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In this work, a long-established but sparsely documented method of obtaining semi-analytic derivatives of
thermodynamic properties with respect to equilibrium conditions is briefly reviewed and rigorously derived.
This procedure is then leveraged to construct general forms of derivatives of the residual driving force, a
metric for measuring phase stability used in CALPHAD model optimization, with respect to overall system

and individual phase compositions. Applied examples - calculating heat capacity in the Al-Fe system,
thermodynamic factors in the Nb-V-W system, and residual driving force derivatives in the Ni-Ti system —
demonstrate the versatility, accuracy, and extensibility of this method. Using the developed method, residual
driving force gradients can be applied directly in CALPHAD model optimizers, as well as in materials design
frameworks, to identify regions of phase stability with an efficient, gradient-based approach.

1. Introduction

Thermodynamics provides an elegant and rigorous analytical frame-
work for describing how the internal state of a given system changes as
a function of changes in external conditions. Application of these foun-
dational principles to explain and predict the behavior of real systems
led to the development of the Calculation of Phase Diagram (CALPHAD)
method [1]. In this method, parametric models for the Gibbs energies of
individual phases are built as functions of temperature, pressure, and
constitution and fit to empirical and/or computational data. Further
independent variables and corresponding physics can be added to the
models if the system experiences additional types of work.

Given a set of external conditions, the equilibrium state of the
system is then determined through a constrained minimization of the
total Gibbs energy. Constraints can be external—applying to the system
as a whole—or internal—applying to an individual phase—and they
range from setting the equilibrium temperature and composition of the
system, to assigning the phase fraction of a given phase or enforcing
a variety of internal and external conservation laws. The outcome
of this minimization is the overall specification of the system and
internal phase degrees of freedom, such as phase fraction and sublattice
site fractions, respectively, at the thermodynamic equilibrium state
corresponding to the provided external conditions.
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While this outcome is extremely useful for applications requiring the
equilibrium Gibbs energy description and/or corresponding external
and internal degrees of freedom of the equilibrium system, it is not eas-
ily extensible to all other equilibrium thermodynamic properties that
may be of interest. In theory, properties derived from the fundamental
thermodynamic equation or its Legendre transforms can be obtained by
taking derivatives of the Gibbs energy with respect to the appropriate
external conditions. However, solving the constrained optimization
problem introduces dependent variables into the equilibrium model
of the Gibbs energy, making the recovery of analytic expressions for
the dependence of these degrees of freedom on external conditions
generally nontrivial. Thus, analytic expressions for equilibrium ther-
modynamic properties outside of Gibbs energy are not always readily
evident at the conclusion of an equilibrium calculation.

Of course, derivatives of the Gibbs energy can be approximated
numerically. However, these approximations can be both computa-
tionally expensive for high-throughput, multi-component calculations,
and extremely sensitive to even small discontinuities in the underlying
thermodynamic functions. Seeking to avoid numeric differentiation
and recognizing that all necessary information to calculate analytic
derivatives is encoded in the minimized Gibbs energy functional, Bo
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Jansson developed and implemented the “dot derivative” method in the
commercial Thermo-Calc software in the 1980s [2,3]. More recently,
open-source thermodynamic equilibrium calculation software such as
OpenCalphad [4] and PyCalphad [5] also allow users to leverage
the dot derivative method. As explained in [6,7], the dot derivative
approach allows for point queries of the analytic derivative of thermo-
dynamic quantities with respect to external conditions at the conclusion
of an equilibrium calculation through the application of an adjoint-like
procedure [8] in which the assigned external conditions are treated as
design variables. Since the term dot derivative is also used to refer
to derivatives with respect to time in many engineering applications,
the remainder of this work will refer to this technique of calculating
analytic thermodynamic derivatives at equilibrium as the “Jansson
derivative” method.

The specific procedure for calculating a Jansson derivative can
vary based on the applied Gibbs energy minimization method. In [6],
Larsson and Jansson provide a rigorous mathematical description of a
general Jansson derivative method that couples well with a Newton—
Raphson minimizer which optimizes phases’ internal degrees of free-
dom and overall system constraints all in one step for each iteration [9].
In [7], Sundman et al. document a Jansson derivative procedure that
couples well with a sequential quadratic programming (SQP) minimizer
defined by the Lagrange-Newton method in which the optimization
of internal phase degrees of freedom are decoupled for each phase
through fixing the values of the overall system constraints at the newly-
calculated value for that iteration [10,11]. However, Sundman et al. [7]
only outline the procedure for taking a derivative with respect to a
potential, and they do not provide rigorous proof for why the method
works.

The ability to efficiently calculate analytic derivatives of thermo-
dynamic properties at equilibrium with respect to conditions of the
equilibrium calculation is extremely useful for a variety of applications.
Basic applications of these derivatives include calculating properties
such as heat capacity, thermal expansion, and isothermal compress-
ibility as they are defined in terms of derivatives of the thermody-
namic potentials. More sophisticated applications include the calcula-
tion of derivatives of temperature with respect to composition—or vice
versa—in order to explore the behavior of phase boundaries in high-
dimensional systems. Additionally, thermodynamic factors, or deriva-
tives of chemical potential with respect to composition, can be cleverly
employed to compute curvature of the Gibbs energy surface in com-
position space. Recent publications treat CALPHAD model parameters
as thermodynamic potentials to demonstrate how Jansson derivatives
with respect to these parameters can be used for sensitivity analy-
sis [12] and uncertainty quantification (UQ) [13]. Looking forward,
UQ methods similar to that employed in [13], which showed drastic
improvements in efficiency over widely-used Monte Carlo approaches,
could be applied to systems described by more complex models such as
the modified quasichemical model [14]. Similarly, analytic gradients
of error functions with respect to model parameters would allow for
efficient gradient-based optimization approaches, compared to state-
of-the-art approaches using least-squares [2], or “black box” Bayesian
inference through Markov Chain Monte Carlo [15]. Furthermore, the
residual driving force can also be viewed as a differentiable metric
for phase stability for the problem of alloy design in high-dimensional
composition spaces, and derivatives of this quantity with respect to
composition would allow for much more efficient searches through vast
alloy design spaces [16,17].

