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Abstract—This paper focuses on the mapping and rate of
spread (ROS) measurement of grass fires using near infrared
(NIR) images acquired by a small fixed-wing UAS operating
at low altitudes. A new method is proposed for spatiotemporal
representation of grass fire evolution using time labeled UAS NIR
orthomosaics stitched from aerial images collected at varying
time stamps over different regions of fire. Furthermore, a novel
NIR intensity variance thresholding (IVT) method is proposed
for accurate identification and delineation of grass fire fronts
based on the obtained NIR mosaics in Digital Numbers (DN). The
proposed methods are demonstrated and validated using UAS
NIR imagery acquired over a prescribed tallgrass fire in Kansas
(around 13 ha.). Three NIR short time-series orthomosaics are
generated at a time interval of about two minutes with a spatial
registration accuracy of 1.45 m (RMSE). The mean ROS for
head, flank, and back tallgrass fires are measured to be 0.28
m/s, 0.1 m/s, and 0.025 m/s.

Index Terms—Grass fire, wildland fire, Unmanned aircraft
system (UAS), multispectral remote sensing, fire front detection,
fire behavior.

I. INTRODUCTION

F IRE spread metrics such as fire front location and fire
rate of spread (ROS) are critical to understanding fire

behavior and to making predictions in their potential behavior
changes. These metrics are required for the reconstruction of
digital twins of a fire event, data-based fire spread prediction,
and the understanding of the impact of atmosphere, terrain,
and fuel on the fire behavior [1]. During prescribed and
wildfire operations, the fire behaviors can be estimated by
empirically-designed or physics-based fire models, such as the
Rothermel [2], the CSIRO [3], and wildland urban interface
fire dynamics simulator (WFDS) [4] models. Although these
models have been widely used to predict the fire ROS in
many fuel types [5]–[8], one of the biggest challenges in their
operational use is the lack of ground truth data for evaluation
and validation. Additionally, the accuracy and reliability of
these models are highly dependent on the quality of weather,
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fuel, and terrain information during a fire event, which can be
difficult to obtain. These concerns can be minimized with the
help of direct and accurate fire spread measurements during
an active fire event. For example, accurate measurements of
fire front location and fire ROS of a benchmark wildland
fire can greatly improve the evaluation, validation, and fine-
tuning of the existing fire spread models. However, such
direct fire measurements can be challenging to acquire, given
the complex and highly dynamic nature of fire spread in
varying atmospheric and field conditions such as wind, relative
humidity, temperature, fuel characteristics, and terrain features
[9].

Many fire ROS measurements in the literature come from
indoor observations through table-top and wind tunnel ex-
periments [10], [11] or ground observations through towers
or booms, which are limited to small scales and may not
accurately depict the fire spread behavior across landscape
scales. Remote sensing data can enable the accurate mapping
of fire behaviors in larger spatial scales, making them better
suited for wildland fire measurements. Although satellite re-
mote sensing plays a vital role in fire monitoring, the coarser
spatiotemporal resolutions of most satellite data make them
more suited for large fires (lasting more than a day) and
applications such as fire hot spot detection [12]–[14] and fire
damage assessment [15]. Measurements of fire ROS and fire
front location of prescribed fires or wildfires that only last few
or several hours can be better facilitated by airborne remote
sensing. In fact, it has been suggested that spatial and temporal
resolutions of 10 m and 10 min are desired for accurate data-
enabled operational wildfire spread modelling and forecasting
[1]. These finer resolutions are generally achievable by air-
borne remote sensing. In fact, most existing remote sensing-
based fire ROS measurements use imagery from manned
aircraft [16]–[20]. The collected airborne imagery can be post-
processed for detection and extraction of fire fronts and ROS
measurement. However, deploying manned aircraft over fires
can be challenging due to adverse flying conditions (smoke
and heat), limited flight path flexibility (to avoid turbulence),
and high operating costs.

