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ABSTRACT ARTICLE HISTORY
The numerical performance of algorithms can be studied using test Received 15 January 2023
sets or procedures that generate such problems. This paper proposes Accepted 12 January 2024

various methods for generating linear, semidefinite, and second-

d SRS bl S fical : i KEYWORDS
order cone optimization problems. Specifica ly, we are interested in Priobleeh eriaraton: coic
problem instances requiring a known optimal solution,aknownopti-  ptimization; linear
mal partition, a specific interior solution, or all these together. In the optimization; semidefinite
proposed problem generators, different characteristics of optimiza- optimization; second-order
tion problems, including dimension, size, condition number, degen- cone optimization

eracy, optimal partition, and sparsity, can be chosen to facilitate com-
prehensive computational experiments. We also develop procedures
to generate instances with a maximally complementary optimal solu-
tion with a predetermined optimal partition to generate challenging
semidefinite and second-order cone optimization problems. Gener-
ated instances enable us to evaluate efficient interior-point methods
for conic optimization problems.

1. Introduction

Optimization is just one of many fields in which the empirical analysis of algorithms is
heavily reliant on the quality of the provided test instances. Scholars assess the strengths
and weaknesses of algorithms based on these test problems, which must be unbiased, rep-
resentative, and diverse in their measurable features or characteristics. However, many
benchmark test problems do not possess these desired qualities, as they are often based
on a limited set of real-world problems or have been reused from earlier studies that by
now may be obsolete [4].

An alternative approach is using random test problem generators for experimentation
in optimization. While their design must be carefully considered, one advantage of simple
random generation approaches is their ability to produce problems that possess predictable
characteristics. As a result, scientists have advocated for using highly parameterized gener-
ators to produce appropriately controlled data for experimentation [11]. As one of the first
attempts in this area, randomly generated feasible polyhedra properties were investigated
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by Todd [23]. Pilcher and Rardin [17] proposed a generator for pure integer optimization
problems with a known partial polytope by introducing random cuts. Yet, this method-
ology is restricted to travelling salesman problems and does not explicitly consider the
solution of relaxation or structural features. Lacking the ability to vary features of interest,
the scope of these generators for experimentation is limited to specific problem domains.

To develop instance generation techniques for LO test problems with controllable
properties, Bowly et al. [4] presented a comparison of a naive random generator with
a highly parameterized generator, showing which feature values can be effectively con-
trolled by each method. They also investigated iterative search approaches to find instances
that are difficult to design or rarely produced by the generator. These approaches allow
practitioners to explore areas of interest in the space of linear optimization problems
(LOPs), where challenging instances have previously been found. This would be impos-
sible using static test sets or naive random generation methods, which provide limited
feature control. Further, large-scale linear optimization problems are prevalent in eco-
nomics, industry, logistics, statistics, quantum physics, and other fields. As is the case with
any real-world application, the aim is to obtain high-quality solutions efficiently, a task for
which high-performance computing systems and parallel algorithms are required. Thus,
the development of new parallel algorithms for generating LOPs and the revision of current
algorithms are considered by Sokolinsky and Sokolinskaya [20].

Developing new algorithms for solving large-scale LOPs necessitates testing them on
benchmark and random problems. At times, it is sensible to construct linear and integer
optimization instance generators specified for special purposes. The NETGEN gener-
ator [12] and its successor MNETGEN produce parameterized multicommodity flow,
transport, and assignment problems. The parameters used are thus appropriate to the
underlying network, not the feasible set. One of the well-known benchmark reposito-
ries of LOPs is Netlib-LP [10]. Yet, when debugging LO solvers, generating random LOPs
with specific characteristics (such as, e.g. the sparsity, condition number of the coefficient
matrix, or a known optimal partition) is often necessary.

Charnes et al. [7] suggested one of the first methods for generating random LOPs with
known solutions. This method allows one to generate test problems of arbitrary size with
a wide range of numerical characteristics. The main idea of the method is as follows; take
as a basis a LOP with a known solution, and then randomly modify it so that the solution
does not change. Arthur and Frendewey [3] described the GENGUB generator, which con-
structs random LOPs with a known solution and given characteristics, such as the problem
size, the density of the coefficient matrix, the number of binding inequalities, or the degen-
eracy status. A distinctive feature of GENGUB is the ability to introduce generalized upper
bound constraints, defined to be a (sub)set of constraints in which each variable appears
at most once (i.e. has at most one nonzero coeflicient).

Castillo et al. [6] suggest a method for generating random LOPs with a preselected solu-
tion type: bounded or unbounded, unique or multiple. Each structure is generated using
random vectors with integer components, whose range can be treated as given. Next, an
objective function that satisfies the required conditions, i.e. leads to a solution of the desired
type, is obtained. This LO problem generator is mainly used for educational purposes
rather than testing new LO algorithms. Okolinsky and Sokolinskaya [20] proposed the
random LOP generator FRaGenLP (Feasible Random Generator of LP), which is imple-
mented as a parallel program for cluster computing systems. Calamai et al. [5] described
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a new technique for generating convex, strictly concave, and indefinite (bilinear or not)
quadratic optimization problems.

In the semidefinite optimization literature, scholars were interested in complex prob-
lems. They pursued various directions for characterizing what constitutes hardness in SDO
problems, e.g. not having a strictly complementary solution [16], or a solution with a
nonzero duality gap [21]. Wei and Wolkowicz [24] proposed a procedure to generate SDO
problems without a strictly complementary solution. We build on these ideas to develop
highly parameterized generators.

1.1. Contributions

This paper reviews and proposes several procedures to generate random LOPs, semidef-
inite optimization problems (SDOPs), and second-order cone optimization problems
(SOCOPs) with a specified optimal solution, interior solution, and both of them. We also
develop SDOP and SOCOP generators with specific maximally complementary solutions
to predetermine the optimal partition.

Generating SDOPs and SOCOPs with a specific interior solution ensures that Strong
Duality holds for the generated problems, and the set of optimal solutions will be bounded.
Access to predefined interior solutions will enable researchers to analyze the performance
of optimization algorithms, such as feasible Interior Point Methods (IPMs), with respect
to various initial interior solutions. Generating problems with known optimal solutions
ensures that the generated problem has a bounded optimum and helps to analyze the
algorithm concerning the characteristics of the optimal solution. In addition, generating
SDOPs and SOCOPs with predefined optimal partitions enables the design of challenging
instances where strict complementarity fails.

These procedures will serve to further scholars’ ability to analyze the performance of
their algorithms by altering different features of input data such as dimension, sparsity,
condition number, solution size (which plays an essential role in the performance of Infea-
sible IPMs), and many others, besides predefined properties of the optimal solution. For
example, one can generate an LOP with an ill-conditioned coefficient matrix using pro-
posed generators to check the numerical stability of the algorithm of interest. Another
possible application of the proposed procedures is the average-case performance of algo-
rithms since the proposed generators provide the freedom to randomly generate input data
sets. Accordingly, one can sample the input data from a probability distribution to analyze
the average-case performance of algorithms.

The rest of the paper is organized as follows. In Section 2, we give a brief review of LO
theory before considering several LOP generators that can generate instances with specific
optimal solutions, specific interior solutions, or both. We then develop similar generators
for SDO and SOCO in Sections 3 and 4, respectively. A discussion on the implementation
of the proposed instance generators is provided in Section 5 and Section 6 concludes the

paper.

2. Linear optimization

In this section, we provide a gentle review of Linear Optimization theory before presenting
three different algorithms for randomly generating Linear Optimization test problems.
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2.1. Linear optimization problems

For constant vectors c € R", b € R™, a given matrix A € R™*" and variable vector x € R”,
a LOP is defined as

2} = min {ch Ax=b, x> o} , (LOP-P)

and refer to (LOP-P) as the primal problem. Given the primal problem (LOP-P), we are also
interested in a second problem known as the dual problem of (LOP-P), which we write in
standard form as follows,

ZEO:max{bTy:ATy+s:c, ng,yeRm}, (LOP-D)
.s)

where s = ¢ — ATy is the dual slack variable.
The set of primal-dual feasible solutions is thus defined as

PDro= [(x,y,s) eR"xR"xR":Ax=b, ATy +s=c, (x.5) > 0} .
Similarly, the set of all feasible interior solutions is given by
PD}o = {(x.3.5) € PD1o: (x.5) > 0}.

A crucial property of linear optimization is weak duality; any (y, s) that is feasible for (LOP-
D), provides alower bound b y on the value of ¢ " x for any x feasible for (LOP-P),i.e.b"y <
¢ x, for any (x,y,s) € PDyo. We refer to the nonnegative quantity c'x —b'y = x"sas
the duality gap.

