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In the realm of neuroscience, mapping the three-dimensional (3D) neural

circuitry and architecture of the brain is important for advancing our

understanding of neural circuit organization and function. This study presents

a novel pipeline that transforms mouse brain samples into detailed 3D brain

models using a collaborative data analytics platform called “Texera.” The user-

friendly Texera platform allows for effective interdisciplinary collaboration

between team members in neuroscience, computer vision, and data

processing. Our pipeline utilizes the tile images from a serial two-photon

tomography/TissueCyte system, then stitches tile images into brain section

images, and constructs 3D whole-brain image datasets. The resulting 3D data

supports downstream analyses, including 3D whole-brain registration, atlas-

based segmentation, cell counting, and high-resolution volumetric visualization.

Using this platform, we implemented specialized optimization methods and

obtained significant performance enhancement in workflow operations. We

expect the neuroscience community can adopt our approach for large-scale

image-based data processing and analysis.
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1 Introduction

In neuroscience, large high-resolution imaged brain data is frequently needed to

facilitate accurate neural circuit mapping and subsequent image analysis (Oh et al., 2014;

Kim et al., 2015, 2017; Liebmann et al., 2016; Mano et al., 2018; Whitesell et al., 2019;

Zhang et al., 2023). Gathering accurate, high-resolution data requires sectioning methods

and additional post-processing to correct flaws from imaging. Traditional histological

methods for imaging the brain in 3D rely on manually sectioning of the whole brain,

followed by the mounting and scanning of all sections. These processes are not only

labor-intensive but also prone to errors, limiting their effectiveness (Stille et al., 2013).

Alternative procedures, such as tissue clearing (Dodt et al., 2007; Chung et al., 2013;

Renier et al., 2014; Jing et al., 2018; Susaki et al., 2020; Ueda et al., 2020; Kosmidis et al.,

2021) combined with light-sheet microscopy, offer a different approach but often result in

deformed samples, outputting overly expanded or contracted images. These methods can

complicate subsequent registration processes due to issues with potential chemical-induced

fluorescence quenching or incomplete clearing.
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The recent emergence of sectioning-based 3D reconstruction

techniques, including Serial Two-Photon Tomography

(STPT/TissueCyte) (Ragan et al., 2012; Osten and Margrie,

2013; Kim et al., 2015), marks a significant step forward. These

techniques automate the imaging and sectioning processes and

mitigate the challenges associated with manual sectioning, such

as image misalignments and registration inaccuracies. Despite

these advances, platforms such as TissueCyte still require extensive

post-imaging processing to achieve accurate 3D reconstructions.

The construction of 3D mouse brain data requires the

acquisition of high-resolution 2D images of brain sections. Each

section is imaged in segments, or tiles, which are then pieced

together to form a complete 2D representation of the section.

Compiling a sufficient number of these 2D composite sections

and stacking them accurately is essential for recreating the 3D

architecture of a mouse brain. The quality of the initial images

and their proper sectional alignment collectively contribute to the

fidelity of the 3D data.

In this study, we introduce a pipeline tailored for transforming

mouse brain samples to detailed whole brain volumes. Our

pipeline involves capturing high-resolution images via TissueCyte,

efficiently and accurately stitching the tile images, and stacking

2D sections to construct a detailed whole mouse brain volume.

This pipeline was developed by experts in three distinct scientific

disciplines: neuroscience, computer vision, and data systems. An

overview of our comprehensive process is provided in Figure 1.

Initially, mouse brain samples are embedded in agarose and

subsequently imaged using TissueCyte microscopy to obtain high-

resolution, multichannel tile images. For a typical whole mouse

brain, this methodology yields 616 tile images across four channels,

with each image being 1.4 MB in size with a resolution of 832×832

pixels. Each section image, which contains 8, 716 × 11, 236 pixels,

is subject to deformation correction for each tile to enable precise

stitching. Uniform intensity values across the entire image are also

ensured through a brightness normalization process. Collectively,

these measures allow for clear visualization of individually labeled

cells, laying the foundation for subsequent analysis.

Due to the interdisciplinary nature of the study, we involve

team members with diverse expertise and backgrounds. To ensure

effective collaboration, we utilize a user-friendly platform that

accommodates these diverse backgrounds, including those without

programming skills. To this end, we use Texera (Texera, 2024) as a

platform for efficient collaborations that satisfy these requirements.

By using designated optimization methods on Texera, we complete

the entire image processing in 2.5 h for a whole brain spanning

280 sections. This runtime performance achieves more than an

80% time reduction compared to the non-optimized approach

and around a 30% time reduction compared to traditional parallel

approaches. After stitching and outputting all section images, we

use Neuroglancer (Maitin-Shepard et al., 2021), a web-based tool

for volumetric data visualization, to render the brain data in 3D.

The resulting 3D data is then ready for further analysis, including

registration, annotation, and cell counting.

Our pipeline produces high-fidelity, seamless, and high-

resolution 3D reconstructions of mouse brains, enabling intricate

visualizations of pivotal biological markers throughout the brain

structure. This precision comes from the accurate stitching of 2D

brain sections, which allows for clear delineation and tracking

of anatomical features, including cell somas, cell processes, and

vascular networks in both 2D and 3D spaces. Furthermore,

produced 3D data supports advanced procedures such as whole-

brain 3D registration and subsequent atlas-based segmentation

with the Allen Brain Atlas Common Coordinate Framework

(CCF) (Wang et al., 2020). This data enables precise identification

and quantification of region-specific signals, providing a robust

platform for comprehensive neurobiological research.

