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I. Introduction

IRCRAFT icing represents a serious hazard to aviation that

caused many tragic fatalities over the past decades [1]. The
physical formation process of ice is affected by a variety of aerody-
namic and environmental factors, such as flight speed, angle of attack,
exposure time, liquid water content (LWC), droplet median volumetric
diameter (MVD), and freestream temperature; hence, ice accretion
remains an issue far from being completely resolved [2,3]. Instead of
explicitly modeling the icing formation process, recent studies pro-
posed the use of regression analysis and machine learning models to
predict the aircraft icing severity based on icing data collected in
experimental campaigns and/or numerical simulations. This approach
is motivated by the fact that significant computing resources are
required for numerical simulations to calculate the ice accretion along
the wing. Data-driven methods can provide quick evaluations of
critical ice features such as the ice global coverage or maximum ice
thickness [4]. Forexample, Li et al. [4] introduced a purely data-driven
approach to forecast the aircraft icing severity level. Ogretim et al. [5]
developed the methodology for ice accretion prediction by incorpo-
rating the Fourier series expansion and using neural network. McCann
[6] built models based on neural networks to make icing forecasts of
different icing intensities. Zhan et al. [7] proposed a framework of local
reduced-order modeling using machine learning algorithms to explore
the in-flight icing certification envelopes.

For data-driven aircraft icing forecasting, the mapping relationship
between the input flight conditions and the output aircraft icing
severity features is likely to be strongly nonlinear. Machine learning
models are capable of addressing strong nonlinearity with the aid of
constructing a black-box input-output mapping [8]. The black-box
mapping can be represented as a forest of trees that could correspond
to the machine learning algorithm gradient boosting (GBoost) [9].
The extreme gradient boosting model (XGBoost) [10] is applied in
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the current work. XGBoost is a state-of-the-art GBoost model,
designed to be more computational efficient and flexible. The
XGBoost model is able to account for the complex interactions and
correlations among the features and have been applied in many data-
driven applications. In the previous study [4], we employed XGBoost
model to explore the complex pattern between LWC, MVD, and
exposure time. It was a first step toward the development of a data-
driven approach to predict the aircraft icing severity. However, it
ignored the aerodynamic factors such as flight speed, angle of attack,
and static temperature, which have direct impact on the aircraft icing
results. In this paper, we studied adapting X GBoost for aircraft icing
severity evaluation based on six flight conditions (flight speed, angle
of attack, exposure time, LWC, MVD, and freestream temperature) to
represent real flight situation. We aim to address the following issues:
predicting the icing severity level [3], area size covered by ice and
maximum ice thickness, assessing the importance of the flight con-
ditions toward the icing severity level, and understanding the effect of
each flight condition. To the best of our knowledge, this paper
represents the first study of applying XGBoost in aircraft icing
severity evaluation in real flight condition. The multiple linear
regression (MLR) [11] and ordinal logistic regression (OLR) [12]
serve as the benchmark models. The models are trained and evaluated
on a database of available flow data obtained from previous simu-
lations [13,14]. To evaluate the accuracy of the predictions quantita-
tively, performance error analysis method containing various
components is established. Applications to the two most important
icing features further demonstrate that the proposed approach can
provide a suitable alternative to numerical simulation methods with
reasonable accuracy while saving computational time. Furthermore,
by coupling with computational fluid dynamics (CFD) codes, the
proposed approach can be used to estimate the degradation of the
aircraft aerodynamic performance. In the hybrid system, CFD can
provide a detailed simulation based on machine learning predictions.

II. Data-Driven Methods
A. Data Collection

The NACAQ012 airfoil is studied in this paper. For each case study,
the numerical simulations were run by applying the ice accretion
modeling solver developed by the authors in the previous work
[13,14] to generate the training observations and test data. Based on
the theoretical modeling of aircraft icing, we consider six flight con-
ditions: flight speed, angle of attack, exposure time, LWC, MVD, and
freestream temperature. Each of these flight conditions has several
levels. An example of the flight conditions with their corresponding
maximum and minimum values and step size are given in Table 1.
Combinations of different values for the six parameters represent
different sets of icing experiments, and 1890 samples are selected to
form the dataset. From the set of full generated samples, testing and
training samples are partitioned randomly following the same design
principle to have the same population distribution. Testing and training
datasets have 567 and 1106 samples, respectively.