Whenever (x, y,s) € PD with ¢'x = b'y, or equivalently x"s = 0, then x is optimal
for (LOP-P) and (y, s) is optimal for (LOP-D). In this case, Strong Duality holds for LOPs,
i.e. if both the primal and dual problems have feasible solutions, then both have optimal
solutions with equal objective value. Under strong duality, all optimal solutions, if there

exist any, belong to the set PDj ), defined as
PDio = {(x,y,S) €PDio:x's= 0} 1

Let [n] denote the set {1,2,...,n}. Following Roos et al. [18], LOPs admit an optimal
partition N U B = [n],and BN N = @, where

B = {i:3(x*,y*,s*) € PDjy with x} > 0},
N = {i: 3(x*,y*,s*) € PD}, with s > 0}

If (x*, y*,s*) € PD},withx} > Oforalli € B,ands} > Oforalli € \V, then we have x* +
s* > 0 and the optimal solution pair (x*, y*,s*) is called strictly complementary. In this
section, we use (B, \) to denote the optimal partition and (B, N) the index set partition in
the algorithms. After presenting each algorithm, we clarify when the predefined partition
(B, N) is equal to the optimal partition (B, ).
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2.2. Instance generators for LOPs

In the rest of this section, we review three main generators that produce LO instances given
either a predefined (or randomly chosen) interior solution, a predefined (or randomly cho-
sen) optimal solution (maybe strictly complementary or not), or both. Each LOP generator
allows the user to control the characteristics of parameters (A, b, c), including but not lim-
ited to their condition number, sparsity, and norm. Further, users can alter the optimal
solution’s features to examine their algorithm’s performance.

In the following algorithms, the term ‘generate’ should be interpreted freely. It may refer
to generating the respective data randomly, or the connotation could be that the data is
constructed with some specific purpose, e.g. to obtain matrices with some specific structure
such as sparsity or conditioning.

2.2.1. LOPs with a predefined interior solution

To study the performance of IPMs applied to LOPs, it is often helpful to have instances
with specific interior solutions, and a common approach to generating LOPs with a desired
interior solution is presented as Algorithm 1.

Algorithm 1 Generating a LOP with a specific interior solution

1: Choose dimensions m < n

2: Choose or generate (x°, s%) such that x? > 0 and s? > Oforalli e [n]
3: Generate A € R™*" and ° € R™

4 Calculate b = Ax®andc = ATy% +§°

5. Return LOP (4, b, ¢) with interior solution (x?, y°, s°)

Remark 2.1: Suppose we want the interior solution (x’, s°) to have a duality gap of 00 =
np for some scalar & > 0. Then, in Step 1 of Algorithm 1, we generate x? > 0and calculate
s? =3 fori € [n].

The above remark makes an observation relevant to IPMs, as in the context of IPMs,
the constant pu, referred to as the central path parameter, plays a crucial role. IPMs begin
with some initial interior solution (x%, s%) € PDP with

.
2Pl

H

=u’ >0,

and subsequently, reduce  in each iteration as the algorithm progresses toward a solution
to the LOP with the desired complementarity gap. In line with our discussion on LO duality,
it is easy to see that when u — 0, we approach an optimal solution to the primal-dual pair
(LOP-P)—~(LOP-D).

Remark 2.2: Algorithm 1 facilitates the generation of a coefficient matrix A with any
desired properties, e.g. sparsity, structure, or being ill-conditioned.

Remark 2.3: Several conditions are needed to generate a full row rank coefficient matrix
A with probability one randomly; see e.g. [8].
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2.2.2. LOPs with a predefined optimal solution
A prevailing approach for generating LOPs with a known optimal solution is described in
Algorithm 2.

Algorithm 2 Generating a LOP with a specific optimal solution

Choose dimensions m < n

Partition the index set [#] to Band N with BN N =@ and BUN = [n]
Generate x* such that x7 > Ofori € Bandxf =0forie N

Generate s* such that s; > Ofori € Nand s} =0fori € B

Generate A € R™*" and y* € R™

Calculate b = Ax* and c = ATy* + 5*

Return LOP (A, b, ¢) with optimal solution (x*, y*, s*)

SOE G Be W R e

Remark 2.4: Since the generated optimal solution (x*, y*,s*) by Algorithm 2 is strictly
complementary, the optimal partition (B, ) is equal to (B, N).

Remark 2.5: Partition (B, N) may be generated randomly or to satisfy some desired prop-
erties, such as primal or dual degeneracy, or both, or having a unique optimal basis
solution.

Remark 2.6: Let A = [Ap Ay]. If |B| = m and rank(Ap) = m, then x* and s* yield the
unique optimal basis solution.

Remark 2.7: If we modify Algorithm 2 by generating x* such that x} > 0 for i € B and
x} =0forie N, and s* such thats7 > 0 fori € Nand s} = 0fori € B, then Band N do
not necessarily give the optimal partition. While x* and s* are complementary solutions,
they are not necessarily strictly complementary.

Algorithm 2 enables us to generate challenging problems. For example, if A is generated
in such a way that rank (Ag) < m, then the generated problem will be primal degenerate
and challenging for pivot algorithms. Also, the condition number of Newton systems aris-
ing in IPMs for such primal degenerate problems goes infinity as approaching optimality.
Analogously, a dual degenerate problem can be generated as well.

2.2.3. LOPs with predefined optimal and interior solutions

Charnes et al. [7] discuss procedures to generate problems with a specific optimal or inte-
rior solution. Here, we develop a novel procedure to generate a LOP with a specific optimal
solution (x*, y*, 5*) and a specific interior solution (x’, y°, s%), as presented in Algorithm 3.
The general idea is first to use Algorithm 2 to generate a problem with optimal solution
(x*, y*, s*) before extending the problem by adding a variable and a constraint to make the
interior point (x°, y°, s) feasible for the new problem. Using this scheme, we can produce
LOPs for any general predefined optimal and interior solutions, where the only additional
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condition is

& -5 (* — 5% =0. (1)

The condition stipulated by Equation (1) is a natural property; for any feasible solution
pairs, it follows that (x* — x°) € Lin"(A) and (s* — s°) € Lin(A), where Lin(A) denotes
the lineality space of A. In other words, the difference of the predefined solutions x® — x*
and s° — s* must be orthogonal, and Steps 4 and 5 of Algorithm 3 ensure that this property
holds.

Algorithm 3 Generating LOP with specific optimal and interior solutions

1:
2

10:

11:

12:

Choose m < n (The generated LOP has m + 1 constraints and n + 1 variables.)
Generate LOP (A, b,¢) with optimal solution (%,7,5) and partition (B,N) using
Algorithm 2

Generate x°,s° € R” such x%,s" > 0 5
Letd = (xﬂB — .%B)TSDB + (sDN — 5n) "2, generate x?1+1 > 0 and sgﬂ > (%)
Calculate 5,41 = ;D‘i—l + sg ypandletX,p =0

X x% 0 SOB
Buildx*=1{ 0 |, KO = xgr 5= sy |,and 90— SDN
0 Xnt1 Sn+1 Spt1
0
Generate y° = ( %" ) € R™*+! randomly such that el
m+1
Build y* = é’
Calculate
. S .
an1 = —(Ap(is — xj) — Anxy)
xn+1
dp = ——(Ag G — Yim) — 5p)
Ymi1
L e,
d = (AN G = Yim) + sk — )
m+1
1 >
d1 = ——(dg (kg — xp) — dyxy)
xn+1

; Ay Aoy B
Build Ay 1yx(ny1) = (df dg d:ii)

b ¢
Calculate b = . jande= .+ =
(d;;pr) (“nTJrlJ’ + 5:+1)
Return LOP (4, b, ¢) with optimal solution (x*, y*, s*) and interior solution (x, y°, s°)
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In Step 4, (;%)““ = max{0, ﬁ}. Theorem 2.2 asserts that the claimed properties of

2, yo, s9) and (x*, y*, s*) are indeed correct. Before presenting and proving Theorem 2.2,
we need to verify the orthogonality property of the generated solution.

Lemma 2.1: For (x°,)",s%) and (x*,y*,s*) generated by Algorithm 3, then we have
-2 (-5 =0
Proof: By construction, we have
G — (P =) = DT ) s — G s — ) ) s
+ ()5 — () sk — R TSR Gngn) s
+ GenD) TSN — G TSt — () TSt
0 \TO 0 T
= —8+ (Xpp1) Spp1 — (Kpyr) Sy =0

The proof is complete. |

Using Lemma 2.1, the following theorem shows that the generated problem satisfies the
desired properties.