The rest of the paper is organized as follows. We first describe

our methodology for acquiring, managing, and processing image

data in Section 2, illustrating the steps taken to prepare high-quality

images for subsequent visualization and analysis. Next, we present

the implementation of the methods, optimization strategies, and

results in Section 3. We conclude with a discussion in Section 4.

2 Materials and methods

2.1 Animals and ethics

All experiments were conducted according to the National

Institutes of Health guidelines for animal care and use, and were

approved by the University of California, Irvine Institutional

Animal Care and Use Committee (IACUC, protocol #: AUP-22-

163) and the Institutional Biosafety Committee (IBC). Dataset

B0039 was generated using a 2-month-old wild-type C57BL/6J

mouse. Similarly, a 2-month-old Tie2-Cre; Ai9 mouse was used to

produce the B0003 dataset.

2.2 Data acquisition

2.2.1 Viral injections
The B0039 mouse received intracranial injections of viral

tracers using a stereotaxic machine. The injections comprised

a combination of Adeno-associated virus (AAV) helpers

(pENN.AAV.CamKII 0.4.Cre.SV40, Addgene viral prep #105558-

AAV1, 5.3 × 1013 GC/ml + AAV8-DIO-TC66T-2A-eGFP-2A-oG,

Salk Institute, CA, USA, 2.36 × 1013 GC/ml) and engineered

pseudo-typed rabies virus (EnvA-RV-SAD!G-DsRed, CNCM,

2.1 × 109 IU/ml). The injection precisely labeled specific cell types

in the brain region of interest, along with their monosynaptically

connected input cells throughout the brain. Following an

incubation period of 30 days, which included three weeks of AAV

helper injections and nine days of engineered pseudo-typed rabies

virus injections, transcardial perfusion was performed on mice

using 1× PBS followed by 4% PFA. Post-dissection, the mouse

brains were fixed overnight at 4◦C in 4% PFA to ensure the fixation

of fluorescent-labeled cells.

2.2.2 Brain sample preparation and TissueCyte
imaging

In our study, we used a sample embedding method analogous

to the one previously published (Oh et al., 2014). A brief description

of the method is provided below for clarity and reproducibility.
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FIGURE 1

Overview of a process from a mouse brain to final digitized images and visualizations. This process includes comprehensive steps involved in

converting physical brain samples to detailed 2D section images and finally to a 3D volume for visualization and analysis.

The mouse brains were transferred to a 1× PB solution with 0.01%

sodium azide after overnight PFA fixation until they were ready for

imaging. The next step involved embedding the mouse brains in a

4% oxidized agarose solution, followed by immersion in a solution

of Surecast (Acrylamide:Bis-acrylamide ratio of 29:1), with a total

concentration of 4.5% Surecast and 0.5% VA-044 activator, with

excess volume (>20 ml for a brain), diluted in 1 × PB: (22 ml

PB; 3 ml Surecast; 0.13 g activator per brain) at 4◦C overnight.

The next day, the agarose-embedded brain was removed from the

solution and placed into a disposable mold. It was then baked at

40◦C for 2 h. Following the baking process, the agarose-embedded

brain was transferred back to 1× PB and allowed to soak overnight.

Subsequently, the specimen was ready for TissueCyte imaging at

4◦C.

The agarose-embedded brain was secured on a glass slide

using adhesive, with magnets on the opposite side adhering to

a metal plate at the base of the TissueCyte sample container

filled with 1× PB solution. In our specific setup, the mouse

brain was affixed with the cerebellum facing upward and the

olfactory bulb facing downward. TissueCyte, an automated block-

face imaging technique, employs serial two-photon tomography

(STPT) imagingmodality to capture repetitive images through two-

photon illumination while physically sectioning the imaged area

with an integrated vibratome. The imaging setup employed specific

parameters such as laser wavelength, laser power, resolution of each

tile, number of tiles, and number of optical sections per cycle.

TissueCyte employs a 16× objective with a field of view (FOV) of

1,125 µm × 1,125 µm. Before imaging, all agarose was sectioned

until the cerebellum was exposed. We then imaged one optical

section situated 40 µm below the surface. This optical section

comprised ∼11 × 14 tiles for each color channel (red, green, blue,

and far-red) for a regular whole mouse brain. After we completed

the imaging for one optical section, the top surface was cut off

by the integrated vibratome at a thickness of 50 µm, marking the

completion of one cycle (Figure 2). The entire imaging process

consists of 280–300 cycles, which can image the whole mouse brain

in the coronal direction. The tile images collected for each single

optical section were saved in the TIFF format, with a resolution

of 832 × 832 pixels in the XY plane for each tile. Our imaging

platform exhibits robustness and is well-aligned between sections,

eliminating the need for additional alignment processing.

2.3 Image data and management

The image data were acquired by the TissueCyte 1600FC. For

each entire brain, the TissueCyte 1600FC captured a substantial

amount of image data. In our dataset, a whole brain was represented

as 280 optical sections, where each section corresponded to a plane

of the brain. Each section was typically made up of 154 (11 × 14)

tiles, with each tile representing a specific segment of the section.

Each segment or tile location had four files corresponding to four

color channels: red, green, blue, and far-red, resulting in a total

of 616 tile files. In total, each brain contained 689,920 tile images.

Each tile image was ∼1.4 MB, resulting in a total of 224 GB per

brain volume.

