
Demonstration of Udon: Line-by-line Debugging of User-Defined
Functions in Data Workflows

Yicong Huang
Department of Computer Science
University of California, Irvine

Irvine, CA, USA
yicongh1@ics.uci.edu

Zuozhi Wang
Department of Computer Science
University of California, Irvine

Irvine, CA, USA
zuozhiw@ics.uci.edu

Chen Li
Department of Computer Science
University of California, Irvine

Irvine, CA, USA
chenli@ics.uci.edu

ABSTRACT
Many big data systems are written in languages such as C, C++,
Java, and Scala for high e�ciency, whereas data analysts often use
Python to conduct data wrangling, statistical analysis, and machine
learning. User-de�ned functions (UDFs) are commonly used in these
systems to bridge the gap between the two ecosystems. Debugging
complex UDFs in data-processing systems is challenging due to
the required coordination between language debuggers and the
data-processing engine, as well as the debugging overhead on large
volumes of data. In this paper, we showcase Udon, a novel debugger
to support line-by-line debugging of UDFs in data-processing sys-
tems. Udon encapsulates modern line-by-line debugging primitives,
such as those to set breakpoints, perform code inspections, and
make code modi�cations while executing a UDF on a single tuple.
In this demonstration, we use real-world scenarios to showcase the
experience of using Udon for line-by-line debugging of a UDF.

CCS CONCEPTS
• Information systems! Data management systems; • Soft-
ware and its engineering ! Software testing and debugging.

KEYWORDS
data work�ows, user-de�ned functions, debugging, python udf

ACM Reference Format:
Yicong Huang, Zuozhi Wang, and Chen Li. 2024. Demonstration of Udon:
Line-by-line Debugging of User-De�ned Functions in Data Work�ows. In
Companion of the 2024 International Conference on Management of Data
(SIGMOD-Companion ’24), June 9–15, 2024, Santiago, AA, Chile. ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/3626246.3654756

1 INTRODUCTION
Big data systems have become increasingly popular due to their
capabilities to process large and complex datasets. A key feature of
these systems is the integration of user-de�ned functions (UDFs),
which allow users to implement custom logic for speci�c data-
processing tasks. These UDFs enhance the systems’ usability, es-
pecially for tasks where built-in functions are inadequate. UDFs
facilitate the incorporation of third-party code and libraries, such
as machine learning tools in Python and statistical packages in R,
broadening the applicability of these systems. Given the �exibility

This work is licensed under a Creative Commons Attribution Inter-
national 4.0 License.

SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0422-2/24/06
https://doi.org/10.1145/3626246.3654756

of UDFs, they become increasingly complex. For instance, the work-
�ow in Figure 1 includes UDF operators for sophisticated machine
learning training and customized aggregations.

Figure 1: A data work�ow with UDFs for SVM-based training
and inference and for calculating aggregated sentiment.

Due to their increasing complexity, developing UDFs can pose
signi�cant challenges, especially when it comes to debugging. First,
it requires coordination between the data-processing engine and
the debugger to control the UDF execution. Second, debugging can
introduce computational overhead to the UDF execution, which
can be signi�cant on large datasets or expensive UDFs. Traditional
debugging methods often involve post-mortem log analysis, which
can be ine�cient and insu�cient for identifying runtime errors,
especially when dealing with large datasets and complex UDF oper-
ators. An alternative approach involves testing UDFs with sample
data. This testing method may not cover all the scenarios, such as
missing data or issues that arise only on the entire dataset.

In our recent work, we introduced Udon [7], a novel debugger
for UDFs in data-processing systems. Udon o�ers an on-demand,
line-by-line debugging experience while a data-processing task is
actively running. It runs debuggers under the control of the data
engine, and employs a unique debugging-aware execution model to
support operator responsiveness during debugging. It incorporates
various optimization techniques for minimizing runtime overhead
by intelligently detaching debuggers when they are not required.