Theorem 2.2: Let (x°,y°,s%) and (x*,y*,s*) be generated by Algorithm 3. Then,

¥*>0, s>0, x>0 >0 (2a)
@*)'s* =0, (2b)
Ax* = b, (2¢)
ATy* 45t =¢, (2d)
Ax? = b, (2e)
ATyD +%=¢ (2f)

That is, (x°,y°, s°) is an interior, and (x*,y*,s*) is an optimal solution of the generated LOP
(A, b, 0).

Proof: Observe that (2a) holds by construction. Equality (2b) refers to complementarity
of (x*, y*,s*), which holds due to the fact that

2*Ts* =350+ 075y +0sh, =0.
To see that Equation (2c) holds, i.e. the optimal solution satisfies primal feasibility, observe

that
b R e £ o .
b (AB Ay ﬂn+1) [f s (ABJCB) . ( b ) —E
i & ), dbzs) = \dizs
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Similarly, dual feasibility is satisfied by the optimal solution, since

3 AT :
Ay*'{"s*: A; dn 0 +| SN :(aT 7+ sk ):c'
a;;_l dﬂ—i—l S;+1 n+1 nt1

That is, Equation (2d) holds.
The interior solution (x°, 3°, s°) is primal feasible since

5 % . 0
Ad = Ag AN apn x‘}};
“\dl dl d N

B N n+1 P
n+1

T .0 g0 e 0
. (ABJCB + Anxy + an+1x,1+1)
A 0 0 0

dg xp + dfxy + dnt1Xn 4

_ (ﬁsxg + Anxd, + (Ap(Rp — x}) — wa?g))
1 M Y A

(A _( b\ _,
~\dizs) ~ \djzs) ~

which proves (2e). We can also certify the dual feasibility of the interior solution:

A d ey (8 [ Aadehd
aped=| &) av | () +| & | = ADberavbn+d
aly dnyt = Sn1 AN ST LA sg+1
AR+ A5G — A ) — ) + 5 Ay
= A + ARG — ) +sk —sp) + v | = | AL+ v
o o

€
= AT = * =G
(ﬂ,,+1}’ + sn—i—l)

wherea = a; )}, +duy 1Y g + 5041
Finally, to prove that Equation (2f) holds as well, we still need to show thatar = @, y+
Sy 1- By straightforward calculation, we have

L pn mx - 5 i 5
@ = —(ApGa — x}) — ANxY) Pl + 5 (d5 Gz — xp) — dyxy) + 50
Xnt1 X1
L o 5 T ATk Ton
= 55 ((AsGs — ) — Avad) Wm + (A5 G — ) — 5) T G — 55)
n+1
Ao i
— (ARG = ) + 5k — 5R) A) + b
1 T Ta Ta AT ATa  ~TA
= 0 (y (I]:m Apxp — y?:m ABxﬂB —¥ (I]:m ANx?\F + x; Agy = nggy{I}:m
n+1

AT 0 0T 5T~ 0T 4T.0 0T 0
—Xxgsp—xg Apy+xg Ag¥i.m+Xp S
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0T 43Tx 0T 5T.0 07T & 0T 0 0
—xy ANy +xy ANYVim — XN SN T AN SN ) FSp
1 n T % T = T T iy
aTATA 01 2Ta 0T4Ta oT0 , 000 .07.» 0 0
= - (xBABy_xB Apy—x} AL —3psh+xp sp—xy sy +ay SN)+5n+1
xﬂ+1
SERAT DT 9T, 0 Ty —:‘cTs°+x”Ts“~x”Ts* +xoTso 450, X0
_ (kgAp —xp Ag —xy Ap). BSB T Xp Sg— Xy Sy + XN SN+ Spp1%ng1
= 0  dia 0
Xn+1 Xnt1
0 *5 T * ¥ 0
AT ng =X (50—5)+5n+1xn+1 —al p4s
=day1y 0 =81 T Spt1e
xi'H—l
The proof is complete. (]|

Remark 2.8: Since the generated optimal solution (x*, y*,s*) by Algorithm 2 is strictly
complementary, the optimal partition (B3, /) is equal to (B, N). If we modify Algorithm 2
such that x} > 0 fori € Band s} > 0 for i € N, then B and N do not necessarily give the
optimal partition. While x* and s* are complementary solutions, they are not necessarily
strictly complementary.

Remark 2.9: We can simplify Algorithm 3 by setting

0 _ = 0 _ 2 + 0 0 -
Xp=2XB, SN=SN> Spt1=5Spr1» and Yy, =J.
It is straightforward to verify that orthogonality condition (1) is satisfied for these choices.
An even simpler case arises if we choose

" - s S T R |
xy=¢€ sp=¢e and y, . =% =5, =L

Similar to Remark 2.6, if rank(Ag) = |B| = m in Algorithm 3, then x* and s* yield
the unique optimal solution. In the next section, we extend these problem generators to
generate SDO problems.

3. Semidefinte optimization

Now, we turn our attention to SDO. Just as in the previous section, we begin by reviewing
the problem setting and important properties before presenting the instance generators for
this class of optimization problems.

3.1. Semidefinte optimization problems

In semidefinite optimization, one seeks to minimize the inner product of two n x n
symmetric matrices: Ce X = tr (CX) = )1, E}'!:} C;iX;j, for some symmetric constant
matrix C € 8" and matrix variable X € S'. Note that S" denotes the space of n x n
symmetric matrices, and we write S (SY ) to represent the cone of symmetric posi-
tive semidefinite (symmetric positive definite) matrices. Similar to the LOP studied in the
previous section, variable X must satisfy linear constraints of the form A; e X = b; for all
i € [m], where Ay,...,A,, € " and b € R™. Given that C e X is a linear function of X,
stopping here would simply yield a LOP in which the variables are given by the entries of
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the matrix X. Rather, we add a nonlinear (albeit convex) constraint, which stipulates that X

must be a positive semidefinite matrix, i.e. X € S¥, which we write X > 0. From the above

discussion, it is straightforward to observe that SDO is a generalization of LO, in which

we replace the element-wise nonnegativity constraint x > 0 found in (LOP-P) by a conic

inequality X € S'. If X is a diagonal matrix of x, then the SDO problem reduces to LO.
In this section, we are interested in generating problems of the form

zgnozi%f{CoX:A,-oX:b,’,Vie[m],XtO}, (SDOP-P)
which has an associated dual problem
m
ZEDO:supﬂbTy:nyA,'+S:C, StO,yE]R"‘}. (SDOP-D)
0:5) i=1

Without loss of generality, we may assume that the matrices Ay,...,A,, are linearly
independent. The feasible sets of (SDOP-P) and (SDOP-D) are denoted by:

Pspo = {X € S": Aje X =b;, i € [m],X = 0}

m
Dspo = l(y,S) eR™ x8": ) yiAi+S= c,sto}.
i=1

Accordingly, the sets of feasible interior solutions are given by
Popo =X € Pspo: X =0}, Dipo = {(9) € Pspo : S > 0}.

For ease of notation, we adopt the syntax PDspo = Pspo x Dspo and 'PDgDO = p.gDo X
Do,

Just as in the case of LO, when IPMs are applied to SDOPs, it is standard to assume
the existence of a strictly feasible primal-dual pair X and (y, S) with (X, §) > 0. From the
existence of a strictly feasible initial solution (X%, 8) > 0, it follows that the Interior Point
Condition (IPC) is satisfied [9], guaranteeing that the primal and dual optimal sets

Pipo = {X € Pspo : Ce X =zgpo},  Dipo = {()’- S) € Dspo: by = ZJSJDO}

are nonempty and bounded, that an optimal primal-dual pair with zero duality gap exists,
ie. Strong Duality holds. That is, for optimal solutions (X*,y*,5§%) € PDg,,, where
PD3po = Pspo % Dipg» We have

CeX*—b'y*=X*eS* =0,

which implies X*S$* = §*X* =0 as X* and S* are symmetric positive semidefinite
matrices.