We managed and structured the data files as follows. Two types

of metadata files were stored on disk: brain volume metadata and

section metadata. The tile images were stored in a hierarchy of

folders. In each brain file’s folder, we created a text file for the

brain volumemetadata and a subfolder for each brain section. Each

section folder contained its tile images across the four channels,

stored in the TIFF format. Furthermore, in each section folder, we

stored metadata for the section, denoting information such as the

number of tiles per row and column, the dimensions of the tiles,

and other pertinent details. For instance, one of our brain datasets,

labeled as B0039, had 280 section folders, each containing 616 tile

images and a text file consisting of section metadata.
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FIGURE 2

TissueCyte imaging setup utilizing both physical and optical sectioning. This illustration shows our imaging process, where each physical brain

section of 50 µm in thickness is paired with a single optical section. The optical sections are represented by yellow planes located 40 µm below the

surface.

2.4 Image data processing

Our image processing aimed to create a comprehensive 3D

brain data from tile images. As outlined in Figure 3, this process

began by generating an image for each brain section from the tile

images, and then using these section images to assemble a 3D data.

The quality of the final 3D data was significantly influenced by the

quality of the 2D section images. Therefore, we implemented two

optimization steps to enhance the quality of the tile images. In this

section, we discuss the tile stitching process, the two optimization

steps, and conclude with the conversion from 2D to 3D.

2.4.1 Stitching tile images into a 2D section image
During the stitching phase, we merged individual tiles into

a cohesive singular image, eliminating harsh lines or abrupt

changes where the tiles meet. In the initial set of imaged tiles,

overlaps between neighboring tiles during the imaging process

were unavoidable. These overlaps occurred because the brain

sample moved during imaging with a step size of 1,017 µm

either horizontally or vertically, creating an overlap of ∼10%

(100 pixels) with the 1,125 µm TissueCyte field of view between

neighboring tiles. This caused each raw tile to interact and overlap

with its immediate neighbors, including the tiles on its left,

right, above, and below. Solving this problem required proper tile

positioning, which depended on the location of the tiles within

the section (rows and columns), the scale of the tiles, and the

degree of overlap between tiles. Traditionally, to manage these

overlaps, researchers commonly cut extraneous portions out from

the tiles to correct the scale in a process known as trimming.

An alternative approach involves accurately positioning the tile

images during the stitching process, allowing the subsequent tile

to cover the overlapping area. In this way, we could achieve the

same result without explicitly trimming the tiles. We solved this

problem by computing translation parameters for each tile. This

was done by calculating the overlapping area between adjacent

tiles and determining how much of each tile image extended

into its neighboring tiles. Each tile must then be placed in its

designated position within its section to ensure coherence in the

final output section.

For illustration purposes, let us first analyze a group of four tiles

arranged in a 2×2 configuration.Within this group, we assessed the

horizontal shift, which is between a left tile and its right neighbor,

and the vertical shift, which is between a top tile and its bottom

neighbor. We selected specific pixel strips from each tile. From a

left tile, we took a 100-pixel wide strip from its right edge, and from

its right tile, we took a 50-pixel wide strip from its left edge. We

aligned the narrower strip from the right tile to the broader strip of

the left tile using normalized cross correlation. From this operation,

we determined the number of pixels needed for each strip to be

displaced so that the right tile aligned with the left precisely. The

distance of this shift is defined as the translation parameters. As

these displacements are consistent and uniform across sections

and different brain scans, this process only needs to be performed

once and the resulting parameters can be used across multiple

scanning procedures. After obtaining the translation parameters,

we can determine the precise position of each tile within the section

pixel by pixel. We prepared a blank canvas corresponding to the

section’s dimensions. Each tile was then accurately positioned at

its calculated location, measured in pixel units, based on the three

previously mentioned factors. The values in overlapping regions

were averaged together through a linear blending operation. Once
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FIGURE 3

Pipeline of transforming individual tile images to section images. There were four steps. (1) Raw tiles were retrieved from the TissueCyte. (2) These

raw tiles underwent brightness normalization to correct intensity values. (3) Lens distortion was corrected. (4) The tiles were stitched together to

create a full section.

all tiles were put in place, we obtained a high-resolution image of

the entire section.

2.4.2 Improving 2D image quality
Simply using the raw tiles collected by TissueCyte was

insufficient, since environmental influences, lens-induced

distortions, and image overlaps, originating from external factors,

could significantly impact the quality of 3D visualization. To

solve these problems, we proposed a series of pre-processing steps

including brightness normalization and deformation corrections.

These steps were designed to enhance the image quality and ensure

a standardization of values across the datasets. In this section,

we present these issues, outline the specific challenges we aim to

address, and detail a solution for each of them.

2.4.2.1 Brightness normalization

In our acquired tile images, their center regions typically

exerted brighter values than the edges due to lens vignetting.

When stitched together, the generated output did not have smooth

brightness values along the overlapping edges.

As visualization remains a major goal of our framework, we

aim to output clean and smooth visualizations. When presenting

volumes in 3D, lens vignetting will introduce artifacts that result

in a subpar visualization. This necessitates the correction of

lens vignetting.

To solve this problem, we generated an average tile image for

each color channel from all tiles in the current section. An example

average tile is shown in Figure 4. Though it is possible to generate a

standard average tile image for use across different brain volumes,

it will not be as effective in correcting the lens vignetting effects.

Individual differences in intensities between scanned brains or

different scan settings require the average tiles to be computed for

each brain.

We define these average tile images as profiles. This step

results in four profiles in total, one for each color channel.

Though activated cells will present higher intensity values than the

surrounding tissue, corresponding tiles in different sections help

average these values to keep the profile consistent. Next, we used

these profiles to adjust the brightness of each tile pixel-by-pixel.

