

Optimization Methods and Software

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/goms20

Generating linear, semidefinite, and secondorder cone optimization problems for numerical experiments

Mohammadhossein Mohammadisiahroudi, Ramin Fakhimi, Brandon Augustino & Tamás Terlaky

To cite this article: Mohammadhossein Mohammadisiahroudi, Ramin Fakhimi, Brandon Augustino & Tamás Terlaky (05 Jul 2024): Generating linear, semidefinite, and second-order cone optimization problems for numerical experiments, Optimization Methods and Software, DOI: 10.1080/10556788.2024.2308677

To link to this article: https://doi.org/10.1080/10556788.2024.2308677

	Published online: 05 Jul 2024.
Ø.	Submit your article to this journal 🗷
ď	View related articles ☑
CrossMark	View Crossmark data ☑

Generating linear, semidefinite, and second-order cone optimization problems for numerical experiments

Mohammadhossein Mohammadisiahroudi (1918), Ramin Fakhimi (1918), Brandon Augustino ^b and Tamás Terlaky ^a

alndustrial and System Engineering Department, Lehigh University, Bethlehem, PA, USA; b Global Technology Applied Research, JPMorgan Chase & Co., New York, NY, USA

ABSTRACT

The numerical performance of algorithms can be studied using test sets or procedures that generate such problems. This paper proposes various methods for generating linear, semidefinite, and secondorder cone optimization problems. Specifically, we are interested in problem instances requiring a known optimal solution, a known optimal partition, a specific interior solution, or all these together. In the proposed problem generators, different characteristics of optimization problems, including dimension, size, condition number, degeneracy, optimal partition, and sparsity, can be chosen to facilitate comprehensive computational experiments. We also develop procedures to generate instances with a maximally complementary optimal solution with a predetermined optimal partition to generate challenging semidefinite and second-order cone optimization problems. Generated instances enable us to evaluate efficient interior-point methods for conic optimization problems.

ARTICLE HISTORY

Received 15 January 2023 Accepted 12 January 2024

KEYWORDS

Problem generator; conic optimization; linear optimization; semidefinite optimization; second-order cone optimization

1. Introduction

Optimization is just one of many fields in which the empirical analysis of algorithms is heavily reliant on the quality of the provided test instances. Scholars assess the strengths and weaknesses of algorithms based on these test problems, which must be unbiased, representative, and diverse in their measurable features or characteristics. However, many benchmark test problems do not possess these desired qualities, as they are often based on a limited set of real-world problems or have been reused from earlier studies that by now may be obsolete [4].

An alternative approach is using random test problem generators for experimentation in optimization. While their design must be carefully considered, one advantage of simple random generation approaches is their ability to produce problems that possess predictable characteristics. As a result, scientists have advocated for using highly parameterized generators to produce appropriately controlled data for experimentation [11]. As one of the first attempts in this area, randomly generated feasible polyhedra properties were investigated by Todd [23]. Pilcher and Rardin [17] proposed a generator for pure integer optimization problems with a known partial polytope by introducing random cuts. Yet, this methodology is restricted to travelling salesman problems and does not explicitly consider the solution of relaxation or structural features. Lacking the ability to vary features of interest, the scope of these generators for experimentation is limited to specific problem domains.

To develop instance generation techniques for LO test problems with controllable properties, Bowly et al. [4] presented a comparison of a naïve random generator with a highly parameterized generator, showing which feature values can be effectively controlled by each method. They also investigated iterative search approaches to find instances that are difficult to design or rarely produced by the generator. These approaches allow practitioners to explore areas of interest in the space of linear optimization problems (LOPs), where challenging instances have previously been found. This would be impossible using static test sets or naïve random generation methods, which provide limited feature control. Further, large-scale linear optimization problems are prevalent in economics, industry, logistics, statistics, quantum physics, and other fields. As is the case with any real-world application, the aim is to obtain high-quality solutions efficiently, a task for which high-performance computing systems and parallel algorithms are required. Thus, the development of new parallel algorithms for generating LOPs and the revision of current algorithms are considered by Sokolinsky and Sokolinskaya [20].

Developing new algorithms for solving large-scale LOPs necessitates testing them on benchmark and random problems. At times, it is sensible to construct linear and integer optimization instance generators specified for special purposes. The NETGEN generator [12] and its successor MNETGEN produce parameterized multicommodity flow, transport, and assignment problems. The parameters used are thus appropriate to the underlying network, not the feasible set. One of the well-known benchmark repositories of LOPs is Netlib-LP [10]. Yet, when debugging LO solvers, generating random LOPs with specific characteristics (such as, e.g. the sparsity, condition number of the coefficient matrix, or a known optimal partition) is often necessary.

Charnes et al. [7] suggested one of the first methods for generating random LOPs with known solutions. This method allows one to generate test problems of arbitrary size with a wide range of numerical characteristics. The main idea of the method is as follows; take as a basis a LOP with a known solution, and then randomly modify it so that the solution does not change. Arthur and Frendewey [3] described the GENGUB generator, which constructs random LOPs with a known solution and given characteristics, such as the problem size, the density of the coefficient matrix, the number of binding inequalities, or the degeneracy status. A distinctive feature of GENGUB is the ability to introduce generalized upper bound constraints, defined to be a (sub)set of constraints in which each variable appears at most once (i.e. has at most one nonzero coefficient).

Castillo et al. [6] suggest a method for generating random LOPs with a preselected solution type: bounded or unbounded, unique or multiple. Each structure is generated using random vectors with integer components, whose range can be treated as given. Next, an objective function that satisfies the required conditions, i.e. leads to a solution of the desired type, is obtained. This LO problem generator is mainly used for educational purposes rather than testing new LO algorithms. Okolinsky and Sokolinskaya [20] proposed the random LOP generator FRaGenLP (Feasible Random Generator of LP), which is implemented as a parallel program for cluster computing systems. Calamai et al. [5] described a new technique for generating convex, strictly concave, and indefinite (bilinear or not) quadratic optimization problems.

In the semidefinite optimization literature, scholars were interested in complex problems. They pursued various directions for characterizing what constitutes hardness in SDO problems, e.g. not having a strictly complementary solution [16], or a solution with a nonzero duality gap [21]. Wei and Wolkowicz [24] proposed a procedure to generate SDO problems without a strictly complementary solution. We build on these ideas to develop highly parameterized generators.

1.1. Contributions

This paper reviews and proposes several procedures to generate random LOPs, semidefinite optimization problems (SDOPs), and second-order cone optimization problems (SOCOPs) with a specified optimal solution, interior solution, and both of them. We also develop SDOP and SOCOP generators with specific maximally complementary solutions to predetermine the optimal partition.

Generating SDOPs and SOCOPs with a specific interior solution ensures that Strong Duality holds for the generated problems, and the set of optimal solutions will be bounded. Access to predefined interior solutions will enable researchers to analyze the performance of optimization algorithms, such as feasible Interior Point Methods (IPMs), with respect to various initial interior solutions. Generating problems with known optimal solutions ensures that the generated problem has a bounded optimum and helps to analyze the algorithm concerning the characteristics of the optimal solution. In addition, generating SDOPs and SOCOPs with predefined optimal partitions enables the design of challenging instances where strict complementarity fails.

These procedures will serve to further scholars' ability to analyze the performance of their algorithms by altering different features of input data such as dimension, sparsity, condition number, solution size (which plays an essential role in the performance of Infeasible IPMs), and many others, besides predefined properties of the optimal solution. For example, one can generate an LOP with an ill-conditioned coefficient matrix using proposed generators to check the numerical stability of the algorithm of interest. Another possible application of the proposed procedures is the average-case performance of algorithms since the proposed generators provide the freedom to randomly generate input data sets. Accordingly, one can sample the input data from a probability distribution to analyze the average-case performance of algorithms.

The rest of the paper is organized as follows. In Section 2, we give a brief review of LO theory before considering several LOP generators that can generate instances with specific optimal solutions, specific interior solutions, or both. We then develop similar generators for SDO and SOCO in Sections 3 and 4, respectively. A discussion on the implementation of the proposed instance generators is provided in Section 5 and Section 6 concludes the paper.

2. Linear optimization

In this section, we provide a gentle review of Linear Optimization theory before presenting three different algorithms for randomly generating Linear Optimization test problems.

2.1. Linear optimization problems

For constant vectors $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, a given matrix $A \in \mathbb{R}^{m \times n}$ and variable vector $x \in \mathbb{R}^n$, a LOP is defined as

$$z_{LO}^{p} = \min_{x} \left\{ c^{\top} x : Ax = b, \ x \ge 0 \right\}, \tag{LOP-P}$$

and refer to (LOP-P) as the *primal problem*. Given the primal problem (LOP-P), we are also interested in a second problem known as the *dual problem* of (LOP-P), which we write in standard form as follows,

$$z_{LO}^{D} = \max_{(y,s)} \left\{ b^{\top} y : A^{\top} y + s = c, \ s \ge 0, \ y \in \mathbb{R}^{m} \right\},$$
 (LOP-D)

where $s = c - A^{T}y$ is the dual slack variable.

The set of primal-dual feasible solutions is thus defined as

$$\mathcal{PD}_{LO} = \left\{ (x, y, s) \in \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^n : Ax = b, A^\top y + s = c, (x, s) \ge 0 \right\}.$$

Similarly, the set of all feasible interior solutions is given by

$$\mathcal{P}\mathcal{D}_{LO}^{0} = \{(x, y, s) \in \mathcal{P}\mathcal{D}_{LO} : (x, s) > 0\}.$$

A crucial property of linear optimization is *weak duality*; any (y, s) that is feasible for (LOP-D), provides a lower bound $b^{\top}y$ on the value of $c^{\top}x$ for any x feasible for (LOP-P), i.e. $b^{\top}y \le c^{\top}x$, for any $(x, y, s) \in \mathcal{PD}_{LO}$. We refer to the nonnegative quantity $c^{\top}x - b^{\top}y = x^{\top}s$ as the *duality gap*.

Whenever $(x, y, s) \in \mathcal{PD}$ with $c^{\top}x = b^{\top}y$, or equivalently $x^{\top}s = 0$, then x is optimal for (LOP-P) and (y, s) is optimal for (LOP-D). In this case, *Strong Duality* holds for LOPs, i.e. if both the primal and dual problems have feasible solutions, then both have optimal solutions with equal objective value. Under strong duality, all optimal solutions, if there exist any, belong to the set \mathcal{PD}_{LO}^* , defined as

$$\mathcal{P}\mathcal{D}_{LO}^* = \left\{ (x, y, s) \in \mathcal{P}\mathcal{D}_{LO} : x^\top s = 0 \right\}.$$

Let [n] denote the set $\{1, 2, ..., n\}$. Following Roos et al. [18], LOPs admit an optimal partition $\mathcal{N} \cup \mathcal{B} = [n]$, and $\mathcal{B} \cap \mathcal{N} = \emptyset$, where

$$\mathcal{B} = \{i : \exists (x^*, y^*, s^*) \in \mathcal{PD}_{LO}^* \text{ with } x_i^* > 0\},\$$

$$\mathcal{N} = \{i : \exists (x^*, y^*, s^*) \in \mathcal{PD}_{LO}^* \text{ with } s_i^* > 0\}.$$

If $(x^*, y^*, s^*) \in \mathcal{PD}_{LO}^*$ with $x_i^* > 0$ for all $i \in \mathcal{B}$, and $s_i^* > 0$ for all $i \in \mathcal{N}$, then we have $x^* + s^* > 0$ and the optimal solution pair (x^*, y^*, s^*) is called strictly complementary. In this section, we use $(\mathcal{B}, \mathcal{N})$ to denote the optimal partition and $(\mathcal{B}, \mathcal{N})$ the index set partition in the algorithms. After presenting each algorithm, we clarify when the predefined partition $(\mathcal{B}, \mathcal{N})$ is equal to the optimal partition $(\mathcal{B}, \mathcal{N})$.

2.2. Instance generators for LOPs

In the rest of this section, we review three main generators that produce LO instances given either a predefined (or randomly chosen) interior solution, a predefined (or randomly chosen) optimal solution (maybe strictly complementary or not), or both. Each LOP generator allows the user to control the characteristics of parameters (A, b, c), including but not limited to their condition number, sparsity, and norm. Further, users can alter the optimal solution's features to examine their algorithm's performance.

In the following algorithms, the term 'generate' should be interpreted freely. It may refer to generating the respective data randomly, or the connotation could be that the data is constructed with some specific purpose, e.g. to obtain matrices with some specific structure such as sparsity or conditioning.

2.2.1. LOPs with a predefined interior solution

To study the performance of IPMs applied to LOPs, it is often helpful to have instances with specific interior solutions, and a common approach to generating LOPs with a desired interior solution is presented as Algorithm 1.

Algorithm 1 Generating a LOP with a specific interior solution

- 1: Choose dimensions m < n
- 2: Choose or generate (x^0, s^0) such that $x_i^0 > 0$ and $s_i^0 > 0$ for all $i \in [n]$
- 3: Generate $A \in \mathbb{R}^{m \times n}$ and $y^0 \in \mathbb{R}^m$
- 4: Calculate $b = Ax^0$ and $c = A^{\top}y^0 + s^0$
- 5: **Return** LOP (A, b, c) with interior solution (x^0, y^0, s^0)

Remark 2.1: Suppose we want the interior solution (x^0, s^0) to have a duality gap of $x^{0^{\top}} s^0 =$ $n\mu$ for some scalar $\mu > 0$. Then, in Step 1 of Algorithm 1, we generate $x_i^0 > 0$ and calculate $s_i^0 = \frac{\mu}{x^0}$ for $i \in [n]$.

