vertex compositions constant equals zero. Conversely,
taking the derivative of 𝑅𝛼 with respect to 𝑥𝛼𝐴 and holding overall
composition and other vertex compositions constant gives

𝑑𝑅𝛼

𝑑𝑥𝛼𝐴
= 𝑑𝐺̂𝛼

𝑑𝑥𝛼𝐴
−
∑

𝐵

𝑥̊𝛼𝐵
𝑝

∑

𝛽

𝑑𝜇̊𝛽
𝐵

𝑑𝑥𝛼𝐴
− 1

𝑝
∑

𝐵

𝑑𝑥̊𝛼𝐵
𝑑𝑥𝛼𝐴

∑

𝛽
𝜇̊𝛽
𝐵

= 𝑑𝐺̂𝛼

𝑑𝑥𝛼𝐴
−
∑

𝐵

𝑥̊𝛼𝐵
𝑝

𝑑𝜇̊𝛼
𝐵

𝑑𝑥𝛼𝐴
−
∑

𝐵

𝑑𝑥̊𝛼𝐵
𝑑𝑥𝛼𝐴

𝜇̄𝐵 (58)

here all 𝑑𝜇̊𝛼𝐵
𝑑𝑥𝛼𝐴

are calculated from taking the Jansson derivative of
the multiphase equilibrium calculation conditioned on 𝐱𝛼 with respect
to 𝑥𝐴. All derivatives of vertex mole fractions other than for phase 𝛼
and derivatives of values that are only functions of these compositions
with respect to 𝑥𝛼𝐴 equal zero since the other vertex compositions are
held constant. Similar to Eq. (55), the values of 𝑑𝑥̊𝛼𝐵

𝑑𝑥𝛼𝐴
depend on the

assignments in the Jansson derivative calculation of the multiphase
equilibrium calculation conditioned on 𝐱̃𝛼 .

Further inspection of Eq. (57) reveals that 𝑅𝛼 is a function of
he vertex compositions of other phases. Taking the derivative of 𝑅𝛼

ith respect to 𝑥𝛽 and holding overall composition and other vertex
𝐴
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Fig. 6. Schematic of mean hyperplane and residual driving force when measured overall composition is unavailable. The target hyperplane is built in (a), and the residual driving
orce is given by the vertical distance between 𝐺̂ and the target hyperplane (green line) in (b).
q
c

ompositions constant gives

𝑑𝑅𝛼

𝑑𝑥𝛽𝐴
= 𝑑𝐺̂𝛼

𝑑𝑥𝛽𝐴
−
∑

𝐵

𝑥̊𝛼𝐵
𝑝

∑

𝛾

𝑑𝜇̊𝛾
𝐵

𝑑𝑥𝛽𝐴
− 1

𝑝
∑

𝐵

𝑑𝑥̊𝛼𝐵
𝑑𝑥𝛽𝐴

∑

𝛾
𝜇̊𝛾
𝐵 = −

∑

𝐵

𝑥̊𝛼𝐵
𝑝

𝑑𝜇̊𝛽
𝐵

𝑑𝑥𝛽𝐴
(59)

here all 𝑑𝜇̊𝛽𝐵
𝑑𝑥𝛽𝐴

come from Jansson derivatives of the multiphase equi-

librium calculation conditioned on 𝐱̃𝛽 , and many derivatives equal zero
for the same reasons as in Eq. (58).

While two examples are presented here, it should be noted that the
target hyperplane can be constructed in whatever fashion is convenient
for the problem at hand. Once the target hyperplane is defined, the key
to calculating the derivative of the residual driving force of a given
phase with respect to the overall or a specific phase vertex compo-
sition is a matter of determining which composition each quantity is
conditioned on. If a quantity comes from an equilibrium calculation
not conditioned on the composition corresponding to the derivative,
the derivative of that term is zero.