3.2. Instance generators for SDOPs

Similar to our work on LO, we propose generators that produce SDO instances with a pre-
defined interior solution, optimal solution, and both. Each generator is designed such that
the user can control the characteristics of parameters such as condition number, sparsity,
matrix structure, and size. Additionally, users can modify the features of optimal solutions
to evaluate the performance of their algorithms.
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3.2.1. SDOPs with a predefined interior solution

To study the performance of IPMs applied to SDQ, it is helpful to have instances with a
specific interior solution. Generally, some users may need to generate problems with an
interior solution to ensure that Strong Duality, i.e. zero duality gap at optimality, holds.
Algorithm 1 can be easily extended to generate SDOPs with a known interior solution. The
first task is generating positive definite matrices X, S, symmetric matrices A;, and vector
0. Then by computing b; = A; e X° fori € [m] and C = §° + Y7 | y?A;, we ensure that
the interior solution (X?, y°, 8%) is also feasible. Generating X and §° such that X°S° = uI
for some p > 0 is more computationally involved; we would first have to generate X° > 0
randomly, and subsequently calculate $° as $° = 1(X°)~!. However, we can easily gen-
erate X” and S° for a specified value of y if we make additional assumptions regarding
their structure (e.g. we can assume they are diagonal). We can also generate the matrices
Aj,...,Ap to have desired properties such as sparsity, conditioning, or to satisfy some
norm bound. Several approaches for generating random positive semidefinite matrices are
discussed in Appendix 1.

3.2.2. SDOPs with a predefined block-diagonal optimal solution
Algorithm 4 can be seen as a generalization of Algorithm 2 to SDO problems, in which the
generated optimal solution explicitly has a block-diagonal structure corresponding to the
optimal partition. Before presenting the instance generator, we review the notation of the
optimal partition in the context of SDO.

We are interested in problems whose optimal solution (X*, y*, §*) exhibits zero duality
gap, i.e. X*§* = 0. Thus, the spectral decomposition of an optimal pair X* and S* takes the
form

X*=QEQ' and $*=QAQ,

where Q is orthonormal, and the matrices ¥ and A are diagonal, containing eigenvalues
of X* and §*, respectively. Letting 0; = Z;; and A; = Aj, it follows that X*S* = 0 holds if
and only if o;A; = 0 for all i € [n]. A primal-dual optimal solution (X*, y*,§*) € PDY;,
is called maximally complementary if X* € ri(Pg,,) and (y*,S§*) € ri(Dgp,). A max-
imally complementary optimal solution (X*,y*, §*) is called strictly complementary if
X* 4+ 8* » 0. Let B := R(X*) and NV := R(S*), where (X*, y*, S*) is a maximally com-
plementary optimal solution and R(.) denotes the range space. We define np := dim(B)
and npr := dim(\). Then, we have R(X) € Band R(S) € N forall (X,y,5) € PD%;,.
By the complementarity condition, the subspaces 5 and V" are orthogonal, and this implies
that ng + np < n, and in case of strict complementarity, ng + nnr = n. Otherwise, a
subspace 7 exists, which is the orthogonal complement to B + A. Similarly, we have
ng :=dim(7T), and so ng + npr + ny = n [14]. The partition (B,N, T) of R" is called
the optimal partition of an SDO problem. In LOPs, we know that 7 is empty, but in general
SDOPs 7 can be non-empty [9].

In Algorithm 4, we generate SDOPs with optimal solutions that exhibit a block-diagonal
structure using a partition (B, N, T), which may be different from the optimal partition

(B, N, T) of the generated problem.
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Algorithm 4 Generating SDO problems with a specific optimal solution
nin+1)
2

1: Choose dimensions m, n with m <
2. Choose ng,ny € [n] whereng +ny <n

i 4 % HB HN
3: Generate positive definite matrices Xz € S.% and Sy € S

Xy 0 D 00 0
4 Build®X*=1 0 0 O0)andS*=|0 0 0
0 0 0 0 0 Sy

5: Generate A; € 8" for i € [m] and y* € R™
6 Calculate b = Aje X*forie [mlandC =) [", yfA; + S*
7: Return SDOP (Ay, ..., Ay, b, C) with optimal solution (X*, y*, §%)
9The matrices are partitioned according to ng, nr, and ny. Thus, Xp, the block B of X* is positive definite and the

other parts of matrix X* are zero. Analogously, the nonzero part Sy, the N block of §* is positive definite.

Remark 3.1: The sets (B, N, T) generated in Algorithm 4 are not necessarily the optimal
partition (B, N, T') for the generated SDO problem (Ay, .. ., Am, b, C). In general, we only
have

BcB NCN, and TCT.

Remark 3.2: If an SDOP with a strictly complementary optimal solution is required, then
we set ny = n — np. In this case, the optimal partition is predefined as B = B, ' = N,
and 7 = #. Furthermore, if m = w and A; for i € B are linearly independent, then
the optimal solution is unique [2].

One can easily verify that the solution (X*, y*, §*) generated by Algorithm 4 is feasible
for the SDO problem (Ajy,. .., Ap, b, C), and optimal since X*§* = 0. In addition, matrices
A; and C can be generated in a way to exhibit a particular sparsity, condition number, or
norm, and we can also control primal and/or dual degeneracy.

3.2.3. SDOPs with predefined block-diagonal optimal and interior solutions

By generating SDO problems with specific interior and optimal solutions, we can study the
performance of various solution approaches. For example, one can analyze how efficiently
feasible IPMs reduce the complementarity starting from a predefined interior solution to
an optimal solution, or alternatively examine how robust performance is to the provided
starting point or changes in the characteristics of the optimal solutions or partition. This
section is focused on the case in which the user is interested in predefining an interior solu-
tion and an optimal solution, which need not necessarily be maximally complementary.
Algorithm 5 generalizes Algorithm 3 to SDO for the case in which the generated optimal
solution has a block-diagonal structure. We similarly seek to generate an optimal solution
(X*, y*, §*) and interior solution (XY, 5, §%) as generally as possible, but we need to impose
some additional requirements. Letting £ = span{Aj,..., A}, wehave X° — X* € £ and
S% — §* € L, and hence, the generated solutions are required to satisfy the orthogonality
condition

- e (" —SH =0 (3)

In Algorithm 5, Steps 7 and 8 are designed to ensure the generated solutions (X*, y*, §*)
and (XY, 57, §%) indeed satisfy orthogonality.
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Algorithm 5 Generating SDO problems with specific interior and optimal solutions

1: Choose dimensions m,n withm < @
2. Choose ng,ny € [n] whereng +ny <n
3. Generate SDOP (A4, .. .,A,,, b, C) with optimal solution (X, 7, S) by Algorithm 4
4 GenerateXg > O,Xg- > O,X?\Ir > O,Xg+1 >0
X3 0 0 0
: X o0 o X3 o o
5: Build X6\ 1) ng1) = (0 0) andX?n-l—l)x(_n—i—l) =le » X2 o
0 0 0 X,
6: Generate S[r} >0, Sg >0, SR, >0
7: Calculate § = (X§ — Xp) o Sh+ X708 + XY 0 (S} —8n)
8: Generate Sngl > ()—éj—l)Jr and calculate §,,41 = ?i: + SB,H
& 0 0 @
& @ 0 % o0 0
. Build S* - s T
9: Build S,y (ny1) = (0 §n+1) and S?nﬂ)x(nﬂ) =lo o & o
0 0 0 &,

10: Generate y° € R,;41 such that y?n 1170

~

11: Build y* = (J(;) e R,
12: Calculate &; = —(Aj; o (X — Xp)) — (Aiy @ X)) — (Aj; @ X2)) for i € [m]
n+1

i el s (Af 0) farde
0 «
-8 @ 0 0
mo 0
i — 1 ¢ -5 0 0
14: Build Am—i—l = Zyjo % A;—f" 0 3 S‘ SO
i=1 ym—i—l ym—}—l 0 0 N = 9N " 0
0 0 0 Sl —Spry

15: Calculate @ = S,4; + Y1, 7i; and build C = (

o Oy
> o
N

16: Calculate 8 = A1 @ X* and build b = (E)

17: Return SDOP (Ay,..., A 1,b, C) with optimal solution (X*,y* §*) and interior
solution (X?,°, §%)

Before proving the correctness of Algorithm 5, the next result certifies the orthogonality
properties of the generated solution.

Lemma 3.1: For any (X°,°, %) and (X*,y*, S*) generated by Algorithm 5, then we have

XY= X" e (" —85H =0

Proof: Similar to the proof of Lemma 2.1, it can be proved by substitution and using Steps 7
and 8. |
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Using Lemma 3.1, the following theorem shows that the generated problem satisfies the
desired properties.