The above remark makes an observation relevant to IPMs, as in the context of IPMs, the constant μ , referred to as the central path parameter, plays a crucial role. IPMs begin with some initial interior solution $(x^0, s^0) \in \mathcal{PD}^0$ with

$$\frac{x^{0^{\top}}s^0}{n}=\mu^0>0,$$

and subsequently, reduce μ in each iteration as the algorithm progresses toward a solution to the LOP with the desired complementarity gap. In line with our discussion on LO duality, it is easy to see that when $\mu \to 0$, we approach an optimal solution to the primal-dual pair (LOP-P)-(LOP-D).

Remark 2.2: Algorithm 1 facilitates the generation of a coefficient matrix A with any desired properties, e.g. sparsity, structure, or being ill-conditioned.

Remark 2.3: Several conditions are needed to generate a full row rank coefficient matrix A with probability one randomly, see e.g. [8].

2.2.2. LOPs with a predefined optimal solution

A prevailing approach for generating LOPs with a known optimal solution is described in Algorithm 2.

Algorithm 2 Generating a LOP with a specific optimal solution

- 1: Choose dimensions m < n
- 2: Partition the index set [n] to B and N with $B \cap N = \emptyset$ and $B \cup N = [n]$
- 3: Generate x^* such that $x_i^* > 0$ for $i \in B$ and $x_i^* = 0$ for $i \in N$
- 4: Generate s^* such that $s_i^* > 0$ for $i \in N$ and $s_i^* = 0$ for $i \in B$
- 5: Generate $A \in \mathbb{R}^{m \times n}$ and $y^* \in \mathbb{R}^m$
- 6: Calculate $b = Ax^*$ and $c = A^Ty^* + s^*$
- 7: **Return** LOP (A, b, c) with optimal solution (x^*, y^*, s^*)

Remark 2.4: Since the generated optimal solution (x^*, y^*, s^*) by Algorithm 2 is strictly complementary, the optimal partition $(\mathcal{B}, \mathcal{N})$ is equal to $(\mathcal{B}, \mathcal{N})$.

Remark 2.5: Partition (B, N) may be generated randomly or to satisfy some desired properties, such as primal or dual degeneracy, or both, or having a unique optimal basis solution.

Remark 2.6: Let $A = [A_B \ A_N]$. If |B| = m and $rank(A_B) = m$, then x^* and s^* yield the unique optimal basis solution.

Remark 2.7: If we modify Algorithm 2 by generating x^* such that $x_i^* \ge 0$ for $i \in B$ and $x_i^* = 0$ for $i \in N$, and s^* such that $s_i^* \ge 0$ for $i \in N$ and $s_i^* = 0$ for $i \in B$, then B and N do not necessarily give the optimal partition. While x^* and s^* are complementary solutions, they are not necessarily strictly complementary.

Algorithm 2 enables us to generate challenging problems. For example, if A is generated in such a way that rank $(A_B) < m$, then the generated problem will be primal degenerate and challenging for pivot algorithms. Also, the condition number of Newton systems arising in IPMs for such primal degenerate problems goes infinity as approaching optimality. Analogously, a dual degenerate problem can be generated as well.

2.2.3. LOPs with predefined optimal and interior solutions

Charnes et al. [7] discuss procedures to generate problems with a specific optimal or interior solution. Here, we develop a novel procedure to generate a LOP with a specific optimal solution (x^*, y^*, s^*) and a specific interior solution (x^0, y^0, s^0) , as presented in Algorithm 3. The general idea is first to use Algorithm 2 to generate a problem with optimal solution (x^*, y^*, s^*) before extending the problem by adding a variable and a constraint to make the interior point (x^0, y^0, s^0) feasible for the new problem. Using this scheme, we can produce LOPs for any general predefined optimal and interior solutions, where the only additional

condition is

$$(x^0 - x^*)^{\top} (s^0 - s^*) = 0. (1)$$

The condition stipulated by Equation (1) is a natural property; for any feasible solution pairs, it follows that $(x^* - x^0) \in \text{Lin}^{\perp}(A)$ and $(s^* - s^0) \in \text{Lin}(A)$, where Lin(A) denotes the lineality space of A. In other words, the difference of the predefined solutions $x^0 - x^*$ and $s^0 - s^*$ must be orthogonal, and Steps 4 and 5 of Algorithm 3 ensure that this property holds.

Algorithm 3 Generating LOP with specific optimal and interior solutions

- 1: Choose m < n (The generated LOP has m + 1 constraints and n + 1 variables.)
- 2: Generate LOP $(\hat{A}, \hat{b}, \hat{c})$ with optimal solution $(\hat{x}, \hat{y}, \hat{s})$ and partition (B, N) using Algorithm 2
- 3: Generate $x^0, s^0 \in \mathbb{R}^n$ such $x^0, s^0 > 0$

4: Let
$$\delta = (x_B^0 - \hat{x}_B)^{\top} s_B^0 + (s_N^0 - \hat{s}_N)^{\top} x_N^0$$
, generate $x_{n+1}^0 > 0$ and $s_{n+1}^0 > \left(\frac{-\delta}{x_{n+1}^0}\right)^+$

5: Calculate
$$\hat{s}_{n+1} = \frac{\delta}{x_{n+1}^0} + s_{n+1}^0$$
 and let $\hat{x}_{n+1} = 0$

6: Build
$$x^* = \begin{pmatrix} \hat{x}_B \\ 0 \\ 0 \end{pmatrix}$$
, $x^0 = \begin{pmatrix} x_B^0 \\ x_N^0 \\ x_{n+1}^0 \end{pmatrix}$, $s^* = \begin{pmatrix} 0 \\ \hat{s}_N \\ \hat{s}_{n+1} \end{pmatrix}$, and $s^0 = \begin{pmatrix} s_B^0 \\ s_N^0 \\ s_{n+1}^0 \end{pmatrix}$

7: Generate
$$y^0 = \begin{pmatrix} y^0_{1:m} \\ y^0_{m+1} \end{pmatrix} \in \mathbb{R}^{m+1}$$
 randomly such that $y^0_{m+1} \neq 0$

8: Build
$$y^* = \begin{pmatrix} \hat{y} \\ 0 \end{pmatrix}$$

9: Calculate

$$\hat{a}_{n+1} = \frac{1}{x_{n+1}^0} (\hat{A}_B(\hat{x}_B - x_B^0) - \hat{A}_N x_N^0)$$

$$d_B = \frac{1}{y_{m+1}^0} (\hat{A}_B^\top (\hat{y} - y_{1:m}^0) - s_B^0)$$

$$d_N = \frac{1}{y_{m+1}^0} (\hat{A}_N^\top (\hat{y} - y_{1:m}^0) + s_N^* - s_N^0)$$

$$d_{n+1} = \frac{1}{x_{n+1}^0} (d_B^\top (\hat{x}_B - x_B^0) - d_N^\top x_N^0)$$

10: Build
$$A_{(m+1)\times(n+1)} = \begin{pmatrix} \hat{A}_B & \hat{A}_N & \hat{a}_{n+1} \\ d_R^\top & d_N^\top & d_{n+1} \end{pmatrix}$$

11: Calculate
$$b = \begin{pmatrix} \hat{b} \\ d_B^{\top} \hat{x}_B \end{pmatrix}$$
 and $c = \begin{pmatrix} \hat{c} \\ \hat{a}_{n+1}^{\top} \hat{y} + s_{n+1}^* \end{pmatrix}$

12: **Return** LOP (A, b, c) with optimal solution (x^*, y^*, s^*) and interior solution (x^0, y^0, s^0)

In Step 4, $(\frac{-\delta}{x_{n+1}^0})^+ = \max\{0, \frac{-\delta}{x_{n+1}^0}\}$. Theorem 2.2 asserts that the claimed properties of (x^0, y^0, s^0) and (x^*, y^*, s^*) are indeed correct. Before presenting and proving Theorem 2.2, we need to verify the orthogonality property of the generated solution.

Lemma 2.1: For (x^0, y^0, s^0) and (x^*, y^*, s^*) generated by Algorithm 3, then we have

$$(x^0 - x^*)^{\top} (s^0 - s^*) = 0.$$

Proof: By construction, we have

$$(x^{0} - x^{*})^{\top} (s^{0} - s^{*}) = (x_{B}^{0})^{\top} s_{B}^{0} + (x_{B}^{*})^{\top} s_{B}^{*} - (x_{B}^{0})^{\top} s_{B}^{*} - (x_{B}^{*})^{\top} s_{B}^{0} (x_{N}^{0})^{\top} s_{N}^{0}$$

$$+ (x_{N}^{*})^{\top} s_{N}^{*} - (x_{N}^{0})^{\top} s_{N}^{*} - (x_{N}^{*})^{\top} s_{N}^{0} (x_{n+1}^{0})^{\top} s_{n+1}^{0}$$

$$+ (x_{n+1}^{*})^{\top} s_{N}^{*} - (x_{n+1}^{0})^{\top} s_{n+1}^{*} - (x_{n+1}^{*})^{\top} s_{n+1}^{0}$$

$$= -\delta + (x_{n+1}^{0})^{\top} s_{n+1}^{0} - (x_{n+1}^{0})^{\top} s_{n+1}^{*} = 0.$$

The proof is complete.

Using Lemma 2.1, the following theorem shows that the generated problem satisfies the desired properties.

Theorem 2.2: Let (x^0, y^0, s^0) and (x^*, y^*, s^*) be generated by Algorithm 3. Then,

$$x^* \ge 0$$
, $s^* \ge 0$, $x^0 > 0$, $s^0 > 0$, (2a)

$$(x^*)^{\top} s^* = 0,$$
 (2b)

$$Ax^* = b, (2c)$$

$$A^{\top}y^* + s^* = c, \tag{2d}$$

$$Ax^0 = b, (2e)$$

$$A^{\top} y^0 + s^0 = c. (2f)$$

That is, (x^0, y^0, s^0) is an interior, and (x^*, y^*, s^*) is an optimal solution of the generated LOP (A, b, c).

Proof: Observe that (2a) holds by construction. Equality (2b) refers to complementarity of (x^*, y^*, s^*) , which holds due to the fact that

$$x^{*\top}s^* = \hat{x}_B^{\top}0 + 0^{\top}\hat{s}_N + 0s_{n+1}^* = 0.$$

To see that Equation (2c) holds, i.e. the optimal solution satisfies primal feasibility, observe that

$$Ax^* = \begin{pmatrix} \hat{A}_B & \hat{A}_N & \hat{a}_{n+1} \\ d_B^\top & d_N^\top & d_{n+1} \end{pmatrix} \begin{pmatrix} \hat{x}_B \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} \hat{A}_B \hat{x}_B \\ d_B^\top \hat{x}_B \end{pmatrix} = \begin{pmatrix} \hat{b} \\ d_B^\top \hat{x}_B \end{pmatrix} = b.$$

Similarly, dual feasibility is satisfied by the optimal solution, since

$$A^{\top}y^* + s^* = \begin{pmatrix} \hat{A}_N^{\top} & d_B \\ \hat{A}_N^{\top} & d_N \\ \hat{a}_{n+1}^{\top} & d_{n+1} \end{pmatrix} \begin{pmatrix} \hat{y} \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ \hat{s}_N \\ s_{n+1}^* \end{pmatrix} = \begin{pmatrix} \hat{c} \\ \hat{a}_{n+1}^{\top}\hat{y} + s_{n+1}^* \end{pmatrix} = c.$$

That is, Equation (2d) holds.

The interior solution (x^0, y^0, s^0) is primal feasible since

$$\begin{split} Ax^0 &= \begin{pmatrix} \hat{A}_B & \hat{A}_N & \hat{a}_{n+1} \\ d_B^\top & d_N^\top & d_{n+1} \end{pmatrix} \begin{pmatrix} x_B^0 \\ x_N^0 \\ x_N^0 \end{pmatrix} \\ &= \begin{pmatrix} \hat{A}_B x_B^0 + \hat{A}_N x_N^0 + \hat{a}_{n+1} x_{n+1}^0 \\ d_B^\top x_B^0 + d_N^\top x_N^0 + d_{n+1} x_{n+1}^0 \end{pmatrix} \\ &= \begin{pmatrix} \hat{A}_B x_B^0 + \hat{A}_N x_N^0 + (\hat{A}_B (\hat{x}_B - x_B^0) - \hat{A}_N x_N^0) \\ d_B^\top x_B^0 + d_N^\top x_N^0 + (d_B^\top (\hat{x}_B - x_B^0) - d_N^\top x_N^0) \end{pmatrix} \\ &= \begin{pmatrix} \hat{A}_B \hat{x}_B \\ d_B^\top \hat{x}_B \end{pmatrix} = \begin{pmatrix} \hat{b} \\ d_B^\top \hat{x}_B \end{pmatrix} = b, \end{split}$$

which proves (2e). We can also certify the dual feasibility of the interior solution:

$$\begin{split} A^{\top}y^{0} + s^{0} &= \begin{pmatrix} \hat{A}_{B}^{\top} & d_{B} \\ \hat{A}_{N}^{\top} & d_{N} \\ \hat{a}_{n+1}^{\top} & d_{n+1} \end{pmatrix} \begin{pmatrix} y_{1:m}^{0} \\ y_{m+1}^{0} \end{pmatrix} + \begin{pmatrix} s_{B}^{0} \\ s_{N}^{0} \\ s_{n+1}^{0} \end{pmatrix} = \begin{pmatrix} \hat{A}_{B}^{\top}y_{1:m}^{0} + d_{B}y_{m+1}^{0} + s_{B}^{0} \\ \hat{A}_{n}^{\top}y_{1:m}^{0} + d_{N}y_{m+1}^{0} + s_{N}^{0} \\ \hat{a}_{n+1}^{\top}y_{1:m}^{0} + d_{n+1}y_{m+1}^{0} + s_{n+1}^{0} \end{pmatrix} \\ &= \begin{pmatrix} \hat{A}_{B}^{\top}y_{1:m}^{0} + (\hat{A}_{B}^{\top}(\hat{y} - y_{1:m}^{0}) - s_{B}^{0}) + s_{B}^{0} \\ \hat{A}_{n}^{\top}y_{1:m}^{0} + (\hat{A}_{N}^{\top}(\hat{y} - y_{1:m}^{0}) + s_{N}^{*} - s_{N}^{0}) + s_{N}^{0} \end{pmatrix} = \begin{pmatrix} \hat{A}_{B}^{\top}\hat{y} \\ \hat{A}_{N}^{\top}\hat{y} + s_{N}^{*} \\ \alpha \end{pmatrix} \\ &= \begin{pmatrix} \hat{c} \\ \hat{a}_{1}^{\top} \cdot \hat{y} + s_{N}^{*} \cdot \cdot \end{pmatrix} = c, \end{split}$$

where $\alpha = \hat{a}_{n+1}^{\top} y_{1:m}^0 + d_{n+1} y_{m+1}^0 + s_{n+1}^0$. Finally, to prove that Equation (2f) holds as well, we still need to show that $\alpha = \hat{a}_{n+1}^{\top} \hat{y} + s_{n+1}^{\top} \hat{y}$ s_{n+1}^* . By straightforward calculation, we have

$$\alpha = \frac{1}{x_{n+1}^{0}} (\hat{A}_{B}(\hat{x}_{B} - x_{B}^{0}) - \hat{A}_{N}x_{N}^{0})^{\top} y_{1:m}^{0} + \frac{y_{m+1}^{0}}{x_{n+1}^{0}} (d_{B}^{\top}(\hat{x}_{B} - x_{B}^{0}) - d_{N}^{\top}x_{N}^{0}) + s_{n+1}^{0}$$

$$= \frac{1}{x_{n+1}^{0}} ((\hat{A}_{B}(\hat{x}_{B} - x_{B}^{0}) - \hat{A}_{N}x_{N}^{0})^{\top} y_{1:m}^{0} + (\hat{A}_{B}^{\top}(\hat{y} - y_{1:m}^{0}) - s_{B}^{0})^{\top} (\hat{x}_{B} - x_{B}^{0})$$

$$- (\hat{A}_{N}^{\top}(\hat{y} - y_{1:m}^{0}) + s_{N}^{*} - s_{N}^{0})^{\top} x_{N}^{0}) + s_{n+1}^{0}$$

$$= \frac{1}{x_{n+1}^{0}} (y_{1:m}^{0} \hat{A}_{B}\hat{x}_{B} - y_{1:m}^{0} \hat{A}_{B}x_{B}^{0} - y_{1:m}^{0} \hat{A}_{N}x_{N}^{0} + \hat{x}_{B}^{\top}\hat{A}_{B}^{\top}\hat{y} - \hat{x}_{B}^{\top}\hat{A}_{B}^{\top}y_{1:m}^{0}$$

$$- \hat{x}_{B}^{\top} s_{B}^{0} - x_{B}^{0} \hat{A}_{B}^{\top}\hat{y} + x_{B}^{0} \hat{A}_{B}^{\top}y_{1:m}^{0} + x_{B}^{0} \hat{x}_{B}^{0}$$

$$\begin{split} &-x_{N}^{0}{}^{\top}\hat{A}_{N}^{\top}\hat{y}+x_{N}^{0}{}^{\top}\hat{A}_{N}^{\top}y_{1:m}^{0}-x_{N}^{0}{}^{\top}s_{N}^{*}+x_{N}^{0}{}^{\top}s_{N}^{0}\Big)+s_{n+1}^{0}\\ &=\frac{1}{x_{n+1}^{0}}\Big(\hat{x}_{B}^{\top}\hat{A}_{B}^{\top}\hat{y}-x_{B}^{0}{}^{\dagger}\hat{A}_{B}^{\top}\hat{y}-x_{N}^{0}{}^{\dagger}\hat{A}_{N}^{\top}\hat{y}-\hat{x}_{B}^{\top}s_{B}^{0}+x_{B}^{0}{}^{\dagger}s_{B}^{0}-x_{N}^{0}{}^{\dagger}s_{N}^{*}+x_{N}^{0}{}^{\dagger}s_{N}^{0}\Big)+s_{n+1}^{0}\\ &=\frac{(\hat{x}_{B}^{\top}\hat{A}_{B}^{\top}-x_{B}^{0}{}^{\top}\hat{A}_{B}^{\top}-x_{N}^{0}{}^{\top}\hat{A}_{N}^{\top})}{x_{n+1}^{0}}\hat{y}+\frac{-\hat{x}_{B}^{\top}s_{B}^{0}+x_{B}^{0}{}^{\top}s_{B}^{0}-x_{N}^{0}{}^{\top}s_{N}^{*}+x_{N}^{0}{}^{\top}s_{N}^{0}+s_{n+1}^{0}x_{n+1}^{0}}{x_{n+1}^{0}}\\ &=\hat{a}_{n+1}^{\top}\hat{y}+\frac{(x^{0}-x^{*})^{\top}(s^{0}-s^{*})+s_{n+1}^{*}x_{n+1}^{0}}{x_{n+1}^{0}}=\hat{a}_{n+1}^{\top}\hat{y}+s_{n+1}^{*}. \end{split}$$

The proof is complete.

Remark 2.8: Since the generated optimal solution (x^*, y^*, s^*) by Algorithm 2 is strictly complementary, the optimal partition $(\mathcal{B}, \mathcal{N})$ is equal to $(\mathcal{B}, \mathcal{N})$. If we modify Algorithm 2 such that $x_i^* \geq 0$ for $i \in \mathcal{B}$ and $s_i^* \geq 0$ for $i \in \mathcal{N}$, then \mathcal{B} and \mathcal{N} do not necessarily give the optimal partition. While x^* and s^* are complementary solutions, they are not necessarily strictly complementary.

Remark 2.9: We can simplify Algorithm 3 by setting

$$x_B^0 = \hat{x}_B$$
, $s_N^0 = \hat{s}_N$, $s_{n+1}^* = s_{n+1}^0$, and $y_{1:m}^0 = \hat{y}$.

It is straightforward to verify that orthogonality condition (1) is satisfied for these choices. An even simpler case arises if we choose

$$x_N^0 = e$$
, $s_B^0 = e$, and $y_{m+1}^0 = x_{n+1}^0 = s_{n+1}^0 = 1$.

Similar to Remark 2.6, if $rank(A_B) = |B| = m$ in Algorithm 3, then x^* and s^* yield the unique optimal solution. In the next section, we extend these problem generators to generate SDO problems.

3. Semidefinte optimization

Now, we turn our attention to SDO. Just as in the previous section, we begin by reviewing the problem setting and important properties before presenting the instance generators for this class of optimization problems.

3.1. Semidefinte optimization problems

In semidefinite optimization, one seeks to minimize the inner product of two $n \times n$ symmetric matrices: $C \cdot X = \operatorname{tr}(CX) = \sum_{i=1}^n \sum_{j=1}^n C_{ij}X_{ij}$, for some symmetric constant matrix $C \in S^n$ and matrix variable $X \in S^n_+$. Note that S^n denotes the space of $n \times n$ symmetric matrices, and we write S^n_+ (S^n_+) to represent the cone of symmetric positive semidefinite (symmetric positive definite) matrices. Similar to the LOP studied in the previous section, variable X must satisfy linear constraints of the form $A_i \cdot X = b_i$ for all $i \in [m]$, where $A_1, \ldots, A_m \in S^n$ and $b \in \mathbb{R}^m$. Given that $C \cdot X$ is a linear function of X, stopping here would simply yield a LOP in which the variables are given by the entries of

the matrix X. Rather, we add a nonlinear (albeit convex) constraint, which stipulates that X must be a positive semidefinite matrix, i.e. $X \in \mathcal{S}_{+}^{n}$, which we write $X \succeq 0$. From the above discussion, it is straightforward to observe that SDO is a generalization of LO, in which we replace the element-wise nonnegativity constraint $x \ge 0$ found in (LOP-P) by a conic inequality $X \in \mathcal{S}_{+}^{n}$. If X is a diagonal matrix of x, then the SDO problem reduces to LO.

In this section, we are interested in generating problems of the form

$$z_{SDO}^{P} = \inf_{X} \{ C \bullet X : A_{i} \bullet X = b_{i}, \forall i \in [m], X \succeq 0 \},$$
 (SDOP-P)

which has an associated dual problem

$$z_{SDO}^{D} = \sup_{(y,S)} \left\{ b^{\top} y : \sum_{i=1}^{m} y_i A_i + S = C, \ S \succeq 0, \ y \in \mathbb{R}^m \right\}. \tag{SDOP-D}$$

Without loss of generality, we may assume that the matrices A_1, \ldots, A_m are linearly independent. The feasible sets of (SDOP-P) and (SDOP-D) are denoted by:

$$\mathcal{P}_{SDO} = \left\{ X \in \mathcal{S}^n : A_i \bullet X = b_i, \ i \in [m], X \succeq 0 \right\}$$

$$\mathcal{D}_{SDO} = \left\{ (y, S) \in \mathbb{R}^m \times \mathcal{S}^n : \sum_{i=1}^m y_i A_i + S = C, S \succeq 0 \right\}.$$

Accordingly, the sets of feasible interior solutions are given by

$$\mathcal{P}^0_{SDO} = \{X \in \mathcal{P}_{SDO} : X \succ 0\}, \quad \mathcal{D}^0_{SDO} = \{(y, S) \in \mathcal{P}_{SDO} : S \succ 0\}.$$

For ease of notation, we adopt the syntax $\mathcal{PD}_{SDO} = \mathcal{P}_{SDO} \times \mathcal{D}_{SDO}$ and $\mathcal{PD}_{SDO}^0 = \mathcal{P}_{SDO}^0 \times \mathcal{D}_{SDO}$ \mathcal{D}_{SDO}^{0} .

Just as in the case of LO, when IPMs are applied to SDOPs, it is standard to assume the existence of a strictly feasible primal-dual pair X and (y, S) with (X, S) > 0. From the existence of a strictly feasible initial solution $(X^0, S^0) > 0$, it follows that the Interior Point Condition (IPC) is satisfied [9], guaranteeing that the primal and dual optimal sets

$$\mathcal{P}^*_{SDO} = \left\{ X \in \mathcal{P}_{SDO} : C \bullet X = z^p_{SDO} \right\}, \quad \mathcal{D}^*_{SDO} = \left\{ (y, S) \in \mathcal{D}_{SDO} : b^\top y = z^D_{SDO} \right\}$$

are nonempty and bounded, that an optimal primal-dual pair with zero duality gap exists, i.e. Strong Duality holds. That is, for optimal solutions $(X^*, y^*, S^*) \in \mathcal{PD}^*_{SDO}$, where $\mathcal{P}\mathcal{D}_{SDO}^* = \mathcal{P}_{SDO}^* \times \mathcal{D}_{SDO}^*$, we have

$$C \bullet X^* - b^\top y^* = X^* \bullet S^* = 0,$$

which implies $X^*S^* = S^*X^* = 0$ as X^* and S^* are symmetric positive semidefinite matrices.

3.2. Instance generators for SDOPs

Similar to our work on LO, we propose generators that produce SDO instances with a predefined interior solution, optimal solution, and both. Each generator is designed such that the user can control the characteristics of parameters such as condition number, sparsity, matrix structure, and size. Additionally, users can modify the features of optimal solutions to evaluate the performance of their algorithms.

3.2.1. SDOPs with a predefined interior solution

To study the performance of IPMs applied to SDO, it is helpful to have instances with a specific interior solution. Generally, some users may need to generate problems with an interior solution to ensure that Strong Duality, i.e. zero duality gap at optimality, holds. Algorithm 1 can be easily extended to generate SDOPs with a known interior solution. The first task is generating positive definite matrices X^0 , S^0 , symmetric matrices A_i , and vector y^0 . Then by computing $b_i = A_i \bullet X^0$ for $i \in [m]$ and $C = S^0 + \sum_{i=1}^m y_i^0 A_i$, we ensure that the interior solution (X^0, y^0, S^0) is also feasible. Generating X^0 and S^0 such that $X^0S^0 = \mu I$ for some $\mu > 0$ is more computationally involved; we would first have to generate $X^0 > 0$ randomly, and subsequently calculate S^0 as $S^0 = \mu(X^0)^{-1}$. However, we can easily generate X^0 and S^0 for a specified value of μ if we make additional assumptions regarding their structure (e.g. we can assume they are diagonal). We can also generate the matrices A_1, \ldots, A_m to have desired properties such as sparsity, conditioning, or to satisfy some norm bound. Several approaches for generating random positive semidefinite matrices are discussed in Appendix 1.

3.2.2. SDOPs with a predefined block-diagonal optimal solution

Algorithm 4 can be seen as a generalization of Algorithm 2 to SDO problems, in which the generated optimal solution explicitly has a block-diagonal structure corresponding to the optimal partition. Before presenting the instance generator, we review the notation of the optimal partition in the context of SDO.

