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In the realm of neuroscience, mapping the three-dimensional (3D) neural
circuitry and architecture of the brain is important for advancing our
understanding of neural circuit organization and function. This study presents
a novel pipeline that transforms mouse brain samples into detailed 3D brain
models using a collaborative data analytics platform called “Texera.” The user-
friendly Texera platform allows for effective interdisciplinary collaboration
between team members in neuroscience, computer vision, and data
processing. Our pipeline utilizes the tile images from a serial two-photon
tomography/TissueCyte system, then stitches tile images into brain section
images, and constructs 3D whole-brain image datasets. The resulting 3D data
supports downstream analyses, including 3D whole-brain registration, atlas-
based segmentation, cell counting, and high-resolution volumetric visualization.
Using this platform, we implemented specialized optimization methods and
obtained significant performance enhancement in workflow operations. We
expect the neuroscience community can adopt our approach for large-scale
image-based data processing and analysis.
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1 Introduction

In neuroscience, large high-resolution imaged brain data is frequently needed to
facilitate accurate neural circuit mapping and subsequent image analysis (Oh et al., 2014;
Kim et al,, 2015, 2017; Liebmann et al., 2016; Mano et al., 2018; Whitesell et al., 2019;
Zhang et al., 2023). Gathering accurate, high-resolution data requires sectioning methods
and additional post-processing to correct flaws from imaging. Traditional histological
methods for imaging the brain in 3D rely on manually sectioning of the whole brain,
followed by the mounting and scanning of all sections. These processes are not only
labor-intensive but also prone to errors, limiting their effectiveness (Stille et al., 2013).
Alternative procedures, such as tissue clearing (Dodt et al., 2007; Chung et al., 2013;
Renier et al., 2014; Jing et al., 2018; Susaki et al., 2020; Ueda et al., 2020; Kosmidis et al.,
2021) combined with light-sheet microscopy, offer a different approach but often result in
deformed samples, outputting overly expanded or contracted images. These methods can
complicate subsequent registration processes due to issues with potential chemical-induced
fluorescence quenching or incomplete clearing.
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The recent emergence of sectioning-based 3D reconstruction
techniques, including Serial ~Two-Photon Tomography
(STPT/TissueCyte) (Ragan et al, 2012; Osten and Margrie,
2013; Kim et al., 2015), marks a significant step forward. These
techniques automate the imaging and sectioning processes and
mitigate the challenges associated with manual sectioning, such
as image misalignments and registration inaccuracies. Despite
these advances, platforms such as TissueCyte still require extensive
post-imaging processing to achieve accurate 3D reconstructions.

The construction of 3D mouse brain data requires the
acquisition of high-resolution 2D images of brain sections. Each
section is imaged in segments, or tiles, which are then pieced
together to form a complete 2D representation of the section.
Compiling a sufficient number of these 2D composite sections
and stacking them accurately is essential for recreating the 3D
architecture of a mouse brain. The quality of the initial images
and their proper sectional alignment collectively contribute to the
fidelity of the 3D data.

In this study, we introduce a pipeline tailored for transforming
mouse brain samples to detailed whole brain volumes. Our
pipeline involves capturing high-resolution images via TissueCyte,
efficiently and accurately stitching the tile images, and stacking
2D sections to construct a detailed whole mouse brain volume.
This pipeline was developed by experts in three distinct scientific
disciplines: neuroscience, computer vision, and data systems. An
overview of our comprehensive process is provided in Figure 1.
Initially, mouse brain samples are embedded in agarose and
subsequently imaged using TissueCyte microscopy to obtain high-
resolution, multichannel tile images. For a typical whole mouse
brain, this methodology yields 616 tile images across four channels,
with each image being 1.4 MB in size with a resolution of 832 x 832
pixels. Each section image, which contains 8,716 x 11,236 pixels,
is subject to deformation correction for each tile to enable precise
stitching. Uniform intensity values across the entire image are also
ensured through a brightness normalization process. Collectively,
these measures allow for clear visualization of individually labeled
cells, laying the foundation for subsequent analysis.

Due to the interdisciplinary nature of the study, we involve
team members with diverse expertise and backgrounds. To ensure
effective collaboration, we utilize a user-friendly platform that
accommodates these diverse backgrounds, including those without
programming skills. To this end, we use Texera (Texera, 2024) as a
platform for efficient collaborations that satisfy these requirements.
By using designated optimization methods on Texera, we complete
the entire image processing in 2.5 h for a whole brain spanning
280 sections. This runtime performance achieves more than an
80% time reduction compared to the non-optimized approach
and around a 30% time reduction compared to traditional parallel
approaches. After stitching and outputting all section images, we
use Neuroglancer (Maitin-Shepard et al., 2021), a web-based tool
for volumetric data visualization, to render the brain data in 3D.
The resulting 3D data is then ready for further analysis, including
registration, annotation, and cell counting.

Our pipeline produces high-fidelity, seamless, and high-
resolution 3D reconstructions of mouse brains, enabling intricate
visualizations of pivotal biological markers throughout the brain
structure. This precision comes from the accurate stitching of 2D
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brain sections, which allows for clear delineation and tracking
of anatomical features, including cell somas, cell processes, and
vascular networks in both 2D and 3D spaces. Furthermore,
produced 3D data supports advanced procedures such as whole-
brain 3D registration and subsequent atlas-based segmentation
with the Allen Brain Atlas Common Coordinate Framework
(CCF) (Wang et al., 2020). This data enables precise identification
and quantification of region-specific signals, providing a robust
platform for comprehensive neurobiological research.