Theorem 3.2: Let (X°,3°,8%) and (X*,y*, S*) be solutions generated by Algorithm 5. Then,

X* 30, 8¥%0, X0, 8 =0, (4a)
X*eS* =0, (4b)
AieX*=b Vie[m+1], (4c)
m+1

Y AT +8°=C, (4d)
i=1
A,:OXo:bf Vie [m+1], (4e)
4T+ = (af)
i=1

Proof: Justas in the case of LO, all parts of Theorem 3.2 are easy to verify based on the steps
of Algorithm 5, save for Equation (4e) for i = n+ 1. Following the proof of Theorem 2.2,
the claimed result follows from the definition of @ and Equation (3). |

Similar to generating SDOPs with an optimal solution, we can also generate prob-
lems with both a specific strictly complementary optimal solution and a specific interior
solution.

Remark 3.3: One special case is when ng + ny = n, T = @, and
=2 Xh=I X:=I S}=I =1
SRFZSM Xgﬂzl’ SO+1:1-

3.2.4. SDOPs with predefined optimal solution (General structure)

‘We are also interested in the situation where the desired optimal solution does not exhibit
a block structure. Some methods can exploit the structural properties of the optimal solu-
tion, for example, when it exhibits a block-diagonal structure or is sparse. In order to gener-
ate an optimal solution that possesses certain desired qualities, we use the inverse process of
eigenvalue decomposition. First, we generate diagonal matrices £ and A, whose diagonal
elements are the eigenvalues of X* and S*, respectively. Then, X* and §* can be calcu-
lated by masking these diagonal matrices using a randomly generated orthonormal matrix
Q, and techniques for generating orthonormal matrices are discussed in Appendix 2. The
overall scheme is formalized below in Algorithm 6. While Algorithm 6 generates a more
general optimal solution than Algorithm 4, it is computationally more demanding due to
several matrix multiplications and generating an orthonormal matrix. One can easily verify
that (X*, y*, §*) is optimal since X*S* = QCAQ' = 0. However, similar to Remark 3.1,
the generated optimal solution may not be the maximally complementary solution for the
SDOP (Ay,...,Ap, b, C). Thus, the optimal partition (B, N, T) of the generated SDOP
may be different from (B, N, T) such that dim(83) > np and dim(\) > ny;, ie. the set of
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indices such that o; = A; = 0 may be bigger than the partition 7. The next section dis-
cusses how we can generate SDOPs with a predefined optimal partition. Discussion of
Remark 3.2 works for generating SOCPs with a strictly complementary and unique optimal
solution with Algorithm 6.

Algorithm 6 Generating SDO problems with a specific optimal solution

1: Choose dimensions m,n with m < ﬂ"Z—Hl

2: Choose ng,ny € [n] whereng +ny < n

3: Generate o; > 0 fori € [ng] and A; > 0 fori € [ny]
4

: Generate orthonormal matrix Q

diag(e) 0 0 0 0 0
5: Build X* = Q 0 0 0]QTandS*=Q|0 © 0 Qr
0 0 0 0 0 diag(n)

6: Generate A; € 8" for i € [m] and y* € R"” randomly
7: Calculate b; = Aje X*fori € [m]andC= )" | y}A; + §*
8: Return SDOP (Aj,. .., Am, b, C) with optimal solution (X*, y*, §*)

3.2.5. SDOPs with a predefined maximally complementary solution (General
structure)

The SDOP generated by Algorithm 6 may have an optimal partition that differs from the
input partition, since the specified optimal solution may not be maximally complementary.
In this section, we develop a procedure to generate SDOPs with a specific optimal partition,
and by extension, with a specific maximally complementary solution, where the 3 and \
parts of the optimal partition are nonempty. In Algorithm 7, Qp is formed by the columns
of Q that correspond to partition B. As we can see, there is less freedom in generating an
SDOP using Algorithm 7 when compared to Algorithm 6. This can be attributed to the
fact that matrix A, is specified to ensure that the specified optimal solution is maximally
complementary, and we can not alter its characteristics directly. The next theorem proves
the correctness of the generator.

Theorem 3.3: For the generated problem (Ay, ..., Am. b, C) by Algorithm 7, the solution
(X*, y*, §*) is a maximally complementary optimal solution.

Proof: The result follows from a proof by contradiction, which is adapted from [24].
Suppose that (X*,y*, $*) is not maximally complementary, and (X, 7, S) is a maximally
complementary solution. Since XS* = 0, we have

R(X*) € R(X) € R(S")™.

Therefore, we can write
Dg 0 0O

X=Qlo Dr o]Q'.
0 0 0



OPTIMIZATION METHODS & SOFTWARE (&) 17

Algorithm 7 Generating SDO problems with a specific maximally complementary solution

[

nint1)
2

Choose dimensions m, n with m <
Choose ng,ny € [n] whereng +ny <n
Generate 0; > 0 fori € [ng]and A; > O fori € [ny]
Generate orthonormal matrix Q = (Qg Qr Q) € R™”
diag(oc) 0 0 0 0 0
Build X* = Q 0 0 0J]QTandS*=Q|0 0 0 Qr
0 0 0 0 0 diag(h)

Z
6 0 Ty

: Build A; =Q 0 Urr FI—ET QT where 'ty = 0, Tyy € 8™, QnI'ng #£ 0

I'nve I'nr Tan

7. Generate A; € 8" such that A;Qp are linearly independent for i € [m]
8: Generate y* € R™
9: Calculate b; = A;e X*fori e [mlandC =)} y}A; + S*

10:

Return SDOP (Ay, . . ., Ay, b, C) with maximally complementary solution (X*, y*, §*)

Since both X and X* are feasible, it follows that

Dg—Ag 0 O
0:A1.(X—X*):A1.Q( 0 Dr o|Q'
0 0 0
0 0 Ty Ds—Ag 0 0
= 0 rr F;T ° 0 Dy 0| =TrreDr.
I'ne I'nr Tan 0 0 0

Given that 'ty > 0, it follows that Dy = 0, which implies R(X*) = R(X).

Next, we need to show that R(S*) = R(S). Again, from dual feasibility, we have

Y A - =—(* -9
i=1

By the orthogonality of Qg and §* — S, one can observe

> AQe(} — ) = —(8* —5Qs =0.
i=1

Since the matrices A;Qp are linearly independent for i € [m], it follows y = y; and

S*

= S and thus (X*, y*, $*) is maximally complementary. Therefore, we have arrived at

a contradiction, and the proof is complete. ]

Corollary 3.4: For the SDOP generated by Algorithm 7, the optimal partition (B,N,T) is
equal to (B,N, T).
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Remark 3.4: If the elements of A; are generated randomly from a continuous distribu-
tion independently, such that A; is asymmetric for i € 2,...,m, then A;Qp are linearly
independent for i € [m] with probability one. The reason is that A; Qg = QnT'ng # 0.

Remark 3.5: Algorithm 7 generates a primal nondegenerate SDOP that has a unique opti-
mal dual solution [24]. To generate primal and dual nondegenerate SDOP with unique
primal and dual solutions, one needs to generate A; for i € [m] such that QETA iQp,1 for
i € [m] are linearly independent [2].

The framework we have described is correct when B # @ and N s (. For the cases
B = and/or N =, one can construct a simple procedure to generate problems with
a predetermined optimal partition.

3.2.6. SDOPs with predefined optimal and interior solutions (General structure)
We can also generalize Algorithm 6 to provide SDOPs with interior solutions, and the
resulting scheme is presented in Algorithm 8. Here, both the generated optimal and inte-
rior solutions have a general structure by using the inverse of eigenvalue decomposition,
and at a high level, the overall scheme can be viewed as a combination of Algorithms 5
and 6.

For the generated solutions (X?,°, §%) and (X*, y*, §*), Steps 8 and 9 ensure that

D @ —oa) + ) oAl + ) aP(A) —A) + o Ay — Anp1) =0, (5)
icB icT icN

Consequently, the orthogonality condition (3) is satisfied. Similar to the block-diagonal

case, Theorem 3.5 establishes that the generated SDO problem and its optimal and interior
solutions are correct.

