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We use radial estimates for pseudodifferential operators to describe long-time evolution of solutions to
iuy — Pu = f, where P is a self-adjoint zeroth-order pseudodifferential operator satisfying hyperbolic
dynamical assumptions and where f is smooth. This is motivated by recent results of Colin de Verdiere
and Saint-Raymond (2019) concerning a microlocal model of internal waves in stratified fluids.

1. Introduction

Colin de Verdieére and Saint-Raymond [2019] recently found an interesting connection between modeling
of internal waves in stratified fluids and spectral theory of zeroth-order pseudodifferential operators on
compact manifolds. In other problems of fluid mechanics, relevance of such operators has been known for
a long time, for instance in [Ralston 1973]. We refer to [Colin de Verdiére and Saint-Raymond 2019] for
pointers to current physics literature on internal waves and for numerical and experimental illustrations.

The purpose of this note is to show how the main result of [Colin de Verdiere and Saint-Raymond 2019]
(see also [Colin de Verdiere 2018]) follows from the now standard radial estimates for pseudodifferential
operators. In particular, we avoid the use of Mourre theory, normal forms and Fourier integral operators
and do not assume that the subprincipal symbols vanish. We also relax some geometric assumptions. The
conclusions are formulated in terms of Lagrangian regularity in the sense of [Hérmander 1985a, §25.1].
We illustrate the results with numerical examples. There are many possibilities for refinements but we
restrict ourselves to applying off-the-shelf results at this stage.

Radial estimates were introduced by Melrose [1994] for the study of asymptotically Euclidean scattering
and have been developed further in various settings. We only mention some of the more relevant ones:
scattering by zeroth-order potentials (very close in spirit to the problems considered in [Colin de Verdiere
and Saint-Raymond 2019]) by Hassell, Melrose, and Vasy [Hassell et al. 2004], asymptotically hyperbolic
scattering by Vasy [2013] (see also [Dyatlov and Zworski 2016, Chapter 5] and [Zworski 2016]) and by
Datchev and Dyatlov [2013], in general relativity by Vasy [2013], Dyatlov [2012] and Hintz and Vasy
[2018], and in hyperbolic dynamics by Dyatlov and Zworski [2016]. Particularly useful here is [Haber
and Vasy 2015], which generalized some of the results of [Hassell et al. 2004]. A very general version of
radial estimates is presented “textbook style” in Section E.4 of [Dyatlov and Zworski 2019], henceforth
abbreviated [DZ19].
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1A. The main result. Motivated by internal waves in linearized fluids Colin de Verdieére and Saint-
Raymond [2019] considered long-time behavior of solutions to

(9 —Puu()=f. u0) =0, [feCM),

PeW'(M), P=P* 2

where M is a closed surface and P satisfies dynamical assumptions presented in Section 1B. By changing
P to P —wq we can change f to the more physically relevant oscillatory forcing term, e~/ @0 f.
Since the solution u(¢) is given by

t
u(t) = —i / e P fds =P e P 1) f )
0

(where the operator P! (e™#*F — 1) is well-defined for all # using the spectral theorem), the properties
of the spectrum of P play a crucial role in the description of the long-time behavior of u(¢). Referring

to Section 1B for the precise assumptions we state:

Theorem. Suppose that the operator P satisfies assumptions (5), (8) below and that 0 ¢ Specpp(P).
Then, for any f € C°°(M), the solution to (1) satisfies

ut) =uoo + o) +€(t), b))z =C.  |e@®g-1/2- >0, — o0, 3)
where (denoting by H =3~ the intersection of the spaces H ~37¢ over e > 0)
Uoo € IO(M; AF) C H 37 (M) @)

and 1°(M ; A(J,r ) is the space of Lagrangian distributions of order 0 (see Section 4A) associated to the
attracting Lagrangian A(T defined in (9).

The proof gives other results obtained in [Colin de Verdiere and Saint-Raymond 2019]. In particular,
we see that in the neighborhood of 0 the spectrum of P is absolutely continuous except for finitely many
eigenvalues with smooth eigenfunctions — see Section 3B.

In the case of general Morse—Smale flows (allowing for fixed points), Colin de Verdiere [2018,
Theorem 4.3] used a hybrid of Mourre estimates (in particular their finer version given by Jensen, Mourre,
and Perry [Jensen et al. 1984]) and of the radial estimates [DZ19, §E.4] to obtain a version of (3) with
an estimate on WF(u ). At this stage the purely microlocal approach of this paper would only give
le@l -3/ — 0.

1B. Assumptions on P. We assume that M is a compact surface without boundary and P € WO(M) is a
zeroth-order pseudodifferential operator with principal symbol p € S(7* M\ 0; R) which is homogeneous
(of order 0) and has 0 as a regular value. We also assume that for some smooth density, dm(x), on M,
P is self-adjoint:

P e WO(M), P =P* onL*M, dm(x)),

5
p:=0(P),  px,t§)=px,§), t>0,  dpl-1) #0. ®
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The homogeneity assumption on p can be removed as the results of [DZ19, §E.4] and [Dyatlov and
Zworski 2017] we use do not require it. That would however complicate the statement of the dynamical
assumptions.

We use the notation of [DZ19, §E.1.3], denoting by T*M the fiber-radially compactified cotangent
bundle. Define the quotient map for the R™ action, (x, £) — (x,t£), t > 0,

kK:T*M\0— 0T*M. (6)

Denote by |¢| the norm of a covector § € T,Y M with respect to some fixed Riemannian metric on M. The
rescaled Hamiltonian vector field |£| H, commutes with the R™ action and

X :=«k«(|§|Hp) istangentto X =«k(p~1(0)). (7
Note that ¥ is an orientable surface since it is defined by the equation p = 0 in the orientable 3-manifold
IT*M.
We now recall the dynamical assumption made in [Colin de Verdiere and Saint-Raymond 2019]:

The flow of X on X is a Morse—Smale flow with no fixed points. (8)

For the reader’s convenience we recall the definition of Morse—Smale flows generated by X on a surface X
(see [Nikolaev and Zhuzhoma 1999, Definition 5.1.1]):

(1) X has a finite number of fixed points, all of which are hyperbolic.
(2) X has a finite number of hyperbolic limit cycles.
(3) There are no separatrix connections between saddle fixed points.

(4) Every trajectory different from (1) and (2) has unique trajectories (1) or (2) as its «, w-limit sets.

As stressed in [Colin de Verdiere and Saint-Raymond 2019], Morse—Smale flows enjoy stability and
genericity properties — see [Nikolaev and Zhuzhoma 1999, Theorem 5.1.1]. At this stage, following
[Colin de Verdiere and Saint-Raymond 2019], we make the strong assumption that there are no fixed
points. By the Poincaré—Hopf theorem, that forces X to be a union of tori. Under the assumption (8), the
flow of X on X has an attractor L(J)r , which is a union of closed attracting curves. We define the following
conic Lagrangian submanifold of T*M \ 0 (see [Hormander 1985a, §21.2] and Lemma 2.1):

Af =MLY, 9)
1C. Examples. We illustrate the result with two simple examples on M := T2 = S! x S!, where
S! =R/(2nZ). Define D := (1/i)d. Consider first

P:= (D) 'Dy, —2cosx;, p=|&"1&—2cosxy,

__&& &
§1Hp =Tz 0+ e

A(—)'— = {(:E%,XZ;ELO) Xy € Sl, iSI < 0}

Ox, + Ox, —2(sin x1)|£|0g, , (10)
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Figure 1. On the left: the plot of the real part of u(50) for P = (D)~! D, +2cos x1 on
T2 and f given by a smooth bump function centered at (—% 0). We see the singularity
formation on the line x; = —%. On the right: X := i ( p~1(0)) C AT *T?2 The attracting
Lagrangian, A7, comes from the highlighted circles. See Section 1C for a discussion of
the examples shown in the figures.