5.2. Example: Application to the Ni-Ti system

This case study leverages the thermodynamic description of the
Ni-Ti system provided in [32]. The phase diagram of this system is
provided Fig. 7. In this example, stability of the B2 phase is investi-
gated at 1500 K near the B2/Liquid two-phase region with simulated
measurements of 𝑥̃𝑇 𝑖 = 0.45, 𝑥̃𝐵2𝑇 𝑖 = 0.47, and 𝑥̃𝐿𝑇 𝑖 = 0.41. Derivatives of
residual driving force are calculated for both constructions of the target
hyperplane described above.

5.2.1. Constructing the target hyperplane from a measured overall compo-
sition

Fig. 8 displays 𝑅𝐵2 as defined in Eq. (53) and the Jansson derivative
of 𝑅𝐵2 with respect to 𝑥𝑇 𝑖 as defined in Eq. (54) as functions of
𝑥𝑇 𝑖 in which the target hyperplane is constructed from a multiphase
equilibrium calculation conditioned on 𝑥𝑇 𝑖. For these calculations, 𝑥𝐵2𝑇 𝑖
and 𝑥𝐿𝑇 𝑖 are held at the assigned values given above while 𝑥𝑇 𝑖 varies
along the interval [0.40, 0.50], which is centered on the assigned value
𝑥̃𝑇 𝑖 = 0.45. For this case, there is good agreement between the Jansson
derivative and finite difference approximations. The equilibrium phase
fractions as a function of 𝑥𝑇 𝑖 are also shown. Corners in the driving
force plot and resulting discontinuities in the derivative correspond to
changes in the set of stable phases. In this case, the sudden addition or
subtraction of a stable phase can cause discontinuities in the derivative
of the chemical potentials defining the target hyperplane, leading to
the behavior seen here.
 c
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Fig. 9 displays 𝑅𝐵2 still defined by Eq. (53) but shows the Jansson
derivative with respect to 𝑥𝐵2𝑇 𝑖 as defined in Eq. (55). Both quantities are
functions of 𝑥𝐵2𝑇 𝑖 and the target hyperplane is once again constructed
from a multiphase equilibrium calculation conditioned on 𝑥𝑇 𝑖. In con-
trast to the previous example, in these calculations 𝑥𝑇 𝑖 and 𝑥𝐿𝑇 𝑖 are held
at the assigned values given above while 𝑥𝐵2𝑇 𝑖 varies along the interval
[0.42, 0.52], which is centered on the assigned value 𝑥̃𝐵2𝑇 𝑖 = 0.47. For
this case, the Jansson derivative and the finite difference approximation
show excellent agreement, and there are no sharp corners in the resid-
ual driving force or visibly noticeable discontinuities in the derivative.
This is because the target hyperplane is not a function of 𝑥𝐵2𝑇 𝑖 , so
the chemical potentials defining it stay constant. Additionally, the
single-phase composition-constrained equilibrium defining 𝐺𝐵2 does
not experience any changes of phase or rapid changes in internal
ordering, which also contributes to the smoothness of the driving force
curve.

5.2.2. Constructing the target hyperplane from measured vertex composi-
tions

Fig. 10 displays 𝑅𝐵2 as defined in Eq. (57) and the Jansson deriva-
tive of 𝑅𝐵2 with respect to 𝑥𝐵2𝑇 𝑖 as defined in Eq. (58) as functions of 𝑥

𝐵2
𝑇 𝑖

in which the target hyperplane is constructed from an average of mul-
tiphase equilibrium calculations conditioned on 𝑥𝐵2𝑇 𝑖 and 𝑥𝐿𝑇 𝑖. Similar to
the previous example, in these calculations 𝑥𝑇 𝑖 and 𝑥𝐿𝑇 𝑖 are held at 𝑥̃𝑇 𝑖
and 𝑥̃𝐿𝑇 𝑖, respectively while 𝑥