The rest of the paper is organized as follows. We first describe
our methodology for acquiring, managing, and processing image
data in Section 2, illustrating the steps taken to prepare high-quality
images for subsequent visualization and analysis. Next, we present
the implementation of the methods, optimization strategies, and
results in Section 3. We conclude with a discussion in Section 4.

2 Materials and methods

2.1 Animals and ethics

All experiments were conducted according to the National
Institutes of Health guidelines for animal care and use, and were
approved by the University of California, Irvine Institutional
Animal Care and Use Committee (IACUC, protocol #: AUP-22-
163) and the Institutional Biosafety Committee (IBC). Dataset
B0039 was generated using a 2-month-old wild-type C57BL/6]
mouse. Similarly, a 2-month-old Tie2-Cre; Ai9 mouse was used to
produce the B0003 dataset.

2.2 Data acquisition

2.2.1 Viral injections

The B0039 mouse received intracranial injections of viral
tracers using a stereotaxic machine. The injections comprised
a combination of Adeno-associated virus (AAV) helpers
(pPENN.AAV.CamKII 0.4.Cre.SV40, Addgene viral prep #105558-
AAVI, 5.3 x 10" GC/ml + AAV8-DIO-TC66T-2A-eGFP-2A-0G,
Salk Institute, CA, USA, 2.36 x 10'* GC/ml) and engineered
pseudo-typed rabies virus (EnvA-RV-SADAG-DsRed, CNCM,
2.1 x 10° TU/ml). The injection precisely labeled specific cell types
in the brain region of interest, along with their monosynaptically
connected input cells throughout the brain. Following an
incubation period of 30 days, which included three weeks of AAV
helper injections and nine days of engineered pseudo-typed rabies
virus injections, transcardial perfusion was performed on mice
using 1x PBS followed by 4% PFA. Post-dissection, the mouse
brains were fixed overnight at 4°C in 4% PFA to ensure the fixation
of fluorescent-labeled cells.

2.2.2 Brain sample preparation and TissueCyte
imaging

In our study, we used a sample embedding method analogous
to the one previously published (Oh et al., 2014). A brief description
of the method is provided below for clarity and reproducibility.
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FIGURE 1

Overview of a process from a mouse brain to final digitized images and visualizations. This process includes comprehensive steps involved in
converting physical brain samples to detailed 2D section images and finally to a 3D volume for visualization and analysis

The mouse brains were transferred to a 1x PB solution with 0.01%
sodium azide after overnight PFA fixation until they were ready for
imaging. The next step involved embedding the mouse brains in a
4% oxidized agarose solution, followed by immersion in a solution
of Surecast (Acrylamide:Bis-acrylamide ratio of 29:1), with a total
concentration of 4.5% Surecast and 0.5% VA-044 activator, with
excess volume (>20 ml for a brain), diluted in 1 x PB: (22 ml
PB; 3 ml Surecast; 0.13 g activator per brain) at 4°C overnight.
The next day, the agarose-embedded brain was removed from the
solution and placed into a disposable mold. It was then baked at
40°C for 2 h. Following the baking process, the agarose-embedded
brain was transferred back to 1x PB and allowed to soak overnight.
Subsequently, the specimen was ready for TissueCyte imaging at
4°C.

The agarose-embedded brain was secured on a glass slide
using adhesive, with magnets on the opposite side adhering to
a metal plate at the base of the TissueCyte sample container
filled with 1x PB solution. In our specific setup, the mouse
brain was affixed with the cerebellum facing upward and the
olfactory bulb facing downward. TissueCyte, an automated block-
face imaging technique, employs serial two-photon tomography
(STPT) imaging modality to capture repetitive images through two-
photon illumination while physically sectioning the imaged area
with an integrated vibratome. The imaging setup employed specific
parameters such as laser wavelength, laser power, resolution of each
tile, number of tiles, and number of optical sections per cycle.
TissueCyte employs a 16x objective with a field of view (FOV) of
1,125 um x 1,125 pum. Before imaging, all agarose was sectioned
until the cerebellum was exposed. We then imaged one optical
section situated 40 pum below the surface. This optical section
comprised ~11 x 14 tiles for each color channel (red, green, blue,
and far-red) for a regular whole mouse brain. After we completed
the imaging for one optical section, the top surface was cut off
by the integrated vibratome at a thickness of 50 ©m, marking the
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completion of one cycle (Figure 2). The entire imaging process
consists of 280-300 cycles, which can image the whole mouse brain
in the coronal direction. The tile images collected for each single
optical section were saved in the TIFF format, with a resolution
of 832 x 832 pixels in the XY plane for each tile. Our imaging
platform exhibits robustness and is well-aligned between sections,
eliminating the need for additional alignment processing.

2.3 Image data and management

The image data were acquired by the TissueCyte 1600FC. For
each entire brain, the TissueCyte 1600FC captured a substantial
amount of image data. In our dataset, a whole brain was represented
as 280 optical sections, where each section corresponded to a plane
of the brain. Each section was typically made up of 154 (11 x 14)
tiles, with each tile representing a specific segment of the section.
Each segment or tile location had four files corresponding to four
color channels: red, green, blue, and far-red, resulting in a total
of 616 tile files. In total, each brain contained 689,920 tile images.
Each tile image was ~1.4 MB, resulting in a total of 224 GB per
brain volume.