2. Theory and definitions
2.1. Modeling the Gibbs energy

The foundational elements of thermodynamic calculations within
the CALPHAD method are the parametric models that describe the
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Gibbs energies of individual phases. The construction of these mod-
els is not constrained to a singular approach. However, given that
equilibrium in a closed system at constant temperature and pressure
is characterized by a minimum in the Gibbs energy, these models
are typically formulated as functions dependent on temperature (7),
pressure (P), and constitution (Y)

G%,(T,P,Y) )

where G, is the Gibbs energy per mole formula unit of phase . Note
that in Eq. (1) and throughout the rest of this work, italic typeface
indicates a scalar value while boldface indicates a vector quantity. The
overall Gibbs energy is then given by

G=Y NG, )

where N is the moles of formula units of phase a. Defining G¢, in
terms of constitution instead of composition allows for the modeler
to account for internal degrees of freedom within a phase. If the
Compound Energy Formalism (CEF) [18] is used, these internal degrees
of freedom are modeled using sublattices. Then, for phase a, y{ is the
site fraction of constituent i on sublattice s. Similar to composition, the
sum of site fractions for a given sublattice must equal one, creating one
dependent site fraction on each sublattice. Site fractions are related to
M, moles of component A per mole formula unit of phase «, through

ME = a" Y byt 3
s i

where af is the ratio of sites on sublattice s and b,; is the moles of
component A in a mole of constituent i. M is then connected to the
total moles of component A, N, through

Ny= Y N“MS, &)

and to G, through

Gy = 2 Miua ®)
A

where 4, is the chemical potential of component A. The overall mole
fraction of component A, x,, is then given by
Ny 2, N*MY
Xy = = .
XpNg X, N*XpMg

2.2. Differentials and derivatives

(6)

In thermodynamics, many important properties of a system are
related through partial derivatives. A common way of representing
these relationships is through a total differential form of one quantity
in terms of independent variables of interest. For example, the total
differential of enthalpy (H) as a function of temperature, pressure, and
moles of components for an otherwise simple system is given by

In this total differential form, all influences of how H varies with a
given independent variable are captured in its corresponding partial
derivative. That is, there are no lurking dependent variables.

Now, it is commonly understood that the partial derivative of
enthalpy with respect to temperature in Eq. (7) is equal to the isobaric
heat capacity, Cp :

(%)m = Cp. ®)

However, if the model described in Section 2.1 is used to define
enthalpy of the system as

H=Y N“Hf, ©)

where HY = Gj,+TS},, H is now a function of independent variables
T, P, Y, and N If there is specific interest in the functional form of H



C. Kunselman et al.

at equilibrium for fixed T, P, and N, the procedure given in Section 3
outlines how numerical optimization techniques can be used to solve a
point calculation for Y and WN'. That is, at equilibrium, N and Y become
dependent variables which are functions of independent variables T,
P, and N. Additionally, because these dependent variables are being
solved-for numerically, there are no readily evident analytic functional
forms that can be substituted into the model of H in order to represent
equilibrium H as a function of only independent variables. Thus, if the
partial derivative of the model of H at equilibrium with respect to T
is computed while holding P and N constant, the incorrect value of Cp
would be calculated because contributions from changes in the amounts
of phases or in the internal degrees of freedom of these phases that are
caused by a change in temperature would not be taken into account.

The above discussion illustrates the need for a procedure that cal-
culates the total derivative for models optimized to be at equilibrium.
For the model of H at equilibrium, this would be

dH _OH  OH AN  oH dY
daT oT 9N dT oY dT’

While analytic functional forms of all of the partial derivatives
in Eq. (10) are straightforward to derive by taking the appropriate
partial derivative of the unoptimized enthalpy displayed in Eq. (9), the
total derivatives of the dependent variables need to be solved through
another method because the minimizer only provides point calculations
of the functional relationship between N, Y, and T. Thus, the purpose
of the Jansson derivative procedure is to solve for the total derivatives
of the dependent variables with respect to a given condition of the
equilibrium calculation.

Since lurking dependent variables are present in many quantities
that are of interest to differentiate, this work will break from con-
vention and represent derivatives of thermodynamic properties with
respect to one independent variable while holding all other inde-
pendent variables constant as total derivatives. Partial derivatives in
this work will imply that all other variables (including any depen-
dent variables apart from the quantity being differentiated) are held
constant.

Interestingly, it can be shown for first derivatives of the Gibbs
energy in a closed system that the contributions to the total derivative
from the dependent variables sum to zero, leading to the partial deriva-
tive equaling the total derivative. This means that partial derivatives
of G at equilibrium with respect to temperature and pressure provide
enough information to produce analytic functional forms of entropy,
enthalpy, and volume. A proof is presented in Appendix A.

(10

3. Equilibrium calculations

This section provides a sprint through the Lagrange-Newton opti-
mizer implemented in [4] and [5] for the constrained minimization of
Gibbs energy. For a more detailed description, see [7].

3.1. The Lagrangian

As stated above, equilibrium calculations aim to minimize Eq. (2)
subject to both internal phase and overall system constraints. Internal
phase constraints include the set of site fractions corresponding to a
given sublattice s summing to one:

1=y =0 an

Overall system constraints include mass balance when the system is

closed:

Ny= Y N M4 =0. (12)
a

Additional constraints (such as charge balance for phases with ions)
are added as required for the specific system being minimized. Then,
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through the method of Lagrange multipliers, the constraints are con-
veniently added as multiples of zero to the unconstrained objective
function, resulting in the constrained Lagrangian:

LN, Y, u ) = ZN“G‘}’(4+Z;4A <NA—2N“Mg)
a A o

+ ZZW?(“ZY&) as)

where 5 and p are the vectors of multipliers corresponding to the site
fraction and mass balance constraints, respectively.