In this demonstration we will showcase Udon’s capabilities
through practical debugging scenarios from real-world applications.
Given the popularity of Python UDFs, we integrated the standard
Python debugger, pdb, into Udon and seamlessly integrated Udon
into Texera [11], an open-source data analytics work�ow system.
We will highlight the following features of Udon:
(1) It allows attachment and detachment of language debuggers

for UDFs that are running in a distributed environment.
(2) It o�ers a �ne-grained line-by-line debugging experience for

complex UDFs.
(3) It supports inspection and modi�cation of intermediate states

between code lines in a UDF.

476

https://orcid.org/0000-0002-1186-4803
https://orcid.org/0009-0003-4466-8096
https://orcid.org/0000-0001-8015-6870
https://doi.org/10.1145/3626246.3654756
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3626246.3654756
Tim Pollitt
Pencil

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626246.3654756&domain=pdf&date_stamp=2024-06-09


SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile Yicong Huang, Zuozhi Wang, and Chen Li.

2 DEMONSTRATION SYSTEM OVERVIEW
Figure 2 shows the architecture of Udon. We develop Udon on top
of Texera [11], an open-source system to support cloud-based col-
laborative data analytics using work�ows. Texera provides a web
interface where analysts can construct data analytical work�ows
using operators. In addition to the built-in operators, Texera sup-
ports Python UDF operators and allow users to edit the UDF code
on operators. The work�ow execution is distributed on a cluster of
machines. To integrate Udon, we introduce a debugger frontend
into the interface of Texera. On the execution engine, we utilize the
debugger-enabled UDF operator and debug-aware coordinator.

Texera 
Workflow
 Web GUI

Execution 
Engine

Workflow with UDF
UDF 

Code Editor
Debugger 
Frontend

Debug-aware Coordinator

Built-in 
Operator UDF Operator

Debugger
UDF Operator

Debugger …

…

Users

Machine
Cluster

Figure 2: System architecture of Udon integrated into Texera.
Udon components are highlighted in blue.

Engine-controlled language debuggers. Udon integrates the
standard Python debugger, pdb [10]. Each UDF operator can be
attached with a pdb instance to enter a debug mode. The debug
commands from users are sent to the coordinator, then forwarded
to the target debugee operator. The coordinator is aware of all
operators in either the debug mode or the normal execution mode.
Two-threadUDF executionmodel.Udon uses a novel two-thread
execution model for UDF operators to facilitate communication
between the coordinator and the UDF operators. Each debugger-
enabled UDF operator provided consists of two threads: a control-
processing (CP) thread and a data-processing (DP) thread. These
two threads communicate with each other through shared variables.
The CP thread is responsible for receiving control instructions from
the coordinator, such as system commands (e.g., heartbeat and
statistic checks) and debug instructions (e.g., setting breakpoints).
The DP thread is responsible for executing the UDF code to process
data tuples, and it can be managed by the language debugger.

Udon uses optimizations to detach language debuggers based
on speci�c data characteristics. In this demonstration we will en-
able the optimizations to mitigate the runtime overhead associated
with the language debuggers. See the full paper [7] for a detailed
description of these features.

3 DEMONSTRATION SCENARIOS
In this section we will walk through the demonstration of Udon
with the help of Alice, an imaginary Texera user. Consider the
scenario where Alice is developing a Python UDF using the Texera

work�ow interface, as shown in Figure 3. The goal is to calculate
the windowed average sentiment of texts. The UDF processes one
tuple at a time, each containing a text string. It begins by utilizing
an NLTK’s sentiment analyzer to compute a sentiment score for
the tuple’s text, and the score is between -1 and 1. It maintains a
window to store recent sentiment scores, and uses this window to
compute an average sentiment score of the window for each tuple.
1 from pytexera import *

2 from nltk.sentiment import SentimentIntensityAnalyzer

3 class WindowedSentimentOperator(UDFOperatorV2 ):

4
5 def open(self):

6 self.window_size = 30

7 self.sum = 0

8 self.sentiments = []

9 self.analyzer = SentimentIntensityAnalyzer ()

10
11 def process_tuple(self , tuple: Tuple):

12 text = tuple[�text�]