We are interested in problems whose optimal solution (X^*, y^*, S^*) exhibits zero duality gap, i.e. $X^*S^* = 0$. Thus, the spectral decomposition of an optimal pair X^* and S^* takes the form

$$X^* = Q\Sigma Q^{\mathsf{T}}$$
 and $S^* = Q\Lambda Q^{\mathsf{T}}$,

where Q is orthonormal, and the matrices Σ and Λ are diagonal, containing eigenvalues of X^* and S^* , respectively. Letting $\sigma_i = \Sigma_{i,i}$ and $\lambda_i = \Lambda_{i,i}$, it follows that $X^*S^* = 0$ holds if and only if $\sigma_i \lambda_i = 0$ for all $i \in [n]$. A primal-dual optimal solution $(X^*, y^*, S^*) \in \mathcal{PD}^*_{SDO}$ is called maximally complementary if $X^* \in \operatorname{ri}(\mathcal{P}^*_{SDO})$ and $(y^*, S^*) \in \operatorname{ri}(\mathcal{D}^*_{SDO})$. A maximally complementary optimal solution (X^*, y^*, S^*) is called strictly complementary if $X^* + S^* > 0$. Let $\mathcal{B} := \mathcal{R}(X^*)$ and $\mathcal{N} := \mathcal{R}(S^*)$, where (X^*, y^*, S^*) is a maximally complementary optimal solution and $\mathcal{R}(.)$ denotes the range space. We define $n_{\mathcal{B}} := \dim(\mathcal{B})$ and $n_{\mathcal{N}} := \dim(\mathcal{N})$. Then, we have $\mathcal{R}(X) \subseteq \mathcal{B}$ and $\mathcal{R}(S) \subseteq \mathcal{N}$ for all $(X, y, S) \in \mathcal{PD}^*_{SDO}$. By the complementarity condition, the subspaces \mathcal{B} and \mathcal{N} are orthogonal, and this implies that $n_{\mathcal{B}} + n_{\mathcal{N}} \le n$, and in case of strict complementarity, $n_{\mathcal{B}} + n_{\mathcal{N}} = n$. Otherwise, a subspace \mathcal{T} exists, which is the orthogonal complement to $\mathcal{B} + \mathcal{N}$. Similarly, we have $n_{\mathcal{T}} := \dim(\mathcal{T})$, and so $n_{\mathcal{B}} + n_{\mathcal{N}} + n_{\mathcal{T}} = n$ [14]. The partition $(\mathcal{B}, \mathcal{N}, \mathcal{T})$ of \mathbb{R}^n is called the optimal partition of an SDO problem. In LOPs, we know that \mathcal{T} is empty, but in general SDOPs \mathcal{T} can be non-empty [9].

In Algorithm 4, we generate SDOPs with optimal solutions that exhibit a block-diagonal structure using a partition (B, N, T), which may be different from the optimal partition (B, N, T) of the generated problem.

Algorithm 4 Generating SDO problems with a specific optimal solution

- 1: Choose dimensions m, n with $m < \frac{n(n+1)}{2}$
- 2: Choose $n_B, n_N \in [n]$ where $n_B + n_N \le n$
- 3: Generate positive definite matrices $X_B \in \mathcal{S}_{++}^{n_B}$ and $S_N \in \mathcal{S}_{++}^{n_N}$

4: Build^a
$$X^* = \begin{pmatrix} X_B & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 and $S^* = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & S_N \end{pmatrix}$
5: Generate $A_i \in S^n$ for $i \in [m]$ and $y^* \in \mathbb{R}^m$

- 6: Calculate $b_i = A_i \bullet X^*$ for $i \in [m]$ and $C = \sum_{i=1}^m y_i^* A_i + S^*$
- 7: **Return** SDOP $(A_1, ..., A_m, b, C)$ with optimal solution (X^*, y^*, S^*)

Remark 3.1: The sets (B, N, T) generated in Algorithm 4 are not necessarily the optimal partition $(\mathcal{B}, \mathcal{N}, T)$ for the generated SDO problem (A_1, \ldots, A_m, b, C) . In general, we only have

$$B \subseteq \mathcal{B}$$
, $N \subseteq \mathcal{N}$, and $T \subseteq T$.

Remark 3.2: If an SDOP with a strictly complementary optimal solution is required, then we set $n_N = n - n_B$. In this case, the optimal partition is predefined as $\mathcal{B} = B$, $\mathcal{N} = N$, and $\mathcal{T} = \emptyset$. Furthermore, if $m = \frac{n_B(n_B + 1)}{2}$ and A_i for $i \in B$ are linearly independent, then the optimal solution is unique [2].

One can easily verify that the solution (X^*, y^*, S^*) generated by Algorithm 4 is feasible for the SDO problem (A_1, \ldots, A_m, b, C) , and optimal since $X^*S^* = 0$. In addition, matrices A_i and C can be generated in a way to exhibit a particular sparsity, condition number, or norm, and we can also control primal and/or dual degeneracy.

3.2.3. SDOPs with predefined block-diagonal optimal and interior solutions

By generating SDO problems with specific interior and optimal solutions, we can study the performance of various solution approaches. For example, one can analyze how efficiently feasible IPMs reduce the complementarity starting from a predefined interior solution to an optimal solution, or alternatively examine how robust performance is to the provided starting point or changes in the characteristics of the optimal solutions or partition. This section is focused on the case in which the user is interested in predefining an interior solution and an optimal solution, which need not necessarily be maximally complementary. Algorithm 5 generalizes Algorithm 3 to SDO for the case in which the generated optimal solution has a block-diagonal structure. We similarly seek to generate an optimal solution (X^*, y^*, S^*) and interior solution (X^0, y^0, S^0) as generally as possible, but we need to impose some additional requirements. Letting $\mathcal{L} = \operatorname{span}\{A_1, \ldots, A_m\}$, we have $X^0 - X^* \in \mathcal{L}^\perp$ and $S^0 - S^* \in \mathcal{L}$, and hence, the generated solutions are required to satisfy the orthogonality condition

$$(X^0 - X^*) \bullet (S^0 - S^*) = 0.$$
 (3)

In Algorithm 5, Steps 7 and 8 are designed to ensure the generated solutions (X^*, y^*, S^*) and (X^0, y^0, S^0) indeed satisfy orthogonality.

^aThe matrices are partitioned according to n_B , n_T , and n_N . Thus, X_B , the block B of X^* is positive definite and the other parts of matrix X^* are zero. Analogously, the nonzero part S_N , the N block of S^* is positive definite.

Algorithm 5 Generating SDO problems with specific interior and optimal solutions

- 1: Choose dimensions m, n with $m < \frac{n(n+1)}{2}$
- 2: Choose n_B , $n_N \in [n]$ where $n_B + n_N \leq n$
- 3: Generate SDOP $(\hat{A}_1, \ldots, \hat{A}_m, \hat{b}, \hat{C})$ with optimal solution $(\hat{X}, \hat{y}, \hat{S})$ by Algorithm 4
- 4: Generate $X_B^0 > 0, X_T^0 > 0, X_N^0 > 0, X_{n+1}^0 > 0$

5: Build
$$X_{(n+1)\times(n+1)}^* = \begin{pmatrix} \hat{X} & 0 \\ 0 & 0 \end{pmatrix}$$
 and $X_{(n+1)\times(n+1)}^0 = \begin{pmatrix} X_B^0 & 0 & 0 & 0 \\ 0 & X_T^0 & 0 & 0 \\ 0 & 0 & X_N^0 & 0 \\ 0 & 0 & 0 & X_{n+1}^0 \end{pmatrix}$

- 6: Generate $S_T^0 \succ 0$, $S_B^0 \succ 0$, $S_N^0 \succ 0$ 7: Calculate $\delta = (X_B^0 \hat{X}_B) \bullet S_B^0 + X_T^0 \bullet S_T^0 + X_N^0 \bullet (S_N^0 \hat{S}_N)$ 8: Generate $S_{n+1}^0 > (\frac{-\delta}{X_{n+1}^0})^+$ and calculate $\hat{S}_{n+1} = \frac{\delta}{X_{n+1}^0} + S_{n+1}^0$

9: Build
$$S_{(n+1)\times(n+1)}^* = \begin{pmatrix} \hat{S} & 0 \\ 0 & \hat{S}_{n+1} \end{pmatrix}$$
 and $S_{(n+1)\times(n+1)}^0 = \begin{pmatrix} S_B^0 & 0 & 0 & 0 \\ 0 & S_T^0 & 0 & 0 \\ 0 & 0 & S_N^0 & 0 \\ 0 & 0 & 0 & S_{n+1}^0 \end{pmatrix}$

- 10: Generate $y^0 \in \mathbb{R}_{m+1}$ such that $y^0_{m+1} \neq 0$
- 11: Build $y^* = \begin{pmatrix} \hat{y} \\ 0 \end{pmatrix} \in \mathbb{R}_{m+1}$
- 12: Calculate $\alpha_i = \frac{1}{X_{n+1}^0} (\hat{A}_{i_B} \bullet (X_B X_B^0)) (\hat{A}_{i_N} \bullet X_N^0) (\hat{A}_{i_T} \bullet X_T^0))$ for $i \in [m]$
- 13: Build $A_i = \begin{pmatrix} A_i & 0 \\ 0 & \alpha_i \end{pmatrix}$ for $i \in [m]$

14: Build
$$A_{m+1} = \sum_{i=1}^{m} \frac{\hat{y}_i - y_i^0}{y_{m+1}^0} A_i + \frac{1}{y_{m+1}^0} \begin{pmatrix} -S_B^0 & 0 & 0 & 0\\ 0 & -S_T^0 & 0 & 0\\ 0 & 0 & \hat{S}_N - S_N^0 & 0\\ 0 & 0 & 0 & \hat{S}_{n+1} - S_{n+1}^0 \end{pmatrix}$$

- 15: Calculate $\theta = \hat{S}_{n+1} + \sum_{i=1}^{m} \hat{y}_i \alpha_i$ and build $C = \begin{pmatrix} \hat{C} & 0 \\ 0 & \theta \end{pmatrix}$
- 16: Calculate $\beta = A_{m+1} \bullet X^*$ and build $b = \begin{pmatrix} b \\ a \end{pmatrix}$
- 17: Return SDOP $(A_1, \ldots, A_{m+1}, b, C)$ with optimal solution (X^*, y^*, S^*) and interior solution (X^0, y^0, S^0)

Before proving the correctness of Algorithm 5, the next result certifies the orthogonality properties of the generated solution.

Lemma 3.1: For any (X^0, y^0, S^0) and (X^*, y^*, S^*) generated by Algorithm 5, then we have

$$(X^0 - X^*) \bullet (S^0 - S^*) = 0.$$

Proof: Similar to the proof of Lemma 2.1, it can be proved by substitution and using Steps 7 and 8.

Using Lemma 3.1, the following theorem shows that the generated problem satisfies the desired properties.

Theorem 3.2: Let (X^0, v^0, S^0) and (X^*, v^*, S^*) be solutions generated by Algorithm 5. Then,

$$X^* \succeq 0, \quad S^* \succeq 0, \quad X^0 \succ 0, \quad S^0 \succ 0,$$
 (4a)

$$X^* \bullet S^* = 0, \tag{4b}$$

$$A_i \bullet X^* = b_i \quad \forall i \in [m+1], \tag{4c}$$

$$\sum_{i=1}^{m+1} y_i^* A_i^\top + S^* = C, \tag{4d}$$

$$A_i \bullet X^0 = b_i \quad \forall i \in [m+1], \tag{4e}$$

$$\sum_{i=1}^{n} y_i^0 A_i^{\top} + S^0 = C. \tag{4f}$$

Proof: Just as in the case of LO, all parts of Theorem 3.2 are easy to verify based on the steps of Algorithm 5, save for Equation (4e) for i = n + 1. Following the proof of Theorem 2.2, the claimed result follows from the definition of α and Equation (3).

Similar to generating SDOPs with an optimal solution, we can also generate problems with both a specific strictly complementary optimal solution and a specific interior solution.

Remark 3.3: One special case is when $n_B + n_N = n$, $T = \emptyset$, and

$$X_B^0 = \hat{X}_B, \quad X_N^0 = I, \quad X_T^0 = I, \quad S_B^0 = I, \quad S_T^0 = I,$$

 $S_N^0 = \hat{S}_N, \quad X_{n+1}^0 = 1, \quad S_{n+1}^0 = 1.$

3.2.4. SDOPs with predefined optimal solution (General structure)

We are also interested in the situation where the desired optimal solution does not exhibit a block structure. Some methods can exploit the structural properties of the optimal solution, for example, when it exhibits a block-diagonal structure or is sparse. In order to generate an optimal solution that possesses certain desired qualities, we use the inverse process of eigenvalue decomposition. First, we generate diagonal matrices Σ and Λ , whose diagonal elements are the eigenvalues of X^* and S^* , respectively. Then, X^* and S^* can be calculated by masking these diagonal matrices using a randomly generated orthonormal matrix Q, and techniques for generating orthonormal matrices are discussed in Appendix 2. The overall scheme is formalized below in Algorithm 6. While Algorithm 6 generates a more general optimal solution than Algorithm 4, it is computationally more demanding due to several matrix multiplications and generating an orthonormal matrix. One can easily verify that (X^*, y^*, S^*) is optimal since $X^*S^* = Q\Sigma\Lambda Q^{\top} = 0$. However, similar to Remark 3.1, the generated optimal solution may not be the maximally complementary solution for the SDOP (A_1, \ldots, A_m, b, C) . Thus, the optimal partition $(\mathcal{B}, \mathcal{N}, T)$ of the generated SDOP may be different from (B, N, T) such that $\dim(B) \geq n_B$ and $\dim(N) \geq n_N$, i.e. the set of indices such that $\sigma_i = \lambda_i = 0$ may be bigger than the partition T. The next section discusses how we can generate SDOPs with a predefined optimal partition. Discussion of Remark 3.2 works for generating SOCPs with a strictly complementary and unique optimal solution with Algorithm 6.

