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Abstract

Mild Cognitive Impairment (MCI) is considered a prodromal
stage of dementia, including Alzheimer’s disease. It is charac-
terized by behavioral changes and decreased cognitive function,
while individuals can still maintain their independence. Early
detection of MCI is critical, as it allows for timely interven-
tion, enrichment of clinical trial cohorts, and the development
of therapeutic approaches. Recently, language markers have
been shown to be a promising approach to identifying MCI in
a non-intrusive, affordable, and accessible fashion. In the In-
terSpeech 2024 TAUKADIAL Challenge, we study language
markers from spontaneous speech in English and Chinese and
use the bilingual language markers to identify MCI cases and
predict the Mini-Mental Status Examination (MMSE) scores.
Our proposed framework combines the power from 1) feature
extraction of a comprehensive set of bilingual acoustic features,
and semantic and syntactic features from language models; 2)
careful treatment of model complexity for small sample size;
3) consideration of imbalanced demographic structure, poten-
tial outlier removal, and a multi-task treatment that uses the
prediction of clinical classification as prior for MMSE predic-
tion. The proposed approach delivers an average of 78.2% Bal-
anced Accuracy in MCI detection and an averaged RMSE of
2.705 in predicting MMSE. Our empirical evaluation shows
that translingual language markers can improve the detection
of MCI from spontaneous speech. Our codes are provided in
https://github.com/illidanlab/translingual-language-markers.
Index Terms: Mild Cognitive Impairment Detection, Translin-
gual Language Markers, Computational Paralinguistics

1. Introduction

Alzheimer’s disease (AD) is a type of dementia that impacts
memory, cognition, and behavior and ranks as the seventh-
leading cause of death in the United States in 2020 [1]. Mild
Cognitive Impairment (MCI) is the prodromal stage of demen-
tia, including AD, characterized by minor problems with mem-
ory loss, speech and language impairment, and reasoning diffi-
culties. Early detection of MCI is critical, allowing for timely
intervention and improvements in quality of life and enabling
cohort enrichment towards the understanding of pathology and
the development of therapeutical approaches.

Even though in vivo markers and imaging markers from
brain scans are shown to be very sensitive in the detection of
MCI [2], they are not easily accessible nor generally affordable
for screening. Recently, language markers have been shown to
be a promising approach to identifying MCI in a non-intrusive,
affordable, and accessible fashion. The effectiveness of lan-
guage markers is studied in the context of semi-structured con-
versation [3, 4, 5] and spontaneous speech [6], and showed
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promising predictive power differentiating MCI and cognitive
normal subjects. In the InterSpeech 2024 TAUKADIAL Chal-
lenge, we study language markers from spontaneous speech in
English and Chinese and use the language markers to iden-
tify MCI cases and predict the Mini-Mental Status Examina-
tion (MMSE) scores. There are many outstanding challenges.
The first one is the small sample size: we have only 62 En-
glish speakers and 64 Chinese speakers in the provided training
data. Building predictive models separately for the two lan-
guages greatly limits the number of markers that can be ex-
plored and included in the model due to the restricted model
complexity needed to prevent overfitting. How to jointly con-
sider all samples in a unified predictive pipeline is critical to
ensure the prediction performance.

In this paper, we conduct extensive experiments and pro-
pose a cross-lingual strategy to combine the information from
the two languages. Our proposed framework extracts a com-
prehensive set of features, including acoustic features based on
the raw speech, and embedding from pre-trained language mod-
els that capture interactions among semantic and syntactic ele-
ments in transcribed text. We used machine neural translation
from Chinese to English to secure a set of shared embedding
features with English and applied back-translation in English
to remove the impact of bias induced by the translation sys-
tem. To control model complexity, we select the most relevant
features to be included in the model by ranking the features us-
ing a supervised sparse learning model. To further improve the
prediction performance, we explore the demographic structure,
identify imbalance subgroups that may induce undesired bias in
the models, and finally remove them by constructing a weighted
loss function. We incorporate a two-staged procedure that iden-
tifies samples with potentially noisy labels and eliminates them
in the final learning. Finally, we develop a multi-task treatment
that couples the two prediction tasks, using the prediction of
clinical classification as prior for MMSE prediction. The pro-
posed approach delivers an average of 78.2% Balanced Accu-
racy in MCI detection and an averaged RMSE of 2.705 in pre-
dicting MMSE. Our empirical evaluation shows that translin-
gual language markers can improve the detection of MCI from
spontaneous speech.