13 polarity_scores = self.analyzer.polarity_scores(text)

14 sentiment_score = polarity_scores[�compound �]

15
16 # Update the sum and queue for sentiments

17 self.sum += sentiment_score

18 self.sentiments.append(sentiment_score)

19 if len(self.sentiments) > self.window_size:

20 expired_sentiment = self.sentiments.pop(0)

21 self.sum -= expired_sentiment

22
23 current_average = self.sum / len(self.sentiments)

24
25 # Add the average sentiment to the tuple for output

26 tuple[�windowed_average �] = current_average

27 yield tuple

Figure 3: A UDF by a user Alice to calculate the windowed
average sentiment of texts.

Alice has tested the code on sample data. When she incorporates
the UDF into a production work�ow shown in Figure 1 to generate
a line chart displaying changes in sentiment, the output shows an
average sentiment of 0 for several consecutive tuples. An average
sentiment score is expected to be a fraction number, but during the
execution of the work�ow, the operator always generates a score
of 0. This unexpected behavior suggests the execution has bugs.
Alice’s code may not contain a bug, but the issue could be from
third-party functions or due to incorrect input data. In this case,
Alice plans to use Udon line-by-line debug the issue.

3.1 Suspending a running UDF operator
between two code lines

Alice wants to trace the execution of the UDF code line by line to
gain insights of the runtime behavior. To do so, she can suspend
the UDF operator at the line where the issue appears.
Setting a line breakpoint in UDF code. One way to suspend
the UDF at a desired line is to set a line breakpoint. To do so,
Alice clicks on the line 26 to set a breakpoint, with a condition
2DAA4=C_0E4A064 == 0. This condition allows her to capture the
output tuple matching this condition for further analysis. This step
sends the following debug instruction to the coordinator

⇡41D6⇠><<0=3 ((4C⌫A40:?>8=C, 26, “2DAA4=C_0E4A064 == 0”),

477



Demonstration of Udon: Line-by-line Debugging of User-Defined Functions in Data Workflows SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile

which is sent to the target debuggee operator. When the operator re-
ceives a SetBreakpoint command, the CP thread updates a shared
variable. The DP thread has a chance between the execution of
two lines of UDF code to explicitly check whether there is a debug
command to handle. If so, it attaches the language debugger to itself
and hands over its execution control to the debugger, which then
registers the breakpoint and starts to monitor it. In this example,
each yield statement (e.g., at line 27) will allow the DP thread to
conduct an explicit check, and Alice can use yield statements in
the code to increase this frequency.
Waiting for a breakpoint hit. After the breakpoint is set, Alice
waits till the UDF execution reaches the breakpoint. During the
execution of the DP thread, the language debugger will check if
any breakpoint is hit before executing the next code line. When
there is a hit, the language debugger writes the hit event to another
shared variable, suspends the DP thread’s execution, noti�es the
CP thread, and awaits further debug instructions. The CP thread
then forwards the event to the coordinator and eventually back to
the user on the frontend. The snapshot in Figure 4 is taken after
the operator has reached the breakpoint at line 26.

Figure 4: A breakpoint is hit at line 26, as indicated by the
highlighted code in the editor. The operator is also marked
in purple, indicating that it has been suspended.

During this suspension, the operator is highlighted in purple,
which shows its paused state. The other operators remain in an
active state, shown by the orange color. As the debugee operator
ceases to emit data, downstream operators will complete processing
their input and await further input. Similarly, because the debugee
operator cannot handle additional input data, upstream operators
experience back pressure at the network layer, which prevents
them from sending data to the debuggee operator. Consequently,
the work�ow gradually enters a state of a full pause.
Catching an exception during processing of a tuple. An al-
ternative method to suspend the execution involves capturing a
runtime exception raised within the UDF code. Developers of-
ten introduce additional assertions and validations in the code
to scrutinize edge cases. For instance, Alice can insert an asser-
tion 0BB4AC (2DAA4=C_0E4A064! = 0) after line 23 to validate the code.
When the assertion fails, the UDF will throw an exception at this
line, and the debugger will catch and report it as a debug event,