The icing severity level (Table 2) based on ice thickness described
by Cao et al. [3] is firstly predicted. Four levels are introduced to
describe the icing severity. The pilots could use the standard as a
reference to assess the severity of the flight condition [6]. It is
reasonable to establish the standard based on the maximum ice
thickness rather than the rate of accretion because in reality the
airplane flight performance will only be little affected if the time
spent in severe icing state is limited. Besides the icing severity level
(classification problem), the prediction models are also trained to
predict the size of the area on the airfoil covered by ice and maximum
ice thickness (regression problems). The larger they are, the more
damage will be caused to the aerodynamic performance [3].
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Table 1 Statistics of flight conditions

V., T., AOA, LWC,  MVD, 1,
Feature knots K ° g/m’ um min
Maximum 250.0 265 9 1.50 50 30.0
Minimum 100.0 253 0 0.50 5 1.0
Step size 37.5 3 3 0.25 5 9.5

Table2 Icing severity level based on
icing thickness

Icing severity level Maximum thickness, mm

Light 0.1-5.0
Moderate 5.1-15

Heavy 15.1-30
Severe >30

B. Extreme Gradient Boosting Model

XGBoost uses an ensemble of classification and regression trees
(CARTS) as the mapping to fit the training data samples. CARTs are
predictive models, which explain how an outcome variable’s values
can be predicted based on other values [15]. Itis a supervised machine
learning algorithm for structured or tabular datasets on classification
and regression predictive modeling problems. For the sake of brevity,
the reader is referred to [10] for more penetrating insights into the
XGBoost.

The XGBoost algorithm involves fitting a large number of decision
trees to a training data set. Each tree is constructed based on the
information from all previously built trees, enabling the model to
learn gradually. Shallow trees capture few details of the problem and
often yield poor performance, whereas deeper trees might lead to
overfitting. Thus, it is important to tune the number of trees and
interaction depth with XGBoost. Additionally, the hyperparameter
shrinkage factor also needs to be tuned to prevent the model from
quickly fitting and then overfitting the training dataset. Other tuning
parameters considered in this work include subsample ratio (which
means that XGBoost randomly samples a certain ratio of the training
data before growing trees) and minimum child weight (which is the
minimum number of instances needed to be in each node). In the
current work, we firstly created a grid that contains all the possible
combinations of tuning parameters. Multiple values of the tuning
parameters are chosen within reasonable ranges. To identify the
optimal hyperparameter set to improve the accuracy of the resulting
models, we use grid search during 10-fold cross-validation (CV) to
evaluate the independent sets of hyperparameters from the prespeci-
fied grid. The best set of hyperparameters is obtained using a scikit-
learn class called “GridSearchCV.” Subsequently, the best set of
hyperparameters is selected and used in final models to make pre-
dictions on the testing dataset.

C. Performance Evaluation Measures

To evaluate the performance of the developed models to predict the
icing area and maximum ice thickness, multiple error analysis mea-
sures were employed, including root mean squared error, R?, and
error distribution. For predicting the icing severity levels, the model is
quantitatively evaluated by using several model evaluation indica-
tors, such as precision, recall rate, F1 score, and confusion matrix.

III. Results and Discussion

This section has two parts. Performance evaluations are given in
Sec. III.A. Performance comparisons between MLR and XGBoost
for evaluating icing area and maximum ice thickness, and between
OLR and XGBoost for evaluating icing severity level are conducted.
Error analyses are performed to demonstrate the effectiveness of the
proposed approach. Aircraft icing severity prediction results analysis
is given in Sec. II.B.

A. Performance Evaluation

Icing area and maximum ice thickness on the test dataset are
predicted, and the performance comparison between MLR and
XGBoost is summarized in Table 3. It has been shown that the
XGBoost has superior performance to MLR in both cases. The
MLR yields much higher root mean square error (RMSE) and lower
R? relative to XGBoost. It indicates that the linear input—output map-
ping given by MLR is not suitable in the current work due to the strong
nonlinearity between the flight conditions and icing severity features.
The MLR model simply serves as a benchmark model and should not
be used for prediction. Indeed, if a commonly used MLR model gives
satisfying results, there would be no use in predicting icing severity
results using a sophisticated model such as XGBoost.