𝐵2
𝑇 𝑖 varies along the interval [0.42, 0.52]. The

equilibrium phase fractions as a function of the equilibrium conditioned
on 𝑥𝐵2𝑇 𝑖 are also shown. In this case, the Jansson derivative and finite
difference approximation show great agreement, and while there is no
noticeable corner in the driving force plot, there is a slight kink in the
Jansson derivative plot near 𝑥𝐵2𝑇 𝑖 = 0.476 corresponding to the change
in the set of stable phases. Interestingly, there is no noticeable corner
in the driving force plot or kink in the Jansson derivative curve when
the Liquid phase becomes stable again near 𝑥𝐵2𝑇 𝑖 = 0.501. Thus, while
the removal of the Liquid phase from the set of stable phases causes a
discontinuity in the chemical potentials from the B2 phase vertex, the
effect on the overall derivative is lessened through averaging with the
chemical potentials from the Liquid vertex equilibrium calculation, and
the re-addition of this phase to the set of stable phases does not have
to result in a discontinuity in the derivative.

Lastly, Fig. 11 displays 𝑅𝐵2 as defined by Eq. (57) but shows the
Jansson derivative with respect to 𝑥𝐿𝑇 𝑖 as defined in Eq. (59). Both
uantities are functions of 𝑥𝐿𝑇 𝑖 and the target hyperplane is once again
onstructed from an average of multiphase equilibrium calculations
onditioned on 𝑥𝐵2 and 𝑥𝐿 . In contrast to the previous example, in
𝑇 𝑖 𝑇 𝑖
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Fig. 7. Phase diagram of the Ni-Ti system.

Fig. 8. (a) Residual driving force of the B2 phase 𝑅𝐵2, (b) Jansson derivative and finite difference approximation of the derivative of 𝑅𝐵2 with respect to 𝑥𝑇 𝑖, and (c) equilibrium
phase fractions all as functions of 𝑥𝑇 𝑖 where the target hyperplane is constructed from a multiphase equilibrium calculation conditioned on 𝑥𝑇 𝑖.
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Fig. 9. (a) Residual driving force of the B2 phase 𝑅𝐵2 and (b) Jansson derivative and finite difference approximation of the derivative of 𝑅𝐵2 with respect to 𝑥𝐵2𝑇 𝑖 all as functions
f 𝑥𝐵2𝑇 𝑖 where the target hyperplane is constructed from a multiphase equilibrium calculation conditioned on 𝑥𝑇 𝑖.
Fig. 10. (a) Residual driving force of the B2 phase 𝑅𝐵2, (b) Jansson derivative and finite difference approximation of the derivative of 𝑅𝐵2 with respect to 𝑥𝐵2𝑇 𝑖 , and (c) equilibrium
hase fractions all as functions of 𝑥𝐵2𝑇 𝑖 where the target hyperplane is constructed from an average of multiphase equilibrium calculations conditioned on 𝑥𝐵2𝑇 𝑖 and 𝑥𝐿𝑇 𝑖.
these calculations 𝑥𝑇 𝑖 and 𝑥𝐵2𝑇 𝑖 are held at 𝑥̃𝑇 𝑖 and 𝑥̃𝐵2𝑇 𝑖 , respectively
while 𝑥𝐿𝑇 𝑖 varies along the interval [0.36, 0.46] centered on the assigned
value 𝑥̃𝐿𝑇 𝑖 = 0.41. The equilibrium phase fractions as a function of
13 
the equilibrium conditioned on 𝑥𝐿𝑇 𝑖 are also shown. For this case,
the Jansson derivative and finite difference approximation once again
agree quite well, and corners in the driving force curve and resulting
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Fig. 11. (a) Residual driving force of the B2 phase 𝑅𝐵2, (b) Jansson derivative and finite difference approximation of the derivative of 𝑅𝐵2 with respect to 𝑥𝐿𝑇 𝑖, and (c) equilibrium
hase fractions all as functions of 𝑥𝐿𝑇 𝑖 where the target hyperplane is constructed from an average of multiphase equilibrium calculations conditioned on 𝑥𝐵2𝑇 𝑖 and 𝑥𝐿𝑇 𝑖.
iscontinuities in the Jansson derivative correspond to changes in the
et of stable phases.