which is similar to a breakpoint hit. Consequently, the DP thread is
suspended by the debugger, awaiting further debug instructions.
3.2 Line-by-line Execution Control in UDF
Once the execution is suspended, Alice has complete control of the
UDF execution, and can closely monitor the UDF line by line.
Inspecting intermediate states between UDF lines. Alice can
inspect the states of a UDF between code lines. For example, when
the execution is suspended at line 26, she can print the value of “text”
by sending a ?A8=C (C4GC) debug command. She can also evaluate
the predicate ;4=(B4; 5 .B4=C8<4=CB) > 0 by entering the predicate
as a debug command to make sure the division is on a non-positive
number. In addition, she can also set watchpoints to follow the
update of any intermediate states. For example, she can send a
38B?;0~ B4; 5 .BD< debug command and suspend the execution at
any code line where the variable is updated.
SteppingwithinUDF code during the processing of a tuple.Al-
ice can control the UDF execution to the next over, the next function,
the next breakpoint, or even the next tuple at the same code line.
This functionality allows her to examine the intermediate states
at di�erent lines. In the provided example, the B4=C8<4=C_B2>A4 at
line 14 is generated by a library call within NLTK. Alice may �nd
it bene�cial to step into the ?>;0A8C~_B2>A4B function and have the
insight of the third-party library.
Retrying the processing of the current tuple. To facilitate the
debugging of the tuple that causes the issue,Udon supports repeated
execution of the tuple. Alice can initiate this by clicking the “Retry
Tuple” button, which resubmits the tuple for another execution of
the UDF code. This functionality is valuable when Alice wants to
backtrack to a previous execution point for the same tuple. In the
provided example, Alice temporarily suspends the UDF execution
at line 26 but wants to inspect the function call located at an earlier
line 14. To achieve this, she can utilize the “Retry Tuple” feature,
which discontinues the UDF execution for the current tuple and
repeats the UDF for the same tuple.
3.3 In-place correction of a UDF operator
The underlying issue stems from two possible reasons: 1) Data
errors, which are incorrect values in the input tuple; and 2) Code
errors, which are logic �aws in the UDF code. After identifying
a reason, a Udon user can �x UDF executions in-place, without
changing other operators or disrupting the work�ow’s execution.
In particular, Alice can take the following actions to �x them.
Fixing a data error within a UDF operator. If an input tuple
contains incorrect values, Alice can correct these values within the
UDF operator during execution, between code lines. Suppose Alice
identi�es that a speci�c tuple contains special characters encoded in
a manner incompatible with #!) .(4=C8<4=C�=C4=B8C~�=0;~I4A .
In this case, she can send a CD?;4 [“C4GC”] = h=4F_C4GCi debug com-
mand to �x the tuple in-place before executing line 12, overwriting
the original text at the beginning of the UDF. When continued,
line 13 can invoke the analyzer to process the modi�ed text.
Updating the UDF code during UDF execution. In cases where
the UDF code logic requires a �x, Udon allows for in-place updates
of the UDF code without terminating the operator or the work-
�ow. Alice simply needs to provide an updated UDF code snippet
through a debug command. The new code is compiled, loaded, and
replaces the original �awed UDF logic. Any states of the old UDF

478



SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile Yicong Huang, Zuozhi Wang, and Chen Li.

are transferred into the new UDF, and Alice has the �exibility to
modify the states to align with the new code logic. Afterward, she
can utilize the Retry Tuple feature to process the current tuple with
the updated UDF and resume the work�ow right from that point.

Debugging often requires trial and error, and developers may
not always be certain about a �x. For example, Alice may have a
hypothesis she wants to verify, or she might have a code change
that she wants to test before committing the change. In such cases,
Udon allows her to modify intermediate states within a UDF to
evaluate “what if” scenarios. Suppose when the UDF execution
is suspended at line 23, Alice wants to check how UDF executes
if the B4; 5 .BD< value is 0. She can change the intermediate state
at line 23 by sending B4; 5 .BD< = hC4BC8=6_E0;D4i to the debugger
(shown in Figure 5). This statement updates the intermediate state
at line 23, enabling the execution to proceed with the testing value.
Alice can always retry the execution of the same tuple with di�erent
intermediate states before making the �nal correction.