2. Dataset

The TAUKADIAL Challenge Dataset [7] consists of sponta-
neous speech samples corresponding to audio recordings of
picture description tasks produced by both cognitively normal
subjects and patients diagnosed with MCI. Each subject has
three individual audio recordings corresponding to descriptions
of three corresponding pictures. The dataset has been evenly
balanced with respect to age and gender to eliminate poten-
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Language English (En) Chinese (Zh)
Cognitive status NC MCI NC MCI
Number of subjects| 21 41 34 33
MMSE 29.240.6 27.8+1.2 29.0+1.3 23.5+4.3
Gender (%female) | 85.7% 56.1% 47.1% 66.7%
Age 69.7£6.2 72.0+6.6 73.2+6.5 75.1+4.9

Table 1: Demographics of training dataset in the TAUKADIAL
Challenge. The language labels (En and Zh) are identified by
automatic speech recognition.

tial confounding and bias [7]. The dataset includes both En-
glish (En) and Chinese (Zh) speakers and the language used by
each participant is identified by an Automatic Speech Recog-
nition (ASR) model with details later. The three pictures used
for English and Chinese speakers are different. The training
dataset has 129 participants in total, including 67 participants
who identified as Chinese speakers and 62 as English speak-
ers. A clinical classification is provided for each subject, either
healthy normal cognition (NC) or mild cognitive impairment
(MCI). Among the 129 participants, we have 74 MCI patients,
of which 33 are Chinese speakers, and 41 are English speakers.
Among the 55 cognitively healthy individuals, there are 34 Chi-
nese speakers, and 21 are English speakers. Mini-Mental Status
Examination (MMSE) score is provided for each training sub-
ject as a target variable for the regression task. We summarize
the demographic information in Table 1. The test dataset in-
cludes 40 subjects, and the goals of the competition are to 1)
predict the clinical classification (NC/MCI) and 2) predict the
MMSE score of each subject.

3. Methodology

For the two tasks, clinical classification and MMSE score pre-
diction, we first extract various types of features from the au-
dio, including acoustic features and language features, and then
conduct predictive modeling with feature selection. One tech-
nical challenge is that the modeling includes two different lan-
guages, and our proposed approach jointly considers and aligns
two languages to improve predictive performance. We have also
developed strategies to mitigate imbalanced classes and outlier
detection. Figure 1 overviews the technical components of the
proposed approach.

3.1. Feature Extraction
3.1.1. Acoustic Features

Acoustic features have been shown to include information iden-
tifying cognitive impairments [6, 4]. We use Python Library
librosa [8] and open-source software for features extraction
from audio signals OpenSMILE [9] for audio preprocessing
and acoustic feature extraction. We obtained Mel-frequency
cepstral coefficients (MFCCs) from one speech following the
method described in [10]. This includes extracting the first
13 MFCC bands (0-12) along with their corresponding 13
delta MFCCs and 13 delta-delta MFCCs, representing the rate
of change and acceleration in MFCCs. After that, we ap-
ply 6 descriptive statistics functions (mean, standard devia-
tion, variance, max, min, median), generating a total of 234-
dimensional MFCC features for one speech. In addition, we
also obtain the extended version of Geneva Minimalistic Acous-
tic Parameter Set (eGeMAPS) [11], which contains 18 Low-
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level descriptors (LLD) from original GeMAPS, encompassing
frequency-related parameters such as pitch, jitter, formant, as
well as energy-related parameters like shimmer, loudness, and
harmonics-to-noise ratio (HNR), along with various spectral
parameters, and incorporates an additional 7 LLDs, including
MFCC 1-4, Spectral flux, and Formant 2-3 bandwidth. After
that, we apply statistical functions to each LLD, resulting in 88-
dimensional eGeMAPS features for one speech.

Since each subject has three speech recordings, one for each
picture, we independently extract and then concatenate these
MFCC features of all three speeches on a specific subject.