.2.3. Efficiency and robustness of Jansson derivatives versus numerical
pproximations
This case study concludes with a brief discussion about the advan-

ages of calculating derivatives at equilibrium using Jansson derivatives
s opposed to numerical methods. Throughout the applied examples in
ections 4 and 5, Jansson derivative and finite difference approxima-
ions show great agreement, even at discontinuities in the derivative.
his is because the step size of the numerical approximation was able
o be calibrated against the ground truth analytic values from Jansson
erivatives. Fig. 12 extends the composition interval from the example
displayed in Fig. 8 to capture another change in the set of stable
phases and displays the ability of both methods to provide accurate
point calculations and linear interpolations of the residual driving force
derivative over a continuous composition interval with varying step
size ℎ. Because Jansson derivatives provide point queries of the analytic
derivative using only the information from an equilibrium calculation
at that point, all point calculations with this method are accurate,
regardless of the step size. Furthermore, the linear interpolation from
the Jansson derivative method converges rapidly, showing little change
with increasing step size after ℎ = 0.01. In contrast, the finite dif-
ference method provides fairly accurate point calculations and linear
interpolations for the derivative for high values of ℎ where the residual
driving force is sufficiently smooth, but it does not fully capture the
behavior of the derivative at higher values of 𝑥 until a step size of
𝑇 𝑖

14 
ℎ = 0.001. Moreover, as step size continues to decrease, the finite
difference approach starts to diverge at discontinuities. While it may be
possible to mitigate the instability with respect to step size in numerical
derivatives through, e.g., an adaptive step size or change-of-variables
approach, the use of Jansson derivatives makes that unnecessary.

This simple example illustrates that numerical derivatives can be
of similar reliability and computational cost to Jansson derivatives
when the differentiated quantity is sufficiently smooth with respect
to the ordinate of interest and when there is adequate information
to calibrate the step size. However, even when these conditions do
not hold, Jansson derivatives provide a robust and efficient method of
calculating derivatives at equilibrium.

6. Conclusions and future work

After 40 years of implementation, the mathematical justification
for the Jansson derivative technique coupling to the widely-used SQP
Lagrange-Newton minimizer for equilibrium calculations is rigorously
described. As demonstrated, Jansson derivatives are vital for capturing
contributions to the total derivative at equilibrium from dependent
variables of the Gibbs energy minimization, such as phase internal
degrees of freedom. Furthermore, this work demonstrates that, with the
application of Jansson derivatives, the residual driving force of a phase
can be applied as a differentiable metric for phase stability, allowing for
gradient-based explorations of high-dimensional composition spaces.

Looking ahead, further application of the mathematical arguments
presented in this work could lead to the derivation of methods for
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Fig. 12. (a) Finite difference and (b) Jansson derivative interpolations of the continuous derivative 𝑅𝐵2 with respect to 𝑥𝑇 𝑖 with varying step size ℎ.
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alculating higher-order derivatives at equilibrium. Of specific interest,
econd derivatives with respect to model parameters could provide
nformation matrices for maximum likelihood statistical analyses, and
econd derivatives with respect to composition would greatly aid the
earch for spinodal regions in complex multicomponent systems, which
ould be a key tool for the design of stable microstructures with
uperior properties [33,34].
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ppendix A

Without loss of generality, consider the derivative of 𝐺 with respect

o 𝑇 while holding 𝑃 constant and assume a closed system (the same

15 
rgument will work for taking the derivative with respect to 𝑃 while
olding 𝑇 constant). Starting with Eq. (2), the differential of 𝐺 takes
he form