In recent years, small Unmanned Aircraft Systems (UAS)
equipped with multispectral cameras are increasingly used in
fire missions for applications including post-burn vegetation
mapping [21], fire ignition [22], and fire detection [23]. Its
applications in fire ROS measurements are still limited [24].
Small UAS are light-weight, easy to handle, and cost-effective,
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making them very handy for fire ROS measurements at low
altitudes (< 122 m Class G airspace in the US). Thermal
cameras can be installed on these UAS for fire measurement
due to their ability to see through smoke and measure tem-
perature [24]. However, thermal cameras are generally quite
expensive and have lower image resolution as compared to
RGB and near infrared (NIR) cameras [25], both of which have
been widely used by the UAS multispectral remote sensing
community [26], [27]. NIR images can be used for certain
fire sensing missions since they are not affected much by
smoke occlusion compared with RGB images [28], and can
detect a lot more features than typical thermal images which
generally have lower pixel resolutions (e.g. 640 × 512 pix. or
lower). The main challenge for NIR-based fire mapping is that
it cannot detect temperature changes directly and may create
difficulties in fire front detection. Researchers have worked on
NIR-based fire detection using ground images [28], [29] and
airborne images [20]. For instance, NIR aerial images are first
converted to Normalized Difference Vegetation Index (NDVI)
and then used for fire line detection and extraction in [20].
However, such methods often require radiometric calibration
of aerial NIR imagery, which may not be feasible to many
UAS researchers, especially during low-altitude fire sensing
missions.

The objective of this paper is to develop a low-cost grass
fire mapping and ROS measurement system using NIR aerial
images from a fixed-wing UAS. The methods in this paper
are demonstrated and validated using low-cost NIR UAS
data set over a prescribed grass fire that was conducted at
the University of Kansas Anderson County Prairie Preserve
(ACPP) near Welda, KS. The main contributions of this paper
are as follows.

1) A new method for spatiotemporal representation of grass
fire evolution is proposed by introducing time labeled
UAS NIR orthomosaics generated from aerial images
with limited footprints.

2) A UAS prescribed fire data set over a tallgrass field
in Kansas, including short time-series NIR orthomo-
saics and local weather and terrain measurements
(https://cusl.ku.edu/Flight Log).

3) A novel NIR intensity variance thresholding method for
grass fire front classification and extraction using aerial
imagery in digital numbers (DN).

4) Comprehensive results, discussions, and lessons learned
using low-cost NIR nadir-view imagery for grass fire
mapping and fire ROS measurements.

The developed NIR-based grass fire sensing system, meth-
ods, and data can greatly benefit many other researchers such
as:

1) UAS remote sensing researchers and operators who
want to collect grass fire spread data but cannot afford
expensive thermal cameras.

2) Researchers who are interested in using UAS for moni-
toring and mapping the evolution of other fast-evolving
environmental processes such as chemical leaks, flood-
ing, and extreme weather.

3) Wildland fire managers or fire fighters who would like
to have accurate predictions of grass fire behavior.

4) Grass fire behavior researchers and fire spread modeling
researchers who need representative grass fire data sets.

II. PRESCRIBED FIRE AND UAS DATA

This section describes the prescribed grass fire and the UAS
data that are used for the demonstration and analysis of the
proposed methods.

A. Prescribed Grass Fire

A prescribed grass fire was conducted from 11:38 AM to
12:25 PM (US Central Time) on October 8, 2019 by the
Kansas Biological Survey (KBS) [30] near Welda, KS. The
burn site is a relatively flat rectangular field (530m × 250m)
with uniform fuel vegetation cover dominated by C4 tallgrass
and a mixture of herbaceous forbs and legumes (shown in
Fig. 1). A ring fire pattern was conducted by two fire setting
teams using drip torches. The fire ignition was initiated near
the center of the north boundary and terminated near the center
of the south boundary, with one team travelling clockwise and
the other travelling counterclockwise. The ignition process was
completed at around 12:17:32 PM after which the fire evolved
naturally in the field. The boundary of the fire field is shown
in Fig. 1. There were some inconsistencies in the fire ignition
pattern with the teams having to spend more time to ignite
the northeast and northwest corners. The weather conditions
during the burn were measured in the field as 73◦F temperature
with 41% relative humidity and 6.26 m/s prevailing wind
from the south. The wind measurement is from a Campbell
Scientific CSAT3B wind anemometer installed at 1.9 m above
the ground level close to the east boundary of the fire field.