For each tile image, we adjusted pixel values according to its

profile to normalize the brightness across the tile. This process

normalizes the pixel values into a scale with values ranging between

0 to 1. For each pixel of a tile image, we divided it by its

corresponding pixel in the profile. For darker pixels, this process

FIGURE 4

A sample average profile for a B0039 brain section. The edges are

darker than the center regions of the image. Applying these average

sections to each tile standardizes the brightness values across the

entire stitched section and minimizes spots that are very bright or

dark, as seen in the output depicted in Figure 5.

increased their value, while conversely, it reduced the brightness

of overly illuminated pixels. This step ensured that the final

image presented a balanced and uniform appearance, effectively

mitigating the problem of overly dark and bright spots in the

stitched 2D section. Some minor tiling effects may still be present

in the output, but we have not found these inhomogeneities to

adversely affect the image-processing algorithms or quantification

in our pipeline. As shown in Figure 5, there was an enhancement in

image clarity before and after applying brightness normalization.

2.4.2.2 Deformation correction

Lens distortion is a common problem on many imaging

platforms and can cause issues with discontinuities in stitching

processes due to nonlinear deformation. This distortion effect

becomes apparent when using a lens to image an electron

microscopy (EM) grid consisting of orthogonal lines. Correcting

these distortions is critical, as it directly impacts the fidelity of
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FIGURE 5

Comparison of B0039 images before (left) and after (right) applying brightness normalization. Before the step, the edges are darker than the center.

After brightness normalization, this discrepancy is significantly reduced.

FIGURE 6

16× objective lens imaged 1,000 mesh EM grid. Noticeable lens

distortion manifests at the top and bottom of both images, with

some cells along the edges being incomplete, or cut off along the

edges. Taking the area within the green box as an example, the

horizontal grid lines appear bent compared to the straight top and

bottom edges of the green box.

the 2D section images. Doing so ensured that the tiles accurately

represented the brain’s actual structure. This distortion effect

could be corrected by determining the extent of deformation and

applying transformations on the tiles to correct for lens distortion.

We first employed 16× objective lenses to capture images of

a 1,000 mesh EM grid, featuring a 25 µm pitch, 19 µm hole size,

and 6 µm bar width. Distortions were particularly noticeable along

the tile edges, as depicted in Figure 6, and manifested as unnatural

curvature or skewing of the grid lines, which should otherwise

appear orthogonal.

Our approach to adjusting this deformation began with

analyzing an EM grid, which served as a ground truth to help

correct lens distortion. By comparing the deformation between a

ground truth EM grid and a corresponding imaged EM grid output

from TissueCyte, we can determine the deformation parameters

to transform the output to match the ground truth template.

Upon imaging the EM grid, the edges of this grid image often

showed partial cells due to incomplete capture or lens distortion,

as presented in Figure 6. These partial cells contained insufficient

information, making them inapplicable for further analysis. To

overcome this, our algorithm automatically identified the four

corner points for each whole cell on the grid. These points mark

the boundaries of the fully complete cells. Identifying these corner

points was vital as they served as anchors for aligning the distorted

grid with the template.

To aid in the correction process, we created a template grid with

equally spaced horizontal and vertical lines, designed to represent

an undistorted version of the EM grid. The number of lines in

both directions corresponded to the number of complete cells

identified within the corner points of the distorted grid. The corner

points in the template grid were easily identified, as the lines were

equally spaced.

We then applied a computer vision technique called

homography transformation (Luo et al., 2023) to adjust the

original grid to ensure it matches the template grid’s dimensions

and layout. This is done by using the sets of four marked

corners previously identified on the grid and by establishing

correspondences between those points and the equivalent points

on the template. A projective transformation is then applied to

the grid.

Once the grid is transformed to match the template, we fit

Bezier surface patches (Goshtasby, 1989) to the grids using each

set of four points. Each point within a Bezier patch can used

as control vertices and matched with points in the other grid

to establish correspondences. A bicubic spline function (De Boor

and De Boor, 1978) was used to model the deformation between

these correspondences. By displacing the control vertices to match

their corresponding vertices in the template, each pixel within the

deformed grid was mapped to its new location by interpolating

between corresponding points. This pixel-by-pixel adjustment

successfully corrected the deformation, resulting in an image

significantly less influenced by lens-induced distortions. As these

deformations are consistent and uniform across different sections
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FIGURE 7

Comparison of the B0003 brain images before (left) and after (right) applying deformation correction. Before the correction, the tile edges do not

align seamlessly with neighboring tiles. After the correction, the connections between neighboring tiles become smoother.

and brains, these deformation parameters do not need to be

recomputed for each new brain dataset; these parameters can be

reused for different scans on the same imaging machine. We show

how the deformation correction process affects our images in

Figure 7.

2.4.3 Converting 2D images into a 3D data
To convert 2D section images to a coherent 3D structure, we

stacked each of the 2D sections to create a 3D array. Each section

was reassembled based on their sequential order to reconstruct the

full three-dimensional anatomy of the brain. This 3D array was

then compressed and saved into the Neuroimaging Informatics

Technology Initiative (NIfTI) format. Multiple NIfTI files were

saved into an output folder containing the full-resolution images

and down-sampled versions to match the Allen CCF format. These

section images were efficiently compressed and stored, minimizing

required storage space while maintaining quick data access.

2.5 Utilizing Texera for collaborative data
analytics using workflows

This work highlights two critical requirements for our data-

analysis process. First, the work involves a collaborative effort from

three research teams specializing in neuroscience, computer vision,

and data systems. The diverse expertise and skill sets of the teams

necessitate a platform that supports seamless collaboration. Second,

processing a large amount of brain image data (172,480 files and

224 GB per brain) requires an efficient solution to reduce the time.

To meet these requirements, we utilize Texera (Texera, 2024), a

platform to support collaborative data analytics using workflows.