T2

T1,Z2

Ty

Figure 2. On the left: the plot of the real part of u(50) for P given by (11) and f
given by a smooth bump function centered at (—%, 0). We see the singularity formation
on the line x; = —% and the slower formation of singularity at x; = %. On the right:
¥ :=«(p~1(0)). The attracting Lagrangian A(')" comes from the highlighted circles.

In this case k (p~1(0)), with « given in (6), is a union of two tori which do not cover T? (and thus does not
satisfy the assumptions of [Colin de Verdiére and Saint-Raymond 2019] but is covered by the treatment
here, and in [Colin de Verdiere 2018]). See Figure 1 for the plot of Ru(z), ¢ = 50, and for a schematic
visualization of ¥ = «(p~1(0)).
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Our result applies also to the closely related operator

P:=(D)"' Dy, —ycosxi, p=[£[" 62— 3cosxy,

€16 £ . (1D
—ﬁaxl + @axz — Linx; |£|9g,

The attracting Lagrangians are the same but the energy surface « (p~1(0)) consists of two tori covering T2
(and hence satisfying the assumptions of [Colin de Verdiere and Saint-Raymond 2019]) — see Figure 2.

§|Hp =

2. Geometric structure of attracting Lagrangians

In this section we prove geometric properties of the attracting and repulsive Lagrangians for the flow
e!lé1Hp where p satisfies (8).

2A. Sink and source structure. Let X (w) := k(p~!(w)). If § > 0 is sufficiently small then stability of
Morse—Smale flows (and the stability of nonvanishing of X') shows that (8) is satisfied for X (w), |w| <26.
Let L$ C X(w) be the attractive (+) and repulsive (—) hyperbolic cycles for the flow of X on X (w). We
first establish dynamical properties needed for the application of radial estimates in Section 3:

Lemma 2.1. L} is a radial sink and L, a radial source for the Hamiltonian flow of |§|(p — w) =
|€|o (P — w) in the sense of [DZ19, Definition E.50]. The conic submanifolds

AL =Y LE)ycT*M\ 0O
are Lagrangian.

Remark. It is not true that L are radial sinks/sources for the Hamiltonian flow of p — w since [DZ19,
Definition E.50] requires convergence of all nearby Hamiltonian trajectories, not just those on the
characteristic set p~!(w). See Remark 3 following [DZ19, Definition E.50] for details. The singular
behavior of |£] at £ = 0 is irrelevant here since we are considering a neighborhood of the fiber infinity.

Proof. We consider the case of L7} as that of L, is similar. To simplify the formulas below we put
w = 0. To see that A(J)r is a Lagrangian submanifold we note that Hj, and £0¢ are tangent to A(J)r
and independent (since X does not vanish on L(J{ ). Denoting the symplectic form by o, we have
0(Hp,£0g) = —dp(£§0¢) = 0; that is, o vanishes on the tangent space to A(‘)".

We next show that L(J)r is a radial sink. For simplicity assume that it consists of a single attractive
closed trajectory of X of period 7' > 0; in particular e7X = I on Lgr. Define the vector field

Y := Higp,

which is homogeneous of order 0 on 7* M \ 0 and thus extends smoothly to the fiber-radial compactification
T*M \ 0; see [DZ19, Proposition E.5]. We have Y = X on dT*M N p~1(0); thus L(')" CoT*M is a
closed trajectory of Y of period 7.

Fix arbitrary (xg, §0) € L(J)r and define the linearized Poincaré map P induced by de”¥ (xo, &) on
the quotient space T(XO’SO)(T*M )/RY (x,.£,)- The adjoint map P* acts on covectors in T(*;O’ So)(T*M )
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which annihilate Yy, g,). To prove that L(J)r is a radial sink it suffices to show that the spectral radius
of P is strictly less than 1.

Put p := |£|~!, which is a boundary-defining function on 7*M; then ¥ = aT*M N p~1(0) is given
by {p =0, p=0}. Since Y = X on X and L(J)r is an attractive cycle for X on X, we have

Plker(dp)niker(dp) = €1 for some c1 € R, |eq] < 1.

Since Y is tangent to T *M = p~1(0), we have Yp = fop for some f> € C®°(T*M \ 0; R). Recalling
that Y = H|g|,, we compute Yp = pHg|p = —pHpy(p~1) = fap. Setting c2 := f2(x0, &) we then have

P*(dp(xo0.80)) = cadp(x0.80). P*(dp(x0.%0)) = c2dp(xo. &o).

Thus P has eigenvalues ¢, ¢z, ¢2. On the other hand, e”Y preserves the symplectic density |0 Ao |, which
has the form p~3d vol for some density d vol on 7* M which is smooth up to the boundary. Taking the
limit of this statement at (xg, £9) we obtain det P = detde Y (xq, &) = cg’. It follows that ¢; = ¢, and
thus P has spectral radius |c¢1| < 1 as needed. |

For future use we define the conic hypersurfaces in 7*M \ 0
Af:= ] AL (12)
lw|<28

2B. Geometry of Lagrangian families. We next establish some facts about families of Lagrangian
submanifolds which do not need the dynamical assumptions (8). Instead we assume that

e p:T*M \ 0— R is homogeneous of order 0;

e A CT*M\O is a conic hypersurface;

e dp|Ta # 0 everywhere;

e the Hamiltonian vector field H), is tangent to A.
Under these assumptions, the sets

Aw:=ANp Hw)

are two-dimensional conic submanifolds of 7*M \ 0. Moreover, similarly to Lemma 2.1, each A, is
Lagrangian. Indeed, if G is a (local) defining function of A, namely G|p =0 and dG|A # 0, then H),
being tangent to A implies

{p,G}=0 onA. (13)

Thus Hp, Hg form a tangent frame on A and o(Hp, Hg) = 0 on A, where o denotes the symplectic
form.
Since &0¢ is tangent to each A, for any choice of local defining function G of A we can write

£d; = ®H, + O@Hg on A (14)

for some functions ®, ® on A. Since the one-dimensional subbundle RHg C TA is invariantly defined,
we see that ® € C°°(A; R) does not depend on the choice of G.
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The function ® is homogeneous of order 1. Indeed, we can choose G to be homogeneous of order 1,
which implies that [§dg, Hg] = 0; we also have [£0¢, Hy] = —H). By taking the commutator of both
sides of (14) with £0¢, we see that §d¢® = ®. Similarly we see that © is homogeneous of order 0.