Figure 5: Alice uses the debugger frontend to assign a testing
value to change intermediate states between lines.

3.4 Detaching the debugger from a UDF
After completing the debugging process, Alice can remove all break-
points and watchpoints using the 2;40A debug command. Subse-
quently, she can resume the normal UDF execution by sending
the 2>=C8=D4 command, which tells the DP thread to detach the
language debugger. Udon provides optimizations to minimize the
overhead introduced by language debuggers, and this approach
removes the debugger overhead once the debugging has �nished.

3.5 Collaborative UDF debugging
Udon also supports collaborative UDF debugging, making it the �rst
system to our best knowledge to provide this capability. Suppose
Alice �nds the SVM training operator has an unexpected behavior,
but she has limited experience in ML. She can use the collaborative
features [8] provided by Texera to invite her colleague, Bob, to help
her debug the SVM operator. The two users share the same exe-
cution environment, and each of them can send debug commands
to any UDF. For instance, Alice can set breakpoints in the SVM
operator, suspend the execution to show the issue to Bob, and Bob
can take control of the UDF execution to debug it together with
Alice. Alice can monitor the debug commands executed by Bob
and observe all the debug events generated by the UDF. If desired,
Alice can delegate the entire debugging task for the SVM operator
to Bob and debug the Windowed Average Sentiment operator on
the same work�ow execution. Since the two target operators are
independent from each other, Alice and Bob will not interfere with
each other’s debugging e�orts.

4 RELATEDWORK
Big data engines such as Apache Spark and Apache Flink sup-
port Python UDFs and o�er limited ability to use external debug-
gers [2, 3]. These solutions do not support coordination between
the engine and the debugger, thus can cause the data tasks to fail
unexpectedly during debugging. A recent survey [4] discussed a
taxonomy of methods for integrating UDFs into data engines, and
most approaches focus on optimization of UDF performance over
debugging support. The existing debuggers on big data systems
such as BigDebug [5] and TagSni� [1] focus more on the input
and output data of each operator, not than the intermediate states
of UDFs. They treat operators as black boxes and do not support
line-by-line debugging inside a UDF. Other e�orts [6, 9] involve
transferring the debugging session as well as the data to an exter-
nal process, which allows execution with a local debugger. These
methods are not applicable if a bug only occurs in the original en-
vironment but not in a development environment. In our previous
works, we showcased the pause feature [12] and the collaborative
features [8] of Texera such as shared-editing and shared-execution
of a work�ow. This demonstration takes Texera system to the next
level by introducing collaborative line-by-line UDF debugging.

ACKNOWLEDGMENTS
This work was funded by the National Science Foundation (NSF)
under award III-2107150. We thank the Texera team at UC Irvine
for their contributions to the development of the system.

REFERENCES
[1] Bertty Contreras-Rojas, Jorge-Arnulfo Quiané-Ruiz, Zoi Kaoudi, and Saravanan

Thirumuruganathan. 2019. TagSni�: Simpli�ed Big Data Debugging for Data�ow
Jobs. In Proceedings of the ACM Symposium on Cloud Computing, SoCC 2019, Santa
Cruz, CA, USA, November 20-23, 2019. ACM, 453–464. https://doi.org/10/mrgh

[2] Debugging | Apache Flink 2024. https://nightlies.apache.org/�ink/�ink-docs-
master/docs/dev/python/debugging/.

[3] Debugging PySpark – PySpark 3.1.1 documantation 2024. https://spark.apache.
org/docs/3.1.1/api/python/development/debugging.html.