3.1.2. Semantic and Syntactic Features

Semantic and syntactic information in speech has previously
been shown to be informative in detecting early dementia [3, 6,
4]. With a limited training sample size, we rely on pre-trained
language embeddings to capture such semantic and syntactic
information. Pre-trained by a large-scale public corpus, a lan-
guage embedding outputs a fixed-length numerical vector given
a word or sentence and captures semantic and syntactic relation-
ships. Meanwhile, in order to maximize the utility of data, we
propose to develop a novel translinguistic embedding that ex-
tracts the same set of features for speakers from two languages.

Step 1: Audio transcription. We use OpenAl’s Automatic
Speech Recognition (ASR) model Whisper [12] to transcript the
raw audio files. Whisper is trained on a vast dataset of 680,000
hours of multilingual and multitask supervised data obtained
from the web and supports multiple language tasks, including
both English and Chinese ASR. It lets us simultaneously detect
the language and transcribe speech audio files from English and
Chinese into text.

Step 2: Cross-language alignment. In order to perform a joint
analysis of two languages and greatly improve the sample size
used by our prediction models, a straightforward strategy is to
translate one language to another and extract embedding fea-
tures using the same language model. However, the transla-
tion induces biases from the translation process and such bi-
ases will cause additional distributional differences that com-
promises the prediction performance for such joint modeling,
which is also empirically validated through our experiments.
To this end, we propose adopting a back-translation strategy
for alignment, a common data augmentation strategy in ma-
chine translation [13]. In the process of translating transcripts
from one language to another, we utilized Facebook’s M2M 100
multilingual sequence-to-sequence model [14], designed to fa-
cilitate translation across 100 languages. We translate Chinese
transcripts into English and extract embedding from the trans-
lated English text. For English transcripts, instead of directly
using them for embedding extraction, we first translate the En-
glish transcripts into Chinese and then back-translate them back
into English. This two-step translation method aligns distribu-
tional differences induced by the machine translation process
and is expected to maintain the semantic information.

Step 3: Computing Embeddings Given the aligned transcrip-
tions, we use pre-trained Deep Bidirectional Encoder Represen-
tations from Transformers (BERT) [15] through the Hugging-
face Transformers library [16] to compute embedding features
from the transcriptions. Specifically, we aggregate the embed-
dings of all words of one speech by taking the mean to gener-
ate a 768-dimensional transcript-level representation. We then
concatenate three embedding features of all three speeches on a
specific subject.
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Figure 1: Overview of the proposed approach.

3.2. Feature Selection and Prediction Models

Since the dimension of the extracted features is substantially
larger than the number of samples in our training data, directly
using the features for prediction models is very likely to over-
fit and lead to poor prediction performance. To address this
issue, we use feature selection to select the most relevant fea-
tures and use them in modeling. In our final solution, we uti-
lized the supervised feature selection based on sparse learning
technique LASSO [17], and we use the implementation from
the Scikit-learn library [18]. Specifically, we extract the top-k
largest coefficients in absolute value from the LASSO model
and use them as the k features for subsequent use in classifica-
tion and regression tasks, where the hyper-parameter & is cho-
sen based on the validation data. For classification, we choose
the linear model due to the small sample size. We select the Lo-
gistic Regression (LR) from Scikit-learn library [18] and a cus-
tomized PyTorch-implemented LR as the default classifiers for
cognitive classification tasks. Specifically, the customized LR
will conveniently support special considerations that are pro-
posed to fit the data patterns. We also selected Support Vector
Machine for Regression (SVR) and Random Forest for MMSE
score regression task. For SVR, we use the validation data to
choose the best-performing hyperparameters (RBF kernel with
C=239).

During model development, we randomly split the Compe-
tition training data into training and validation, and we can use
this internal validation scheme to evaluate the performance and
stability of models and choose model performance. We apply
the best-performing models and hyper-parameters on the entire
training data to generate the final submission.