B. KHawk UAS Data

A KHawk 55 fixed-wing UAS was deployed over the pre-
scribed fire for multispectral image acquisition. The KHawk 55
UAS is a low-cost multispectral remote sensing platform de-
veloped by the Cooperative Unmanned Systems Lab (CUSL)
at the University of Kansas. It is equipped with a Ublox M8P
Here GPS and a Pixhawk Cube autopilot [31], which can
support both manual and autonomous flight. Key specifications
are provided in Table I.

TABLE I: KHawk 55 UAS specifications

Description Value
Take-off Weight 2.5 kg

Wingspan 1.4 m
Cruise Speed 20 m/s

Maximum Endurance 30 min
Typical Altitude 120 m

The KHawk UAS was equipped with a low-cost PeauPro82
modified GoPro Hero 4 Black camera for NIR video acqui-
sition. This camera was modified with an 850 nm IR pass
filter making it sensitive to light in the NIR spectrum and was
operated in a video mode at a frame rate of 29.97 Hz with
pixel resolution of 1080×1920 pix respectively (see Table II).

https://cusl.ku.edu/Flight_Log
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Fig. 1: Anderson County Prairie Preserve and the fire field.

Manual synchronization with the GPS logs is performed after
the flight for image geotagging. Example images of the fire
field are shown in Fig. 2.

Fig. 2: PeauPro82 GoPro NIR images of fire field.

TABLE II: PeauPro82 Modified GoPro Hero 4 NIR Camera
specifications.

Description Value
Spectral Bandwidth 825.4 to 880 nm
Sensor Resolution 1920× 1080 pix

Field-of-View (FOV) 74◦ × 45◦

Frame Rate 29.97 Hz
Spatial Resolution 0.1 m

(at 120 m above the ground)

The KHawk UAS was programmed to fly multiple prede-
termined loops over the burning field at 120 m above the
ground level to collect repeat-pass imagery of the burning field.
It is worth mentioning that the UAS ground control station
operator performed real-time adjustments to the predetermined
flight path to follow the fire evolution based on ground fire
observations. Repeat-pass imagery are defined as the images
collected at the same location over the field at different time

steps. The objective of such a flight plan is to collect images
for the generation of short time-series orthomosaics, where one
orthomosaic corresponds to one flight loop. In this mission,
the UAS completed one loop for 2 minutes and achieved 4
loops in total from about 12:06 PM to 12:18 PM. Three loops
were used for orthomosaic generation to ensure map accuracy.
The majority of the UAS flight path is overlaid on a National
Agriculture Imagery Program (NAIP) image (spatial resolution
of 1 m), shown in Fig. 3. The NAIP image was taken on
June 30, 2019 and was used to geometrically register the UAS
orthomosaics.

Fig. 3: KHawk 55 UAS flight path during the fire.

III. METHODS

This paper introduces a new method for the grass fire
evolution mapping and ROS measurement using low-cost NIR
images from a small UAS. The first part of this method focuses
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on the spatiotemporal representation of the grass fire evolution
using short time- series orthomosaics generated from repeat-
pass images with limited footprints. In addition, time labeling
is introduced for each grid within an orthomosaic to represent
the different time stamps for UAS fire data acquisition. The
second part is dedicated to fire front extraction from these or-
thomosaics using a novel NIR Intensity Variance Thresholding
(IVT) method. Finally, these fire fronts are combined to form
a fire evolution map that facilitates the calculation of the fire
ROS.

A. Spatiotemporal Representation of the Fire Field Using
Time-Labelled Orthomosaics

One of the main contributions of this paper is a new
method for the spatiotemporal representation of the burning
field using UAS short time-series orthomosaics with time
labels. A small UAS flying at low altitudes generally observes
only small patches of the burning field at a time, which is
not ideal for the mapping and measurement of fire spread.
For the spatial representation of the fire spread within a
specific duration of time, images from each loop are grouped
and orthorectified to form one orthomosaic. With the UAS
collecting data in multiple loops over the fire field, short time-
series orthomosaics can be generated [24] as shown in Fig. 4.

Fig. 4: Short time-series orthomosaic generation.