On the other hand, taking the commutators of both sides of (14) with H, and Hg and using the
following consequence of (13),

[Hp, Hg] = H{p,G} €RHg onA,
we get the identities
Hy®=1, Hg®=0 onA. (15)
The function @ is related to the w-derivative of a generating function of A, (see (45)):

Lemma 2.2. Assume that A, is locally given (in some coordinate system on M) by

o ={(x,§):x =0 F(w,§), § € To}, (16)

where £ — F(w, £) is a family of homogeneous functions of order 1 and Tg C R?\ 0 is a cone. Then we
have

0o F(@,§) = —P(9: F(0.£).§). 17)

Proof. Let G be a (local) defining function of A. Taking the d¢-component of (14) at a point { :=
(0gF(w,£),£) € A we have

§=—0( dxp(5) —O(8) 9xG (D). (18)

On the other hand, differentiating in w the identities

P(OcF(w.§).§) =0, G:F(0.£).6)=0
we get
(0xp(£), 00 F(@,8)) = 1, (0xG({), g0 F(w, §)) = 0. (19)

Combining (18) and (19) we arrive at

which implies (17) since the function & — 9, F(w, ) is homogeneous of order 1. O

Now we specialize to the Lagrangian families used in this paper. We start with a sign condition on ®
which will be used in Section 5:

Lemma 2.3. Suppose that for A = At or A = A~, with A* given in (12), we define ®* using (14).
Then for some constant ¢ > 0,

+dE(x,8) > clE] on AT (20)

Proof. We consider the case of ®* as the case of ®~ is handled by replacing p with —p. Recall from
Lemma 2.1 that each L} = k(A N p~1(w)) is a radial sink for the flow e*/€1H», Take (x,&) € AT with
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|€| large. Then (with $*M denoting the cosphere bundle with respect to any fixed metric on M)

e tHr(x £)e S*M forsomet >0, t~|£|. 21)
Recall from (15) that H,®* =1 on A™. Thus

®F(x.§) = T (e (x.8)) +1 =l - C.

It follows that ®* (x, £) > c|| for large |£|; since ®* is homogeneous of order 1, this inequality then
holds on the entire A™T. O
We next construct adapted global defining functions of A¥ used in Section 4B:
Lemma 2.4. Let A* be defined in (12). Then there exist G+ € C®°(T*M \ 0; R) such that
(1) G4 are homogeneous of order 1;
(2) Gi|p+ =0and dG+|y+ #0;

(3) HyG+ = a+ G+ in a neighborhood of AT, where ax € C®(T*M \ 0; R) are homogeneous of
order —1 and a |+ = 0.

Proof. We construct G4, with G_ constructed similarly. Fix some function G+ which satisfies condi-
tions (1) and (2) of the present lemma. It exists since AT is conic and orientable (each of its connected
components is diffeomorphic to [—§, §] x S' x RT). Let ® be defined in (14):

§0g =D+ Hp+O4Hg on AT, (22)

Commuting both sides of (14) with £ we see that © is homogeneous of order 0. Moreover ® 4 does
not vanish on AT since H), is not radial (since the flow of X in (7) has no fixed points). Choose G+
satisfying conditions (1) and (2) and such that

Gy =0,G4 near AT,
Then (22) gives
§dg = O Hy+ Hg, onA™. (23)

We have H,G4|p+ = 0 (since H), is tangent to A™); therefore H,G+ = a4+ G4+ near AT for some
function . Commuting both sides of (23) with H,, and using that H,®4 =1 on A from (15) we have

Hp =[Hp,§0¢] = Hy + [Hp, Hg, ) = Hy + Hip.g,y = Hp +ayHg, onA™.
Since Hg, does not vanish on A, this gives a4 |5+ = 0 as needed. O
One application of Lemma 2.4 is the existence of an Hj-invariant density on A*E:

Lemma 2.5. There exist densities vy on A, o € [-8, 8], such that

e v are homogeneous of order 1, that is, Leo, vE =i
. vajf are invariant under Hp, that is, LH, v;'): =0.
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Proof. In the notation of Lemma 2.4 define v by |0 Ao| = |dp AdG+| x v;E, where o is the symplectic
form. The properties of vaﬂf follow from the identities

Ley.0 =0, Lggdp =0, LgpdGr=dGx, Lp,0=0
and the following statement which holds on A¥:

Lu,(dp AdGy)=dpAd(a+Gs)=0. O

3. Resolvent estimates

Here we recall the radial estimates as presented in [DZ19, §E.4] specializing to the setting of Section 1B.
We use the notation of [DZ19, Appendix E] and we write |[u||s := [[u|l gs(ar)-

Since we are not in the semiclassical setting of [DZ19, §E.4] we will only use the usual notion of
the wave front set: for u € 2'(M), WF(u) C T*M \ 0—see [DZ19, Exercise E.16]. Similarly, for
A € WK (M) we denote by ell(4) C T*M \ 0 its (nonsemiclassical) elliptic set. Both sets are conic.

3A. Radial estimates uniformly up to the real axis. Since L is a radial source we can apply [DZ19,
Theorem E.52] (with / := 1) to the operator

P.i=P—ie(D)e W' (M), P:=(D)2(P-w)(D)2, 0<e<l.

Here, since P is self-adjoint, the threshold regularity condition [DZ19, (E.4.39)] is satisfied for P with
any s > 0. Strictly speaking, one has to modify the proof of [DZ19, Theorem E.52] to include the
anti-self-adjoint part —ie(D), which has a favorable sign but is of the same differential order as P.
(In [loc. cit.] it was assumed that the principal symbol of P is real-valued near L, .) More precisely, we
put P := P and fi= Peu (instead of f = Pu) in [DZ19, Theorem E.52]. Since P, satisfies the sign
condition for propagation of singularities [DZ19, Theorem E.47], it suffices to check that the positive
commutator estimate [DZ19, Lemma E.49] holds. For that we write

S(f. G*Gu)y2 = I(Pu, G*Gu)p2 —eR{((D)u, G*Gu)». (24)

Here G € V¥(M) is the quantization of an escape function used in the proof of [DZ19, Lemma E.49];
recall that we put /& := 1. We now estimate the additional term in (24):

1
~R(D)u, G*Gu) > = (D)2 Gul|}> + (R(G*[(D), GDu, u)>
< ClBuul?_ )5+ Clulf -,

where B; satisfies the properties in the statement of [DZ19, Lemma E.49] and in the last line we used that
G*[(D), G] € ¥?5(M) has purely imaginary principal symbol and thus R(G*[(D), G]) € W25~ 1(M).
The rest of the proof of [DZ19, Lemma E.49] applies without changes. See also [Dyatlov and Guillarmou
2016, Lemma 3.7].

Applying the radial estimate in [DZ19, Theorem E.52] for the operator P, = (D)%(P —w— ie)(D)%
to (D)2 u we see that for every B_ € WO(M), A~ Cell(B_), there exists A_ € WO(M), A~ Cell(A_),
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Figure 3. An illustration of the supports of the operators appearing in (25) (left: radial
sources) and (26) (right: radial sinks). The horizontal line on the top denotes T *M ; the
arrows denote flow lines of |§|H).

such that
lAulls < CIB-(P - —i€)ullss1 + C lul—n.

1 (25)
ueC®(M), s>-% Jol<s €20

where C does not depend on €, w and N can be chosen arbitrarily large. The supports of A_, B_ are
shown in Figure 3.