Texera provides a web-based cloud service for data analytics and

allows users to analyze data without installing software on their

computers. It is a collaborative environment similar to existing

collaboration services such as Google Docs and Overleaf, allowing

users from diverse disciplines to jointly edit workflows and manage

their executions. Texera uses a distributed computation engine

that can allocate its workload across a cluster of machines. This

capability reduces the processing time on large volumes of data. We

FIGURE 8

Overview of Texera, a collaborative data analytical workflow system

with a distributed execution engine. The platform allows multiple

users to access and modify workflows simultaneously.

build workflows on Texera to conduct image pre-processing, 2D–

3D conversion, and 3D visualization of brain data. An overview of

Texera is presented in Figure 8.

Here, we present an experience of how users, Alice and Bob,

collaborate using Texera. Alice first logs into Texera and creates a

new workflow. Then she shares it with Bob. After that, she adds

a new operator to the canvas and starts to work on it. When Bob

joins the workflow, he sees the operator Alice is working on. If Bob

decides to add a second operator, he places it on the canvas and

links it to the first one. After Alice finishes her changes, the two

users work on the second operator together. Once they are done,

Bob clicks the “Run” button to execute the workflow.

In addition to supporting over 100 operators for data

processing, machine learning, and visualization, Texera also
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FIGURE 9

A Texera workflow that consists of three operators A, B, and C. The

data flows from operator A to operator B and eventually to operator

C. Each operator shows its number of input tuples and number of

output tuples. Green operators have completed their execution,

while yellow operators performing their computations.

supports user-defined operators in several popular programming

languages, including Python, Java, and R. This capability allows

users to define their own custom operators in these languages based

on different needs and their programming skills.

Next, we discuss the execution model of Texera with an

example workflow shown in Figure 9. In Texera, an operator serves

as the minimal unit of data transformation. It receives input data,

performs a transformation, and outputs results. A directed edge

between operators indicates the direction of data flow. In Figure 9,

operator A sends its output data to operator B, which sends its

output data to operator C. By connecting operators with directed

edges, we construct a directed acyclic graph (DAG) as a workflow.

Texera processes data tuples using a pipelining approach, where

multiple operators can process data concurrently. Each operator

can be executed using multiple workers.

3 Results

In this section, we report our experimental results.

3.1 Texera workflows

We constructed several Texera workflows following the

methods described in Section 2.4, including a workflow for tile

adjustment, stitching, and 2D-to-3D conversion. Next, we present

details of these workflows.

3.1.1 Workflow 1: tile adjustment and stitching
This workflow performs the stitching process mentioned

in Section 2.4.1 and improves the tile image quality as mentioned

in Section 2.4.2. It converts the raw tile images obtained from

TissueCyte to coherent, high-quality 2D section images. As shown

in Figure 10, this workflow has the following operators.

1. Loading brain volume metadata: This operator, denoted as

“BrainVol metadata” in the workflow, is used to upload the text

file that contains the brain volume metadata and process the

content.

2. Generating tile metadata: This operator takes the brain volume

metadata as input and generates the metadata for each tile that

includes the file path, section range, boundary position, margin

value, size information, channel, and labeled section index.

3. Generating section information: Similar to the previous

operator, this operator takes the brain volume metadata as input

and computes the required metadata information for stitching,

such as brain section image dimension, color channel numbers,

and brain ID.

4. Loading tiles: This operator uses the provided tile metadata and

loads corresponding tile images from the given file paths in the

tile metadata. During this process, it checks for any missing

tiles and tags them with a boolean flag used by the subsequent

operators to decide whether they should substitute the tile with

a placeholder zero image, where all pixel values are set to 0.

5. Brightness normalization: This operator adjusts the brightness

level of the tile images. It loads the average profiles for the four

color channels generated from another workflow. For each tile

image, the corresponding color channel’s profile is applied to do

the adjustment.Within each tile image, pixel values are modified

according to the approach outlined in Section 2.4.2

6. Deformation correction: This operator performs the step as

described in Section 2.4.2. In the initial computation, we save the

necessary parameters to correct lens deformation. In subsequent

runs, we apply these transformation parameters to the tile

images and ensure accurate correction of lens distortions. The

output image tiles then are ready for stitching.

7. Categorization: This step sorts tiles based on their section

number and ensures the correct identification and grouping of

tiles. It distributes the sorted tiles to a worker responsible for

stitching the particular section.

8. Stitching: This operator stitches tile images within the same

section into a single-section image as defined in Section 2.4.1.

It creates a canvas with the width and height as specified by

the section metadata. It associates each input tile with a specific

coordinate indicating its relative position in the section. It

positions them to the correct position pixel-by-pixel based on

input parameters, which ensures that the overlapping positions

between neighboring tiles are resolved without trimming the

overlapping regions. This operator takes the coordinate and

translates the tile to the exact position on the canvas. After filling

the canvas, it outputs a new image representing one complete

brain section.

The final compiled images are converted to the NIfTI file

format, resulting in a comprehensive volumetric representation

of the entire brain. This representation consists of ∼280–300

stitched brain sections, each of which has 8, 716 × 11, 236 pixels,

with a pixel-to-pixel spacing of 1.25 µm and a section-to-section

spacing of 50 µm.

3.1.2 Workflow 2: 2D to 3D conversion and 3D
visualization

After all section images are stitched, we use the workflow shown

in Figure 11 to convert them to a 3D model for visualization.