Since each orthomosaic is formed using multiple images
collected at different times, a time interval can be assigned
to each orthomosaic, where the starting and ending time
corresponds to the time stamps of the first and last image
in the loop, respectively. This is illustrated in Fig. 4. How-
ever, such time representation may not be enough for fire
situational awareness and ROS calculation at finer scales. A
new data representation is proposed in this paper to address
this problem, with the basic idea shown in Fig. 5. Instead
of using only one time step to represent the data acquisition
time information for an orthomosaic, the orthomosaic will
be divided into small zones with their own time labels. The
size of each time zone and the time difference between them
can be customized based on the desired temporal resolution,

camera footprint, overlapping percentage and ground speed of
the UAS.

Given the UAS altitude of h above the ground and camera
FOV of θx and θy , the size of one time zone in the orthomosaic
can be computed as follows.

Omt = 2kh tan
θx
2

× 2kh tan
θy
2
. (1)

where k is the scaling ratio between 0 and 1.

Fig. 5: Time labelling of fire field.

The generated orthomosaics can then be analyzed for fire
front detection, extraction, and later fire evolution map gener-
ation.

B. NIR Intensity Variance Thresholding Method for Grass Fire
Front Extraction

A new method is proposed for the fire front extraction
problem based on airborne NIR imagery, which is called
NIR Intensity Variance Thresholding (IVT) method. Given
an NIR DN orthomosaic Om with a size of X × Y pix.,
the IVT method can be used to identify and extract the
pixels that represent the fire front, Omf

. This method can be
categorized into three steps, 1) image grid generation and fire
grid classification, 2) fire front extraction, and 3) fire front
manual delineation as illustrated in Fig. 6. The main advantage
of this method comes from its use of NIR images in DN which
does not require vicarious radiometric calibration efforts as the
reflectance images.

1) Fire Grid Classification: The main objective of this
step is to generate grids (see second row of Fig. 6) in an
orthomosaic and classify them as fire and non-fire grids. Om

can be divided into n equally spaced grids of dimensions x×y
pix. The size of the grid can be determined based on the
following two criteria.

• Maximum flame depth for grass fire. Flame depth is de-
fined as the distance from the leading edge to the trailing
edge of the flaming front [32]), which can be estimated
from UAS NIR orthomosaics. One of the fundamental
requirements of our IVT algorithm for successful fire
grid classification is that the grids encapsulate pixels
corresponding to unburned, burned, and fire regions. This
is because the IVT algorithm relies on the intensity
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Fig. 6: Intensity variance thresholding method.

distribution pattern within a grid to differentiate between
non-fire and fire grids. Therefore, the size of the grid has
to be larger than the maximum flame depth as observed
in NIR orthomosaics. We recommend that the grid size
be at least 2 times of the maximum flame depth. For
example, if the observed maximum flame depth is 4 m,
a minimal grid size of 8 m is suggested.

• Minimizing outliers for fire front detection. One of the
main challenges for using NIR DN orthomosaics for fire
extraction is the presence of outliers or noisy pixels.

Uncalibrated NIR orthomosaics tend to have random
pixels that have very high intensity values. This can
lead to the IVT algorithm falsely classifying these outlier
pixels as fire, since NIR fire pixels also saturate or
hold at very high intensity values. There will be more
outlier pixels when the grid size increases. Multiple trials
can be performed at different grid sizes starting from
the minimal value provided in the above criteria 1. A
final value can be selected for a balance of accuracy,
computational cost, and spatial resolution.

Fig. 7: Examples of burned (left), fire (center), and unburned
(right) grids and their respective histograms (bottom).

After selection of the grid size, the next step is to generate
grids and perform pixel classification. The main difference
between the non-fire grids (ΓU and ΓB) and fire grids (ΓF )
is that, ΓF contain pixels of unburned grass, burned grass,
and the fire, while ΓU and ΓB only contain either unburned
or burned grass pixels. Given that fire is represented as very
high values or even saturated values in NIR images, the fire
grids are expected to demonstrate a higher variability in pixel
distribution, as compared to non-fire grids. Additionally, the
fire grids also demonstrate a higher pixel range (difference
between maximum and minimum pixel intensity within a grid).
This can be observed in Fig. 7, where ΓF shows a wider range
and a higher variability as opposed to ΓU and ΓB . Note that
this figure shows the grids in normalized (0-1) DN values.