To further demonstrate the effectiveness of the XGBoost model, we
present the comparison between the observed results and predicted
results in the test dataset in Fig. 1. The predicted results are the ones
predicted by the model and the observed results are the ones prepared
in the dataset. The scatter plot is the predicted maximum ice thickness
versus the observed maximum ice thickness, and predicted icing area
versus the observed icing area in the test dataset. The red line with unit
slope represents a perfect prediction. It indicates that the sufficient
agreement is achieved between the predicted and observed results.

Figure 2 presents the histograms of the test errors to examine the
nature of the error distributions. To gauge prediction performance, we
use the median error instead of mean due to the highly skewed nature
of the error distributions. For predicting maximum ice thickness, the
median error is 0.0266. For predicting the icing area, the median error
is 0.0061. Both of them are lower than 0.0500, which is deemed
satisfactory [16].

Table 4 shows the performance comparison between OLR and
XGBoost model in predicting the icing severity level. We can see that
the accuracy of XGBoost model is significantly higher than OLR.
The precision, recall rate, and F1 score generated by XGBoost for the
four categories are all above 90%.

To further compare the performance between the OLR and
XGBoost, we summarized the confusion matrix generated by the
two models in Table 5. Each row of the matrix represents the
predicted category, and each column represents the actual category.
It can be seen that in the matrix, the diagonal values are much higher
than the nondiagonal value for the XGBoost model. However, we
observe a large number of extreme error cases for OLR. It is con-
cluded that the OLR model simply serves as a benchmark model and
should not be used for prediction. XGBoost model vastly improves
the prediction accuracy.

B. Aircraft Icing Severity Evaluation Based on XGBoost

In this section, the prediction results from the XGBoost model are
presented. Six flight conditions, that is, flight speed, angle of attack
(AOA), exposure time, LWC, MVD, and environmental temperature,
are given to the model. The effects of MVD and exposure time on the
aircraft icing severity are studied by holding other flight conditions
constant. The feature importance rankings [10] from XGBoost show
that the MVD and exposure time have the highest importance scores
among the six flight conditions. It indicates that MVD and exposure
time have the most significant effect on the icing severity features
(icing area, maximum ice thickness, and icing severity level). It
should be noted that the built XGBoost model was able to make
predictions in seconds on a 3.5 GHz Intel Core i7 processor. How-
ever, numerical simulation approach usually takes a few hours of
CPU time.

Table 3 Performance comparison
between MLR and XGBoost

Maximum ice
thickness Icing area

Model RMSE R?> RMSE R?

MLR 0.1031 0.654 0.5112 0.641
XGBoost 0.0011 0.995 0.0600 0.995
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Fig.1 Scatter plot of observed results vs predicted results. Left panel: maximum ice thickness; right panel: icing area.
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Fig.2 Histogram showing distribution of test errors. Left panel: maximum ice thickness; right panel: icing area.

The effect of MVD on the icing severity results is presented in
Fig. 3. The corresponding environmental temperature, exposure
time, LWC, angle of attack, and flight speed are set to be 253 K,
1 min, 1.0 g/ m?, 0°, and 130 knots, respectively. It can be concluded
that fairly good agreement is achieved for the model. The icing area
and maximum ice thickness increase with the MVD. It can be
accounted for by the inertia increment. It has been shown that the
droplet trajectory depends strongly on its inertia K, whose expression
is given as [17]

Table4 Performance results of OLR and XGBoost in predicting
icing severity level

1 D*Vyopy, .

18 cuy M

where D is the droplet diameter, V , is the free steam velocity, p,, is

the water droplet density, c is the characteristic chord length, and p4
is the air viscosity.