Calculating the gradient of L with respect to phase amount, site
fraction, and the multipliers and setting that gradient equal to zero
gives

oL
=G% — ) M%i, =0 a4
M AFA >
awe == 2
L 9G}, oM}
= N Ny uy -* =0, 15)
i 95 zA: W
JL
=1 - Ton=o as
s i
aL
— =N,- Y N*M%=0. a7
Opiy ; A

As Sundman et al. point out in [7], Eq. (14) implies that the mass
balance constraint multiplier y, is the chemical potential of component
A.

3.2. Building the phase and equilibrium matrices

aG*
To build the phase matrix, — is expanded in a first-order Taylor

> oy
series with respect to T, P, and Y:
o a 2 2 Qa 2 Qa
aGy = aGf,” +2 aGM + 2 f;M AP+ Y —aaGMa ay", (18)
9 ayis  0¥;0T 9y, 0P ™ 5 ovivy

where the derivatives on the right-hand side are evaluated at the
current values of T, P, and Y, and the term on the left-hand side is the
. G4 . . .
linear response of ay’a" after some change in the independent variables.
Substituting Eq. (18) into Eq. (15) and omitting phase and sublattice
indices gives the system of equations for each phase:

Gy 002Gy 1
W omayy A
902Gy %Gy 1 Ay,
dy0y; dy% .
: s
1 1 0 N
oM, 3Gy  0*Gy 092Gy
DUV ol el v amordf
3 u WMy Gy PGy _ PGy AP
_ =274 dy,  0y,dT 9y,0P (19)
0

Sundman et al. [7] name the matrix on the left-hand side the phase
matrix. Denoting the entries in the inverted phase matrix as ef:

2 -1

%Gy 902Gy 1
oy 0y10y,
e e e PGy "ZGZM 1
ooy >
e ey .= 2 , (20)
1 1 ... 0

the corrections for site fractions are expressed as

Ayf = c + B AT + ¢l AP + ) ey @D
A
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where ¢, ¢, ¢, and cf, are given by
0G¢
M
o= Lo @2
J
0*G%,
== aaT (23)
J
0°G*,
- Z oo @249
6M“
=l e (25)

J

As evidenced by Eq. (21), corrections to site fraction values for
each phase are connected to movement of the overall system through
changes in the system potentials. What Sundman et al. label as the
equilibrium matrix system of equations calculates these new values as
well as corrections to the phase amounts.

To start building the equilibrium matrix, G}, in Eq. (14) is expanded
in a first-order Taylor series with respect to 7" and P:

a o
Gy = Miu, - ag—TMAT - ag;” AP. (26)

Next, the differential of N, in the mass balance constraints (Egs. (12)

and/or (17)) is computed and set equal to zero. Continuing with finite

difference notation, this gives

AN, =) N AMS + Y AN“MS =0. 27)
a a

Remembering that M} is a function of Y and omitting sublattice

indices, AM can be expressed as

a

oM
a _ A qa
AMA = E 6y;’ Ay[ . (28)

i

Inserting Eq. (21) into Eq. (28) gives

oM<
A
ami=y ra <c;”G +Ch AT + % AP+ ) c73”3> . (29)
i i B
and this relation is inserted into Eq. (27) to make it a function of the
potentials.

If composition is specified as a condition, the differential of Eq. (6)
is computed and set equal to zero. Once again continuing with finite

difference notation, this gives

1
Axy=—— CAME — AME
xA S NeYpME [;N (UM xA;‘ )

+ Y (ME—x, ) M@AM"] =0 (30)
a B

where similar to Eq. (27), Eq. (29) is substituted for AM “

The equilibrium matrix system of equations is then constructed
from Egs. (26), (27), and (30) based on the specified conditions for
the system. For example, a ternary A-B-C system with one stable
phase in which temperature, pressure, amount of each component, and
composition are conditions gives the linear system in Box I. Note that
component x. is the dependent composition variable and the second
row of the equilibrium matrix (left-hand side) corresponds to a sum of
Eq. (27) over all components. See [7] for many more examples.

Once the phase matrix and equilibrium matrix linear systems are
established, suitable starting values for the set of stable phases and their
corresponding site fractions are determined through either a stochas-
tic or grid-based sampling strategy (Newton’s method is sensitive to
starting values, and appropriate sampling procedures are paramount
to ensuring a global minimum is reached). The algorithm then iterates
between the equilibrium matrix and phase matrix linear systems until
corrections are sufficiently small, signaling that equilibrium has been
reached.
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4. Derivatives with respect to equilibrium conditions

As mentioned in Section 2.2, the purpose behind the Jansson deriva-
tive procedure is to solve for the total derivatives of the dependent
variables of an equilibrium calculation with respect to a given equi-
librium condition. In this section, the method will be derived for an
arbitrary condition and then applied in examples for both a derivative
with respect to a potential and a derivative with respect to a compo-
sition variable. The section concludes with applied examples for using
these derivatives to calculate constant pressure heat capacity in the Al-
Fe system and thermodynamic factors for the BCC phase in the Nb-V-W
system.

4.1. Jansson derivatives with respect to an arbitrary equilibrium condition

Let K be the vector of external conditions, Y be the vector of site
fractions for all stable phases, and W be the vector of overall system-
dependent variables (e.g. the vector of unknowns in Eq. (31)). As
their label implies, overall system-dependent variables are functions of
external conditions, W(K). Similarly, Eq. (21) shows that site fractions
are functions of conditions and overall system-dependent variables,
YK, W). Thus, the total derlvatlve —& for some y% € Y and k; € K
can be expressed as

Wiy P, Y iy diy (32)

dk; ~ ok; ow, dk;
where the sum is capturing all contributions from dependent variables

w; € W. At the conclusion of an equilibrium calculation consisting of
n iterations before converging, Y can be expressed as

Y=Y, | +4Y, (33)

where 4Y,, is the nth addition of the site fraction correction given in
Eq. (21). Treating Y,_, as a constant (i.e. as an arbitrary starting value
for the nth iteration) allows Eq. (32) to be rewritten as