Algorithm 6 Generating SDO problems with a specific optimal solution

- 1: Choose dimensions m, n with $m < \frac{n(n+1)}{2}$
- 2: Choose $n_B, n_N \in [n]$ where $n_B + n_N \leq n$
- 3: Generate $\sigma_i > 0$ for $i \in [n_B]$ and $\lambda_i > 0$ for $i \in [n_N]$
- 4: Generate orthonormal matrix Q

5: Build
$$X^* = Q \begin{pmatrix} \operatorname{diag}(\sigma) & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} Q^{\top} \text{ and } S^* = Q \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \operatorname{diag}(\lambda) \end{pmatrix} Q^{\top}$$

- 6: Generate $A_i \in \hat{S}^n$ for $i \in [m]$ and $y^* \in \mathbb{R}^m$ randomly
- 7: Calculate $b_i = A_i \bullet X^*$ for $i \in [m]$ and $C = \sum_{i=1}^m y_i^* A_i + S^*$ 8: **Return** SDOP (A_1, \ldots, A_m, b, C) with optimal solution (X^*, y^*, S^*)

3.2.5. SDOPs with a predefined maximally complementary solution (General structure)

The SDOP generated by Algorithm 6 may have an optimal partition that differs from the input partition, since the specified optimal solution may not be maximally complementary. In this section, we develop a procedure to generate SDOPs with a specific optimal partition, and by extension, with a specific maximally complementary solution, where the \mathcal{B} and \mathcal{N} parts of the optimal partition are nonempty. In Algorithm 7, Q_R is formed by the columns of Q that correspond to partition B. As we can see, there is less freedom in generating an SDOP using Algorithm 7 when compared to Algorithm 6. This can be attributed to the fact that matrix A_1 is specified to ensure that the specified optimal solution is maximally complementary, and we can not alter its characteristics directly. The next theorem proves the correctness of the generator.

Theorem 3.3: For the generated problem (A_1, \ldots, A_m, b, C) by Algorithm 7, the solution (X^*, y^*, S^*) is a maximally complementary optimal solution.

Proof: The result follows from a proof by contradiction, which is adapted from [24]. Suppose that (X^*, y^*, S^*) is not maximally complementary, and $(\tilde{X}, \tilde{y}, \tilde{S})$ is a maximally complementary solution. Since $\tilde{X}S^* = 0$, we have

$$\mathcal{R}(X^*) \subseteq \mathcal{R}(\tilde{X}) \subseteq \mathcal{R}(S^*)^{\perp}$$
.

Therefore, we can write

$$\tilde{X} = Q \begin{pmatrix} D_B & 0 & 0 \\ 0 & D_T & 0 \\ 0 & 0 & 0 \end{pmatrix} Q^\top.$$

Algorithm 7 Generating SDO problems with a specific maximally complementary solution

- 1: Choose dimensions m, n with $m < \frac{n(n+1)}{2}$
- 2: Choose $n_B, n_N \in [n]$ where $n_B + n_N \leq n$
- 3: Generate $\sigma_i > 0$ for $i \in [n_B]$ and $\lambda_i > 0$ for $i \in [n_N]$
- 4: Generate orthonormal matrix $Q = (Q_B \ Q_T \ Q_N) \in \mathbb{R}^{n \times n}$

5: Build
$$X^* = Q \begin{pmatrix} \operatorname{diag}(\sigma) & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} Q^{\top} \text{ and } S^* = Q \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \operatorname{diag}(\lambda) \end{pmatrix} Q^{\top}$$
6: Build $A_1 = Q \begin{pmatrix} 0 & 0 & \Gamma_{NB}^{\top} \\ 0 & \Gamma_{TT} & \Gamma_{NT}^{\top} \\ \Gamma_{NB} & \Gamma_{NT} & \Gamma_{NN} \end{pmatrix} Q^{\top} \text{ where } \Gamma_{TT} \succ 0, \Gamma_{NN} \in \mathcal{S}^{n_N}, Q_N \Gamma_{NB} \neq 0$

6: Build
$$A_1 = Q \begin{pmatrix} 0 & 0 & \Gamma_{NB}^{\top} \\ 0 & \Gamma_{TT} & \Gamma_{NT}^{\top} \\ \Gamma_{NB} & \Gamma_{NT} & \Gamma_{NN} \end{pmatrix} Q^{\top}$$
 where $\Gamma_{TT} \succ 0$, $\Gamma_{NN} \in \mathcal{S}^{n_N}$, $Q_N \Gamma_{NB} \neq 0$

- 7: Generate $A_i \in S^n$ such that A_iQ_B are linearly independent for $i \in [m]$
- 8: Generate $y^* \in \mathbb{R}^m$
- 9: Calculate $b_i = A_i \bullet X^*$ for $i \in [m]$ and $C = \sum_{i=1}^m y_i^* A_i + S^*$ 10: **Return** SDOP (A_1, \ldots, A_m, b, C) with maximally complementary solution (X^*, y^*, S^*)

Since both \tilde{X} and X^* are feasible, it follows that

$$0 = A_{1} \bullet (\tilde{X} - X^{*}) = A_{1} \bullet Q \begin{pmatrix} D_{B} - \Lambda_{B} & 0 & 0 \\ 0 & D_{T} & 0 \\ 0 & 0 & 0 \end{pmatrix} Q^{\top}$$

$$0 = \begin{pmatrix} 0 & 0 & \Gamma_{NB}^{\top} \\ 0 & \Gamma_{TT} & \Gamma_{NT}^{\top} \\ \Gamma_{NB} & \Gamma_{NT} & \Gamma_{NN} \end{pmatrix} \bullet \begin{pmatrix} D_{B} - \Lambda_{B} & 0 & 0 \\ 0 & D_{T} & 0 \\ 0 & 0 & 0 \end{pmatrix} = \Gamma_{TT} \bullet D_{T}.$$

Given that $\Gamma_{TT} > 0$, it follows that $D_T = 0$, which implies $\mathcal{R}(X^*) = \mathcal{R}(\tilde{X})$. Next, we need to show that $\mathcal{R}(S^*) = \mathcal{R}(\tilde{S})$. Again, from dual feasibility, we have

$$\sum_{i=1}^{m} A_i (y_i^* - \tilde{y}_i) = -(S^* - \tilde{S}).$$

By the orthogonality of Q_B and $S^* - \tilde{S}$, one can observe

$$\sum_{i=1}^{m} A_i Q_B(y_i^* - \tilde{y}_i) = -(S^* - \tilde{S}) Q_B = 0.$$

Since the matrices A_iQ_B are linearly independent for $i \in [m]$, it follows $y_i^* = \tilde{y}_i$ and $S^* = \tilde{S}$ and thus (X^*, y^*, S^*) is maximally complementary. Therefore, we have arrived at a contradiction, and the proof is complete.

Corollary 3.4: For the SDOP generated by Algorithm 7, the optimal partition $(\mathcal{B}, \mathcal{N}, \mathcal{T})$ is equal to (B, N, T).

Remark 3.4: If the elements of A_i are generated randomly from a continuous distribution independently, such that A_i is asymmetric for $i \in 2, ..., m$, then A_iQ_B are linearly independent for $i \in [m]$ with probability one. The reason is that $A_1Q_B = Q_N\Gamma_{NB} \neq 0$.

Remark 3.5: Algorithm 7 generates a primal nondegenerate SDOP that has a unique optimal dual solution [24]. To generate primal and dual nondegenerate SDOP with unique primal and dual solutions, one needs to generate A_i for $i \in [m]$ such that $Q_{B,T}^T A_i Q_{B,T}$ for $i \in [m]$ are linearly independent [2].

The framework we have described is correct when $B \neq \emptyset$ and $N \neq \emptyset$. For the cases $B = \emptyset$ and/or $N = \emptyset$, one can construct a simple procedure to generate problems with a predetermined optimal partition.

3.2.6. SDOPs with predefined optimal and interior solutions (General structure)

We can also generalize Algorithm 6 to provide SDOPs with interior solutions, and the resulting scheme is presented in Algorithm 8. Here, both the generated optimal and interior solutions have a general structure by using the inverse of eigenvalue decomposition, and at a high level, the overall scheme can be viewed as a combination of Algorithms 5 and 6.

For the generated solutions (X^0, y^0, S^0) and (X^*, y^*, S^*) , Steps 8 and 9 ensure that

$$\sum_{i \in B} (\sigma_i^0 - \sigma_i) \lambda_i^0 + \sum_{i \in T} \sigma_i^0 \lambda_i^0 + \sum_{i \in N} \sigma_i^0 (\lambda_i^0 - \lambda_i) + \sigma_{n+1}^0 (\lambda_{n+1}^0 - \lambda_{n+1}) = 0.$$
 (5)

Consequently, the orthogonality condition (3) is satisfied. Similar to the block-diagonal case, Theorem 3.5 establishes that the generated SDO problem and its optimal and interior solutions are correct.

Theorem 3.5: Let (X^0, y^0, S^0) and (X^*, y^*, S^*) be solutions generated by Algorithm 8. Then,

$$X^* \geq 0, \quad S^* \geq 0, \quad X^0 > 0, \quad S^0 > 0,$$
 $X^* \bullet S^* = 0,$
 $A_i \bullet X^* = b_i \quad \forall i \in [m+1],$

$$\sum_{i=1}^{m+1} y_i^* A_i^\top + S^* = C,$$
 $A_i \bullet X^0 = b_i \quad \forall i \in [m+1],$

$$\sum_{i=1}^{m+1} y_i^0 A_i^\top + S^0 = C.$$

Proof: Analogous to the proof of Theorem 3.2 based on the steps of Algorithm 8 and orthogonality condition (3).

Algorithm 8 Generating SDO problems with specific interior and optimal solutions

- 1: Choose dimensions m, n with $m < \frac{n(n+1)}{2}$ (the dimensions of generated SDOP: m +
- 2: Choose $n_B, n_N \in [n]$ where $n_B + n_N \le n$
- 3: Generate SDOP $(\hat{A}_1, \ldots, \hat{A}_m, \hat{b}, \hat{C})$ with optimal solution $(\hat{X}, \hat{y}, \hat{S})$ by Algorithm 6
- 4: Build $Q_{(n+1)\times(n+1)} = \begin{pmatrix} \hat{Q} & 0 \\ 0 & 1 \end{pmatrix}$, where \hat{Q} is eigenvectors of \hat{X}

- 7: Generate positive diagonal matrix Λ_B^0 , Λ_T^0 , and Λ_N^0 8: Calculate $\delta = \sum_{i \in B} (\sigma_i \sigma_i^0) \lambda_i^0 + \sum_{i \in T} \sigma_i^0 \lambda_i^0 + \sum_{i \in N} \sigma_i^0 (\lambda_i^0 \lambda_i)$ 9: Generate $\lambda_{n+1}^0 > (\frac{-\delta}{\sigma_{n+1}^0})^+$, and calculate $\lambda_{n+1} = \frac{\delta}{\sigma_{n+1}^0} + \lambda_{n+1}^0$

11: Generate $y^0 \in \mathbb{R}^{m+1}$ such that $y^0_{m+1} \neq 0$ and build $y^*_{(m+1)} = \begin{pmatrix} y \\ 0 \end{pmatrix}$

12: Calculate
$$\alpha_i = \frac{1}{\sigma_{n+1}^0} \operatorname{tr} (\hat{A}_i \hat{Q} \begin{pmatrix} \Sigma_B - \Sigma_B^0 & 0 & 0 \\ 0 & -\Sigma_T^0 & 0 \\ 0 & 0 & -\Sigma_N^0 \end{pmatrix} \hat{Q}^\top) \text{ for } i \in [m]$$

13: Build
$$A_i = \begin{pmatrix} \hat{A}_i & 0 \\ 0 & \alpha_i \end{pmatrix}$$
 for $i \in [m]$

14:
$$A_{m+1} = \frac{1}{y_{m+1}^0} (\sum_{i=1}^m (\hat{y}_i - y_i^0) A_i + Q \begin{pmatrix} -\Lambda_B^0 & 0 & 0 & 0 \\ 0 & -\Lambda_T^0 & 0 & 0 \\ 0 & 0 & \Lambda_N - \Lambda_N^0 & 0 \\ 0 & 0 & 0 & \Lambda_{n+1} - \Lambda_{n+1}^0 \end{pmatrix} Q^\top)$$

15: Calculate
$$C = \begin{pmatrix} \hat{C} & 0 \\ 0 & \sum_{i=1}^{m} \hat{y}_i \alpha_i + \lambda_{m+1} \end{pmatrix}$$

- 16: Calculate $b_i = \hat{b}_i$ for $i \in [m]$ and $b_{m+1} = \operatorname{tr}(A_{m+1}X^*)$
- 17: Return SDOP $(A_i, \ldots, A_{m+1}, b, C)$ with optimal solution (X^*, y^*, S^*) and interior solution (X^0, y^0, S^0)

3.2.7. SDOPs with predefined interior and maximally complementary solutions (General structure)

To have a predetermined optimal partition, we develop Algorithm 9 to generate SDOPs with specific interior and maximally complementary solutions as follows.

Theorem 3.6: For Algorithm 9, solution (X^*, y^*, S^*) is the maximally complementary optimal solution of the generated problem $(A_1, \ldots, A_{m+1}, b, C)$.