We managed and structured the data files as follows. Two types
of metadata files were stored on disk: brain volume metadata and
section metadata. The tile images were stored in a hierarchy of
folders. In each brain file’s folder, we created a text file for the
brain volume metadata and a subfolder for each brain section. Each
section folder contained its tile images across the four channels,
stored in the TIFF format. Furthermore, in each section folder, we
stored metadata for the section, denoting information such as the
number of tiles per row and column, the dimensions of the tiles,
and other pertinent details. For instance, one of our brain datasets,
labeled as B0039, had 280 section folders, each containing 616 tile
images and a text file consisting of section metadata.
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2.4 Image data processing

Our image processing aimed to create a comprehensive 3D
brain data from tile images. As outlined in Figure 3, this process
began by generating an image for each brain section from the tile
images, and then using these section images to assemble a 3D data.
The quality of the final 3D data was significantly influenced by the
quality of the 2D section images. Therefore, we implemented two
optimization steps to enhance the quality of the tile images. In this
section, we discuss the tile stitching process, the two optimization
steps, and conclude with the conversion from 2D to 3D.

2.4.1 Stitching tile images into a 2D section image

During the stitching phase, we merged individual tiles into
a cohesive singular image, eliminating harsh lines or abrupt
changes where the tiles meet. In the initial set of imaged tiles,
overlaps between neighboring tiles during the imaging process
were unavoidable. These overlaps occurred because the brain
sample moved during imaging with a step size of 1,017 um
either horizontally or vertically, creating an overlap of ~10%
(100 pixels) with the 1,125 pum TissueCyte field of view between
neighboring tiles. This caused each raw tile to interact and overlap
with its immediate neighbors, including the tiles on its left,
right, above, and below. Solving this problem required proper tile
positioning, which depended on the location of the tiles within
the section (rows and columns), the scale of the tiles, and the
degree of overlap between tiles. Traditionally, to manage these
overlaps, researchers commonly cut extraneous portions out from
the tiles to correct the scale in a process known as trimming.
An alternative approach involves accurately positioning the tile
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images during the stitching process, allowing the subsequent tile
to cover the overlapping area. In this way, we could achieve the
same result without explicitly trimming the tiles. We solved this
problem by computing translation parameters for each tile. This
was done by calculating the overlapping area between adjacent
tiles and determining how much of each tile image extended
into its neighboring tiles. Each tile must then be placed in its
designated position within its section to ensure coherence in the
final output section.

For illustration purposes, let us first analyze a group of four tiles
arranged in a 2 x 2 configuration. Within this group, we assessed the
horizontal shift, which is between a left tile and its right neighbor,
and the vertical shift, which is between a top tile and its bottom
neighbor. We selected specific pixel strips from each tile. From a
left tile, we took a 100-pixel wide strip from its right edge, and from
its right tile, we took a 50-pixel wide strip from its left edge. We
aligned the narrower strip from the right tile to the broader strip of
the left tile using normalized cross correlation. From this operation,
we determined the number of pixels needed for each strip to be
displaced so that the right tile aligned with the left precisely. The
distance of this shift is defined as the translation parameters. As
these displacements are consistent and uniform across sections
and different brain scans, this process only needs to be performed
once and the resulting parameters can be used across multiple
scanning procedures. After obtaining the translation parameters,
we can determine the precise position of each tile within the section
pixel by pixel. We prepared a blank canvas corresponding to the
section’s dimensions. Each tile was then accurately positioned at
its calculated location, measured in pixel units, based on the three
previously mentioned factors. The values in overlapping regions
were averaged together through a linear blending operation. Once
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all tiles were put in place, we obtained a high-resolution image of
the entire section.

2.4.2 Improving 2D image quality

Simply using the raw tiles collected by TissueCyte was
insufficient, since environmental influences, lens-induced
distortions, and image overlaps, originating from external factors,
could significantly impact the quality of 3D visualization. To
solve these problems, we proposed a series of pre-processing steps
including brightness normalization and deformation corrections.
These steps were designed to enhance the image quality and ensure
a standardization of values across the datasets. In this section,
we present these issues, outline the specific challenges we aim to

address, and detail a solution for each of them.

2.4.2.1 Brightness normalization

In our acquired tile images, their center regions typically
exerted brighter values than the edges due to lens vignetting.
When stitched together, the generated output did not have smooth
brightness values along the overlapping edges.

As visualization remains a major goal of our framework, we
aim to output clean and smooth visualizations. When presenting
volumes in 3D, lens vignetting will introduce artifacts that result
in a subpar visualization. This necessitates the correction of
lens vignetting.

To solve this problem, we generated an average tile image for
each color channel from all tiles in the current section. An example
average tile is shown in Figure 4. Though it is possible to generate a
standard average tile image for use across different brain volumes,
it will not be as effective in correcting the lens vignetting effects.
Individual differences in intensities between scanned brains or
different scan settings require the average tiles to be computed for
each brain.

We define these average tile images as profiles. This step
results in four profiles in total, one for each color channel.
Though activated cells will present higher intensity values than the
surrounding tissue, corresponding tiles in different sections help
average these values to keep the profile consistent. Next, we used
these profiles to adjust the brightness of each tile pixel-by-pixel.

For each tile image, we adjusted pixel values according to its
profile to normalize the brightness across the tile. This process
normalizes the pixel values into a scale with values ranging between
0 to 1. For each pixel of a tile image, we divided it by its
corresponding pixel in the profile. For darker pixels, this process
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FIGURE 4

A sample average profile for a BOO39 brain section. The edges are
darker than the center regions of the image. Applying these average
sections to each tile standardizes the brightness values across the
entire stitched section and minimizes spots that are very bright or
dark, as seen in the output depicted in Figure 5.

increased their value, while conversely, it reduced the brightness
of overly illuminated pixels. This step ensured that the final
image presented a balanced and uniform appearance, effectively
mitigating the problem of overly dark and bright spots in the
stitched 2D section. Some minor tiling effects may still be present
in the output, but we have not found these inhomogeneities to
adversely affect the image-processing algorithms or quantification
in our pipeline. As shown in Figure 5, there was an enhancement in
image clarity before and after applying brightness normalization.