% = dAyi; = 94Yiy + Z 94y, dw, (34)
dk; ~ dk; ok, ow, dk,

where 4y? is given by Eq (21) at equilibrium.
While calculatlon of Vi is straightforward, calculating the total

derivatives of W with respect to k; requires a different approach. The
strategy employed here entails settlng up a system of equations similar
to the equilibrium matrix linear system where the vector of unknowns
is =—. To start, consider the differential form of Eq. (14).

d% = 2 padMS+ Y MSduy. (35)
A A
A more familiar way of expressing the differential of G, is given by
o (1
dGe, = a4t Mgp dM¢ 36
b= —5pdT + —5rdP+ Z Ha (36)

where M¢ becomes the natural conjugate variable for u, due to the
definition of G?’w. Comparing Egs. (35) and (36) reveals the following
form of the Gibbs—-Duhem equation:

Moduy = S0 g 20 37
;A”“_aT o (37)

Dividing both sides of Eq. (37) by the differential of k; (or, rather,
recognizing the relationship between total derivative and differential
forms) gives

duy
z a -
Maax, =

A J

Next, taking the derivative of N, from Eq. (17) with respect to
condition k; and setting it equal to zero gives

dN, N L AM
d—kj—Z—M ZN (39)

Gy dP

Xy dr 9 dP
oP dk;’

= 38
o ak, %)
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M, My M 0
oM oM U
NZiCiAZDWD N % :BZD (,y NZ[CiCZDT(D XpMp A
Hp
Saa(Gr oo 5P)  Dan(GEoaZo TP) Bac(TEIoTR)  Maxazp M
o Mp 2o Mp 2 Mp NZpMp || He
Zic 1A( -xp Xp g’,,D) 21513( -xpXp gf,") Zic :c( —XpXp (1;;, Mp—xp ¥p Mp AN
ZDMD ZDMD ZDMD NZpMp (31)
Gy
oM
NZ¥ic62p FI,D
= Zico( G2 -xa2p 52 )
ZpMp
icio( G —xp Tp 52 )
ZD Mp
Box I.
aMe
Similar to Eq. (28), —4 can be expressed as add another row and column to the matrix on the left-hand side to
dk;
! accommodate adding AT to the vector of values to be solved for, move
a o
dMy _ Z oMy d_y;’ (40) all values that are now multiplied by AT from the right-hand side to
dk; ~ oy? dk;’ the left-hand side, and set AT = 1. Thus, the two methods produce

oM®
where TA = 0 and sublattice indices are omitted. Eq. (40) is then

inserted ir/1to Eq. (39) to give

dN, dN@ IM? dy"
A _ Ma o a7 _
ak, ; dk; +2N Z oy dk,

Lastly, when composition is specified as a condition, the total
derivative of Eq. (6) with respect to k; is derived and set equal to zero.
With application of Eq. (40), this gives

(4D

dxa _

dk; ~

T M+ T N T G (2 S5 B My + L NS, T S )
T NTE, M

=0. (42)

The conditions of the equilibrium calculation and the assignment of
k; produce the specific form of Eq. (34) that is inserted into Egs. (41)
and (42). Then, similar to the construction of the equilibrium matrix
linear system, Egs. (37), (41) and (42) are used to solve for Finally,

the calculated values of 2 E are substituted into Eq. (34) to cornpute
J
dy®

- Two examples are given below.
j

4.2. Example: Jansson derivatives with respect to temperature

Assume a ternary A-B-C system with one stable phase in which
temperature, pressure, amount of each component, and composition are
conditions. Let x. be the dependent composition variable, and assign
k;=T. Then Egs. (21) and (34) take the below forms, respectively:

b= clo+ el (43)
dy;,  day}

ar - Z G dT @4
To clarify, cf, is an explicit function of 7', and the partial derivative of

w1th respect to T is c . Inserting Eq. (44) into Egs. (41) and (42)
results in the linear systern presented in Box II: Note that to recover
the finite difference notation that Sundman et al. use in [7], start by
representing the derivatives in the column vector on the left-hand side
as ratios of finite differences. Then, multiply the whole system by AT,

the same answer. However, the method proposed in this work removes
a redundant equation from the linear system (the assignment AT = 1),
which allows for the equilibrium matrix to be reused for the calculation
of derivatives (see the equilibrium matrix in Eq. (31)). Since matrix
inversion can be an expensive computation, avoiding the construction
and inversion of a new matrix for these calculations can lead to greater
computational efficiency.

4.3. Example: Jansson derivatives with respect to composition

Once again, assume a ternary A-B-C system with one stable phase in
which temperature, pressure, amount of each component, and composi-
tion are conditions. Let x be the dependent composition variable, and
assign k; = xp. Then, because Eq. (21) depends only on the conditions
of the equilibrium calculation, 4y? is once again given by Eq. (43).
Conversely, Eq. (34) becomes
Dy _ A z a s
dxg de ’AdeA
Note that the partial derivative of Ay? with respect to xp equals zero
because all composition dependencies in these models are given as
functions of Y, not x. Since composition is now changing, Eq. (42)
is no longer set equal to zero for the derivatives of the independent
composition variables. That is, for this system, % =1 and the sum of

(46)

Zﬁ and 2< must equal —1. Setting 5 dxp - —5 and inserting Eq. (46)

lnto Egs. (41) and (42) gives the linear systern in Box III: As with the
example in Section 4.2 where the derivative is taken with respect to
a potential, the equilibrium matrix is recovered for the calculation of
derivatives with respect to composition and requires only that a new
column vector for the right-hand side be constructed.