The inequality (25) can be extended to a larger class of distributions (as opposed to u € C°(M)): it
suffices that B_(P —w —i€)u € H*+1 (M) and that A_u € H* (M) for some s’ > —1. See Remark 5
after [DZ19, Theorem E.52] or [Dyatlov and Zworski 2016, Proposition 2.6; Vasy 2013, Proposition 2.3].

Similarly we have estimates near radial sinks [DZ19, Theorem E.54] for L. Namely, for every §+ €
WO(M), At Cell(By), there exist Ay, By € WO(M), such that AT Cell(44), WE(By)NAt =2,
and

l4+ulls < CIBL(P —w—ie)uls+1 + C || Bsuls + Cllu] -,

1
ueC®M), s<-3,

(26)
lw| <38, €>0,
where C does not depend on €, w and N can be chosen arbitrarily large. The inequality is also valid
for distributions u such that §+(P —w—ie)u e HTY(M) and Byu € H¥(M) and it then provides
(unconditionally) A+u € H* (M) —see Remark 2 after [DZ19, Theorem E.54] or [Dyatlov and Zworski
2016, Proposition 2.7; Vasy 2013, Proposition 2.4].
Away from radial points we have the now standard propagation results of Duistermaat and Hormander
[DZ19, Theorem E.47]: if A, B, B € W° (M) and for each (x, &) € WF(A) there exists 7 > 0 such that

e TIEH (x €) cell(B), e 'llHr(x g)ecell(B), 0<t<T,

then
[Aulls < C|B(P —w—i€)uls+1 + Cl|Bulls + C|lull-n,

(27)
ueC®M), seR, |o|<8, €>0,

with C independent of €, . We also have the elliptic estimate [DZ19, Theorem E.33]: (27) holds with
B =0if WF(A) N p~1([=8.68]) = @ and WF(A) C ell(B).
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By
A_ . Ay
L; > Lt
s>—1/2 ™ s<—1/2

Figure 4. A schematic representation of the flow e’ €1Hp on the fiber infinity 0T * M
intersected with the energy surface p~!(w), with the regularity thresholds for the esti-
mates (25) and (26).

Let us now consider
Ue =ue(w) =P —w—ie) L f, feC®M), |w| <8 €>0.

For any fixed € >0, P —w —ie € WO(M) is an elliptic operator (its principal symbol equals p —w — i€
and p is real-valued); thus by elliptic regularity u. € C°°(M). Combining (25), (26) and (27) we see
that for any 8 > 0

luell-1/2-g = Cllf /248 + Clluel-n. (28)
and that

lAuells < Cll flls+1+ Cluell-n, WEA)NAT =2, 5>—3. (29)

Here the constant C depends on 3, s but does not depend on €, w. Indeed, by our dynamical assumption (8)
every trajectory e €1Hr (x, £) with (x, &) € p~1([-8., 8]) \ AT converges to A~ as t — —oo (see Figure 4).
Applying (27) with B := A_ and using (25) we get (29). Putting A := B4 in (29) and using (26) we
get (28).

In particular, we obtain a regularity statement for the limits of the family (u¢):

there exist €; — 0, u € 2'(M) such that Ue; I = ue H_%_(M), WFEu) C A™T. (30)
Note also that every u in (30) solves the equation (P —w)u = f.

3B. Regularity of eigenfunctions. Motivated by (30) we have the following regularity statement. The
proof is an immediate modification of the proof of [Dyatlov and Zworski 2017, Lemma 2.3]: replace P
there by A~1(P —»)A~Y, where A € U~2 (M) is elliptic, self-adjoint on L2(M, dm(x)) (same density
with respect to which P is self-adjoint) and invertible. We record this as:

Lemma 3.1. Suppose that P satisfies (5) and (8). Then for w sufficiently small and for u € 2'(M)
(P—0)ueC®, WFu)CA', I(P-wu,u)=>0, |o|<S§,
implies that u € C*°(M).

In particular this shows that if (P —w)u =0 and WF(u) C A then u € L?; that is, w lies in the point spec-
trum Spec,,, (P ). Radial estimates then show that the number of such ’s is finite in a neighborhood of 0:
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Lemma 3.2. Under the assumptions (5) and (), with § sufficiently small,
| Spec,, (P) N [—4, ]| < oo,

(31

(P—w)u=0, uel*M), |o|<8 = ueC>®M).

Proof. If u € L?>(M) then the threshold assumption in (25) is satisfied for P — @ near A~ and for
—(P —w) near A™. Using the remark about regularity after (25), as well as (27) away from sinks and
sources, we conclude that

lulls < Cllull-n (32)

for any s and N. That implies that u € C®(M). Now, suppose that there exists an infinite set of L2
eigenfunctions with eigenvalues in [—§, §]:

(P —wjuj =0, (ug.uj)r2py =06k, |wj|=3d.

Since u; — 0, weakly in L?, we have u 7 — 0 strongly in H ~1. But this contradicts (32) applied with
s=0and N =1. O

From now on we make the assumption that P has no eigenvalues in [—§, §]:
Spec,,(P)N[-4,8] = 2. (33)
By Lemma 3.2 we see that (33) holds for § small enough as long as 0 ¢ Spec, (P).

3C. Limiting absorption principle. Using results of Sections 3A-3B we obtain a version of the limit-
ing absorption principle sufficient for proving (3). Radial estimates can also easily give existence of
(P—w—i0)"': H %+(M )—>H _%_(M ) but we restrict ourselves to the simpler version and follow
[Melrose 1994, §14]. The only modification lies in replacing scattering asymptotics by the regularity
result given in Lemma 3.1.

Lemma 3.3. Suppose that P satisfies (5), (8), and (33). Then for |w| < § and f € C°(M), the limit
(P —(u—ie)_lfm (P—w—i0)"'f, €— 0+,
exists. This limit is the unique solution to the equation
(P—w)u=f WF@u)cA", (34)
and the map o — (P —w —i0)7! f € H_%_(M) is continuous in w € [—8, 8].
Remark. Replacing P with —P we see that there is also a limit
(P—w+ie)y  fHZOD (p_ (10 £ €— 0+,
which satisfies (34) with AT replaced by A~

Proof. We first note that Lemma 3.1 and the spectral assumption (33) imply that (34) has no more than
one solution. By (30), if a (distributional) limit (P —w — i€ j)_l f, € = 0, exists then it solves (34).
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To show that the limit exists, put u¢ := (P —w —i€)~! f and suppose first that ||ue||_%_a is not
bounded as € — 0+ for some & > 0. Hence there exists €; — 0+ such that ||ue; ||_%_a — oo. Putting
v = ue; /|ue; ||_%_a we obtain

. COO
(P—w—ic)vy=fi. lvjll_y_o=1, £ £, (35)

Applying (28) with N = % + o we see that v; is bounded in H —3-B (M) for any B > 0. Since
H—>B (M)— H —3—¢ (M), we know B < « is compact and can assume, by passing to a subsequence,
that v; — v in H™ 2~ (M). Then (P —w)v = 0 and the same reasoning that led to (30) shows that
WF(v) C A™. Thus v solves (34) with f = 0, implying that v = 0. This gives a contradiction with the
normalization ||v; ||_%_a =1. 1

We conclude that u, is bounded in H~27%(M) for all & > 0. But then similarly to the previous
paragraph (U¢)e—o iS precompact in H —5a (M) for all & > 0. Since every limit point has to be the

. . . . _1_
(unique) solution to (34), we see that u. converges to that solution as € — 0+ in H™27%(M).