[4] Yannis Foufoulas and Alkis Simitsis. 2023. User-De�ned Functions in Modern
Data Engines. In 39th IEEE International Conference on Data Engineering, ICDE
2023, Anaheim, CA, USA, April 3-7, 2023. IEEE, 3593–3598. https://doi.org/10/mrgd

[5] Muhammad Ali Gulzar, Matteo Interlandi, Seunghyun Yoo, Sai Deep Tetali, Tyson
Condie, Todd D. Millstein, and Miryung Kim. 2016. BigDebug: debugging prim-
itives for interactive big data processing in spark. In Proceedings of the 38th
International Conference on Software Engineering, ICSE 2016, Austin, TX, USA, May
14-22, 2016, Laura K. Dillon, Willem Visser, and Laurie A. Williams (Eds.). ACM,
784–795. https://doi.org/10.1145/2884781.2884813

[6] Pedro Holanda, Mark Raasveldt, and Martin L. Kersten. 2017. Don’t Keep My
UDFs Hostage - Exporting UDFs For Debugging Purposes. In XXXII Simpósio
Brasileiro de Banco de Dados - Short Papers, Uberlandia, MG, Brazil, October 4-7,
2017, Carmem S. Hara, Bernadette Farias Lóscio, and Damires Yluska de Souza Fer-
nandes (Eds.). SBC, 246–251. http://sbbd.org.br/2017/wp-content/uploads/sites/
3/2018/02/p246-251.pdf

[7] Yicong Huang, Zuozhi Wang, and Chen Li. 2023. Udon: E�cient Debugging of
User-De�ned Functions in Big Data Systems with Line-by-Line Control. Proc.
ACM Manag. Data 1, 4 (2023), 225:1–225:26. https://doi.org/10.1145/3626712

[8] Xiaozhen Liu, Zuozhi Wang, Shengquan Ni, Sadeem Alsudais, Yicong Huang,
Avinash Kumar, and Chen Li. 2022. Demonstration of Collaborative and Interac-
tive Work�ow-Based Data Analytics in Texera. Proc. VLDB Endow. 15, 12 (2022),
3738–3741. https://doi.org/10.14778/3554821.3554888

[9] Matteo Marra, Guillermo Polito, and Elisa Gonzalez Boix. 2020. A debugging
approach for live Big Data applications. Sci. Comput. Program. 194 (2020), 102460.
https://doi.org/10.1016/j.scico.2020.102460

[10] pdb — The Python Debugger 2024. https://docs.python.org/3/library/pdb.html.
[11] Texera 2024. Collaborative Data Analytics Using Work�ows, https://github.com/

Texera/texera/.
[12] Zuozhi Wang, Avinash Kumar, Shengquan Ni, and Chen Li. 2020. Demonstration

of Interactive Runtime Debugging of Distributed Data�ows in Texera. Proc. VLDB
Endow. 13, 12 (2020), 2953–2956. https://doi.org/10.14778/3415478.3415517

479

https://doi.org/10/mrgh
https://nightlies.apache.org/flink/flink-docs-master/docs/dev/python/debugging/
https://nightlies.apache.org/flink/flink-docs-master/docs/dev/python/debugging/
https://spark.apache.org/docs/3.1.1/api/python/development/debugging.html
https://spark.apache.org/docs/3.1.1/api/python/development/debugging.html
https://doi.org/10/mrgd
https://doi.org/10.1145/2884781.2884813
http://sbbd.org.br/2017/wp-content/uploads/sites/3/2018/02/p246-251.pdf
http://sbbd.org.br/2017/wp-content/uploads/sites/3/2018/02/p246-251.pdf
https://doi.org/10.1145/3626712
https://doi.org/10.14778/3554821.3554888
https://doi.org/10.1016/j.scico.2020.102460
https://docs.python.org/3/library/pdb.html
https://github.com/Texera/texera/
https://github.com/Texera/texera/
https://doi.org/10.14778/3415478.3415517

	Abstract
	1 Introduction
	2 Demonstration System Overview
	3 Demonstration Scenarios
	3.1 Suspending a running UDF operator between two code lines
	3.2 Line-by-line Execution Control in UDF
	3.3 In-place correction of a UDF operator 
	3.4 Detaching the debugger from a UDF
	3.5 Collaborative UDF debugging

	4 Related Work
	Acknowledgments
	References