3.3. Additional Treatments

Re-weighting imbalanced classes. From Table 1, we see that
the number of subjects in main classes NC&MCI and the sub-
classes En&NC, En&MCI, Zh&NC, Zh&MCI are imbalanced.
Such imbalance induces undesired bias in predictive models and
compromises their generalization performance [19]. Therefore,
we propose fixed weights to balance the training loss of each
data point and incorporate it into one of our pipelines of classi-
fication tasks. Specifically, for each group (En&NC, En&MCI,
Zh&NC, and Zh&MCI), we re-weight the data points with {0.4,
0.2, 0.3, and 0.3}, i.e., applying the corresponding weights to
each loss value where the corresponding data points come from.

Outlier detection. Cognitive scores and clinical labels are no-
torious for their instability (e.g., discussions in [20, 21]). The
potential existence of noisy labels complicates with the small
sample size issue, leading to models of poor performance, as

979

also evidenced by our empirical observation of unstable perfor-
mance across multiple random seeds. To this end, we propose
a two-phase training strategy to filter out the potential outliers
in the whole training dataset. We first count the number of fail-
ure cases with wrongly high confidence during the first step of
training, then filter out the subjects that appear multiple times
for the second-step re-training.

Multi-tasking with MMSE distribution priors. From Table 1,
we see that the MMSE ranges in the sub-classes En&NC,
En&MCI, Zh&NC, Zh&MCI are different. Specifically, the low
MMSE score basically only appears in the Zh&MCI category.
As the clinical classification is generally an easier task than the
regression task of MMSE prediction, we propose a multi-task
strategy that considers the prediction of clinical label as prior
knowledge, and incorporate it into one of our pipeline of re-
gression tasks. Specifically, we first derive the language label
and cognitive status of subjects, and then, individual regression
models for each sub-class are trained and employed in MMSE
score prediction.

4. Experiment

In this section, we evaluate the method’s performance by ran-
domly splitting the TAUKADIAL Challenge training data into
90% for training and 10% for validation. We repeat the ex-
periment across 100 different random seeds, and we calculate
the average and standard deviation of Balanced Accuracy and
F1 for classification tasks, as well as Root Mean Square Error
for regression tasks on the validation data. For test data perfor-
mance, we report our 5 best hyperparameters performance.

4.1. Verification of Acoustic Features and Language Em-
beddings Features

Acoustic Features. We evaluate the performance of acoustic fea-
tures and their combination. The averaged performance of 100
random seeds in Table 2 shows that MFCC features yield bet-
ter performance in both classification and regression, attaining
a balanced accuracy of 71.4% and a root mean square error of
2.773.

Feature Set Balanced Accuracy F1 RMSE

MFCC 71.4+12.3 69.4+13.1 2.773+1.012
eGeMAPS 60.4+12.8 57.1+13.8 2.949+1.165
MFCC + eGeMAPS 69.3+12.5 66.5+14.3 2.801£1.090

Table 2: Performance of Acoustic Features

Embedding Features. We compare the performance of two ap-
proaches towards multi-lingual language embedding: BERT



Feature Set Balanced Accuracy Fl1 RMSE
BERTI! 62.6x11.9 57.5+15.9 2.935+1.039
Multilingual BERT 61.9+12.1 56.0£16.3 2.837+1.065

Table 3: Performance of Language Embedding. W means back-
translation method.

Language_ Embeddings Balanced Accuracy Fl1 RMSE
Acoustic Features
BERT!
MECC 71.8+11.4 68.6+13.4 2.736+1.000
Multilingual BERT
MECC 70.3x11.4 66.1£14.5 2.766+1.018

Table 4: Performance of Acoustic Features + Language Embed-
dings. M means back-translation method.

Number of top features Balanced Accuracy F1 RMSE

500 73.1£12.9 69.6+16.1 2.648+0.882
1000 74.2+12.6 70.8+15.6 2.663+0.900
1500 75.3%£13.0 72.1£16.0 2.665+0.908
1600 75.5+11.1 72.5+13.5 2.714+0.928

Table 5: Performance of LASSO Feature Selection

with the proposed translation and Multilingual BERT by in-
putting two languages directly. The averaged performance in
Table 3 shows that the original BERT with two-step translation
achieves slightly better performance in the classification task
with a balanced accuracy of 62.6%. On the other hand, Multi-
lingual BERT exhibits better performance in the regression task,
achieving a root mean square error of 2.837.