As for continuity in w, we note that the above proof gives the stronger statement
(P—wj—ie) L fHZZMD (p o)L (36)
forall ¢, — 0+, w; — w, and |w;| < 4. O
In Section 4B we will need the following upgraded version of Lemma 3.3:

Lemma 3.4. Suppose that P satisfies (5), (8), and (33). Let s < —% and g € HST1(M), WF(g) C AT,
where A7 is defined by (12). Then for |w| < § the limit

(P-w—ie) g LM (p_(,_i0) g, €— 0+, (37)
exists, and WF((P —w —i0)~Yg) C A™. In particular, fork > 1 and f € C*°(M) the limit
(P—w—iey*f H2ZD p_(y_i0)*f €04, (38)
exists. Finally, (P —w —i0)"1 f € Ca]f([—S,(S]; H_k_%_(M)), with
P -—w—i0) f =k (P—w—i0) k1 f

Proof. We follow closely the proof of Lemma 3.3 and put u¢ := (P —w —i€)"'g. Since P —w —i€ is
elliptic for every € > 0, we have ue € H*+1 (M) and WF(ue) C WF(g) C AT, so it remains to establish
uniformity as € — 04. We use the following version of (29) (which follows from the same proof): for
every A € WO(M) with WF(4) N AT = & there exists B € WO(M) with WF(B) N At = & such that

luells < ClIBglls+1+ Clluell-n, "> -3, (39)

where the constant C does not depend on w, €. We also have the following version of (28): there exists
B’ € WO(M) with WF(B’) N AT = @ such that

luells < Cllglls+1 +ClIB'glli + Clluell-n, s <—3. (40)
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Here the norms || B glls+1 and || B’g||1 are finite since WF(g) C A™. From (39) and (40) we get regularity
for limit points of u¢; similarly to (30):

there exist €; — 0+, u € 2'(M) such that Ue; ZM . = ye HS(M), WF@u)cCA™T.

The existence of the limit (37) follows as in the proof of Lemma 3.3, replacing —% by s in Sobolev space
orders; here u = (P —w —i0)~ g is the unique solution to

(P—w)u=g, WFu)cA™t.

Iterating this argument, we get existence of the limit (38) and continuous dependence of (P —w—i0) % f €
H* 3~ onwe [—8. 8] similarly to (36), with u = (P —w —i0) ™% f being the unique solution to

(P —a))ku =f WF@u)cAT.

It remains to show differentiability in w. For simplicity we assume that @ = 0 and show that for
feC>®M),

9o[(P = —i0)"" fllomo = (P —w—i0)"2f in H 2" (41)
The case of higher derivatives is handled by iteration. To show (41) we define u¢(w) := (P —w —ie)~ ! f
and write for w # 0, with limits in H _%_,

uo(w) —uo(0) _ ue(@) —ue(0)

— i — i P—w—i -1 P_i -1
o T A PremioTirmiony
=(P-w—i0) Y (P-i0)" ' f (42)

To show the last equality above we first note that the family (P —w —ie)~!(P —ie)™! f is precompact
in H3~ (M) for any o > 0 as follows from iterating (40). By (39) every limit point u of this family as
€ — 0+ satisfies P(P —w)u = f, WF(u) C A and thus equals (P —w —i0)~'(P —i0)~! f. Finally,
letting @ — 0 in (42) we get (41). O

4. Lagrangian structure of the resolvent

We now describe the Lagrangian structure of the resolvent refining the results of [Haber and Vasy 2015] in
our special case. To start, we briefly review basic theory of Lagrangian distributions following [Hormander
1985b, §25.1].

4A. Lagrangian distributions. Let M be a compact surface and Ao C T*M \ 0 a conic Lagrangian
submanifold without boundary. Denote by I5(M; Ag) C D'(M) the space of Lagrangian distributions of
order s on M associated to Ag. It has the following properties:

(1) IS(M: Ao) C H275=(M).
(2) Forall u € I*(M; Ag) we have WF(u) C Ay.

(3) If A1 C Ap is an open conic subset and u € I5(M; Ag), then u € I5(M; Ay) if and only if
WF(u) C A;.
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(4) Forall A € Wk(M) and u € I5(M; Ag) we have Au € ISTK(M: Ag).
(5) If additionally o (A)|a, = 0, then Au € ISTF=1(M; Ay).
Define
IST(M; Ao) = () (M Ao).
s'>s

A simple example on a torus (in the notation of Section 1C) is given by
u(x) = (x1 =2 —i0) 'p(x), 9eCXBO,1), uel®(T5AF)CH I (T, @3

where Aar is given in (10).
To define Lagrangian distributions we use Melrose’s iterative characterization [Hérmander 1985b,
Definition 25.1.1]: u € D' (M) lies in I (M ; Ay) if and only if WF(u) C Ag and

Ar--Ague H257(M) forany Ay, ..., Ag € UL (M), 0(A;)|a, =0. (44)

Note that [Hormander 1985b] uses Besov spaces °° H*. However, this does not make a difference in (44)
since HS C ®H® C H¥ for all s’ < s; see [Hormander 1985a, Proposition B.1.2].

We also need oscillatory integral representations for Lagrangian distributions. Assume that in some
local coordinate system on M, Ay is given by

Ao ={(x.§):x =0 F(§). § € o} (45)

where I'g C R?\ 0 is an open cone and F : I’y — R is homogeneous of order 1. (Every Lagrangian can be
locally written in this form after a change of base, x, variables — see [Hormander 1985a, Theorem 21.2.16].
Using a pseudodifferential partition of unity we can write every Lagrangian distribution as a sum of expres-
sions of the form (46).) Then u € I°(M; Ag) if and only if u can be written (modulo a C*° function) as

u(x) = / o (E-FO) 45y . 46)
To
where a(£) € C*®°(R?) is a symbol of order s — %, namely
0ga(®)] < Calg)>71, g eR?, @7)

and a is supported in a closed cone contained in ['g. See [Hormander 1985b, Proposition 25.1.3]. An
equivalent way of stating (46) is in terms of the Fourier transform #: e!F©){j(£) is a symbol, that is,
satisfies estimates (47).

We finally review properties of the principal symbol of a Lagrangian distribution, used in the proof of
Lemma 4.5 below, referring the reader to [loc. cit., Chapter 25] for details. The principal symbol of a
Lagrangian distribution, u, with values in half-densities, u € I5(M, A; jl), is the equivalence class

1 1
o(u) € STE(A Mp ®Q2)/S5 2 (A My ®Q2),

see [loc. cit., Theorem 25.1.9], where:
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1
. Qi is the line bundle of half-densities on A.

e M is the Maslov line bundle; it has a finite number of prescribed local frames with ratios of any
two prescribed frames given by a constant of absolute value 1. Consequently it has a canonical inner
product and does not enter into the calculations below.

o SK(A; My ® Q[%\) is the space of sections in C°(A; Mp ® Qi) which are symbols of order £,
defined using the dilation operator (x, §) — (x, A§), A > 0; see the discussion on [Hérmander 1985b,
page 13]. In the parametrization (46) we have o(u|dx|%) = (27r)_%a(§)|dé|%. The factor |d$|%
accounts for the difference in the order of the symbol.