4.4. Applied examples

For the two examples below and for those in Section 5.2, all phase
diagrams are plotted using an in-development mapping module found
in the PyCalphad GitHub repository under pull request #517 [19], and
all Jansson derivatives are calculated using the PyCalphad development
branch under pull request #432 [20]. All finite difference approxima-
tions are computed using the second-order central difference technique
employed by NumPy’s gradient function [21].
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M, My M 0 »
oMy oM, oMy, aT
N ZiciaZp e N iz Zp P N Zicic Xp e XpMp dug
o (oMy aMp oMy aMp (oM aMp dT
Z"L”‘( o 4 X0 Ty, ) ZiL’B( % 4 X0 Ty, ) Z""C( o 42D Ty, ) Ma=xaXp Mp || dpe
XpMp XpMp XpMp NXpMp dT
aMp aMp aMp aMp (oM aMp AN
Z"C’A( oy B Zp oyi ) ZiC'B( 0yi 5 Xp i ) Z‘C’C( oy B Zp i ) Mp-xg¥pMp |\ 57
YpMp YpMp YpMp NZpMp 45)
Gy
T
oM
-NZarZp o
_ aMp oMy
=% CiT(XA 2p o oy )
XpMp
i aMp Mg
Zi ‘iT(XB 2D Sy " om )
XpMp
Box II.
M, Mp Mc 0 dup
oM, oM oMp dxp
N ZiciaZp e N iz Zp e N Zicic Xp e XpMp dug
dx
(oMy aMp (Mg aMp oMy aMp B
Z"“"( o A Zp ) Z’L’B( T XA XD Ty ) Z’L'C( T A XD Ty ) Ma—x4 Zp Mp || dpc
XpMp XpMp XpMp NZXpMp dxg
(MB _ Mp e (MB _ oMp e (MB _ wMp AN
Z"C’A( o B2ID Ty ) Z C’B( i EID Ty ) Z‘C’C( o B 2ID Ty ) Mp-xp¥pMp 47)
dxpg
ZpMp XpMp XpMp NZpMp
0
“l-:
2
1
Box III.

4.4.1. Calculating heat capacity in the Al-Fe system

This example uses the thermodynamic description of the Al-Fe
system provided in [22], and a phase diagram generated from this
description is provided in Fig. 1. Recalling Section 2.2, in the context
of equilibrium calculations, isobaric heat capacity is the total derivative
of equilibrium enthalpy with respect to temperature while holding
pressure and amounts of components constant:

c _dH _0H _oH dN
P dT aT oN dT

0H dY

arer 48
oY dT. (48)

Equilibrium enthalpy of the system is calculated over the tempera-
ture interval [1600 — 2000 K] at constant composition x ,; = 0.25. These
conditions were deliberately chosen to capture enthalpy and isobaric
heat capacity through a phase change, which is the B2 phase melting
to form the Liquid phase in this case. Following the same conditions,
three methods are used to calculate the isobaric heat capacity: Jansson
derivatives, partial derivatives of equilibrium enthalpy computing only
the first term on the right-hand side of Eq. (48), and finite differences.
The results are plotted in Fig. 2.

Fig. 2 shows that when only a single phase is stable, all three
methods of calculating the constant pressure heat capacity agree well.
However, for temperatures in which both the B2 and Liquid phases are
stable, the Jansson derivative and finite difference methods predict a
constant pressure heat capacity approximately two orders of magnitude
higher than the partial derivative technique. This is because the partial
derivative method does not account for latent heat contributions to the

heat capacity. Similarly, significant changes in constitution/ordering
can lead to changes in configurational entropy which, if neglected, can
also lead to large under-predictions of the heat capacity.

This example illustrates the danger of neglecting contributions to
the heat capacity from dependent variables of the Gibbs energy mini-
mization (i.e. neglecting the second and third terms on the right-hand
side of Eq. (48)).

The calculation of the effective heat capacity across a phase change
is important in a number of practical applications. For example, in
the context of Additive Manufacturing (AM), the prediction of the
characteristics of the melt pool as a function of process conditions
is essential [23,24]. Thermal models that neglect accounting for the
latent heat of melting (or boiling) tend to overestimate the temperature
excursions within the melt pool, leading to significant discrepancies in
the predicted melt pool characteristics relative to the ground truth [25,
26]. Most implementations of AM-relevant thermal models incorpo-
rate the effects of the latent heat by using a lumped capacitance
approach—i.e. they assume a constant heat capacity that, when in-
tegrated over the coexistence temperature range equals the latent
heat. A more thermodynamically-rigorous approach would avoid using
these ad-hoc methods and instead rely on the formal definition of the
heat capacity and its implementation through the Jansson derivative
approach, as done in this section. Thermo-Calc’s new Additive Man-
ufacturing module implements this approach in the computation of
effective thermo-physical properties needed for the calculations of the
melting/solidification behavior.
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4.4.2. Calculating thermodynamic factors for the BCC phase in the Nb-V-W
system

In this example, single-phase equilibrium calculations are used to
calculate the chemical potentials of all components of the BCC phase in
the Nb-V-W system along the direction in composition space displayed
in Fig. 3. That is, starting at conditions x;,, = 0.1 and xy;, = xp, = 0.45
with xy;, assigned as the dependent composition variable, x, and xy,
decrease symmetrically as x, increases to x,, = 0.9 while temperature
is held at 1200 K. Adhering to the same conditions, thermodynamic
factors of all three components with respect to x,, were calculated using
Jansson derivatives and finite differences. In the Jansson derivative
calculations, xy, is the dependent composition variable and dde""/” was

chosen to equal —%. Data for the thermodynamic description of the BCC
phase for this system was generated in [27] and compiled into database
format using [28].

The results are displayed in Fig. 4. For all calculated thermodynamic
factors, the Jansson derivative and finite difference methods show
excellent agreement.