Theorem 3.5: Let (X°,3°,8%) and (X*,y*, S*) be solutions generated by Algorithm 8. Then,

X* &0, =0 X' $ao

XteS* =0,
A;..X*:bf Vie [m+1],
m+1

Y AT +8* =,
i=1

Af.XObe Vie [m+1],
m+1

i=1

Proof: Analogous to the proof of Theorem 3.2 based on the steps of Algorithm 8 and
orthogonality condition (3). |
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Algorithm 8 Generating SDO problems with specific interior and optimal solutions

1:

Choose dimensions m, n with m < w (the dimensions of generated SDOP: m +
1,n4+1)

: Choose ng,ny € [n] whereng +ny <n
. Generate SDOP (A;,...,A,,, b, C) with optimal solution X, ¥ S) by Algorithm 6

: Build Q1) (n1) = (Q

5 {1]) , where Q is eigenvectors of X

: Generate positive diagonal matrix £, B9, 3, and number ¢, ; > 0

3 0 0 0 X 0 0 0
: 0 00 0 0 X2 o0 o
: . T L T T
& BuldX*=Q| o o o o QTand X’ =0Q o 0 0 o Q
0 0 0 0 0 0 0 o),
7. Generate positive diagonal matrix A%, Ag-, and AY,
8: Calculated =), _p(o; — O’P)J\.? + Y it O‘Ipl? + XN or,-o(l? — i)
9: Generate lgﬂ > (;Ei)**, and calculate A, = G—E‘i—l + )\.?H_l
00 0 0 AY o o0 o0
0 0 0 0 0 A% o 0
: : * __ T i T T
10: Build §* = Q 00 Ay 0 QTand S =Q 0 0 A?\I 0 Q
0 0 0 Aupp g 6 0 2y
1: Generate y° € R™*! such thaty;,,; # 0 and build yf,,, ) = G;)
Tp—X) 0 0
12: Calculate a; = g—nl— tr (4;Q 0 -3 0 |Q")forie[m]
n+1 0 0 —EO
X N
13: Build A; = (%' 0) fori e [m]
i
—A% 0 0 0
0 —AY 0 0
1 ~
e Ama = (TG =MNA+QL o 0T 47 A0 i Q)
0 0 0 Appi — AL,
C 0
15: Calculate C = P
(0 Y Jie + lmﬂ)

16:
17:

Calculate b; = b; for i € [m] and by = tr (A1 XF)
Return SDOP (4;,...,Au+1,b, C) with optimal solution (X*,y*, §*) and interior
solution (X°, 5", §%)

3.2.7. SDOPs with predefined interior and maximally complementary solutions
(General structure)

To have a predetermined optimal partition, we develop Algorithm 9 to generate SDOPs
with specific interior and maximally complementary solutions as follows.

Theorem 3.6: For Algorithm 9, solution (X*,y*,S*) is the maximally complementary
optimal solution of the generated problem (Aj, . .., Am+1, b, C).
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Algorithm 9 Generating SDO problems with specific interior and maximally complemen-
tary solutions

1: Choose dimensions m, n with m < w (the dimensions of generated SDOP: m +
1,n + 1) and choose ng, ny € [n] whereng +ny <n

2 Definesets B={1,...,ng},T={ng+1,...,.n—nny},&N={n—ny+1,...,n}
3: Generate o; > 0 for i € Band build X3 = diag(o)
4: Generate A; > 0 fori € N and build Ay = diag(})
5. Generate orthonormal matrix ann
g 0 0 0 0 0
6 BuldX=Q|l 0 0 0]|Q"andS=Q|0 0 o |QT
0 0 0 0 0 Ay

0 g T
7: Build A] = Q 0 Urr ]—‘ifw QT where 'ty > 0, Cyy € S™, QnI'ng # 0
I'np AFNT I'ny
8: Generate y € R™ and A; € &" such that A;Qp are linearly independent for i € [m]
9. Calculate b; = tr (A;X*) fori € [m] and C = ! yihi+ S

: 0
10: Build Quuinyxn+1) = (8 1)

11: Generate positive diagonal matrix X3, %, ¥, and number o >0

g 0 0 0 0 o0 o0
: 0 0 0 0 0 X o o
_ * 1B L T T
12: Build X* = Q 6 %W B QTandX°=0Q o 0 %0 o Q
0 0 0 0 0 0 0 oy
13: Generate positive diagonal matrix A}, A%, and A}
14: Calculate § = 3, (0 — 6))A) + Xicr 074 + Xien 07 (A — i)
15: Generate l2+1 > ()1, and calculate Apy; = —— + JL?,H
Tnti o1
00 0 0 A 0o o o
: 00 0 0 0 A} o o0
. & T I T T
16: Build $* = Q 06 Ag 0 QTand S =Q 0o o A% o Q
0 0 0 Aps g 0 0 Jbs
0 1 : ¥y
17: Generate y° € R™*! such that y?, +1 7 0and build y_ 1) = ( 0)
(Zz-Z3 O 0
18: Calculate @; = —-— tr (4;Q 0 ——E% 0 Q) forie [m]
0n+1 0
0 0 —x
19: Build A; = (Af 0) fori € [m]
0 o
~A% o 0 0
0
i o 0 —A 0 0 i
0 Ampa = g=CLO-D4+Q| o ToT A T g Q@D
0 0 0  Awr—AY,

€ 0 b
21: Calculate C = 3 shi=
(0 Yoisy Jieti + lmH) (U' (Am+1X*))
22: Return SDOP (Aj,...,Am+1,b,C) with maximally complementary solution

(X*, y*, §%) and interior solution (XO,)’G, 5%
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Proof: The proof closely follows the proof of Theorem 3.3; the only difference is that we
expanded the matrices A; by adding a row and column. For constructing matrix Aj, the
added eigenvalue y,+1 = a1 and Qu41 = (0,0,0,...,0,1) T belong to partition N where
we do not have any restriction. Thus, adapting the proof of Theorem 3.3 to this theorem is
straightforward. (]

Among all proposed SDOP generators, Algorithm 9 provides the most sophisticated
SDOPs, with maximally complementary and interior solutions in a general manner and
gives opportunities for altering characteristics of an optimal solution, optimal partition,
matrices A;, C, and vector b to study the performance of solution methods in a detailed
and sophisticated analysis. However, this algorithm requires much more complicated
computation than the other proposed generators.

4. Second-Order cone optimization

Before concluding, we adapt our techniques for LO and SDO to linear optimization
problems over second-order (or Lorentz) cones.

4.1. Second order cone optimization problems

A second-order cone is defined as follows
{(xl,xz,. coskg) EREu

Observe that the above definition implies that (xy, x,,. . ., x;;) belongs to a second-order
cone if and only if the matrix
Xzn  XtIn—1

is positive semidefinite, where xg:n = (x2,%3,...,%y) and I,_; is the identity matrix of
order n—1. Hence, a primal or dual second-order cone optimization problem (SOCOP)
may be interpreted as a special case of SDO [19].

In SOCO problems, we seek to minimize a linear objective function over a feasible
region which is defined by the intersection of an affine space and the Cartesian product
of p second-order cones of dimension n;, which is defined as

P
I"=LMmx...x LC", n:an,
i=1

where £ = {x' = (xi,. * ,xih.)T e R" ; xi > |[xizml_||},fori € [p]. It is clear that LOPs are
a special case of SOCOPs, where n; = 1 for i € [p]. The primal and dual SOCO problems
in standard form are represented as

Zoco = inf{ex: Ax=b, x e L"), (SOCOP-P)
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2000 = sup{bTy: ATy +s=¢, se L, (SOCOP-D)
)

where b e R™, A = (Ay,...,Ap), x = (5.8, s=(GY5...58),and c = (c}...;P),
in which A; € R™*", 5" € R%,and ¢ € R" fori € [p]. The set of primal and dual feasible
solutions is defined as

PDsoco = {(x,3,5) e L" x R" x L" : Ax=b,ATy +s=c}.

Let L = {x' € L™ : x} > ||x},,, [}, for i € [p], then we can define the set of primal and
dual interior feasible solutions as

PDioco = {(3:5) e L% x R™ x L : Ax=b,ATy+s =c).

Just as in LO and SDOQ, it is standard practice to assume the existence of an interior feasible
primal-dual solution. With the existence of a strictly feasible solution, it follows that the
Interior Point Condition (IPC) is satisfied [15], guaranteeing that z5,~, = Z'EOCO and the
primal-dual optimal set

PDsoco = {(x,y, s) € PDsoco : £ x= z’goco = bT}’ = z?oco} >

is nonempty and bounded. Therefore, there exists an optimal primal-dual pair with zero
duality gap. That is, for optimal solutions x* and (y*, s*), we have

*os*=(xlosl,...,.x osP) =0, (7)

where the Jordan product ‘o’ is defined as

ot (x (x)Ts! ) . ®)

i B ]
ISE:H,' +slx2:m

An optimal solution (x*, y*, s*) is called maximally complementary if x* € ri(Pg,,) and
("5 s*) € ri(Dgycp)- Further, (x*, y*, s*) is called strictly complementary if

* * n
x +s 6]L+.