Algorithm 9 Generating SDO problems with specific interior and maximally complementary solutions

- 1: Choose dimensions m, n with $m < \frac{n(n+1)}{2}$ (the dimensions of generated SDOP: m +1, n + 1) and choose $n_B, n_N \in [n]$ where $n_B + n_N \le n$
- 2: Define sets $B = \{1, ..., n_B\}, T = \{n_B + 1, ..., n n_N\}, \& N = \{n n_N + 1, ..., n\}$
- 3: Generate $\sigma_i > 0$ for $i \in B$ and build $\Sigma_B = \text{diag}(\sigma)$
- 4: Generate $\lambda_i > 0$ for $i \in N$ and build $\Lambda_N = \text{diag}(\lambda)$
- 5: Generate orthonormal matrix $Q_{n\times n}$

6: Build
$$\hat{X} = \hat{Q} \begin{pmatrix} \Sigma_B & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \hat{Q}^{\top} \text{ and } \hat{S} = \hat{Q} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \Lambda_N \end{pmatrix} \hat{Q}^{\top}$$

7: Build
$$\hat{A}_1 = \hat{Q} \begin{pmatrix} 0 & 0 & \Gamma_{NB}^{\top} \\ 0 & \Gamma_{TT} & \Gamma_{NT}^{\top} \\ \Gamma_{NB} & \Gamma_{NT} & \Gamma_{NN} \end{pmatrix} \hat{Q}^{\top}$$
 where $\Gamma_{TT} \succ 0$, $\Gamma_{NN} \in \mathcal{S}^{n_N}$, $Q_N \Gamma_{NB} \neq 0$

- 8: Generate $\hat{y} \in \mathbb{R}^m$ and $\hat{A}_i \in \mathcal{S}^n$ such that A_iQ_B are linearly independent for $i \in [m]$
- 9: Calculate $\hat{b}_i = \operatorname{tr}(\hat{A}_i X^*)$ for $i \in [m]$ and $\hat{C} = \sum_{i=1}^m \hat{y}_i \hat{A}_i + \hat{S}$

10: Build
$$Q_{(n+1)\times(n+1)} = \begin{pmatrix} \hat{Q} & 0 \\ 0 & 1 \end{pmatrix}$$

11: Generate positive diagonal matrix Σ_B^0 , Σ_T^0 , Σ_N^0 , and number of

13: Generate positive diagonal matrix Λ_B^0 , Λ_T^0 , and Λ_N^0 14: Calculate $\delta = \sum_{i \in B} (\sigma_i - \sigma_i^0) \lambda_i^0 + \sum_{i \in T} \sigma_i^0 \lambda_i^0 + \sum_{i \in N} \sigma_i^0 (\lambda_i^0 - \lambda_i)$ 15: Generate $\lambda_{n+1}^0 > (\frac{-\delta}{\sigma_{n+1}^0})^+$, and calculate $\lambda_{n+1} = \frac{\delta}{\sigma_{n+1}^0} + \lambda_{n+1}^0$

17: Generate $y^0 \in \mathbb{R}^{m+1}$ such that $y_{m+1}^0 \neq 0$ and build $y_{(m+1)}^* = \begin{pmatrix} y \\ 0 \end{pmatrix}$

18: Calculate
$$\alpha_i = \frac{1}{\sigma_{n+1}^0} \operatorname{tr} (\hat{A}_i \hat{Q} \begin{pmatrix} \Sigma_B - \Sigma_B^0 & 0 & 0 \\ 0 & -\Sigma_T^0 & 0 \\ 0 & 0 & -\Sigma_N^0 \end{pmatrix} \hat{Q}^\top) \text{ for } i \in [m]$$

19: Build $A_i = \begin{pmatrix} A_i & 0 \\ 0 & \alpha_i \end{pmatrix}$ for $i \in [m]$

20:
$$A_{m+1} = \frac{1}{y_{m+1}^{0}} \left(\sum_{i=1}^{m} (\hat{y}_{i} - y_{i}^{0}) A_{i} + Q \begin{pmatrix} -\Lambda_{B}^{0} & 0 & 0 & 0 \\ 0 & -\Lambda_{T}^{0} & 0 & 0 \\ 0 & 0 & \Lambda_{N} - \Lambda_{N}^{0} & 0 \\ 0 & 0 & 0 & \Lambda_{n+1} - \Lambda_{n+1}^{0} \end{pmatrix} Q^{\top} \right)$$

22: **Return** SDOP $(A_1, \ldots, A_{m+1}, b, C)$ with maximally complementary solution (X^*, y^*, S^*) and interior solution (X^0, y^0, S^0)

Proof: The proof closely follows the proof of Theorem 3.3; the only difference is that we expanded the matrices A_i by adding a row and column. For constructing matrix A_1 , the added eigenvalue $\gamma_{n+1} = \alpha_1$ and $Q_{n+1} = (0, 0, 0, \dots, 0, 1)^{\top}$ belong to partition N where we do not have any restriction. Thus, adapting the proof of Theorem 3.3 to this theorem is straightforward.

Among all proposed SDOP generators, Algorithm 9 provides the most sophisticated SDOPs, with maximally complementary and interior solutions in a general manner and gives opportunities for altering characteristics of an optimal solution, optimal partition, matrices A_i , C, and vector b to study the performance of solution methods in a detailed and sophisticated analysis. However, this algorithm requires much more complicated computation than the other proposed generators.

4. Second-Order cone optimization

Before concluding, we adapt our techniques for LO and SDO to linear optimization problems over second-order (or Lorentz) cones.

4.1. Second order cone optimization problems

A second-order cone is defined as follows

$$\left\{(x_1,x_2,\ldots,x_n)\in\mathbb{R}^n: x_1^2-\sum_{i=2}^n x_i^2\geq 0,\ x_1\geq 0\right\}.$$

Observe that the above definition implies that $(x_1, x_2, ..., x_n)$ belongs to a second-order cone if and only if the matrix

$$\begin{pmatrix} x_1 & x_{2:n}^\top \\ x_{2:n} & x_1 I_{n-1} \end{pmatrix}$$

is positive semidefinite, where $x_{2:n}^{\top} \equiv (x_2, x_3, \dots, x_n)$ and I_{n-1} is the identity matrix of order n-1. Hence, a primal or dual second-order cone optimization problem (SOCOP) may be interpreted as a special case of SDO [19].

In SOCO problems, we seek to minimize a linear objective function over a feasible region which is defined by the intersection of an affine space and the Cartesian product of p second-order cones of dimension n_i , which is defined as

$$\mathbb{L}^n = \mathcal{L}^{n_1} \times \cdots \times \mathcal{L}^{n_p}, \quad n = \sum_{i=1}^p n_i,$$

where $\mathcal{L}^{n_i} = \{x^i = (x^i_1, \dots, x^i_{n_i})^\top \in \mathbb{R}^{n_i} : x^i_1 \geq \|x^i_{2:n_i}\|\}$, for $i \in [p]$. It is clear that LOPs are a special case of SOCOPs, where $n_i = 1$ for $i \in [p]$. The primal and dual SOCO problems in standard form are represented as

$$z_{SOCO}^{P} = \inf_{x} \{ c^{\top} x : Ax = b, \ x \in \mathbb{L}^{n} \},$$
 (SOCOP-P)

$$z_{SOCO}^{D} = \sup_{(y,s)} \{b^{\top}y : A^{\top}y + s = c, \ s \in \mathbb{L}^{n}\}, \tag{SOCOP-D}$$

where $b \in \mathbb{R}^m$, $A = (A_1, \dots, A_p)$, $x = (x^1; \dots; x^p)$, $s = (s^1; \dots; s^p)$, and $c = (c^1; \dots; c^p)$, in which $A_i \in \mathbb{R}^{m \times n_i}$, $s^i \in \mathbb{R}^{n_i}$, and $c^i \in \mathbb{R}^{n_i}$ for $i \in [p]$. The set of primal and dual feasible solutions is defined as

$$\mathcal{PD}_{SOCO} = \{(x, y, s) \in \mathbb{L}^n \times \mathbb{R}^m \times \mathbb{L}^n : Ax = b, A^\top y + s = c\}.$$

Let $\mathcal{L}_{+}^{n_i} = \{x^i \in \mathcal{L}^{n_i} : x_1^i > ||x_{2:n_i}^i||\}$, for $i \in [p]$, then we can define the set of primal and dual interior feasible solutions as

$$\mathcal{P}\mathcal{D}^0_{SOCO} = \{(x, y, s) \in \mathbb{L}^n_+ \times \mathbb{R}^m \times \mathbb{L}^n_+ : Ax = b, A^\top y + s = c\}.$$

Just as in LO and SDO, it is standard practice to assume the existence of an interior feasible primal-dual solution. With the existence of a strictly feasible solution, it follows that the Interior Point Condition (IPC) is satisfied [15], guaranteeing that $z_{SOCO}^P = z_{SOCO}^D$ and the primal-dual optimal set

$$\mathcal{PD}^*_{SOCO} = \left\{ (x, y, s) \in \mathcal{PD}_{SOCO} : c^{\top} x = z^P_{SOCO} = b^T y = z^D_{SOCO} \right\},\,$$

is nonempty and bounded. Therefore, there exists an optimal primal-dual pair with zero duality gap. That is, for optimal solutions x^* and (y^*, s^*) , we have

$$x^* \circ s^* = (x^1 \circ s^1, \dots, x^p \circ s^p) = 0,$$
 (7)

where the Jordan product 'o' is defined as

$$x^{i} \circ s^{i} = \begin{pmatrix} (x^{i})^{\top} s^{i} \\ x_{1}^{i} s_{2 \cdot n_{i}}^{i} + s_{1}^{i} x_{2 \cdot n_{i}}^{i} \end{pmatrix}. \tag{8}$$

An optimal solution (x^*, y^*, s^*) is called maximally complementary if $x^* \in ri(\mathcal{P}^*_{SOCO})$ and $(y^*; s^*) \in ri(\mathcal{D}^*_{SOCO})$. Further, (x^*, y^*, s^*) is called strictly complementary if

$$x^* + s^* \in \mathbb{L}^n_+.$$

4.2. Instance generators for SOCOPs

Motivated by our work on LOP and SDOP generators, we are further interested in applying these ideas to generate SOCO problems. Since SOCO can be interpreted as a special case of SDO, Sampourmahani et al. [19] studied mappings between SDOPs and SOCOPs and their optimal partitions. It is straightforward to develop SOCOP generators using the proposed SDOP generators augmented with the appropriate mapping. However, that route is not efficient, and we alternatively propose several SOCOP generators without using their SDO representation.

4.2.1. SOCOPs with a predefined interior solution

Generating SOCOPs with an interior solution also ensures that the problem has an optimal solution with zero duality gap. By modifying Algorithm 1, one can generate SOCOPs with specific interior solutions. To have an interior solution x^0 , we must generate $(x^0)^i$ for i= $1, \ldots, p$, such that $((x^0)_2^i, \ldots, (x^0)_{n_i}^i) \in \mathbb{R}^{n_i-1}$ and $(x^0)_1^i > \|(x^0)_{2:n_i}^i\|$. One way to generate such a solution is to generate $(x^0)^i \in \mathbb{R}^{n_i}$, and update $(x^0)^i_1$ using the rule

$$(x^0)_1^i = \|(x^0)_{2:n_i}^i\| + |(x^0)_1^i|.$$

Similar to LO, if matrix A is generated randomly, then the probability that all rows of A are linearly independent is one. In addition, the user can generate a desired matrix A with specific characteristics such as sparsity, condition number, and norm.

4.2.2. SOCOPs with a predefined optimal solution

For SOCOPs, the optimal partition is a bit more complicated than for LO and SDO. The index set [p] is partitioned to sets $(\mathcal{B}, \mathcal{N}, \mathcal{R}, \mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3)$ defined as

$$\mathcal{B} := \{i : x_1^i > \|x_{2:n_i}^i\|_2, \text{ for some } x \in \mathcal{P}_{SOCO}^*\},$$

$$\mathcal{N} := \{i : s_1^i > \|s_{2:n_i}^i\|_2, \text{ for some } s \in \mathcal{D}_{SOCO}^*\},$$

$$\mathcal{R} := \{i : x_1^i = \|x_{2:n_i}^i\|_2 > 0, s_1^i = \|s_{2:n_i}^i\|_2 > 0, \text{ for some } (x, y, s) \in \mathcal{P}_{SOCO}^* \times \mathcal{D}_{SOCO}^* \},$$

$$\mathcal{T}_1 := \{i : x^i = s^i = 0, \text{ for all } (x, y, s) \in \mathcal{P}^*_{SOCO} \times \mathcal{D}^*_{SOCO} \},$$

$$\mathcal{T}_2 := \{i : s^i = 0, \text{ for all } (y, s) \in \mathcal{D}^*_{SOCO}, x_1^i = \|x_{2:n_i}^i\|_2 > 0, \text{ for some } x \in \mathcal{P}^*_{SOCO}\},$$

$$T_3 := \{i : x^i = 0, \text{ for all } x \in \mathcal{P}^*_{SOCO}, s^i_1 = \|s^i_{2:n_i}\|_2 > 0, \text{ for some } (y, s) \in \mathcal{D}^*_{SOCO}\}.$$

For further discussion regarding the optimal partition in SOCOPs, we refer the reader to [22]. From here, we can develop Algorithm 10 which is a generalization of Algorithm 2 for generating random SOCOPs with specific optimal solutions.

Remark 4.1: Algorithm 10 provides a SOCOP with an optimal solution, and that optimal solution may not be maximally complementary. Thus, the optimal partition $(\mathcal{B}, \mathcal{N}, \mathcal{R}, T_1, T_2, T_3)$ of the generated problem may differ from $(\mathcal{B}, \mathcal{N}, \mathcal{R}, T_1, T_2, T_3)$, and we only have

$$B \subseteq \mathcal{B}$$
, $N \subseteq \mathcal{N}$, $R \subseteq \mathcal{R}$, $T_1 \subseteq T_1$, $T_2 \subseteq T_2 \cup T_1$, and $T_3 \subseteq T_3 \cup T_1$.