Combination of Acoustic Features and Embedding Features.
We evaluate the combination of different types of acoustic fea-
tures and language embedding features to find out the optimal
overall performance. Table 4 shows that the best performance
is achieved by the original BERT with two-step translation and
MEFCC acoustic features, with a balanced accuracy of 71.8% in
the classification task and a root mean square error of 2.736 in
the regression task.

4.2. Effects of Feature Selection Method

In our setting, the feature dimension is significantly larger than
the sample size. Specifically, the combination of BERT embed-
ding and MFCC acoustic features results in 3006 dimensions,
whereas we only have 129 samples. We will investigate the ef-
ficacy of Lasso feature selection on the current optimal feature
sets: the original BERT embedding from the two-step trans-
lation method combined with MFCC acoustic features, using
varying numbers of top features. The results are in Table 5.
Notably, the Lasso feature selection method enhances perfor-
mance, particularly with 1600 top features achieving a balanced
accuracy of 75.5% and 500 top features achieving a root mean
square error of 2.648.

4.3. Verification of Additional Treatment

We verify the effectiveness of the proposed strategies in Sec-
tion 3.3. All the conducted experiments use the same settings
BERT embedding&MFCC features with Lasso feature selection
(1600 features) under LR and SVR models. The results in Ta-
ble 6 show that Re-weighting imbalanced classes actually has
slightly decreased classification performance in the validation
data. We expect performance improvement if the test data is
more balanced. We see that the strategy of Outlier detection
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Setting Balanced Accuracy F1 RMSE

Default 75.5+11.1 72.5%13.5 2.714+0.928
Re-weighting 74.2+12.2 71.4+14.3 2.714+0.928
Outlier detection 78.2+11.7 74.4£15.1 2.719+0.901
Multi-task prior 75.5+11.1 72.5%13.5 2.705+0.856

Table 6: Performance of Additional Treatments.

Attempt  Balanced Accuracy RMSE
1 45.1 3.095
2 425 2.928
3 42.0 3.220
4 42.0 2.578
5 43.9 2.732

Table 7: Test Dataset Performance

significantly improves averaged performance after filtering out
some subjects with possible label issues. Finally, we see that the
multi-task prior slightly improved the regression performance.

4.4. Test Dataset Performance

We select our top 5 hyperparameters based on an average of 100
random seeds of Balanced Accuracy and RMSE for validation
data to submit test predictions to the TAUKADIAL Challenge
Organizers. Hyperparameters include the number of top fea-
tures, types of classifiers and regressors, different combinations
of language embeddings and acoustic features, as well as com-
binations of additional treatments. Table 7 reports the results
of our five attempts. Our proposed method achieves 45.1% bal-
anced accuracy and 2.578 root mean square error.

5. Discussion and Conclusion

We evaluated the effectiveness of acoustic features and lan-
guage embedding in detecting Mild Cognitive Impairment
(MCI) and predicting Mini-Mental State Examination (MMSE)
scores in a multilingual dataset. Upon comparing acoustic and
language features, it was found that the acoustic-based model
outperforms the language-based model. However, when both
language embeddings and the acoustic model are utilized, the
performance slightly increases to 71.8% in the classification
task and a 2.736 RMSE in the regression task. Subsequently,
applying a feature selection method to select the top 1600 fea-
tures to prevent overfitting further improves the performance to
75.5% accuracy and a 2.714 RMSE. Finally, incorporating Out-
lier detection with multi-task prior results in the best classifica-
tion performance of 78.2% balanced accuracy and a regression
performance of 2.705 root mean square error.

In addition to the original BERT model, we also verified
the language embeddings obtained from Google’s Multilingual
BERT, which supports various language inputs. This makes it
more convenient to obtain the embeddings for English and Chi-
nese transcriptions. However, the original BERT model, when
combined with a two-step translation process and MFCC acous-
tic features, still outperforms Multilingual BERT with MFCC
acoustic features.

For future directions, we intend to apply large language
models such as GPT to investigate whether they can discern
patterns between Mild Cognitive Impairment (MCI) and Nor-
mal Cognition (NC) among both English and Chinese speakers.
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