1 1
If P e UY(M;Q3,) satisfies 0(P)|x =0 and u € I5(M, A;Q2,) then
1
PueIFHN(M AQ,). o(Pu) = llLo(u), (48)

where L is a first-order differential operator on C*°(A; M ® QI%\) with principal part Hj,. Equation (48)
is the transport equation for P (the eikonal equation corresponds to o(P)|p = 0)—see [loc. cit.,
Theorem 25.2.4]. If P is self-adjoint, then its subprincipal symbol is real-valued by [Hormander 1985a,
Theorem 18.1.34] and thus by [Hérmander 1985b, (25.2.12)]

1
L*=—L on L*(A; Mp ®Q3). (49)
4B. Lagrangian regularity. We now establish Lagrangian regularity for elements in the range of the

operators (P —w Fi0)~! constructed in Section 3C:

Lemma 4.1. Suppose that P satisfies (5), (8), and (33). Let f € C°°(M) and
uE (@)= (P -0 Fi0)" f e H2(M), |w|<S$.
Then u*(w) € I°(M; Af). Moreover, the symbols of u* (w) depend smoothly on :
u* () € CP([-8.8: 1°(M: A ). (50)
where the precise meaning of (50) is explained in Lemma 4.4 below ((67) and Remark 2).

Remark. Lemma 4.1 is similar to [Haber and Vasy 2015, Theorems 1.7 and 6.3]. There are two
differences: that paper makes the assumption that the Hamiltonian field H), is radial on Azf (which is not
true in our case) and it also does not prove smooth dependence of the symbols of u*(w) on w. Because
of these we give a self-contained proof of Lemma 4.1 below, noting that the argument is simpler in our
situation.

We focus on the case of u™ (w), with regularity of u™ (w) proved by replacing P, w with —P, —w,
respectively. By Lemma 3.4 we have for every k > 0

ut () € Ck([=8.8) H*~2=(M)), WF@kuT(0)) c AT, (51)

where the wavefront set statement is uniform in .
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To upgrade (51) to Lagrangian regularity, we use the criterion (44), applying first-order operators W
and D, — Q to u™ (w) (see Lemma 4.3 below). Here,

W, 0 e W (M), o(W)=Gy, 0(Q)p+ =2, (52)

where G is the defining function of A™ constructed in Lemma 2.4 and ® is defined in (14). The
operator Dy, — Q, where D, := (1/i)d,, is used to establish smoothness in w.
Our proof uses the following corollary of (26):

if ZeW '(M), o(Z)|p+=0, s<-—1 then

/ + _ s+1 s (53)
veD'(M), WFw)CA™, (P+Z-w)veH = wveH".

The addition of Z does not change the validity of (26) since it is a subprincipal term whose symbol
vanishes on AT; see [DZ19, Theorem E.54].
We also use the following identity valid for any operators A, B on D'(M):

m
B™A = Z(’?)(adé A)B™I | adg A:=[B, Al ad% A:= A. (54)
j=0

The first step of the proof is to establish regularity with respect to powers of W':

Lemma 4.2. Assume that v € D' (M) satisfies for some £ > 0 and s < —%

WF(@w)C AT, W/(P—-w)weH forj=0,... L (55)
Then Wv € HS, where W is defined in (52).

Proof. We argue by induction on £. For £ = 0 the lemma follows immediately from (53). We thus assume
that £ > 0 and the lemma is true for all smaller values of ¢; in particular Wkve HS forO<k <£—1.
Using (54) we write

L
E . .
W‘(P—w):(P—w)WMZ(j)(ad{V Pywti. (56)
j=1
We recall from Lemma 2.4 that near AT we have Hg +P = —a4 Gy, where a is homogeneous of

order —1 and a4 | o+ = 0. Therefore for j > 1 we have Hé+p = —(Héjrla+)G+ near A, Motivated
by this we take
B e V(M) o(B))= (—1)1—1ifHé;1a+, 1<j<d.

Then, for 1 < j <¥¢
ad{;V P=B;W+R;, Rje yl microlocally near AT, 57

Combining (56) and (57) we get

Y/
(P—w)Wf:W“(P—w)—Z(f)(BjW‘“—f+R,-W‘—f'). (58)

Jj=1
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Applying both sides of (58) to v and using that W*v € H* for 0 <k <£—1 and that W¢(P —w)v € H5*!
we get
(P 4By —o)W' e HTL.
Since 0(B1) = ia vanishes on AT, we apply (53) to conclude that W¥v € HS as needed. |
Since (P —w)ut(w) = f € C®(M), Lemma 4.2 implies that
Wyt (w) e H=2~(M) forall £ > 0. (59)
This can be generalized as follows:
A At (@) e H 27 (M) forall Ay, ..., Ag e W' (M), o(A;)|p+ = 0. (60)

To see (60), we argue by induction on £. We have o(A4;) = a; G4+ near WF(ut (w)) C A™ for some a;
which is homogeneous of order 0. Taking A; € WO(M) with 0(A;) = &; we have

Aj = zzfj W+ Ej where Ej € WO(M) microlocally near WF(u™ (w)).
Then we can write Ay --- Agu™ (w) as the sum of two kinds of terms (plus a C > remainder):

e the term A; --- AgW¥u™+ (), which lies in H~2~(M) by (59), and

o terms of the form A/ --- A}, u™ (w), where 0 <m < £ —1, A;. e W (M), and O'(A;-)|A+ = 0, which
liein H _%_(M ) by the inductive hypothesis.

From (60) we can deduce (similarly to the proof of Lemma 4.4 below) that u™ (w) € I (M; A}) for
each w € [—6, §]. To obtain the smooth dependence of the symbol of u™ (w) on w we generalize (59) by
additionally applying powers of D, — Q:

Lemma 4.3. For all integers £, m > 0 we have
W Dy~ 0)"ut (@) e HT27(M), o] <3, (61)
and the corresponding norms are bounded uniformly in .
Proof. We argue by induction on m, with the case m = 0 following from (59). Put
uj(w):=(Dp— Q) ut(w)eD'(M), 0<j<m.
By (51) we have WF(u (w)) C A™ for all j. Moreover, by the inductive hypothesis

Whuj(w) e H27(M) forallf, 0<j<m—1. 62)
Put
Y:=[P—-w,Dy—Q]l=—i—[P, Qe ¥ (M)

and note that since 6 (Q)|p+ = ®+ and H,®1 =1 on AT by (15),
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Moreover, by (15) we have Hg, ®4+ =0 on AT thus the Hamiltonian vector field He 4 1s tangent to AT,
This implies that
o(ad) Y) = (—i)/ Hg o(Y)=0 onA™ forall j =0. (64)

Applying (54) with A := P —w and B := D, — Q to u™ (w) we get
(P = m(@) = (Do = Q)" f + 3 (=1 (") ¢y " ¥Vum—; ). (65)
j=1

Since f € C*° does not depend on w, we have (D, — Q)™ f € C°°. Next, by the inductive hypothesis (62)
we have Wtu,_ jlw)eH =2~ for all £ >0and 1 < j <m. Arguing similarly to (60) and using (64)
we see that W (aldJQ_1 Yum—j(w) e H 3~ as well (here aldJQ_1 Y € WO(M) which explains the stronger
regularity). Thus (65) implies

WP — w)um(w) € H2~ (M) forall £> 0.
Now Lemma 4.2 gives Wtu,(w) € H~2~ forall £ > 0 as needed.