A droplet’s size, and therefore mass and inertia, directly affect how
and where the ice forms on an aircraft surface. The larger the diameter
of water droplets, the greater the inertia [see Eq. (1)]; it is more likely
that water droplets penetrate the surface streamlines and impact on
the aircraft surface and hence increase the icing area. As can be seen
from Fig. 3, the larger the water droplets, the thicker the ice layer, and
the larger the icing area, the greater impact on the aircraft safety.
However, it should be noticed that the droplets with diameter less than

OLR XGBoost . .. .
10 pm do not contribute much to the icing severity. Indeed, droplets
Recall F1 Recall F1 ller th incl i th h
Cate Precisi ; ! Precisi ) : smaller than 15 ym are not included in the FAR [18] because the
gory 1eC1S10N rate SCore 1€C1S10N rate SCore .
- droplets are so small that they are convected around aircraft surface.
Light 0.80 0.84 0.82 1.00 0.99 0.99 - .
Moderate 0,68 0.64 0.66 096 0.99 0.97 Figure 4 shows that the built model can successfully capture the
Heavy 0.70 0.66 0.63 0.97 0.94 096 icing area and maximum ice thickness with exposure time with the
Severe 0.69 0.79 0.73 0.93 0.98 0.95 corresponding environmental temperature, angle of attack, LWC,
MVD, and flight speed are set to be 253 K, 0°, 1.0 g/m?3, 20 um,
Table 5 Confusion matrix results of OLR and XGBoost in predicting icing severity level
OLR XGBoost
Category Light Moderate Heavy Severe Light Moderate Heavy Severe
Light 187 36 0 0 244 3 0 0
Moderate 43 119 23 0 0 147 2 0
Heavy 4 17 74 17 0 3 113 4
Severe 0 2 8 37 0 0 1 50
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Fig.3 Effect of medium droplet diameter on icing severity results. Left panel: maximum ice thickness; right panel: icing area.
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Fig. 4 Effect of exposure time on icing severity results. Left panel: maximum ice thickness; right panel: icing area.

and 130 knots, respectively. Exposure time is the time it takes to travel
through the icing conditions [3]. It should be noticed that the icing
area growth ratio increases with time, which means that the longer a
flight stays in the icing cloud, the faster the icing area increases. This
observation might be attributed to the runback water effect [19].
Under certain icing conditions, in the early icing stage where very
thin ice layer created, all the water droplets freeze immediately upon
the impact on the aircraft surface and there exists no overflow water.
As the ice layer thickness increases, the conductive heat loss gets
weaker. The overflow water first appears as the ice layer has grown to
a certain extent, which is referred to as critical ice thickness [19].
Because the overflow water is mainly driven by the air—water inter-
face friction, it moves closely following the wall air streamlines [20].
Hence, it is appropriate to consider that the overflow water might
contribute to the icing area increment. Intuitively, the longer the
aircraft stays in icing condition, the thicker the ice layer, which is
also confirmed by Fig. 4. Additionally, it is worth mentioning that
thickness growth ratio decreases with time. Again, it can be
accounted for by the runback water effect. As the ice layer grows
to the critical ice thickness, only part of the water droplet gets frozen
and the control volume consists both ice and water layers. This
phenomenon slows down the ice thickness growing speed.

IV. Conclusions

This paper proposed a method for aircraft icing severity prediction
at different flight conditions based on machine learning model
XGBoost. MLR and OLR serve as the benchmark models; the
performance measures show that they are not suitable for the icing
severity evaluation. In the application to predict icing area, maximum
ice thickness, and icing severity level, well-defined performance
measures are carried out through the training and testing process.

The applications demonstrate that the proposed approach can provide
an attractive alternative to traditional numerical simulation approach
due to its limited computational resources requirement, fast perfor-
mance, and reasonable accuracy. The effects of different flight con-
ditions on the aircraft icing severity results are studied. The feature
importance rankings from the trained model indicate that the flight
conditions droplet diameter and exposure time have the most signifi-
cant effect on the icing severity. The limitation found on the use of the
current method is that the range of the predictions is limited to the
range of the dataset. The built model will not be able to make accurate
predictions if the given flight conditions are out of the current dataset
range. The hybrid machine learning and CFD methods can be applied
to the estimation of the degradation of the aircraft performance. The
coupling between the proposed methodology and other CFD codes is
currently being explored. The comprehensive investigation about
different machine learning models (conventional methods and
ensemble methods) on the icing thickness and area prediction will
be presented in the future work, including the comparison in building
process, effectiveness, and computational cost.
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