2.4.2.2 Deformation correction

Lens distortion is a common problem on many imaging
platforms and can cause issues with discontinuities in stitching
processes due to nonlinear deformation. This distortion effect
becomes apparent when using a lens to image an electron
microscopy (EM) grid consisting of orthogonal lines. Correcting
these distortions is critical, as it directly impacts the fidelity of
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FIGURE 5

Comparison of BO039 images before (left) and after (right) applying brightness normalization. Before the step, the edges are darker than the center.

After brightness normalization, this discrepancy is significantly reduced
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FIGURE 6

16x objective lens imaged 1,000 mesh EM grid. Noticeable lens
distortion manifests at the top and bottom of both images, with
some cells along the edges being incomplete, or cut off along the
edges. Taking the area within the green box as an example, the
horizontal grid lines appear bent compared to the straight top and
bottom edges of the green box.

the 2D section images. Doing so ensured that the tiles accurately
represented the brain’s actual structure. This distortion effect
could be corrected by determining the extent of deformation and
applying transformations on the tiles to correct for lens distortion.

We first employed 16x objective lenses to capture images of
a 1,000 mesh EM grid, featuring a 25 pm pitch, 19 pum hole size,
and 6 m bar width. Distortions were particularly noticeable along
the tile edges, as depicted in Figure 6, and manifested as unnatural
curvature or skewing of the grid lines, which should otherwise
appear orthogonal.

Our approach to adjusting this deformation began with
analyzing an EM grid, which served as a ground truth to help
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correct lens distortion. By comparing the deformation between a
ground truth EM grid and a corresponding imaged EM grid output
from TissueCyte, we can determine the deformation parameters
to transform the output to match the ground truth template.
Upon imaging the EM grid, the edges of this grid image often
showed partial cells due to incomplete capture or lens distortion,
as presented in Figure 6. These partial cells contained insufficient
information, making them inapplicable for further analysis. To
overcome this, our algorithm automatically identified the four
corner points for each whole cell on the grid. These points mark
the boundaries of the fully complete cells. Identifying these corner
points was vital as they served as anchors for aligning the distorted
grid with the template.

To aid in the correction process, we created a template grid with
equally spaced horizontal and vertical lines, designed to represent
an undistorted version of the EM grid. The number of lines in
both directions corresponded to the number of complete cells
identified within the corner points of the distorted grid. The corner
points in the template grid were easily identified, as the lines were
equally spaced.

We then applied a computer vision technique called
homography transformation (Luo et al, 2023) to adjust the
original grid to ensure it matches the template grid’s dimensions
and layout. This is done by using the sets of four marked
corners previously identified on the grid and by establishing
correspondences between those points and the equivalent points
on the template. A projective transformation is then applied to
the grid.

Once the grid is transformed to match the template, we fit
Bezier surface patches (Goshtasby, 1989) to the grids using each
set of four points. Each point within a Bezier patch can used
as control vertices and matched with points in the other grid
to establish correspondences. A bicubic spline function (De Boor
and De Boor, 1978) was used to model the deformation between
these correspondences. By displacing the control vertices to match
their corresponding vertices in the template, each pixel within the
deformed grid was mapped to its new location by interpolating
between corresponding points. This pixel-by-pixel adjustment
successfully corrected the deformation, resulting in an image
significantly less influenced by lens-induced distortions. As these
deformations are consistent and uniform across different sections

frontiersin.org


https://doi.org/10.3389/fncir.2024.1398884
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org

Ding et al.

10.3389/fncir.2024.1398884

FIGURE 7

Comparison of the BOO03 brain images before (left) and after (right) applying deformation correction. Before the correction, the tile edges do not
align seamlessly with neighboring tiles. After the correction, the connections between neighboring tiles become smoother

and brains, these deformation parameters do not need to be
recomputed for each new brain dataset; these parameters can be
reused for different scans on the same imaging machine. We show
how the deformation correction process affects our images in
Figure 7.

2.4.3 Converting 2D images into a 3D data

To convert 2D section images to a coherent 3D structure, we
stacked each of the 2D sections to create a 3D array. Each section
was reassembled based on their sequential order to reconstruct the
full three-dimensional anatomy of the brain. This 3D array was
then compressed and saved into the Neuroimaging Informatics
Technology Initiative (NIfIT) format. Multiple NIfTT files were
saved into an output folder containing the full-resolution images
and down-sampled versions to match the Allen CCF format. These
section images were efficiently compressed and stored, minimizing
required storage space while maintaining quick data access.