The ability of Jansson derivatives to efficiently calculate analytic
derivatives of chemical potential with respect to composition (and even
temperature and pressure) could lead to more robust multi-physics-
informed phase field and other mass transport simulations in which the
driving force for transport relies on the spatial gradient of chemical
potential. In a recent study [29], interdiffusion of U and Zr in U-Pu-
Zr nuclear fuel rods was investigated by coupling the thermodynamic
equilibrium calculation engine Thermochimica [30] with BISON [31], a
nuclear fuel performance software used to model thermomechanics and
mass transport. More specifically, BISON was used to solve the below
diffusion equation using chemical potential and composition inputs
calculated in Thermochimica:
on,
o

where n, is the volumetric density of component 4, ¢ is time, M, is
the mobility of component A, and Vyu, is the spatial gradient of the

+ V- (=Myny Vi) =0 (49)

chemical potential of component A. Applying the chain rule, Vu, can
be further expressed as a function of x4, T, and P:

duy duy dyy
V= Hay,  Yagr, Pagp 50
Pa=ax, VAT ar dP (50)

As evidenced by Egs. (49) and (50), injecting Jansson derivatives
of chemical potential into the mass transport solver of such a multi-
physics setup could facilitate more efficient and robust solutions of
Eq. (49) because only the spatial gradients of x4, T, and P would need
to be solved for numerically.

5. Derivatives of residual driving force with respect to composi-
tion

The residual driving force—a measure of the distance between the
Gibbs energy of a metastable phase and the current stable common
tangent hyperplane—is a useful phase stability metric. This informa-
tion, for example, could be used to inform a thermodynamic modeling
optimizer as it navigates the parameter space in order to agree with
experimental observations attesting to the presence (or absence) of
a phase under specific thermodynamic conditions. In other cases, in-
formation about the residual driving force can be used to inform
the exploration of high-dimensional composition spaces. For example,
Galvan et al. [16] mapped the search over an alloy space in order
to meet specific phase constitution constraints to the solution of a
constraint satisfaction problem. In their setup, once a region was identi-
fied as meeting such phase constitution requirements, the now deemed
feasible space was expanded through an active learning procedure. The
framework, however, could only work once a feasible region had been
identified in the first place. In general, all alloy search approaches
that rely exclusively on the outcome of Gibbs minimization without
accounting for changes in phase stability of metastable phases would
have to first discover a feasible region in order to then expand the
feasible space. This discovery process could be quite expensive and
time-consuming if the feasible space is a small fraction of the total alloy
design space.
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BCC single phase equilibrium in the Nb-V-W system at 1200 K.

A much better approach would be to consider the residual driving
force as a differentiable—and optimizable—quantity. Residual driv-
ing force derivatives with respect to composition would allow for
the employment of gradient-based optimization tools, which have the
potential to lower the computational cost associated with the tar-
geted exploration of vast alloy spaces—e.g. the high entropy alloy
space [17]—by several orders of magnitude. To this end, this section
describes two different constructions of the residual driving force,
derives gradients of these quantities with respect to overall system and
individual phase compositions, and provides an example of calculating
these gradients for residual driving forces of the B2 phase in the Ni-Ti
system.

5.1. Formulation of residual driving force and its derivatives

Adopting the definition from [15], the residual driving force for
phase « is given by

R":G“—ZﬁAxZ (51)
A

where ji, is the chemical potential of component A defining the target
hyperplane, x4 is the composition of component A at the a phase
vertex, and G* is the single-phase, composition-constrained minimum
Gibbs energy conditioned on the composition at the a phase vertex. In
this work, two constructions of the target hyperplane are considered,

and the derivatives of their corresponding residual driving forces with
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respect to overall system composition and individual phase vertex
compositions are discussed below.

5.1.1. Constructing the target hyperplane from a measured overall compo-
sition

Let X, € X denote the measured overall system mole fraction of
component A and X% € %% denote the measured mole fraction of
component A for the a phase vertex at equilibrium. For this case, the
target hyperplane is defined by a multiphase equilibrium calculation at

the measured overall system composition:

A= Uy (52)

where p, with no symbol above it signifies the chemical potential of
component A for the multiphase equilibrium conditioned on %.

In contrast, G is determined from a single phase equilibrium calcu-
lation conditioned on X*. To denote that G* is being calculated from a
different equilibrium than the chemical potentials for the target hyper-
plane, any value arising from a single phase equilibrium conditioned
on the corresponding phase vertex composition will be denoted with a
“hat” (e.g. G*). Thus, Eq. (51) takes the form

RO(x,x%) = G*(x") = ) ua(0%5, (53)
A
where the dependence of each quantity on overall and vertex composi-

tions is emphasized. Fig. 5 provides a visual representation of the terms
in Eq. (53).



C. Kunselman et al.

Calphad 86 (2024) 102705

PB =B

fa=pa

Fig. 5. Schematic of mean hyperplane and residual driving force when the measured overall composition is available. The residual driving force is given by the vertical distance

between G and the target hyperplane (green line).

Taking the total derivative of R* with respect to x, and holding
vertex compositions constant gives

dR* _ dG” duB s KB o

= =- 54
dx, dxy Z Z'qux deA (54)
where all 42 d are calculated from taking the Jansson derivative of the

multiphase equlhbrlurn calculation conditioned on the measured over-
all system composition with respect to x 4. Because vertex compositions
are being held constant, all derivatives of phase vertex mole fractions
and derivatives of values that are only functions of these compositions
with respect to x, in Eq. (54) equal zero.

Now, taking the derivative of R* with respect to x4 and holding
overall system composition and other vertex compositions constant
gives

dR® _ dG® duB o _dge dz®
dx‘;“ dx B Z ZMB dx - dx‘z _gﬂB dx‘:‘ (55)

tive of the single phase equilibrium calculation conditioned on the
measured « phase vertex composition with respect to x 4. All derivatives
of overall system mole fractions and derivatives of values that are only
functions of these compositions with respect to x% equal zero since the

on the assignments in the Jansson derivative calculation of t/iie single
=1, and
the derivatives of the remaining « phase mole fractions with respect
to xz sum to —1 just as in the Jansson derivative calculation (see
Section 4.3).