4.2. Instance generators for SOCOPs

Motivated by our work on LOP and SDOP generators, we are further interested in applying
these ideas to generate SOCO problems. Since SOCO can be interpreted as a special case of
SDO, Sampourmahani et al. [19] studied mappings between SDOPs and SOCOPs and their
optimal partitions. It is straightforward to develop SOCOP generators using the proposed
SDOP generators augmented with the appropriate mapping. However, that route is not
efficient, and we alternatively propose several SOCOP generators without using their SDO
representation.
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4.2.1. SOCOPs with a predefined interior solution

Generating SOCOPs with an interior solution also ensures that the problem has an optimal
solution with zero duality gap. By modifying Algorithm 1, one can generate SOCOPs with
specific interior solutions. To have an interior solution x°, we must generate (x°)’ for i =
1,...;pssuchthat (G, .. (xo)i,j) € R"%land (x%)} > ||(x0)5:m |l. One way to generate
such a solution is to generate (x’)' € R™, and update (x°)} using the rule

@)} = 1625, 11 + 1Ol
Similar to LO, if matrix A is generated randomly, then the probability that all rows of A

are linearly independent is one. In addition, the user can generate a desired matrix A with
specific characteristics such as sparsity, condition number, and norm.

4.2.2. SOCOPs with a predefined optimal solution
For SOCOPs, the optimal partition is a bit more complicated than for LO and SDO. The
index set [p] is partitioned to sets (B, N, R, T;, T2, T3) defined as

B:={i: x| > ||xh,,ll2, for some x € Pocoh
N = {i: s} > lIshp ll2. for somes € Diycol.
Ri={i:o = IIxi:m 2 > 0,s] = Hs;mi"z > 0, for some (x, ,5) € Psoco X Psoco)s
Ty :={i: & =5 =0, forall (x,5,5) € Pdsco X Diocols
D= {i: s =0, forall (355) € Digco- X = ||x£:m 2 > 0, for some x € Pipcohs
Tz :={i: ¥ =0, forall x € Pipco,5i = lIshy,ll2 > 0, for some (3,5) € Dfco)-

For further discussion regarding the optimal partition in SOCOPs, we refer the reader to
[22]. From here, we can develop Algorithm 10 which is a generalization of Algorithm 2 for
generating random SOCOPs with specific optimal solutions.

Remark 4.1: Algorithm 10 provides a SOCOP with an optimal solution, and that
optimal solution may not be maximally complementary. Thus, the optimal partition
(B,N,R,T,T3,Ts) of the generated problem may differ from (B, N, R, Ty, T3, T3), and
we only have

BgB, NEN: RER, 'T]ETI, EETZUTD and EET3UT1

Remark 4.2: To generate a SOCOP with a strictly complementary optimal solution, it is
enough to choose Ty = T> = T3 = @. In this case, the optimal solution is also maximally
complementary. Furthermore, if ) ;_p s #i = m, the strict complementary solution is also
a unique optimal solution for the generated SOCOP [1].

Similar to LOP and SDOP generators, one can generate matrix A in a way to has specific
characteristics. The norm and properties of (x*, y*, s*) are controllable directly. Also, the
norm of (b, ¢) can be predetermined by scaling (x*, y*, s*) appropriately and carefully since
determining the norm of all parameters and the optimal solution simultaneously is possible
if the equations in line 11 of Algorithm 10 hold. It is easy to see that (x*, y*, s*) is optimal
since x* o s* = 0 and it is feasible by construction. In the next section, we discuss how to
generate a SOCOP with a maximally complementary solution.
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Algorithm 10 Generating SOCO problems with a specific optimal solution

Choose dimensions m < n

Choose ny,...,np such thatn =n; +--- +n,

Partition the index set [p] to (B,N, R, Ty, T, T3)

Fori € B, (s*) o 0 and generate (x"‘)i'e R™ such (x"‘)i > ”(x*)_;:m I

Fori e N, (x"‘)": 0 and gene?ate (s")' € R" such (s*)] > [|(s")3.,
Forie Ty, (s*)' =0and (x*)) =0

Forie Ty, (s"‘)’:: 0 and generate (x*)’: € R" such (x* ’} = ||(x"‘)5mi >0
Forie T3, (x*)' =0 and generate (s*)" € R" such (s*)} = [|(s*)3,,, | > 0
Fori € R, generate (x¥);,,. € R"!and § € R and build

s 4 i) i |i(x"‘)";m I
= ( (Yo )d e (—(f*im..)

10: Generate y* € R™ and A € R"*"
11: Calculate b = Ax* and c = AT y* + 5*
12: Return SOCOP (A4, b, ¢) with optimal solution (x*, y*, s*)

oI - T R o

4.2.3. SOCOPs with a predefined maximally complementary solution

Since the optimal partition can affect the performance of algorithms to solve SOCOPs
similar to SDO, we are interested in generating problems with predetermined optimal
partitions. To do so, we adapt our instance generator for SDOPs with a maximally comple-
mentary solution to SOCO in Algorithm 11. Let A‘? j be the element in row 7 and column j
of the part (columns) of A that correspond to cone p. We also use the superscript to show
the partition, e.g. A? denotes the columns of A which correspond to partition B.

Compared to Algorithms 10 and 11 imposes more restrictions on how A is generated.

Theorem 4.1: For any SOCOP (A, b, c) generated by Algorithm 11, the generated optimal
solution (x*, y*, s*) is maximally complementary.

Proof: One can verify that b; = 0, and the first row of A enforces any optimal solution x
to satisfy

¥ =0 fora]lpe T]UT_?,.

From constraint 2 to |T;| 4+ 1, we add a constraint for each cone p in partition T, in
which coefficients are zero for all variables except for variables in cone p. Since the cor-
responding right-hand side is zero and the coefficients are the normal vector to the cone
p at the point x*, all feasible solutions must lie on the ray which is on the boundary of
the cone p and passing through the point x*. Thus, for any optimal solution X, we have
= |[x§mp|| forallp € T,.

Up to this point, we have shown that x* € ri(P*), and the last part of the proof is to
establish that the dual problem has a unique optimal solution (y*, s*). To prove it, let us
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Algorithm 11 Generating SOCOPs with a specific maximally complementary solution
1: Choose dimensions m < n
2: Choose ny,...,nysuch thatn =n; +--- +n,
3: Partition the index set [p] to (B, N, R, Ty, T,, T3) such that

T2l +1 < m < |B| + |R| + | T3]

. Fori € B, (s*)' = 0 and generate (x*)' € R" such (x"‘)’i > |I(x”‘)5mj I

. Fori € N, (x*)' = 0 and generate (s*)’ € R" such (s"‘)"l > || (s*)gml_ﬂ

. Forie Ty, (s*)' =0and (x*)' =0

. Fori € Ty, (s*)" = 0 and generate (x*)' € R" such (x”‘)’i = ||(x"‘);mr,|[ >0
. Fori € Ts, (x*)" = 0 and generate (s*)' € R™ such (s*)’i = ||(s"‘):;::ﬂi | >0
: Fori € R, generate (x"‘)imi € R"1and § € R and build

i (16 i (169, u)
= (g mae = (L5,

= = e = T

10: Generate y* € R™
11: Generate A € R™*" such that
e First row:

A};’]:-O, A{'J:O forj=2,...,np, and peTiUT;
Af =0 forj=1,...,m, and peBURUT,
A};JE]R forj=1,...,n,, and peN

e Row2to|Th| +1:
r (xﬁ*ip)T p
Ap,lmp =|~1 H_xim sAf 1, =0 forallk#¢g, and peTh

e The other rows should be generated such that rank([A?, AR, AT2]) = m.
12: Calculate b = Ax* and c = ATy* + 5*
13: Return SOCOP (A, b, ¢) with maximally complementary solution (x*, y*, s*)

assume that it has another optimal solution (¥, 5), and let X* = diag(x*). Then, we have
X*ATG—y)=-X*G—s") =0.

Since A generated in a way that the rank of X*A T is m, we have 7 = y*. We can conclude
that (x*, y*, s*) is a maximal complementary solution for the generated problem. &l

Corollary 4.2: For any SOCOP generated by Algorithm 11, the optimal partition
(B,N,R,T1,T3,Ts) is equal to (B,N, R, T, Tz, T3).

As expected, generating SOCOPs with predefined optimal partitions restricts how
matrix A is generated. However, some components of A are not restricted, and enable the
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user to control the properties of A. As shown in Theorem 4.1, Algorithm 11 generates a
SOCOP with a unique dual optimal solution. To get both primal and dual unique solu-
tions in this algorithm, some further restrictions are needed for generating matrix A to
enforce that the generated SOCOP is both primal and dual nondegenerate, as discussed in
Section 6 of [1].