𝐺 =
∑

𝛼
𝑑 𝛼𝐺𝛼

𝑀 +
∑

𝛼
 𝛼𝑑𝐺𝛼

𝑀 =
∑

𝛼
𝑑 𝛼𝐺𝛼

𝑀

+
∑

𝛼
 𝛼

(

𝜕𝐺𝛼
𝑀

𝜕𝑇
𝑑𝑇 +

∑

𝑖

𝜕𝐺𝛼
𝑀

𝜕𝑦𝑖
𝑑𝑦𝑖

)

. (60)

he differentials of phase amount and site fraction are included because
t equilibrium they are dependent variables which are functions of 𝑇 .
hus, in order to claim that

𝑑𝐺
𝑑𝑇

=
∑

𝛼
 𝛼 𝜕𝐺

𝛼
𝑀

𝜕𝑇
, (61)

it needs to be shown that
∑

𝛼
 𝛼

∑

𝑖

𝜕𝐺𝛼
𝑀

𝜕𝑦𝑖
𝑑𝑦𝑖 +

∑

𝛼
𝐺𝛼
𝑀𝑑 𝛼 = 0. (62)

Substituting the differential form of 𝑀𝛼
𝐴 as a function of 𝑑𝑦𝑖 given

in Eq. (29) into the differential form of 𝐺𝛼
𝑀 given in Eq. (36) results

n

𝐺𝛼
𝑀 =

𝜕𝐺𝛼
𝑀

𝜕𝑇
𝑑𝑇 +

𝜕𝐺𝛼
𝑀

𝜕𝑃
𝑑𝑃 +

∑

𝑖

∑

𝐴
𝜇𝐴

𝜕𝑀𝛼
𝐴

𝜕𝑦𝑖
𝑑𝑦𝑖. (63)

Inspection of Eq. (63) reveals

𝜕𝐺𝛼
𝑀

𝜕𝑦𝑖
=
∑

𝐴
𝜇𝐴

𝜕𝑀𝛼
𝐴

𝜕𝑦𝑖
, (64)

and the combination of Eqs. (29) and (64) shows

∑

𝑖

𝜕𝐺𝛼
𝑀

𝜕𝑦𝑖
𝑑𝑦𝑖 =

∑

𝑖

∑

𝐴
𝜇𝐴

𝜕𝑀𝛼
𝐴

𝜕𝑦𝑖
𝑑𝑦𝑖 =

∑

𝐴
𝜇𝐴

∑

𝑖

𝜕𝑀𝛼
𝐴

𝜕𝑦𝑖
𝑑𝑦𝑖 =

∑

𝐴
𝜇𝐴𝑑𝑀

𝛼
𝐴.

(65)

Application of Eq. (65) to the left-hand side of Eq. (62) gives the
expression
∑

𝛼
 𝛼

∑

𝐴
𝜇𝐴𝑑𝑀

𝛼
𝐴 +

∑

𝛼
𝐺𝛼
𝑀𝑑 𝛼 . (66)

Now, because the system is assumed to be closed, the differentials of
the moles of components are set equal to zero, and manipulation of
Eq. (27) reveals that for any component 𝐴
∑

𝑑 𝛼𝑀𝛼
𝐴 = −

∑

 𝛼𝑑𝑀𝛼
𝐴. (67)
𝛼 𝛼



C. Kunselman et al. Calphad 86 (2024) 102705 
Substituting this information into the first term of the expression in
Eq. (66) and applying Eq. (2) gives

−
∑

𝛼
𝑑 𝛼

∑

𝐴
𝜇𝐴𝑀

𝛼
𝐴 +

∑

𝛼
𝐺𝛼

𝑀𝑑 𝛼 = −
∑

𝛼
𝐺𝛼

𝑀𝑑 𝛼 +
∑

𝛼
𝐺𝛼

𝑀𝑑 𝛼 = 0, (68)

proving that Eq. (62) is indeed true.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.calphad.2024.102705.
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