This workflow consists of two steps. First, the Zarr File Generator

operator receives the folder path of all the section images, loads the
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FIGURE 10

Workflow 1 for tile adjusting and stitching, with a few key components in dotted rectangles: (1) operators for users to drag and drop into the canvas;

(2) shared editing that allows multiple users to view and edit the same workflow simultaneously; (3) icons of concurrent users working on the

workflow; (4) the number of workers for each operator.

FIGURE 11

Workflow 2: converting 2D section images to a 3D model for

visualization. It reads the folder path of the section images, converts

the images to Zarr-format files, and generates URLs for

Neuroglancer to visualize.

section images, and generates Zarr image files (Open Geospatial

Consortium, 2023). Zarr is a format for storing large multi-

dimensional arrays. It organizes data into hierarchical groups,

where each level has datasets with arbitrary JSON metadata

files (Moore and Kunis, 2023). The Zarr format supports fast

processing and easy access, making it particularly useful for

handling large volumes of dense, multi-dimensional arrays, such

as brain image data. Since individual files within a Zarr dataset are

accessible via predefined paths, they can be easily accessed using

a Web browser (Moore and Kunis, 2023). We utilize a web-based

tool called Neuroglancer (Maitin-Shepard et al., 2021) to visualize

the 3D model. To allow users to easily do the visualization using a

Web browser, we integrate Neuroglancer into Texera.

This workflow has three operators specifically designed to

convert 2D section images into 3D data, and then to visualize it

as a 3D model.

• Zarr file generation: This operator takes the folder path of

the section images as input and loads the section images one

by one based on their section numbers. It scales the section

images and adjusts the exposure to increase image readability.

After that, it reads the section images into a Dask array

(Rocklin, 2015). The Dask format is a specific adaptation of the

Zarr format, designed to meet the needs of complex biological

imaging data (Moore et al., 2023). The operator uses these

Dask arrays to write all the section images to an OME-Zarr

format onto the disk. Then, it outputs the folder path where

the Zarr files are stored.

• 3D model visualizer: This operator accepts the Zarr file folder

as input, converts the folder into a Neuroglancer URL, and

sends it to the URL visualization operator to show the 3D

brain model.

3.2 Optimizations

Processing large amounts of data for each brain is time-

consuming. In this section, we discuss a few optimization

techniques we used on Texera to reduce the processing times. For

all the results in this section, we ran the workflows on a 32-core

CPU and 128 GB RAM machine with the Ubuntu Linux 20.04

operating system. Initially, we combined all the tasks as a single

operator. In this approach, we processed the tile images one by one

and loaded all tile images for each section to perform stitching,

and the entire process took around 15 h to finish. This method
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of pre-processing brain images was notably time-consuming. To

accelerate this process, we explored several optimizations.

3.2.1 Using multiple operators
An operator doing too much computation can be hard

to optimize. Splitting the operator into smaller, specialized

components allows for fine-grained tuning and optimizations.

Thus we decomposed the operator into separate operators, each

of which performs a specific task. The operators are shown in

Figure 10.

3.2.2 Enabling parallelism in each operator
The capability to process each tile independently presents an

opportunity for parallel processing. We mark those operators that

can be parallelized so that Texera can facilitate data shuffling and

partitioning to ensure that each worker receives and processes a

portion of the input data.

3.2.3 Maximizing pipelining between operators
We noticed that operators affect each other’s execution time.

Specifically, in a pipelining setup, the slowest operator can slow

down the execution of the entire workflow. To speed up the process,

we focused onmaking the slowest, or bottleneck, operators faster by

giving them more workers. We carefully chose how many workers

to assign to each operator based on their speed. The goal was to

balance the workflow so that over a certain period, all operators

would process data at a similar pace. This means that as soon as

a worker finished processing one piece of data, another piece was

ready to be processed, minimizing the idle time of the worker. We

found that the deformation correction and stitching operators were

themain bottlenecks. To address this issue, we allocated six workers

to the deformation correction operator and four to the stitching

operator. As shown in the diagram in Figure 10, the tile-loading

operator had two workers, while all other operators in Workflow

1 had one worker each.

For a more comprehensive comparison, we also implemented

an approach using traditional Python scripts, optimizing

parallelism with joblib1. This method allowed tasks to be executed

simultaneously across multiple cores on a single machine. We

evaluated three approaches: Traditional Python scripts, Python

script with joblib, and Texera workflows with optimizations. All

were tested on the brain B0039 using the same machine mentioned

earlier, with aligned Python and library versions. We compare

these methods in terms of execution time and user workload, as

detailed below:

• Traditional Python scripts: To execute the Python scripts,

users needed to use the command line and provide the tile

image path. This method took 15 h to complete the entire

pre-processing and stitching tasks.

• Python script with joblib: Similar to the traditional method,

users executed the script via a command line and provided the

1 https://joblib.readthedocs.io/ (accessed February 28, 2024).

tile image path. This approach reduced the completion time

to 3.5 h.

• Texera workflows with optimizations: To execute the

workflow, users first modified the “source text input” operator

with the folder directory and then click the “Run” button. The

workflow completed the entire pipeline in 2.5 h.

The Texera approach showed a significant improvement over

the initial run using traditional Python scripts, achieving an

83.33% reduction in the processing time. Compared to the joblib

optimization approach, the optimized Texera workflow resulted in

a further 28.57% reduction in the processing time.