Inspection of Eq. (53) reveals that no terms are a function of any
vertex compositions of other phases. Thus, for phase f # «, the
derivative of R* with respect to xi while holding overall system and
other vertex compositions constant equals zero.

ds
phase equilibrium calculation conditioned on x*. That is, d;

5.1.2. Constructing the target hyperplane from measured vertex composi-
tions

Let X% € X* denote the measured mole fraction of component A for
the a phase vertex at equilibrium. For this case, there is no measured
overall system composition. Thus, the target hyperplane is defined
by an average of chemical potentials from multiphase equilibrium

10

calculations conditioned on the phase vertex compositions:

Hy =~ (56)

where p is the number of measured stable phases at equilibrium and
A% denotes the chemical potential of component A from the multiphase
equilibrium conditioned on X*. Similar to the “hat”, the “ring” denotes
a value from a multiphase equilibrium conditioned on a phase vertex
composition. Thus, Eq. (51) takes the form

)=G"(x“)—2%2ﬁ2
A 14

where the dependence of each quantity on vertex compositions is
emphasized. Note that X could also have a “hat” over it since both
the multiphase « vertex and the single phase equilibrium calculations
are conditioned on the same composition. Fig. 6 provides a visual

representation of the terms in Eq. (57).

RYx*%,x’, ... (x7) (57)

Inspection of Eq. (57) reveals that no terms are a function of overall
system composition. Thus, the derivative of R* with respect to x,
while holding all vertex compositions constant equals zero. Conversely,
taking the derivative of R* with respect to x4 and holding overall
composition and other vertex compositions constant gives

dR® dG”‘ dMB .5
dxA Z Z P4 dxi
dGa XB d B d)%‘; _
— _ _B 58
dx’ p dx§ Z dx’ ax 1B 58)

where all Z’ are calculated from taking the Jansson derivative of
the multlphase equilibrium calculation conditioned on x* with respect
to x4. All derivatives of vertex mole fractions other than for phase «
and derivatives of values that are only functions of these compositions
with respect to x§ equal zero since the other vertex compositions are

£ depend on the
assignments in the Jansson derlvatlve calculation o’i the multiphase
equilibrium calculation conditioned on X°.

Further inspection of Eq. (57) reveals that R* is a function of
the vertex compositions of other phases. Taking the derivative of R*
with respect to xi and holding overall composition and other vertex



C. Kunselman et al.

o

Calphad 86 (2024) 102705

Ip

(b)
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compositions constant gives

N ° oY ca ca o ff
dR* _ dGe vy 1y Xp ditg
T Ay g g M= (59
x, X, B y dx, B dx, *y B dxA

B

dji . . . .

where all d—g come from Jansson derivatives of the multiphase equi-
X

librium calcuAlation conditioned on %#, and many derivatives equal zero
for the same reasons as in Eq. (58).

While two examples are presented here, it should be noted that the
target hyperplane can be constructed in whatever fashion is convenient
for the problem at hand. Once the target hyperplane is defined, the key
to calculating the derivative of the residual driving force of a given
phase with respect to the overall or a specific phase vertex compo-
sition is a matter of determining which composition each quantity is
conditioned on. If a quantity comes from an equilibrium calculation
not conditioned on the composition corresponding to the derivative,
the derivative of that term is zero.

5.2. Example: Application to the Ni-Ti system

This case study leverages the thermodynamic description of the
Ni-Ti system provided in [32]. The phase diagram of this system is
provided Fig. 7. In this example, stability of the B2 phase is investi-
gated at 1500 K near the B2/Liquid two-phase region with simulated
measurements of %, = 0.45, 22 = 0.47, and %%, = 0.41. Derivatives of
residual driving force are calculated for both constructions of the target
hyperplane described above.

5.2.1. Constructing the target hyperplane from a measured overall compo-
sition

Fig. 8 displays R5? as defined in Eq. (53) and the Jansson derivative
of RB2 with respect to x;; as defined in Eq. (54) as functions of
xp; in which the target hyperplane is constructed from a multiphase
equilibrium calculation conditioned on x;;. For these calculations, x%_z
and x#’. are held at the assigned values given above while x;; varies
along the interval [0.40,0.50], which is centered on the assigned value
Xr; = 0.45. For this case, there is good agreement between the Jansson
derivative and finite difference approximations. The equilibrium phase
fractions as a function of x;; are also shown. Corners in the driving
force plot and resulting discontinuities in the derivative correspond to
changes in the set of stable phases. In this case, the sudden addition or
subtraction of a stable phase can cause discontinuities in the derivative
of the chemical potentials defining the target hyperplane, leading to
the behavior seen here.

11

Fig. 9 displays RP? still defined by Eq. (53) but shows the Jansson
derivative with respect to x%z as defined in Eq. (55). Both quantities are
functions of x?iz and the target hyperplane is once again constructed
from a multiphase equilibrium calculation conditioned on x;;. In con-
trast to the previous example, in these calculations x;, and x, are held
at the assigned values given above while x%? varies along the interval
[0.42,0.52], which is centered on the assigned value %2> = 0.47. For
this case, the Jansson derivative and the finite difference approximation
show excellent agreement, and there are no sharp corners in the resid-
ual driving force or visibly noticeable discontinuities in the derivative.
This is because the target hyperplane is not a function of x?f, so
the chemical potentials defining it stay constant. Additionally, the
single-phase composition-constrained equilibrium defining G®? does
not experience any changes of phase or rapid changes in internal
ordering, which also contributes to the smoothness of the driving force

curve.

5.2.2. Constructing the target hyperplane from measured vertex composi-
tions

Fig. 10 displays R?? as defined in Eq. (57) and the Jansson deriva-
tive of RB? with respect to x%z as defined in Eq. (58) as functions of x%?
in which the target hyperplane is constructed from an average of mul-
tiphase equilibrium calculations conditioned on x%.z and x#’.. Similar to
the previous example, in these calculations x;; and x%i are held at X,
and i#i, respectively while x%z varies along the interval [0.42,0.52]. The
equilibrium phase fractions as a function of the equilibrium conditioned
on x%z are also shown. In this case, the Jansson derivative and finite
difference approximation show great agreement, and while there is no
noticeable corner in the driving force plot, there is a slight kink in the
Jansson derivative plot near x%? = 0.476 corresponding to the change
in the set of stable phases. Interestingly, there is no noticeable corner
in the driving force plot or kink in the Jansson derivative curve when
the Liquid phase becomes stable again near x%.z = 0.501. Thus, while
the removal of the Liquid phase from the set of stable phases causes a
discontinuity in the chemical potentials from the B2 phase vertex, the
effect on the overall derivative is lessened through averaging with the
chemical potentials from the Liquid vertex equilibrium calculation, and
the re-addition of this phase to the set of stable phases does not have
to result in a discontinuity in the derivative.