4.2.4. SOCOPs with optimal and interior solutions

We can extend Algorithm 10 to provide both specific interior and optimal solutions by
adding one row and column to the matrix A. We aim to generate optimal and interior
solutions in a general manner, but we need to enforce the orthogonality condition:

=2 =5 =0 9)

Note that this is a natural requirement; similar to LOPs, we have (x* — x%) € Lin'(A)
and (s* —s) € Lin(A). Theorem 4.4 shows that the claimed properties of (x%,3°,s°)
and (x*, y*,s*) are indeed correct. Before presenting Theorem 4.4, we need to verify the
orthogonality properties of the generated solution.

Algorithm 12 Generating SOCOPs with specific interior and optimal solutions

1: Choose dimensions m < n (the dimension of generated SOCOP: m + 1,n + 1)
2. Generate (A, b, 2) with optimal solution (%, §, §) by Algorithm 10 (dimension: p x m)

B | i
3. Generate x € ]Li1 "7 and let 20 = (9. .;(x”)’f:np)

@)t =@, @Y, = @, md () =0
5: Calculate vector @ = ——A (% — 2°)
(xu)ﬂp-i-i
Build A = (A, @) (concatenation of a column to matrix)
Generate y° € R™*! such y?, .| # 0,and build y* = (5,0)T € R™+!
2 n
Generate $* € L +1

oI

Let 8 = (2% — %) T (3° — 5), and generate (sﬂ)ﬂp o ((IT;JS,—)*”
np+1

! & = 8 0yP
10: Calculate sﬂpﬂ = m + (s )np+1
11: Build s* = (5, ﬁpﬂ)—r. =, (So)ip+1)T;
12: Calculate vector g = J—’DI—(ATG' — i) +5% =Y
i m+1
13: Build A = ( ;-Lr) (concatenation of a row to matrix)

14: Calculate b = Ax*and c = ATy* + s*
15: Return SOCOP (A, b,c) with interior solution (x%,%? %) and optimal solution

(=%, y%,5%)
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Lemma 4.3: For any (x°,y°,s°) and (x*, y*,s*) generated by Algorithm 12, we have
=T (2 =% =0.

Proof: Similar to the proof of Lemma 2.1, Steps 9 and 11 of Algorithm 12 ensure that the
orthogonality condition holds. |

Using Lemma 4.3, the following theorem shows that the generated problem satisfies the
desired properties.

Theorem 4.4: Let (x°,y°,s°) and (x*,y*,s*) be generated by Algorithm 12. Then,

Fos*=0,

Ax* =1,

ATy* 4+ =¢,

A" = b,

ATY 0=

X e LM-tptl §* € LM ny+1 X0 c ]L:_l """ ”P'H’ $0 c I[J:_i*""”ﬁ'"'l_

That is, (x°,3°,5°) and (x*,y*,s*) are interior and optimal solutions, respectively, for the
generated SOCOP (A, b, c).

Proof: The proof is similar to the proof of Theorem 2.2. |

Compared to the SDOP generators, the SOCOP generators are computationally simpler
since they do not require generating random orthonormal or positive semidefinite matri-
ces. Let t; be the amount of arithmetic operations required to generate a number randomly.
To generate orthonormal or positive semidefinite matrices, we need to use a decomposi-
tion method, which requires Q(n*) arithmetic operations as discussed in the appendix. In
the general case, the LOP and SOCOP generators require O (n’t,) arithmetic operations,
while the SDO generators require ()(n’t,) arithmetic operations. It should be mentioned
that if we want to generate a random matrix A for LOPs and SOCOPs with specific condi-
tion numbers, then we need to use decomposition methods and the complexity of the LOP
and SOCOP generators increases to () (n°t,) arithmetic operations.

4.2.5. SOCOPs with predefined interior and maximally complementary solutions

To generate SOCOPs with both interior and maximally complementary solutions, we can
use Algorithm 12 in the first step of Algorithm 11, which provides a SOCOP with a maxi-
mally complementary solution. The only difference is that we should choose the partition
such that the last cone is in the partition N. By this modification, the added column in
Step 6 of Algorithm 12 will be in partition N, which satisfies all the restrictions needed to
keep (x*,y*, s*) maximally complementary. In this way, we can generate SOCOPs with an
interior solution and predetermined optimal partition.
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5. Implementation

All mentioned generators are implemented in a python package, which is available in
open source at https://github.com/qcol-lu. This package gives the option of prescribing
the norm of vectors, condition numbers, and sparsity of the matrices. In addition, several
versions of interior point methods, such as feasible/infeasible, exact/inexact, and long-
step/short-step/predictor-corrector, are implemented and available for the experiment.
There is also an option to choose the solver of the Newton system. One may choose classical
or quantum linear system algorithms.

6. Conclusion

We develop and implement several random instance generators for LO, SDO, and SOCO
with specific optimal and/or interior solutions. Because of a high level of controllability,
these generators enable users to analyze different features of the problem, such as spar-
sity and condition number, to study the performance of different algorithms smartly. In
addition, we proposed SDOP and SOCOP generators with predefined optimal partitions,
which can be used to generate computationally challenging instances.

The proposed generators can also be used to study the average performance of algo-
rithms for solving LO, SDO, and SOCO problems with different probability distributions
for input data, optimal and interior solutions. Future research directions include expanding
the construction of these generators for other classes of conic, polynomial, and nonlinear
optimization problems.

The proposed generators can be used to build computationally challenging problems.
For example, Algorithms 7 and 11 can produce SDOPs and SOCOPs, failing strict com-
plementarity. Such problems can slow down the convergence of IPMs. Another example
is producing LO, SOCO, and SDO problems with ill-conditioned coefficient matrices.
Another direction for extending the proposed generators is to generate other hard prob-
lems, e.g. LOPs which are primal or dual unbounded. For SDO and SOCQO, it is worth
exploring developing generators that produce instances that have a zero-duality gap, but
with no optimal solution or instances with a non-zero duality gap.

An interesting question raised by reviewers is how much the proposed generators can
be generalized to more general conic problems. One can generate a symmetric conic opti-
mization problem with a known interior solution, although it is not obvious how that can
be done for more challenging conic problems, such as copositive conic problems. Since we
use a partition to generate optimization problems with known optimal or complementary
solutions, it is more challenging to build a generator for a general symmetric conic prob-
lem, that would transparently map the optimal partition structure of SOCOPs. All in all,
other types of conic problems are getting more attention due to the wide range of appli-
cations of conic optimization. Thus, generalizing the proposed generators for other conic
problems is worth to explore.
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Appendices

Here, we review some basic procedures to generate random positive semidefinite matrices and
orthogonal matrices, which can be used in the proposed SDOP and SOCOP generators.

Appendix 1. Generating Random Positive Semidefinite Matrices

There are several approaches to generating a positive semidefinite matrix P € SY.

(1) Generate a random matrix A € R"*" and calculate the target matrix P = AAT. If A has full
rank with probability 1, the matrix P is positive semidefinite with probability 1.

(2) A more efficient way is to generate a lower triangular random matrix L € R?*" and calculate
the target matrix P = LL". Ifthe diagonal elements of L are non-zero, then P is positive definite.
If some of the diagonal elements of L are zero, then P is positive semidefinite.

(3) Generate an orthonormal matrix Q € R™*” and a positive diagonal matrix A. Then calculate
P = QAQT. If the diagonal elements of A are greater than zero, then P is positive definite. If
the diagonal elements of A are greater than or equal to zero, then P is positive semidefinite.

(4) Since generating a random orthonormal matrix is computationally expensive, we can generate a
lower triangular random matrix L € R"*" in which all diagonal elements are one instead. Then
we can compute the target matrixas P = LDL where D is a diagonal matrix with non-negative
elements.

The second one requires the fewest arithmetic operations among the four mentioned approaches.
However, the third one gives the option of determining the range of eigenvalues of the matrix P,
which is helpful in predetermining the condition number of matrix P.

Appendix 2. Generating Random Orthogonal Matrices

A general approach is to generate a random matrix A € R"*" and orthogonalize it by
the Gram-Schmidt process or other methods in QR decomposition, such as the Modified
Gram-Schmidt and Householder methods. Generating random orthogonal (or unitary) matrices
is an active research area and there are many efficient procedures to generate such matrices, e.g.
see [13].