Finally, uniformity of (61) in w follows immediately from the proof since the estimates (51) and (26)
that we used are uniform in w. |

We now deduce from Lemma 4.3 that u™ () has microlocal oscillatory integral representations (46)
with symbols depending smoothly on . This shows the weaker version of (50) with 7° replaced by 7°%.

Lemma 4.4. Assume thatUd C T*M \ 0 is an open conic set such that A} NU are given in the form (16)
in some local coordinate system on M :

A NU={(x,§):x =0:F(0.§), § €T}, |w| =<4, (66)
where £ — F(w,£) is homogeneous of order 1 and Ty C R?\ 0 is an open cone. Let A € WO(M),
WF(A) CU. Then,

Au+(a),x)=/r e (EI=F@8) (0, £) dE + C, || <3, (67)
[0)

where a(w, &) is a smooth in @ family of symbols of order —%—i— in & supported in a closed cone inside Ty,
see (47).

Remarks. (1) The statement (67) means that u ™ () can be represented as (46), microlocally in every
closed cone contained in U/.

(2) When (67) holds for every choice of parametrization (66) we write

u" (@) € CR(=8.81: 17 (M: A)).
with the analogous notation in the case of ¥~ (w). That explains the statement of Lemma 4.1.
Proof. Since (P —w)u™(w) = f € C®(M), it follows from Lemma 4.3 that for all m, £,r > 0

(Do — Q)Y"WH(P —w) uT (w) € H 27 (M).
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This can be generalized as follows:
_1_
(Do — Q@) A1(@) -+ Ag(@)u™ (@) € H™27(M) (68)

for all m and all A;(w),...,Ay(®), Q(w) € ¥ (M) depending smoothly on w € [—§, §] and such that
o(Aj(@))]y+ =0, 0(Q(w))|,+ = P+. The proof is similar to the proof of (60), using the decomposition

Aj(w) = A} (@)W + AT (0)(P — ) + Rj(w), where R;(w) € W9 microlocally near WE(u™ (w)),

for some A’ (w), A”(a)) € WO(M) depending smoothly on w € [, §].

Since WF(AB" +(a))) c AT N p~I([=8,8]) NU for all k, by the Fourier inversion formula we can
write Au™ (w) in the form (67) for some a(w, £) which is smooth in w, £ and supported in £ € I', where
I't C T is some closed cone. It remains to show the following growth bounds as £ — oco: for every € > 0

(&) Fle g a%a(w. £) € L (6. 81 LER?)). (69)

(From (69) one can get Lg° bounds using Sobolev embedding as in the proof of [Hormander 1985b,
Proposition 25.1.3].)

Denote by Z(a) the integral on the right-hand side of (67). By Lemma 2.2 we have d, F(®, §) =
—®4 (0 F(w,§),§); therefore we may take Q(w) := —d, F(w, Dy) to be a Fourier multiplier. The
operators

Aji (@) := Dy ((0g; F)(@, Dx) = x;),  J.k e€{l,2},

lie in W' and satisfy o (4;x(w))|,+ = 0. We have

(Dp — Q(@))Z(a) =I(Dypa), Ajk(w)I(a) =I(& Dg;a).
Also, if Z(a) € H™2~ uniformly in o, then (£)"3~¢a(w. ) € L (8. 8]: L2(R?)). Applying (68) with
the operators Dy, — Q(w) and A (w) we get (69), finishing the proof. O

We finally show the stronger statement of Lemma 4.1 (with 7° instead of 1°7) using the transport
equation satisfied by the principal symbol:

Lemma 4.5. We have
ut (@) € CP (=8, 81: 1°(M: AD)):
that is, (67) holds where a(w, ) is a symbol of order —% inék.

Proof. In our setting P € WO(M) is self-adjoint with respect to a smooth density on M — see (5), Using
that den51ty to tr1v1ahze the half- densuy bundle we obtain a self-adjoint operator P € WO(M; Q M)

Letat e S3+ (AS; M AL ® Q2 i ) be a representative of o (4™ (w)). Using the transport equation (48)
and (P —o)ut(w)= f € C°°(M) we have

bt = Lat es—%+(A+;MA+®Q%+), (70)

where L is a first-order differential operator on C*®°(A}; M AL ® Q2 +) with principal part given by
Hj, and L* = —L by (49).
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We trivialize Qi . using the density v} constructed in Lemma 2.5 and write
a+=a~+,/vc-li)-’ b+=5+‘/l):)_,
where a*t € SOT(A}; MA$)’ bt e ST2H(AL; MA;:)' By (70) we have
(Hy +V)at =b", 71)

where H, naturally acts on sections of the locally constant bundle M, + and V € C ®(A}) is homoge-
neous of order —1. Moreover, since L* = —L we have

RV = %(EHI,I)JF)/\);r =0

w

using Lemma 2.5.
By (71) for all (x,&) € A, and 7 > 0 we have

at(x, &) = (e " tVaty(x, &) + / t(e—“Hp*V)E*)(x, £)ds. (72)
0

Since WV = 0 we have |e *HotV)g+(x, £)| = |at (e "Hr (x, £))| and the same is true for bt.

Take (x, &) € A} with || large. As in (21) choose 7 > 0, ¢ ~ |€], such that e "o (x, &) e S*M; we
next apply (72). The first term on the right-hand side is bounded uniformly as & — oco. The same is true
for the second term since the function under the integral is O((t —s)™2%). It follows that a ¥ (x, £) is
bounded as § — oo.

Since [§0g, Hy + V] = —Hp —V, we have for all j

(Hp +V)(Ede) at = (Ede + 1)/bT € ST M, ). (73)

It follows that (H), + V)‘(gag)f(ﬁ = O((&)7F) for all j, £: the case £ = 0 follows from (72) applied
to (73) and the case £ > 1 follows directly from (73). Since £d¢ and H), form a frame on A$, we have
at e S°(Af: M, +), which implies that ul € 19(M: A}). O

Remark. It is instructive to consider the transport equation (71) in the microlocal model used in [Colin
de Verdiere and Saint-Raymond 2019]: near a model sink

Af ={(—0,x2:£1,0) : £1 > 0} C T*(Ry, xS},) CO

(see the global examples in Section 1C) we consider p(x,§) := & lg, — x1. We are then solving
(p(x, D) —w)u™ (w) = 0 microlocally near A(‘U", see [DZ19, Definition E.29], and for that we expand
the symbol on u; into Fourier modes in x5,

ub (x) = % /r; Y af g e CrEOk ine g o =N ad (n,6) 2| dErdxs ).

nez nez
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The Fourier coefficients should satisfy (Sl_ln + Dgl)da‘t(n, 1) =0 for & > 1 and a%(n,§;) = 0 for
&1 < —1. Hence the symbol is given by

af =at(@)ldnda |2, T (n.8) =Y " an(©) ™2, an(w) = O0((n)").

nez

Hence, the symbol is very “nonclassical” in the sense that it does not have an expansion in powers of &;.
In the general case an analogous conclusion follows from the structure of (71).