Remark 4.2: To generate a SOCOP with a strictly complementary optimal solution, it is enough to choose $T_1 = T_2 = T_3 = \emptyset$. In this case, the optimal solution is also maximally complementary. Furthermore, if $\sum_{i \in B \cup N} n_i = m$, the strict complementary solution is also a unique optimal solution for the generated SOCOP [1].

Similar to LOP and SDOP generators, one can generate matrix A in a way to has specific characteristics. The norm and properties of (x^*, y^*, s^*) are controllable directly. Also, the norm of (b, c) can be predetermined by scaling (x^*, y^*, s^*) appropriately and carefully since determining the norm of all parameters and the optimal solution simultaneously is possible if the equations in line 11 of Algorithm 10 hold. It is easy to see that (x^*, y^*, s^*) is optimal since $x^* \circ s^* = 0$ and it is feasible by construction. In the next section, we discuss how to generate a SOCOP with a maximally complementary solution.

Algorithm 10 Generating SOCO problems with a specific optimal solution

- 1: Choose dimensions m < n
- 2: Choose n_1, \ldots, n_p such that $n = n_1 + \cdots + n_p$
- 3: Partition the index set [p] to (B, N, R, T_1, T_2, T_3)
- 4: For $i \in B$, $(s^*)^i = 0$ and generate $(x^*)^i \in \mathbb{R}^{n_i}$ such $(x^*)^i_1 > \|(x^*)^i_{2:n_i}\|$
- 5: For $i \in N$, $(x^*)^i = 0$ and generate $(s^*)^i \in \mathbb{R}^{n_i}$ such $(s^*)^i_1 > \|(s^*)^i_{2:n_i}\|$
- 6: For $i \in T_1$, $(s^*)^i = 0$ and $(x^*)^i = 0$
- 7: For $i \in T_2$, $(s^*)^i = 0$ and generate $(x^*)^i \in \mathbb{R}^{n_i}$ such $(x^*)^i_1 = \|(x^*)^i_{2:n_i}\| > 0$
- 8: For $i \in T_3$, $(x^*)^i = 0$ and generate $(s^*)^i \in \mathbb{R}^{n_i}$ such $(s^*)^i_1 = \|(s^*)^i_{2:n_i}\| > 0$
- 9: For $i \in R$, generate $(x^*)_{2:n_i}^i \in \mathbb{R}^{n_i-1}$ and $\delta \in \mathbb{R}$ and build

$$(x^*)^i = \begin{pmatrix} \|(x^*)_{2:n_i}^i\| \\ (x^*)_{2:n_i}^i \end{pmatrix}$$
, and $(s^*)^i = \delta \begin{pmatrix} \|(x^*)_{2:n_i}^i\| \\ -(x^*)_{2:n_i}^i \end{pmatrix}$

- 10: Generate $y^* \in \mathbb{R}^m$ and $A \in \mathbb{R}^{m \times n}$
- 11: Calculate $b = Ax^*$ and $c = A^Ty^* + s^*$
- 12: **Return** SOCOP (A, b, c) with optimal solution (x^*, y^*, s^*)

4.2.3. SOCOPs with a predefined maximally complementary solution

Since the optimal partition can affect the performance of algorithms to solve SOCOPs similar to SDO, we are interested in generating problems with predetermined optimal partitions. To do so, we adapt our instance generator for SDOPs with a maximally complementary solution to SOCO in Algorithm 11. Let $A_{i,i}^p$ be the element in row i and column jof the part (columns) of A that correspond to cone p. We also use the superscript to show the partition, e.g. A^B denotes the columns of A which correspond to partition B.

Compared to Algorithms 10 and 11 imposes more restrictions on how A is generated.

Theorem 4.1: For any SOCOP (A, b, c) generated by Algorithm 11, the generated optimal solution (x^*, y^*, s^*) is maximally complementary.

Proof: One can verify that $b_1 = 0$, and the first row of A enforces any optimal solution \bar{x} to satisfy

$$\bar{x}^p = 0$$
 for all $p \in T_1 \cup T_3$.

From constraint 2 to $|T_2| + 1$, we add a constraint for each cone p in partition T_2 in which coefficients are zero for all variables except for variables in cone p. Since the corresponding right-hand side is zero and the coefficients are the normal vector to the cone p at the point x^* , all feasible solutions must lie on the ray which is on the boundary of the cone p and passing through the point x^* . Thus, for any optimal solution \bar{x} , we have $\bar{x}_1^p = \|x_{2:n_p}^p\| \text{ for all } p \in T_2.$

Up to this point, we have shown that $x^* \in ri(\mathcal{P}^*)$, and the last part of the proof is to establish that the dual problem has a unique optimal solution (y^*, s^*) . To prove it, let us

Algorithm 11 Generating SOCOPs with a specific maximally complementary solution

- 1: Choose dimensions m < n
- 2: Choose n_1, \ldots, n_p such that $n = n_1 + \cdots + n_p$
- 3: Partition the index set [p] to (B, N, R, T_1, T_2, T_3) such that

$$|T_2| + 1 < m < |B| + |R| + |T_2|$$

- 4: For $i \in B$, $(s^*)^i = 0$ and generate $(x^*)^i \in \mathbb{R}^{n_i}$ such $(x^*)^i_1 > \|(x^*)^i_{2:n_i}\|$
- 5: For $i \in N$, $(x^*)^i = 0$ and generate $(s^*)^i \in \mathbb{R}^{n_i}$ such $(s^*)^i_1 > \|(s^*)^i_{2:n_i}\|$
- 6: For $i \in T_1$, $(s^*)^i = 0$ and $(x^*)^i = 0$
- 7: For $i \in T_2$, $(s^*)^i = 0$ and generate $(x^*)^i \in \mathbb{R}^{n_i}$ such $(x^*)^i_1 = \|(x^*)^i_{2:n_i}\| > 0$
- 8: For $i \in T_3$, $(x^*)^i = 0$ and generate $(s^*)^i \in \mathbb{R}^{n_i}$ such $(s^*)^i_1 = \|(s^*)^i_{2:n_i}\| > 0$
- 9: For $i \in R$, generate $(x^*)_{2:n_i}^i \in \mathbb{R}^{n_i-1}$ and $\delta \in \mathbb{R}$ and build

$$(x^*)^i = \begin{pmatrix} \|(x^*)_{2:n_i}^i\| \\ (x^*)_{2:n_i}^i \end{pmatrix}$$
, and $(s^*)^i = \delta \begin{pmatrix} \|(x^*)_{2:n_i}^i\| \\ -(x^*)_{2:n_i}^i \end{pmatrix}$

- 10: Generate $y^* \in \mathbb{R}^m$
- 11: Generate $A \in \mathbb{R}^{m \times n}$ such that
 - First row:

$$A_{1,1}^p > 0$$
, $A_{1,j}^p = 0$ for $j = 2, ..., n_p$, and $p \in T_1 \cup T_3$
 $A_{1,j}^p = 0$ for $j = 1, ..., n_p$, and $p \in B \cup R \cup T_2$
 $A_{1,j}^p \in \mathbb{R}$ for $j = 1, ..., n_p$, and $p \in N$

• Row 2 to $|T_2| + 1$:

$$A_{p,1:n_p}^p = \left[-1 \quad \frac{(x_{2:n_p}^{*k})^\top}{\|x_{2:n_p}^{*k}\|} \right], A_{k,1:n_k}^p = 0 \quad \text{for all } k \neq q, \quad \text{and} \quad p \in T_2$$

- The other rows should be generated such that $rank([A^B, A^R, A^{T_2}]) = m$.
- 12: Calculate $b = Ax^*$ and $c = A^Ty^* + s^*$
- 13: **Return** SOCOP (A, b, c) with maximally complementary solution (x^*, y^*, s^*)

assume that it has another optimal solution (\bar{y}, \bar{s}) , and let $X^* = \text{diag}(x^*)$. Then, we have

$$X^*A^{\top}(\bar{y}-y^*) = -X^*(\bar{s}-s^*) = 0.$$

Since A generated in a way that the rank of X^*A^{\top} is m, we have $\overline{y} = y^*$. We can conclude that (x^*, y^*, s^*) is a maximal complementary solution for the generated problem.

Corollary 4.2: For any SOCOP generated by Algorithm 11, the optimal partition $(\mathcal{B}, \mathcal{N}, \mathcal{R}, T_1, T_2, T_3)$ is equal to $(\mathcal{B}, \mathcal{N}, \mathcal{R}, T_1, T_2, T_3)$.

As expected, generating SOCOPs with predefined optimal partitions restricts how matrix A is generated. However, some components of A are not restricted, and enable the user to control the properties of A. As shown in Theorem 4.1, Algorithm 11 generates a SOCOP with a unique dual optimal solution. To get both primal and dual unique solutions in this algorithm, some further restrictions are needed for generating matrix A to enforce that the generated SOCOP is both primal and dual nondegenerate, as discussed in Section 6 of [1].

4.2.4. SOCOPs with optimal and interior solutions

We can extend Algorithm 10 to provide both specific interior and optimal solutions by adding one row and column to the matrix A. We aim to generate optimal and interior solutions in a general manner, but we need to enforce the orthogonality condition:

$$(x^0 - x^*)^{\top} (s^0 - s^*) = 0.$$
 (9)

Note that this is a natural requirement; similar to LOPs, we have $(x^* - x^0) \in \text{Lin}^{\perp}(A)$ and $(s^* - s^0) \in Lin(A)$. Theorem 4.4 shows that the claimed properties of (x^0, y^0, s^0) and (x^*, y^*, s^*) are indeed correct. Before presenting Theorem 4.4, we need to verify the orthogonality properties of the generated solution.

Algorithm 12 Generating SOCOPs with specific interior and optimal solutions

- 1: Choose dimensions m < n (the dimension of generated SOCOP: m + 1, n + 1)
- 2: Generate $(\hat{A}, \hat{b}, \hat{c})$ with optimal solution $(\hat{x}, \hat{y}, \hat{s})$ by Algorithm 10 (dimension: $p \times m$)
- 3: Generate $x^0 \in \mathbb{L}^{n_1, \dots, n_p + 1}_+$ and let $\hat{x}^0 = ((x^0)^1; \dots; (x^0)^p_{1:n_p})$
- 4: Build $x^* \in \mathbb{L}^{n_1, \dots, n_p+1}_+$ such that

$$(x^*)^{1:p-1} = (\hat{x})^{1:p-1}, (x^*)_{1:n_p}^p = (\hat{x})_{1:n_p}^p, \text{ and } (x^*)_{n_p+1}^p = 0$$

- 5: Calculate vector $\alpha = \frac{1}{(x^0)_{p=1}^p} \hat{A}(\hat{x} \hat{x}^0)$
- 6: Build $\tilde{A} = (\hat{A}, \alpha)$ (concatenation of a column to matrix) 7: Generate $y^0 \in \mathbb{R}^{m+1}$ such $y^0_{m+1} \neq 0$, and build $y^* = (\hat{y}, 0)^\top \in \mathbb{R}^{m+1}$
- 8: Generate $\hat{s}^0 \in \mathbb{L}^{n_1, \dots, n_p}_+$ 9: Let $\delta = (\hat{x}^0 \hat{x})^\top (\hat{s}^0 \hat{s})$, and generate $(s^0)_{n_p+1}^p > (\frac{-\delta}{(x^0)_{n_p+1}^p})^+$

10: Calculate
$$\hat{s}_{n_p+1}^p = \frac{\delta}{(x^0)_{n_p+1}^p} + (s^0)_{n_p+1}^p$$

11: Build
$$s^* = (\hat{s}, \hat{s}_{n_p+1}^p)^\top, \hat{s}^0 = (\hat{s}^0, (s^0)_{n_p+1}^p)^\top;$$

11: Build
$$s^* = (\hat{s}, \hat{s}^p_{n_p+1})^\top$$
, $s^0 = (\hat{s}^0, (s^0)^p_{n_p+1})^\top$;
12: Calculate vector $\beta = \frac{1}{y^0_{m+1}} (\bar{A}^\top (\hat{y} - (y^0)_{1:m}) + s^* - s^0)$

13: Build
$$A = \begin{pmatrix} \tilde{A} \\ \beta^{\top} \end{pmatrix}$$
 (concatenation of a row to matrix)

- 14: Calculate $b = Ax^*$ and $c = A^Ty^* + s^*$
- 15: Return SOCOP (A, b, c) with interior solution (x^0, y^0, s^0) and optimal solution (x^*, y^*, s^*)

Lemma 4.3: For any (x^0, y^0, s^0) and (x^*, y^*, s^*) generated by Algorithm 12, we have

$$(x^0 - x^*)^{\top} (s^0 - s^*) = 0.$$

Proof: Similar to the proof of Lemma 2.1, Steps 9 and 11 of Algorithm 12 ensure that the orthogonality condition holds.

Using Lemma 4.3, the following theorem shows that the generated problem satisfies the desired properties.