3.3 Visualization results

As an example, Figure 12 shows a three-dimensional (3D)

visualization of the brain labeled B0039. For this brain, viral tracers

were injected into the dCA1 region, resulting in the fluorescent

labeling of all input neurons to the injection site. Once rendered

in 3D, the brain could be examined in various two-dimensional

planes. For instance, the bottom-right image in Figure 12 displays

a coronal plane of the brain, where the brighter regions indicate

fluorescently labeled cells. In the 3D visualization at the bottom

left of Figure 12, the white areas represent tissue autofluorescence,

while the yellow regions highlight the labeled cells.

4 Discussion

4.1 Collaboration on Texera

This work is a joint effort of three research teams from three

disciplines: neuroscience, computer vision, and data systems. The

neuroscience team provides the data, i.e., tile images, and standards

for the output model accuracy. The computer vision team develops

algorithms and techniques for processing images and 3D models.

The data systems team is responsible for developing the Texera

platform, leading the effort to construct workflows, and optimizing

their execution performance.

In contrast to traditional methods of collaboration, which

often involve cumbersome back-and-forth transfers of data or

code, Texera provides a shared data science experience. Similar

to Overleaf (Overleaf, 2024) for LATEX and Google Docs for rich

text documents, Texera allows multiple collaborators to work on

a workflow at the same time. The three teams use Texera to

collaboratively edit a workflow, run it, and share its results. Take

Workflow 1 in Section 3.1 as an example. The computer vision

team works on the brightness and deformation operators, while

the data systems team works on generating section metadata and

loading tiles. During the execution of the workflow, each team

can specialize in assessing the output of their respective operators

and apply their expertise to ensure the operators’ accuracy and

correctness. The computer vision team, for example, can evaluate

the efficacy of the brightness normalization operator by examining

pixel generation, whereas the neuroscience team can review the

visualization of the final 3D model to ascertain if it meets the

desired accuracy and resolution standards.

Frontiers inNeural Circuits 10 frontiersin.org

https://doi.org/10.3389/fncir.2024.1398884
https://joblib.readthedocs.io/
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org


Ding et al. 10.3389/fncir.2024.1398884

FIGURE 12

3D visualization of the brain labeled B0039, rendered using Neuroglancer. The (bottom-left) figure shows a 3D volume visualization, highlighting the

fluorescently labeled cells in yellow against a white background. The other three figures illustrate different planes of the brain: the (top-left) figure

shows the sagittal view, the (top-right) figure shows the horizontal view, and the (bottom-right) figure shows the coronal view, with bright areas

indicating fluorescently labeled cells.

4.2 Flexibility and generalizability

Our presented pipeline can be reproduced, extended,

and reused to analyze other image data by researchers in

the neuroscience community. This capability is crucial for

ensuring scientific reproducibility and facilitating cross-validation.

Additionally, the pipeline’s adaptability allows for adjustments to

accommodate more detailed image analysis with potentially

larger data volumes. Workflows can be scaled efficiently

to run on a cluster of machines to handle increasing data

volumes, and optimizations can be tailored to meet diverse user

requirements. Because of the modularity of workflow operators,

many operators such as brightness normalization and deformation

correction can be reused to process other image data. This

functionality allows collaborators to share and reuse operators

across different workflows.

4.3 Experiments on other systems

We have also compared Texera with two other popular

workflow systems used in data analytics and machine

learning: RapidMiner (Hofmann and Klinkenberg, 2016) and

KNIME (Berthold et al., 2009). RapidMiner provides an integrated

environment for data preparation, machine learning, and deep

learning. KNIME facilitates a visual construction and interactive

execution of data pipelines. It supports easy integration of

data manipulation and visualization through the addition of new

modules or nodes, where these nodes or modules are comparable to

operators in Texera. Next, we compare them from three aspects

• Collaboration functionality: RapidMiner and KNIME allow

workflow sharing through manual updates. Texera supports

real-time collaboration, enabling multiple users to work

synchronously on the same workflow.

• Execution models: RapidMiner and KNIME primarily

support processing tabular data between operators. They

execute their workflows operator by operator. Texera allows

data to be processed on a tuple-by-tuple basis and supports

pipelined execution, allowing multiple operators to process

data concurrently.

• Deployment methods: RapidMiner and KNIME require users

to install their software for usage. Texera offers a cloud-

based service so that users can access their workflow using a

web browser.

To further illustrate the performance differences, we

constructed the tile adjustment and stitching workflow in

RapidMiner with an identical structure to the one in Texera

and tested them under the same conditions. Unfortunately,

RapidMiner was unable to complete when processing more

than eight sections of tile images. In another test involving the

processing of a single section of tile images, we executed the

workflows in both Texera and RapidMiner on the same computer

machine. Each operator in the Texera workflow was assigned one

worker. RapidMiner took 7 min and 16 s to complete the task,

whereas Texera finished the same task in 4 min and 39 s.
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This performance difference could be attributed to the inherent

differences in their execution models. In our pre-processing steps

for tile images, each tile is independent from each other. For

example, while tile image A undergoes brightness normalization,

tile image B can undergo deformation correction simultaneously.

RapidMiner and KNIME utilize a parallel execution model known

as data parallelism. Texera enables pipelined execution in addition

to data parallelism, which aligns more closely with the inherent

characteristics of this task. Consequently, for our task, Texera’s

parallel execution model utilizes CPU resources more effectively.