2.5 Utilizing Texera for collaborative data
analytics using workflows

This work highlights two critical requirements for our data-
analysis process. First, the work involves a collaborative effort from
three research teams specializing in neuroscience, computer vision,
and data systems. The diverse expertise and skill sets of the teams
necessitate a platform that supports seamless collaboration. Second,
processing a large amount of brain image data (172,480 files and
224 GB per brain) requires an efficient solution to reduce the time.
To meet these requirements, we utilize Texera (Texera, 2024), a
platform to support collaborative data analytics using workflows.
Texera provides a web-based cloud service for data analytics and
allows users to analyze data without installing software on their
computers. It is a collaborative environment similar to existing
collaboration services such as Google Docs and Overleaf, allowing
users from diverse disciplines to jointly edit workflows and manage
their executions. Texera uses a distributed computation engine
that can allocate its workload across a cluster of machines. This
capability reduces the processing time on large volumes of data. We
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FIGURE 8
Overview of Texera, a collaborative data analytical workflow system
with a distributed execution engine. The platform allows multiple
users to access and modify workflows simultaneously.

build workflows on Texera to conduct image pre-processing, 2D-
3D conversion, and 3D visualization of brain data. An overview of
Texera is presented in Figure 8.

Here, we present an experience of how users, Alice and Bob,
collaborate using Texera. Alice first logs into Texera and creates a
new workflow. Then she shares it with Bob. After that, she adds
a new operator to the canvas and starts to work on it. When Bob
joins the workflow, he sees the operator Alice is working on. If Bob
decides to add a second operator, he places it on the canvas and
links it to the first one. After Alice finishes her changes, the two
users work on the second operator together. Once they are done,
Bob clicks the “Run” button to execute the workflow.

In addition to supporting over 100 operators for data
processing, machine learning, and visualization, Texera also
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FIGURE 9

A Texera workflow that consists of three operators A, B, and C. The
data flows from operator A to operator B and eventually to operator
C. Each operator shows its number of input tuples and number of
output tuples. Green operators have completed their execution,
while yellow operators performing their computations.

supports user-defined operators in several popular programming
languages, including Python, Java, and R. This capability allows
users to define their own custom operators in these languages based
on different needs and their programming skills.

Next, we discuss the execution model of Texera with an
example workflow shown in Figure 9. In Texera, an operator serves
as the minimal unit of data transformation. It receives input data,
performs a transformation, and outputs results. A directed edge
between operators indicates the direction of data flow. In Figure 9,
operator A sends its output data to operator B, which sends its
output data to operator C. By connecting operators with directed
edges, we construct a directed acyclic graph (DAG) as a workflow.
Texera processes data tuples using a pipelining approach, where
multiple operators can process data concurrently. Each operator
can be executed using multiple workers.

3 Results

In this section, we report our experimental results.

3.1 Texera workflows

We constructed several Texera workflows following the
methods described in Section 2.4, including a workflow for tile
adjustment, stitching, and 2D-to-3D conversion. Next, we present
details of these workflows.

3.1.1 Workflow 1: tile adjustment and stitching

This workflow performs the stitching process mentioned
in Section 2.4.1 and improves the tile image quality as mentioned
in Section 2.4.2. It converts the raw tile images obtained from
TissueCyte to coherent, high-quality 2D section images. As shown
in Figure 10, this workflow has the following operators.

1. Loading brain volume metadata: This operator, denoted as
“BrainVol metadata” in the workflow, is used to upload the text
file that contains the brain volume metadata and process the
content.
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2. Generating tile metadata: This operator takes the brain volume
metadata as input and generates the metadata for each tile that
includes the file path, section range, boundary position, margin
value, size information, channel, and labeled section index.

3. Generating section information: ~ Similar to the previous
operator, this operator takes the brain volume metadata as input
and computes the required metadata information for stitching,
such as brain section image dimension, color channel numbers,
and brain ID.

4. Loading tiles: This operator uses the provided tile metadata and
loads corresponding tile images from the given file paths in the
tile metadata. During this process, it checks for any missing
tiles and tags them with a boolean flag used by the subsequent
operators to decide whether they should substitute the tile with
a placeholder zero image, where all pixel values are set to 0.

5. Brightness normalization: This operator adjusts the brightness
level of the tile images. It loads the average profiles for the four
color channels generated from another workflow. For each tile
image, the corresponding color channel’s profile is applied to do
the adjustment. Within each tile image, pixel values are modified
according to the approach outlined in Section 2.4.2

6. Deformation correction: This operator performs the step as
described in Section 2.4.2. In the initial computation, we save the
necessary parameters to correct lens deformation. In subsequent
runs, we apply these transformation parameters to the tile
images and ensure accurate correction of lens distortions. The
output image tiles then are ready for stitching.

7. Categorization: This step sorts tiles based on their section
number and ensures the correct identification and grouping of
tiles. It distributes the sorted tiles to a worker responsible for
stitching the particular section.

8. Stitching: This operator stitches tile images within the same
section into a single-section image as defined in Section 2.4.1.
It creates a canvas with the width and height as specified by
the section metadata. It associates each input tile with a specific
coordinate indicating its relative position in the section. It
positions them to the correct position pixel-by-pixel based on
input parameters, which ensures that the overlapping positions
between neighboring tiles are resolved without trimming the
overlapping regions. This operator takes the coordinate and
translates the tile to the exact position on the canvas. After filling
the canvas, it outputs a new image representing one complete
brain section.

The final compiled images are converted to the NIfTT file
format, resulting in a comprehensive volumetric representation
of the entire brain. This representation consists of ~280-300
stitched brain sections, each of which has 8,716 x 11,236 pixels,
with a pixel-to-pixel spacing of 1.25 um and a section-to-section
spacing of 50 pm.