Theorem 4.4: Let (x^0, y^0, s^0) and (x^*, y^*, s^*) be generated by Algorithm 12. Then,

$$\begin{split} x^* \circ s^* &= 0, \\ Ax^* &= b, \\ A^\top y^* + s^* &= c, \\ Ax^0 &= b, \\ A^\top y^0 + s^0 &= c, \\ x^* \in \mathbb{L}^{n_1, \dots, n_p + 1}, \quad s^* \in \mathbb{L}^{n_1, \dots, n_p + 1}, \quad x^0 \in \mathbb{L}^{n_1, \dots, n_p + 1}_+, \quad s^0 \in \mathbb{L}^{n_1, \dots, n_p + 1}_+. \end{split}$$

That is, (x^0, y^0, s^0) and (x^*, y^*, s^*) are interior and optimal solutions, respectively, for the generated SOCOP (A, b, c).

Proof: The proof is similar to the proof of Theorem 2.2.

Compared to the SDOP generators, the SOCOP generators are computationally simpler since they do not require generating random orthonormal or positive semidefinite matrices. Let t_r be the amount of arithmetic operations required to generate a number randomly. To generate orthonormal or positive semidefinite matrices, we need to use a decomposition method, which requires $\mathcal{O}(n^3)$ arithmetic operations as discussed in the appendix. In the general case, the LOP and SOCOP generators require $\mathcal{O}(n^2t_r)$ arithmetic operations, while the SDO generators require $\mathcal{O}(n^3t_r)$ arithmetic operations. It should be mentioned that if we want to generate a random matrix A for LOPs and SOCOPs with specific condition numbers, then we need to use decomposition methods and the complexity of the LOP and SOCOP generators increases to $\mathcal{O}(n^3t_r)$ arithmetic operations.

4.2.5. SOCOPs with predefined interior and maximally complementary solutions

To generate SOCOPs with both interior and maximally complementary solutions, we can use Algorithm 12 in the first step of Algorithm 11, which provides a SOCOP with a maximally complementary solution. The only difference is that we should choose the partition such that the last cone is in the partition N. By this modification, the added column in Step 6 of Algorithm 12 will be in partition N, which satisfies all the restrictions needed to keep (x^*, y^*, s^*) maximally complementary. In this way, we can generate SOCOPs with an interior solution and predetermined optimal partition.

5. Implementation

All mentioned generators are implemented in a python package, which is available in open source at https://github.com/qcol-lu. This package gives the option of prescribing the norm of vectors, condition numbers, and sparsity of the matrices. In addition, several versions of interior point methods, such as feasible/infeasible, exact/inexact, and long-step/short-step/predictor-corrector, are implemented and available for the experiment. There is also an option to choose the solver of the Newton system. One may choose classical or quantum linear system algorithms.

6. Conclusion

We develop and implement several random instance generators for LO, SDO, and SOCO with specific optimal and/or interior solutions. Because of a high level of controllability, these generators enable users to analyze different features of the problem, such as sparsity and condition number, to study the performance of different algorithms smartly. In addition, we proposed SDOP and SOCOP generators with predefined optimal partitions, which can be used to generate computationally challenging instances.

The proposed generators can also be used to study the average performance of algorithms for solving LO, SDO, and SOCO problems with different probability distributions for input data, optimal and interior solutions. Future research directions include expanding the construction of these generators for other classes of conic, polynomial, and nonlinear optimization problems.

The proposed generators can be used to build computationally challenging problems. For example, Algorithms 7 and 11 can produce SDOPs and SOCOPs, failing strict complementarity. Such problems can slow down the convergence of IPMs. Another example is producing LO, SOCO, and SDO problems with ill-conditioned coefficient matrices. Another direction for extending the proposed generators is to generate other hard problems, e.g. LOPs which are primal or dual unbounded. For SDO and SOCO, it is worth exploring developing generators that produce instances that have a zero-duality gap, but with no optimal solution or instances with a non-zero duality gap.

An interesting question raised by reviewers is how much the proposed generators can be generalized to more general conic problems. One can generate a symmetric conic optimization problem with a known interior solution, although it is not obvious how that can be done for more challenging conic problems, such as copositive conic problems. Since we use a partition to generate optimization problems with known optimal or complementary solutions, it is more challenging to build a generator for a general symmetric conic problem, that would transparently map the optimal partition structure of SOCOPs. All in all, other types of conic problems are getting more attention due to the wide range of applications of conic optimization. Thus, generalizing the proposed generators for other conic problems is worth to explore.

Disclosure statement

This paper was prepared for informational purposes by the Global Technology Applied Research Center of JPMorgan Chase & Co. This paper is not a product of the Research Department of JPMorgan Chase & Co., or its affiliates. Neither JPMorgan Chase & Co. nor any of its affiliates makes any

explicit or implied representation or warranty and none of them accept any liability in connection with this paper, including, without limitation, with respect to the completeness, accuracy, or reliability of the information contained herein and the potential legal, compliance, tax, or accounting effects thereof. This document is not intended as investment research or investment advice, or as a recommendation offer, or solicitation for the purchase or sale of any security, financial instrument, financial product or service, or to be used in any way for evaluating the merits of participating in any transaction. No potential conflict of interest was reported by the author(s).

Funding

This work is supported by Defense Advanced Research Projects Agency as part of the project W911NF2010022: *The Quantum Computing Revolution and Optimization: Challenges and Opportunities*; and by the National Science Foundation (NSF) under Grant No. 2128527.

Notes on contributors

Mohammadhossein Mohammadisiahroudi is a Ph.D. candidate at Lehigh University (Department of Industrial and System Engineering), working in Quantum Computing and Optimization Lab under the supervision of Prof. Tamás Terlaky. He received his master's degree from the Sharif University of Technology and bachelor's degree from the Iran University of Science and Technology, both in Industrial Engineering. His research focuses on developing, analyzing, and implementing quantum and classical algorithms for solving challenging optimization problems. His research was recipient of the 2023 Inform Computing Society Best Student Paper Prize as runner-up and 2023 Van Hoesen Family Best Publication Award.

Ramin Fakhimi received his BSc in Industrial Engineering from Ferdowsi University of Mashhad and his MSc in Industrial Engineering from the Sharif University of Technology. He earned his Ph.D. in Industrial and Systems Engineering at Lehigh University in 2023 under the guidance of Professors Tamás Terlaky and Luis F. Zuluaga. His research focuses on mathematical optimization problems. Currently, he works as a Decision Scientist at The Walt Disney Company.

Brandon Augustino is a Global Technology Applied Research Senior Associate at JPMorgan Chase working on quantum computing. Prior this appointment, he was a Postdoctoral Associate at the Sloan School of Management at Massachusetts Institute of Technology. He received his Ph.D. in Industrial and Systems Engineering from Lehigh University. His work focuses on the development of quantum algorithms for optimization and scientific computing.

Tamás Terlaky is the George N. and Soteria Kledaras '87 Endowed Chair Professor at Lehigh University. He has published four books, edited over ten books and journal special issues and published over 200 research papers. Terlaky received the Egerváry Award of the Hungarian Operations Research Society, the H.G. Wagner Prize of INFORMS, and the Outstanding Innovation in Service Science Engineering Award of IISE. He is a Fellow of IFORS, the Canadian Academy of Engineering, SIAM, INFORMS, and the Fields Institute. He is the Editor in Chief of JOTA. His research interest includes conic and quantum computing optimization, interior point methods, computational optimization, cancer treatment optimization, and optimization of the operations of correctional systems.

ORCID

Mohammadhossein Mohammadisiahroudi http://orcid.org/0000-0002-4046-0672

Ramin Fakhimi http://orcid.org/0000-0001-8567-9718

Brandon Augustino http://orcid.org/0000-0001-8265-1779

Tamás Terlaky http://orcid.org/0000-0003-1953-1971

References

- F. Alizadeh and D. Goldfarb, Second-order cone programming, Math. Program. 95 (2003), pp. 3-51.
- [2] F. Alizadeh, J.P.A. Haeberly, and M.L. Overton, Complementarity and nondegeneracy in semidefinite programming, Math. Program. 77 (1997), pp. 111–128.
- [3] J.L. Arthur and J.O. Frendewey, GENGUB: A generator for linear programs with generalized upper bound constraints, Comput. Oper. Res. 20 (1993), pp. 565-573.
- [4] S. Bowly, K. Smith-Miles, D. Baatar, and H. Mittelmann, Generation techniques for linear programming instances with controllable properties, Math. Program. Comput. 12 (2020), pp. 389-415.
- [5] P.H. Calamai, L.N. Vicente, and J.J. Júdice, A new technique for generating quadratic programming test problems, Math. Program. 61 (1993), pp. 215–231.
- [6] E. Castillo, R.E. Pruneda, and M. Esquivel IV, Automatic generation of linear programming problems for computer aided instruction, Int. J. Math. Educ. Sci. Technol. 32 (2001), pp. 209–232.
- [7] A. Charnes, W.M. Raike, J.D. Stutz, and A.S. Walters, On generation of test problems for linear programming codes, Commun. ACM. 17 (1974), pp. 583–586.
- [8] A. Coja-Oghlan, P. Gao, M. Hahn-Klimroth, J. Lee, N. Müller, and M. Rolvien, The full rank condition for sparse random matrices, Preprint (2021). Available at arXiv:2112.14090.
- [9] E. De Klerk, Aspects of Semidefinite Programming: Interior Point Algorithms and Selected Applications, Vol. 65, Springer Science & Business Media, 2006.
- [10] D.M. Gay, Electronic mail distribution of linear programming test problems, Math. Program. Soc. COAL Newsletter 13 (1985), pp. 10–12.
- [11] J.N. Hooker, Needed: an empirical science of algorithms, Oper. Res. 42 (1994), pp. 201-212.
- [12] D. Klingman, A. Napier, and J. Stutz, NETGEN: A program for generating large scale capacitated assignment, transportation, and minimum cost flow network problems, Manage. Sci. 20 (1974), pp. 814–821.
- [13] F. Mezzadri, How to generate random matrices from the classical compact groups, Preprint (2006). Available at math-ph/0609050.
- [14] A. Mohammad-Nezhad and T. Terlaky, On the identification of the optimal partition for semidefinite optimization, INFOR: Information Systems and Operational Research 58 (2020), pp. 225–263.
- [15] A. Mohammad-Nezhad, Conic optimization: optimal partition, parametric, and stability analysis, Ph.D. diss., Lehigh University, 2019.
- [16] G. Pataki, Bad semidefinite programs: they all look the same, SIAM. J. Optim. 27 (2017), pp. 146-172.
- [17] M.G. Pilcher and R.L. Rardin, Partial polyhedral description and generation of discrete optimization problems with known optima, Naval Res. Logistics (NRL) 39 (1992), pp. 839–858.
- [18] C. Roos, T. Terlaky, and J.P. Vial, Theory and Algorithms for Linear Optimization: An Interior Point Approach, Wiley, Chichester, 1997.
- [19] P. Sampourmahani, M. Mohammadisiahroudi, and T. Terlaky, On semidefinite representations of second-order conic optimization problems, Commun. Optim. (2024), pp. 1–30.
- [20] L.B. Sokolinsky and I.M. Sokolinskaya, FRaGenLP: a generator of random linear programming problems for cluster computing systems, in International Conference on Parallel Computational Technologies, Springer, Cham, 2021. pp. 164–177.
- [21] S. Sremac, H.J. Woerdeman, and H. Wolkowicz, Error bounds and singularity degree in semidefinite programming, SIAM. J. Optim. 31 (2021), pp. 812–836.
- [22] T. Terlaky and Z. Wang, On the identification of the optimal partition of second order cone optimization problems, SIAM. J. Optim. 24 (2014), pp. 385–414.
- [23] M.J. Todd, Probabilistic models for linear programming, Math. Operations Res. 16 (1991), pp. 671–693.
- [24] H. Wei and H. Wolkowicz, Generating and measuring instances of hard semidefinite programs, Math. Program. 125 (2010), pp. 31–45.

Appendices

Here, we review some basic procedures to generate random positive semidefinite matrices and orthogonal matrices, which can be used in the proposed SDOP and SOCOP generators.

Appendix 1. Generating Random Positive Semidefinite Matrices

There are several approaches to generating a positive semidefinite matrix $P \in \mathcal{S}^n_+$.

- (1) Generate a random matrix $A \in \mathbb{R}^{n \times n}$ and calculate the target matrix $P = AA^{\top}$. If A has full rank with probability 1, the matrix *P* is positive semidefinite with probability 1.
- (2) A more efficient way is to generate a lower triangular random matrix $L \in \mathbb{R}^{n \times n}$ and calculate the target matrix $P = LL^{\top}$. If the diagonal elements of L are non-zero, then P is positive definite. If some of the diagonal elements of L are zero, then P is positive semidefinite.
- (3) Generate an orthonormal matrix $Q \in \mathbb{R}^{n \times n}$ and a positive diagonal matrix Λ . Then calculate $P = Q\Lambda Q^{\mathsf{T}}$. If the diagonal elements of Λ are greater than zero, then P is positive definite. If the diagonal elements of Λ are greater than or equal to zero, then P is positive semidefinite.
- (4) Since generating a random orthonormal matrix is computationally expensive, we can generate a lower triangular random matrix $L \in \mathbb{R}^{n \times n}$ in which all diagonal elements are one instead. Then we can compute the target matrix as $P = LDL^{\top}$ where D is a diagonal matrix with non-negative elements.

The second one requires the fewest arithmetic operations among the four mentioned approaches. However, the third one gives the option of determining the range of eigenvalues of the matrix P, which is helpful in predetermining the condition number of matrix P.

Appendix 2. Generating Random Orthogonal Matrices

A general approach is to generate a random matrix $A \in \mathbb{R}^{n \times n}$ and orthogonalize it by the Gram-Schmidt process or other methods in QR decomposition, such as the Modified Gram-Schmidt and Householder methods. Generating random orthogonal (or unitary) matrices is an active research area and there are many efficient procedures to generate such matrices, e.g. see [13].