4.4 Related work

In the realm of imaging and 3D reconstruction of the

entire mouse brain, two new methods prevail. Our study utilizes

automated block-face serial imaging methods, including Serial

Two-Photon Tomography (STPT/TissueCyte) (Ragan et al., 2012;

Osten and Margrie, 2013; Kim et al., 2015), Fluorescence Micro-

Optical Sectioning Tomography (fMOST) (Gong et al., 2013), and

Block-face Serial Microscopy Tomography (FAST) (Seiriki et al.,

2017, 2019). These methods integrate imaging with automated

sectioning, facilitating efficient data acquisition. Alternatively, the

second prevalent approach involves light-sheet microscopy of

cleared mouse brain samples (Dodt et al., 2007; Chung et al., 2013;

Renier et al., 2014; Jing et al., 2018; Susaki et al., 2020; Ueda et al.,

2020; Kosmidis et al., 2021). We will compare the pros and cons of

bothmethods across three dimensions: tissue preparation, imaging,

and post-imaging processing.

For block-face serial imaging methods, tissue preparation

involves postfixing brain samples in 4% paraformaldehyde (PFA)

post-transcardial perfusion and embedding them in 3%–5%

agarose, which typically requires about one day. Some protocols

might include additional steps to enhance tissue stiffness, like

soaking in acrylamide or sodium borohydrate, extending the

preparation to two additional days. This method, taking∼2–3 days

in total, preserves the brain’s original morphology as no harsh

chemicals are applied. Imaging a mouse brain using a TissueCyte

microscope typically requires about 22 h to obtain four-channel

images with a resolution of 1.25 µm in the xy-plane and 50 µm in

the z-axis. Recent advancements, like FAST, can image the whole

brain in 2.4–10 h with a resolution of 0.7 µm in the xy-plane

and 5 µm in the z-sampling interval (Seiriki et al., 2019). High-

resolution images are obtained, clearly depicting cellular structures

and processes. The preservation of normal brain morphology

simplifies the registration and other post-imaging processes, like

automatic cell detection.

In contrast, light-sheet imaging of cleared samples involves

a series of preparation steps including fixation, decalcification,

decolorization, delipidation, and refractive index (RI) matching,

typically requiring about a week (Dodt et al., 2007; Chung

et al., 2013; Jing et al., 2018; Susaki et al., 2020; Ueda et al.,

2020; Kosmidis et al., 2021). Methods using organic solvents

may quench fluorescent signals, necessitating immunostaining,

which can extend the entire process to ∼1 month (Renier et al.,

2014; Gao et al., 2024). The use of harsh chemicals often alters

brain morphology, causing anisotropic expansion or shrinkage

that complicates registration with standard brain templates like

Allen’s CCF. Although light-sheet microscopy can rapidly image

cleared samples in about 2–3 h per brain, the spatial resolution

might be compromised by imperfect clearing. Variations in

refractive index within different brain regions can introduce optical

aberrations, affecting image quality. Despite these challenges,

ongoing technological improvements have enhanced the quality of

axonal projection imaging via light-sheet microscopy (Tomer et al.,

2014; Susaki et al., 2020).

In conclusion, while light-sheet microscopy offers rapid

imaging of cleared brains, block-face serial imaging methods

provide superior resolution and simpler post-processing due to

better preservation of native brain morphology.

One novel aspect of our study lies in the adoption of Texera,

which distinguishes itself as an ideal tool for our purposes. Its user-

friendly interface, combined with an efficient pipeline structure,

makes it a good choice for our image assembly needs. Other

workflow systems such as Knime (Berthold et al., 2009) and

RapidMiner (Hofmann and Klinkenberg, 2016) lack features that

support real-time collaboration among users and their execution

models are not well aligned with our work, as discussed in

Section 4.3. Big data systems such as Spark (Zaharia et al.,

2010) and Flink (Carbone et al., 2015) are for large-scale data

processing, yet they lack collaboration features and a workflow

interface needed by users with limited programming skills. There

are cloud-based platforms that focus on biomedical research, such

as Cavatica (Cavatica, 2024), which specializes in genomic data, and

Galaxy (Afgan et al., 2018). Both platforms do not support real-time

collaboration functionality, pipelined execution, nor computing on

multiple machines. Texera has been selected as the ideal platform

to fulfill our design and as a collaborative open-source alternative.

For sections of 2D biomedical image data, it is a common

practice to stack these sections into a 3D array to create a volume.

There exist multiple methods that can represent and render 3D

data (O’Donoghue et al., 2018; Zhou et al., 2022). One method

is based on volume or direct rendering, and it allows users to

view entire datasets at once. This method utilizes ray casting

and transfer functions, layers transparency through voxels, colors

regions based on scalar values within the volume, and provides an

accurate visualization of internal features. While direct rendering

offers detailed insights into biomedical images, especially those

with noise, it allows the visualization of features obscured by

surface techniques, and it is typically slower and less suited for

real-time applications. This is in contrast to surface rendering,

which is fast, but does not store information past the modeled

surface boundary (Kuszyk et al., 1996). For this reason, we use

volume rendering.

4.5 Future works

In our current work, it is important to note that although

the tile images significantly improve the raw images, they are not

entirely free from the effects of lens distortion. Despite this, our

existing correctionmethod is sufficient for our subsequent analyses,

including cell counting and registration. One research direction

is to create a more robust solution to correct deformation to
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better preserve features at a vascular level so that we can enhance

visualization results while still maintaining accuracy.

5 Conclusions

In this paper we present a novel pipeline that transforms mouse

brain samples to detailed 3D brain models by using a collaborative

data analytics platform called “Texera.” Our pipeline utilizes the tile

images from a serial two-Photon tomography/TissueCyte system,

then stitches tile images into brain section images, and constructs

3D whole-brain image datasets. The resulting 3D data supports

downstream analyses, including 3D whole-brain registration, atlas-

based segmentation, cell counting, and high-resolution volumetric

visualization. Our work significantly accelerates research output

and analyses, enabling faster and more detailed exploration of

brain structures.
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