3.1.2 Workflow 2: 2D to 3D conversion and 3D
visualization

After all section images are stitched, we use the workflow shown
in Figure 11 to convert them to a 3D model for visualization.
This workflow consists of two steps. First, the Zarr File Generator
operator receives the folder path of all the section images, loads the
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Workflow 1 for tile adjusting and stitching, with a few key components in dotted rectangles: (1) operators for users to drag and drop into the canvas;
(2) shared editing that allows multiple users to view and edit the same workflow simultaneously; (3) icons of concurrent users working on the
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Workflow 2: converting 2D section images to a 3D model for
visualization. It reads the folder path of the section images, converts
the images to Zarr-format files, and generates URLs for
Neuroglancer to visualize.

section images, and generates Zarr image files (Open Geospatial
Consortium, 2023). Zarr is a format for storing large multi-
dimensional arrays. It organizes data into hierarchical groups,
where each level has datasets with arbitrary JSON metadata
files (Moore and Kunis, 2023). The Zarr format supports fast
processing and easy access, making it particularly useful for
handling large volumes of dense, multi-dimensional arrays, such
as brain image data. Since individual files within a Zarr dataset are
accessible via predefined paths, they can be easily accessed using
a Web browser (Moore and Kunis, 2023). We utilize a web-based
tool called Neuroglancer (Maitin-Shepard et al., 2021) to visualize
the 3D model. To allow users to easily do the visualization using a
Web browser, we integrate Neuroglancer into Texera.

This workflow has three operators specifically designed to
convert 2D section images into 3D data, and then to visualize it
as a 3D model.

Frontiersin Neural Circuits

e Zarr file generation: This operator takes the folder path of
the section images as input and loads the section images one
by one based on their section numbers. It scales the section
images and adjusts the exposure to increase image readability.
After that, it reads the section images into a Dask array
(Rocklin, 2015). The Dask format is a specific adaptation of the
Zarr format, designed to meet the needs of complex biological
imaging data (Moore et al.,, 2023). The operator uses these
Dask arrays to write all the section images to an OME-Zarr
format onto the disk. Then, it outputs the folder path where
the Zarr files are stored.

e 3D model visualizer: This operator accepts the Zarr file folder
as input, converts the folder into a Neuroglancer URL, and
sends it to the URL visualization operator to show the 3D
brain model.

3.2 Optimizations

Processing large amounts of data for each brain is time-
consuming. In this section, we discuss a few optimization
techniques we used on Texera to reduce the processing times. For
all the results in this section, we ran the workflows on a 32-core
CPU and 128 GB RAM machine with the Ubuntu Linux 20.04
operating system. Initially, we combined all the tasks as a single
operator. In this approach, we processed the tile images one by one
and loaded all tile images for each section to perform stitching,
and the entire process took around 15 h to finish. This method
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of pre-processing brain images was notably time-consuming. To
accelerate this process, we explored several optimizations.

3.2.1 Using multiple operators

An operator doing too much computation can be hard
to optimize. Splitting the operator into smaller, specialized
components allows for fine-grained tuning and optimizations.
Thus we decomposed the operator into separate operators, each
of which performs a specific task. The operators are shown in
Figure 10.

3.2.2 Enabling parallelism in each operator

The capability to process each tile independently presents an
opportunity for parallel processing. We mark those operators that
can be parallelized so that Texera can facilitate data shuffling and
partitioning to ensure that each worker receives and processes a
portion of the input data.

3.2.3 Maximizing pipelining between operators

We noticed that operators affect each other’s execution time.
Specifically, in a pipelining setup, the slowest operator can slow
down the execution of the entire workflow. To speed up the process,
we focused on making the slowest, or bottleneck, operators faster by
giving them more workers. We carefully chose how many workers
to assign to each operator based on their speed. The goal was to
balance the workflow so that over a certain period, all operators
would process data at a similar pace. This means that as soon as
a worker finished processing one piece of data, another piece was
ready to be processed, minimizing the idle time of the worker. We
found that the deformation correction and stitching operators were
the main bottlenecks. To address this issue, we allocated six workers
to the deformation correction operator and four to the stitching
operator. As shown in the diagram in Figure 10, the tile-loading
operator had two workers, while all other operators in Workflow
1 had one worker each.

For a more comprehensive comparison, we also implemented
an approach using traditional Python scripts, optimizing
parallelism with joblib'. This method allowed tasks to be executed
simultaneously across multiple cores on a single machine. We
evaluated three approaches: Traditional Python scripts, Python
script with joblib, and Texera workflows with optimizations. All
were tested on the brain B0039 using the same machine mentioned
earlier, with aligned Python and library versions. We compare
these methods in terms of execution time and user workload, as
detailed below:

e Traditional Python scripts: To execute the Python scripts,
users needed to use the command line and provide the tile
image path. This method took 15 h to complete the entire
pre-processing and stitching tasks.

e Python script with joblib: Similar to the traditional method,
users executed the script via a command line and provided the

1 https://joblib.readthedocs.io/ (accessed February 28, 2024).
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tile image path. This approach reduced the completion time
to3.5h.
e Texera workflows with optimizations: To  execute the
workflow, users first modified the “source text input” operator
with the folder directory and then click the “Run” button. The

workflow completed the entire pipeline in 2.5 h.

The Texera approach showed a significant improvement over
the initial run using traditional Python scripts, achieving an
83.33% reduction in the processing time. Compared to the joblib
optimization approach, the optimized Texera workflow resulted in
a further 28.57% reduction in the processing time.

3.3 Visualization results

As an example, Figure 12 shows a three-dimensional (3D)
visualization of the brain labeled B0039. For this brain, viral tracers
were injected into the dCAI region, resulting in the fluorescent
labeling of all input neurons to the injection site. Once rendered
in 3D, the brain could be examined in various two-dimensional
planes. For instance, the bottom-right image in Figure 12 displays
a coronal plane of the brain, where the brighter regions indicate
fluorescently labeled cells. In the 3D visualization at the bottom
left of Figure 12, the white areas represent tissue autofluorescence,
while the yellow regions highlight the labeled cells.