5. An asymptotic result

We now place ourselves in the setting of Lemma 4.1 and assume that u(w) € C*([—6,8]; 1°(M; Ay))
in the sense described in Lemma 4.5, where A, = A$ or A, = A,. We are interested in the asymptotic
behavior as t — oo of

I1(t) := /ot/R e SPp(w)u(w)dods e D' (M), ¢ e CX((=8,9)). (74)

We have the following local asymptotic result.

Lemma 5.1. Suppose that u(w) € D'(R?) is given by

u(w) =u(w,x) =

R /F e CAF@D) g, £) dE, (75)
0

where g, F, and a satisfy the general conditions in (67). Suppose also that

€0y F(w,£) <0, e=4, &£eTly, |o|<é. (76)
Then ast — o0,
1) = oo+ b +v(1),  [b@lgir-<C.  v(t) =0 in H 3~ (R?),
B {27‘[ (0 u(0), €=+, (77
a 0, €=—.

Proof. We start by remarking that we can assume that the amplitude a is supported away from & = 0.
The remaining contribution can be absorbed into b(¢): if a = a(w, &) = 0 for |§| > C then

W(t, €)= /Ot/R e80T IF@.8) (4 £) p(w) dw ds

_ /()’/R[(l +52)7 1+ DY T OD a0, £) plw) dor ds,

which by integration by parts in w is bounded in ¢ and compactly supported in &.
Since u(w, x) has nice structure on the Fourier transform side it is natural to consider the Fourier
transform of x — I(¢)(x), J(t,§) := Fx_¢l(t), where

1 [ i
J(fyf)zz/(; /Re_h(F("”")"'r“’)a(a),g) p(w)dwdr, Sz%, neSt. (78)
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From the assumptions on a we have J(¢,£) = O unless n € I', where I'y C I'g is a closed cone. The
phase in J(¢) is stationary when

w=0, r=r(n:=-0,F(Q0,n). (79)
From (76), d, F(w, n) # 0 and this means that for some y > 0,
r+3uF (@, m)]>c(r), neS'NT1, |o| <8, |rl¢ (% %) (80)
Let y € C2°((y/2,2/y):[0,1]) be equal to 1 on (y, 1/y). Using integration by parts based on
N (=(r + 00 F (0. 77))—1Dw)N(/,—%(F(w,n)Jrrw) — e—%(F(w,n)+rw),

and (80), we see that, by taking N > 2,

1 [h i
i [ [a-xonehEen (o, ) g dodr = 06,
hJo Jr h

uniformly in # > 0. Hence, for all N

J(t) = J(t) + Frsguo(t), sup uo(@)|gn <Cn,
t>0

~ 1 [ i
J(,§):= —/ / x(r) e~ aFlemtre) 4 f ) U p(w)dwdr, &= ﬁ, neSt.
hJo Jr h h
When ht > 2/y, we have J(t, §) = J (o0, &) due to the support property of y. In particular this implies
that J (t, &) — J (00, &) as t — oo pointwise in £. We apply the standard method of stationary phase to
J (00) noting that

_8620,,(F(a), n)+row)= |:—8_§iF _(1):| , sgn 8z),r(F(a), n)—rw)=0.
Therefore
—iF (0, _%4_
f(oo,E) _ {Zna((}i)go(O)e 06 1 0((g) ), 0 F(0,8) <0, 1)
O((&)™™), 90 F(0,&) > 0.

Hence to obtain (77) all we need to show is that J t, & =0(¢ )_%Jr) uniformly in ¢ as then by dominated
convergence,

(£)72 T (1) LD, (6)2 T (00), 1 — +oo.
that is,
- ~ —1/2— (2 -
T =Fl TP 7o Talt), 1 oo

Here the O((S)_%"') remainder in (81) can be put into b(¢) in (77).
The uniform boundedness of J (¢,&) is a consequence of the following simple lemma:
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Lemma 5.2. Suppose that A = A(s,w) € C2(R?) and G € C®°(R; R). Then as h — 0

Lh ::/ /eh(G(“’)+sw)A s,w)dwds = Ol hlog|—)). (82)
i [ 16 = o)
Proof. We define

w .
B(o,w) := / T A(s,w)ds, B(o,w)=io 1TA0,w)+ O 2), |o]— 0.
0

Hence,

L= [ ef%G«v)B(%’w) do = [ k0 B ) du
R R

d
wl<$ 1+u|)w| =O(h1°g(%))’

proving (82). (In fact we see that the estimate is sharp: if we take G = 0 and A which is odd in w, one

= 0(h)

does have logarithmic growth.) O

To use the lemma to show the bound J (7, £) = O((& )_%4'), uniformly in ¢ > 0, it suffices to consider
the case ht <2/, since otherwise J(t, §) = f(oo, £). As before, we write £ = 1/ h where n € S'. Then

~ 1 ([
J(t,§) = Z/o /l;eh(s“’_h’w_F(“””)) x(ht —s)a(a), %) p(w)dwds.

We now apply Lemma 5.2 with A(s, w) := h“_%)((ht —s)a(w,n/h)p(w), o > 0 (and arbitrary), and
G(w) = —htw — F(w, 1) to obtain, J(t) = O(h2~%log(1/h)) = O((E)~2+2%), which concludes the
proof. O

6. Proof of the Main Theorem

In the approach of [Colin de Verdiére and Saint-Raymond 2019] the decomposition of u(¢) is obtained
using (2) and proving that, for ¢ supported in a neighborhood of 0,
PN e —Dp(P) f B, _(p_i0) () f. 1 oo, (83)

which makes formal sense if we think in terms of distributions. The rigorous argument requires finer
aspects of Mourre theory developed by Jensen, Mourre, and Perry [Jensen et al. 1984].

Here we take a more geometric approach and use Lemmas 3.3 and 4.1 to study the behavior of u(¢).
Fix § > 0 small enough so that the results of Section 2A, as well as (33), hold. Fix ¢ € C°((—4,§))
such that ¢ = 1 near 0. By (2), the spectral theorem, and Stone’s formula (see for instance [DZ19,
Theorem B.8]) we have

u(t) = —i /O t e SPo(P) fds+ P e P —1)(1—p(P)) f

l .
_ %/o/uf_lm P(©) ™ (@) —ut () do ds + b1 (1), (84)

where ||b1 (¢)]| ;2 < C forallt >0 and u™ () := (P —wFi0) ! f e H_%_(M) are defined in Lemma 3.3.
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By Lemma 4.1 we have u®(w) € CSP([-6.8); 1%(M; Acf)). The main result (3), (4) then follows
from Lemma 5.1. Here we use a pseudodifferential partition of unity to write u® () as a finite sum of
oscillatory integrals (75) and the geometric condition (76) follows from Lemmas 2.2 and 2.3. We obtain
Uso = —u(0), which is consistent with (83).
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