Lastly, Fig. 11 displays RB? as defined by Eq. (57) but shows the
Jansson derivative with respect to x]fi as defined in Eq. (59). Both
quantities are functions of x#i and the target hyperplane is once again
constructed from an average of multiphase equilibrium calculations

conditioned on x%z and x%l.. In contrast to the previous example, in
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these calculations x7; and x2? are held at %;; and %52, respectively the equilibrium conditioned on x%, are also shown. For this case,
while x#i varies along the interval [0.36,0.46] centered on the assigned the Jansson derivative and finite difference approximation once again
value ScIT“i = 0.41. The equilibrium phase fractions as a function of agree quite well, and corners in the driving force curve and resulting
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discontinuities in the Jansson derivative correspond to changes in the
set of stable phases.

5.2.3. Efficiency and robustness of Jansson derivatives versus numerical
approximations

This case study concludes with a brief discussion about the advan-
tages of calculating derivatives at equilibrium using Jansson derivatives
as opposed to numerical methods. Throughout the applied examples in
Sections 4 and 5, Jansson derivative and finite difference approxima-
tions show great agreement, even at discontinuities in the derivative.
This is because the step size of the numerical approximation was able
to be calibrated against the ground truth analytic values from Jansson
derivatives. Fig. 12 extends the composition interval from the example
displayed in Fig. 8 to capture another change in the set of stable
phases and displays the ability of both methods to provide accurate
point calculations and linear interpolations of the residual driving force
derivative over a continuous composition interval with varying step
size h. Because Jansson derivatives provide point queries of the analytic
derivative using only the information from an equilibrium calculation
at that point, all point calculations with this method are accurate,
regardless of the step size. Furthermore, the linear interpolation from
the Jansson derivative method converges rapidly, showing little change
with increasing step size after h 0.01. In contrast, the finite dif-
ference method provides fairly accurate point calculations and linear
interpolations for the derivative for high values of 2 where the residual
driving force is sufficiently smooth, but it does not fully capture the
behavior of the derivative at higher values of x;; until a step size of

14

h = 0.001. Moreover, as step size continues to decrease, the finite
difference approach starts to diverge at discontinuities. While it may be
possible to mitigate the instability with respect to step size in numerical
derivatives through, e.g., an adaptive step size or change-of-variables
approach, the use of Jansson derivatives makes that unnecessary.

This simple example illustrates that numerical derivatives can be
of similar reliability and computational cost to Jansson derivatives
when the differentiated quantity is sufficiently smooth with respect
to the ordinate of interest and when there is adequate information
to calibrate the step size. However, even when these conditions do
not hold, Jansson derivatives provide a robust and efficient method of
calculating derivatives at equilibrium.

6. Conclusions and future work

After 40 years of implementation, the mathematical justification
for the Jansson derivative technique coupling to the widely-used SQP
Lagrange-Newton minimizer for equilibrium calculations is rigorously
described. As demonstrated, Jansson derivatives are vital for capturing
contributions to the total derivative at equilibrium from dependent
variables of the Gibbs energy minimization, such as phase internal
degrees of freedom. Furthermore, this work demonstrates that, with the
application of Jansson derivatives, the residual driving force of a phase
can be applied as a differentiable metric for phase stability, allowing for
gradient-based explorations of high-dimensional composition spaces.

Looking ahead, further application of the mathematical arguments
presented in this work could lead to the derivation of methods for
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calculating higher-order derivatives at equilibrium. Of specific interest,
second derivatives with respect to model parameters could provide
information matrices for maximum likelihood statistical analyses, and
second derivatives with respect to composition would greatly aid the
search for spinodal regions in complex multicomponent systems, which
would be a key tool for the design of stable microstructures with
superior properties [33,34].
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Appendix A

Without loss of generality, consider the derivative of G with respect
to T while holding P constant and assume a closed system (the same

15

argument will work for taking the derivative with respect to P while
holding T constant). Starting with Eq. (2), the differential of G takes
the form

dG =Y dN"Gs + Y NGy, = Y dNGY,
a a a

0G* 0G®
a M M .
+Za:/\f (_aT dT+Z 5 ) (60)

The differentials of phase amount and site fraction are included because
at equilibrium they are dependent variables which are functions of T.
Thus, in order to claim that

00"
= 2 : (61)
it needs to be shown that
ZN“Z +ZG" dN®=0. (62)

Substituting the differential form of M{ as a function of dy; given
in Eq. (29) into the differential form of G, given in Eq. (36) results
in

a a
4Gy = —2F —2ay,. (63)
Inspection of Eq. (63) reveals
(3G“ 0M a
" s 64)
9y; ;‘ A 9y;

and the combination of Egs. (29) and (64) shows

Z dy, 22/4,1 a Z#AZ

G,

ZﬂAdM

(65)

Application of Eq. (65) to the left-hand side of Eq. (62) gives the
expression

D NN uydMG+ Y G d N
o A o

Now, because the system is assumed to be closed, the differentials of
the moles of components are set equal to zero, and manipulation of
Eq. (27) reveals that for any component A

Y ANTM§ ==Y NdM,.
a a

(66)

(67)
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Substituting this information into the first term of the expression in
Eq. (66) and applying Eq. (2) gives

=D AN Y MG+ Y GLdN ==Y Ghd N+ Y Gy d N =0, (68)
a A a a a

proving that Eq. (62) is indeed true.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.calphad.2024.102705.
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