4 Discussion

4.1 Collaboration on Texera

This work is a joint effort of three research teams from three
disciplines: neuroscience, computer vision, and data systems. The
neuroscience team provides the data, i.e., tile images, and standards
for the output model accuracy. The computer vision team develops
algorithms and techniques for processing images and 3D models.
The data systems team is responsible for developing the Texera
platform, leading the effort to construct workflows, and optimizing
their execution performance.

In contrast to traditional methods of collaboration, which
often involve cumbersome back-and-forth transfers of data or
code, Texera provides a shared data science experience. Similar
to Overleaf (Overleaf, 2024) for KIgX and Google Docs for rich
text documents, Texera allows multiple collaborators to work on
a workflow at the same time. The three teams use Texera to
collaboratively edit a workflow, run it, and share its results. Take
Workflow 1 in Section 3.1 as an example. The computer vision
team works on the brightness and deformation operators, while
the data systems team works on generating section metadata and
loading tiles. During the execution of the workflow, each team
can specialize in assessing the output of their respective operators
and apply their expertise to ensure the operators’ accuracy and
correctness. The computer vision team, for example, can evaluate
the efficacy of the brightness normalization operator by examining
pixel generation, whereas the neuroscience team can review the
visualization of the final 3D model to ascertain if it meets the
desired accuracy and resolution standards.

frontiersin.org


https://doi.org/10.3389/fncir.2024.1398884
https://joblib.readthedocs.io/
https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org

Ding et al.

10.3389/fncir.2024.1398884

FIGURE 12
3D visualization of the brain labeled B0O039, rendered using Neuroglancer. The (bottom-left) figure shows a 3D volume visualization, highlighting the
fluorescently labeled cells in yellow against a white background. The other three figures illustrate different planes of the brain: the (top-left) figure
shows the sagittal view, the (top-right) figure shows the horizontal view, and the (bottom-right) figure shows the coronal view, with bright areas
indicating fluorescently labeled cells.

4.2 Flexibility and generalizability

Our presented pipeline can be reproduced, extended,
and reused to analyze other image data by researchers in
the neuroscience community. This capability is crucial for
ensuring scientific reproducibility and facilitating cross-validation.
Additionally, the pipeline’s adaptability allows for adjustments to
accommodate more detailed image analysis with potentially
larger data volumes. Workflows can be scaled efficiently
to run on a cluster of machines to handle increasing data
volumes, and optimizations can be tailored to meet diverse user
requirements. Because of the modularity of workflow operators,
many operators such as brightness normalization and deformation
correction can be reused to process other image data. This
functionality allows collaborators to share and reuse operators
across different workflows.

4.3 Experiments on other systems

We have also compared Texera with two other popular
used in data analytics and machine
learning: RapidMiner (Hofmann and Klinkenberg, 2016) and
KNIME (Berthold et al., 2009). RapidMiner provides an integrated
environment for data preparation, machine learning, and deep

workflow systems

learning. KNIME facilitates a visual construction and interactive
execution of data pipelines. It supports easy integration of
data manipulation and visualization through the addition of new
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modules or nodes, where these nodes or modules are comparable to
operators in Texera. Next, we compare them from three aspects

e Collaboration functionality: RapidMiner and KNIME allow
workflow sharing through manual updates. Texera supports
real-time collaboration, enabling multiple users to work
synchronously on the same workflow.

RapidMiner and KNIME primarily

support processing tabular data between operators. They

e Execution models:

execute their workflows operator by operator. Texera allows
data to be processed on a tuple-by-tuple basis and supports
pipelined execution, allowing multiple operators to process
data concurrently.

e Deployment methods: RapidMiner and KNIME require users
to install their software for usage. Texera offers a cloud-
based service so that users can access their workflow using a
web browser.

To further
constructed the tile adjustment and stitching workflow in

illustrate the performance differences, we

RapidMiner with an identical structure to the one in Texera
and tested them under the same conditions. Unfortunately,
RapidMiner was unable to complete when processing more
than eight sections of tile images. In another test involving the
processing of a single section of tile images, we executed the
workflows in both Texera and RapidMiner on the same computer
machine. Each operator in the Texera workflow was assigned one
worker. RapidMiner took 7 min and 16 s to complete the task,
whereas Texera finished the same task in 4 min and 39 s.
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This performance difference could be attributed to the inherent
differences in their execution models. In our pre-processing steps
for tile images, each tile is independent from each other. For
example, while tile image A undergoes brightness normalization,
tile image B can undergo deformation correction simultaneously.
RapidMiner and KNIME utilize a parallel execution model known
as data parallelism. Texera enables pipelined execution in addition
to data parallelism, which aligns more closely with the inherent
characteristics of this task. Consequently, for our task, Texeras
parallel execution model utilizes CPU resources more effectively.

4.4 Related work

In the realm of imaging and 3D reconstruction of the
entire mouse brain, two new methods prevail. Our study utilizes
automated block-face serial imaging methods, including Serial
Two-Photon Tomography (STPT/TissueCyte) (Ragan et al., 2012;
Osten and Margrie, 2013; Kim et al., 2015), Fluorescence Micro-
Optical Sectioning Tomography (fMOST) (Gong et al., 2013), and
Block-face Serial Microscopy Tomography (FAST) (Seiriki et al.,
2017, 2019). These methods integrate imaging with automated
sectioning, facilitating efficient data acquisition. Alternatively, the
second prevalent approach involves light-sheet microscopy of
cleared mouse brain samples (Dodt et al., 2007; Chung et al., 2013;
Renier et al., 2014; Jing et al., 2018; Susaki et al., 2020; Ueda et al,,
2020; Kosmidis et al., 2021). We will compare the pros and cons of
both methods across three dimensions: tissue preparation, imaging,
and post-imaging processing.

For block-face serial imaging methods, tissue preparation
involves postfixing brain samples in 4% paraformaldehyde (PFA)
post-transcardial perfusion and embedding them in 3%-5%
agarose, which typically requires about one day. Some protocols
might include additional steps to enhance tissue stiffness, like
soaking in acrylamide or sodium borohydrate, extending the
preparation to two additional days. This method, taking ~2-3 days
in total, preserves the brain’s original morphology as no harsh
chemicals are applied. Imaging a mouse brain using a TissueCyte
microscope typically requires about 22 h to obtain four-channel
images with a resolution of 1.25 um in the xy-plane and 50 pm in
the z-axis. Recent advancements, like FAST, can image the whole
brain in 2.4-10 h with a resolution of 0.7 um in the xy-plane
and 5 um in the z-sampling interval (Seiriki et al., 2019). High-
resolution images are obtained, clearly depicting cellular structures
and processes. The preservation of normal brain morphology
simplifies the registration and other post-imaging processes, like
automatic cell detection.

In contrast, light-sheet imaging of cleared samples involves
a series of preparation steps including fixation, decalcification,
decolorization, delipidation, and refractive index (RI) matching,
typically requiring about a week (Dodt et al, 2007; Chung
et al., 2013; Jing et al., 2018; Susaki et al., 2020; Ueda et al,
2020; Kosmidis et al, 2021). Methods using organic solvents
may quench fluorescent signals, necessitating immunostaining,
which can extend the entire process to ~1 month (Renier et al,
2014; Gao et al,, 2024). The use of harsh chemicals often alters
brain morphology, causing anisotropic expansion or shrinkage
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that complicates registration with standard brain templates like
Allen’s CCF. Although light-sheet microscopy can rapidly image
cleared samples in about 2-3 h per brain, the spatial resolution
might be compromised by imperfect clearing. Variations in
refractive index within different brain regions can introduce optical
aberrations, affecting image quality. Despite these challenges,
ongoing technological improvements have enhanced the quality of
axonal projection imaging via light-sheet microscopy (Tomer et al.,
2014; Susaki et al., 2020).

In conclusion, while light-sheet microscopy offers rapid
imaging of cleared brains, block-face serial imaging methods
provide superior resolution and simpler post-processing due to
better preservation of native brain morphology.

One novel aspect of our study lies in the adoption of Texera,
which distinguishes itself as an ideal tool for our purposes. Its user-
friendly interface, combined with an eflicient pipeline structure,
makes it a good choice for our image assembly needs. Other
workflow systems such as Knime (Berthold et al, 2009) and
RapidMiner (Hofmann and Klinkenberg, 2016) lack features that
support real-time collaboration among users and their execution
models are not well aligned with our work, as discussed in
Section 4.3. Big data systems such as Spark (Zaharia et al,
2010) and Flink (Carbone et al., 2015) are for large-scale data
processing, yet they lack collaboration features and a workflow
interface needed by users with limited programming skills. There
are cloud-based platforms that focus on biomedical research, such
as Cavatica (Cavatica, 2024), which specializes in genomic data, and
Galaxy (Afgan etal., 2018). Both platforms do not support real-time
collaboration functionality, pipelined execution, nor computing on
multiple machines. Texera has been selected as the ideal platform
to fulfill our design and as a collaborative open-source alternative.

For sections of 2D biomedical image data, it is a common
practice to stack these sections into a 3D array to create a volume.
There exist multiple methods that can represent and render 3D
data (O’Donoghue et al., 2018; Zhou et al.,, 2022). One method
is based on volume or direct rendering, and it allows users to
view entire datasets at once. This method utilizes ray casting
and transfer functions, layers transparency through voxels, colors
regions based on scalar values within the volume, and provides an
accurate visualization of internal features. While direct rendering
offers detailed insights into biomedical images, especially those
with noise, it allows the visualization of features obscured by
surface techniques, and it is typically slower and less suited for
real-time applications. This is in contrast to surface rendering,
which is fast, but does not store information past the modeled
surface boundary (Kuszyk et al., 1996). For this reason, we use
volume rendering.

4.5 Future works

In our current work, it is important to note that although
the tile images significantly improve the raw images, they are not
entirely free from the effects of lens distortion. Despite this, our
existing correction method is sufficient for our subsequent analyses,
including cell counting and registration. One research direction
is to create a more robust solution to correct deformation to
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better preserve features at a vascular level so that we can enhance
visualization results while still maintaining accuracy.

5 Conclusions

In this paper we present a novel pipeline that transforms mouse
brain samples to detailed 3D brain models by using a collaborative
data analytics platform called “Texera.” Our pipeline utilizes the tile
images from a serial two-Photon tomography/TissueCyte system,
then stitches tile images into brain section images, and constructs
3D whole-brain image datasets. The resulting 3D data supports
downstream analyses, including 3D whole-brain registration, atlas-
based segmentation, cell counting, and high-resolution volumetric
visualization. Our work significantly accelerates research output
and analyses, enabling faster and more detailed exploration of
brain structures.
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