An orthomosaic, Om can be classified into non-fire grids
and fire grids ΓF based on the distribution of all pixels
enclosed within each grid. Two thresholds, α and β can be
defined pertaining to the coefficient of variation CV and range
R of each grid as the classification criteria. Here, CVΓ is
defined as the ratio of standard deviation σΓ and mean µΓ

and RΓ is defined as the difference between the maximum and
minimum pixel values within a grid Γ. The grids that satisfy
the α and β criteria are classified as fire grids, ΓF with a value
of 1, while all other grids are classified as non-fire grids with
a value of 0.

Γ =

{
1, if CVΓ ≥ α & RΓ ≥ β,

0, otherwise.
(2)
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Fig. 8: Fire grid classification thresholds: α (L) and β (R).

α-Selection: The α threshold is to classify grids based on
the extent of pixel intensity variability within the grid using
the coefficient of variation CV . The α can be selected as the
mean CV of all the grids.

α =
1

n
Σn

Γ=1CVΓ (3)

β-Selection: The β threshold is to classify grids based on
the range of pixel intensity values within the grid. The β is
determined empirically using the distribution of pixels in the
orthomosaic Om. The maximum pixel intensity value in Ob

corresponding to the burned areas is used to calculate β.

β = 1−max(Om,B) (4)

where, Om,B denotes the pixel intensity values in Om that
represent the burned areas (low-intensity).

The reason for using the pixel intensity variation and range
criteria is to ensure that the algorithm observes the distribution
of all the pixels within a grid and not just the minimum and
maximum values. For example, if only the range criterion
is used, grids with smoke occlusion or saturated pixels may
wrongly be classified as fire grids. It is also worth mentioning
that this algorithm observes the differences in distribution
characteristics between fire and non-fire grids and does not
depend on the absolute histogram distribution of the pixel
intensity values. This algorithm is expected to successfully
differentiate between fire and non-fire grids even if the pixel
intensity values of grass are lower or higher, which can happen
during different growing stages of the grass.

2) Fire Front Extraction: Given the identified fire grids in
x×y pix. region, the next step is to locate the fire pixels within
these regions for fire front extraction. This is also achieved
using the pixel distribution within the fire grids. Since these
grids exhibit a Gaussian distribution (shown in Fig. 7) and the
maximum pixel values enclosed within them can be identified
as fire pixels, a threshold γ can be defined based on the
empirical rule of a Gaussian distribution. The pixels within
each ΓF that satisfy the γ rule is classified as fire pixels.

Omf
=

{
1, if ΓFx,y ≥ (µΓF

+ γσΓF
)

0, otherwise,
(5)

where, ΓFx,y is a pixel value at a geolocation (x, y) within a
grid ΓF and γ is an empirically selected value.

The value of γ is empirically selected between 2 and 3,
these values correspond to values above 95 % for the Gaussian
distribution (68-95-99.7 rule).

3) Fire Front Manual Delineation: As illustrated in Fig. 6,
the fire front extraction algorithm can isolate fire pixels that are
often discrete and undesirable for later fire evolution mapping
and ROS measurement. The extracted fire front pixels can be
manually joined to form a continuous fire front curve for better
representation.

C. Fire Evolution Mapping

The delineated fire fronts from each orthomosaic are then
combined to form a fire evolution map. The main components
of this map include, the fire front locations, associated time
labels, and their spread direction vectors. For the spread
direction vectors, a normal to the curve approach is used which
is generally defined as the direction of the spread of a fire front
[20], [33], [34]. An example of such a map is shown in Fig.
9.

Fig. 9: Fire evolution map and ROS calculation.

The fire evolution map contains the information required
to calculate the ROS for any given point along a fire front,
including the spread distance, di and the time difference,
(tni+1

− tni
) as shown in Fig. 9.

IV. RESULTS

The methods described in Sec. III are demonstrated using
a GoPro NIR video collected by the KHawk 55 fixed-wing
UAS over a Kansas prescribed grass fire. Detailed results and
analyses are presented in this section.

A. Spatiotemporal Representation of the Fire Field Using
Time-Labelled Orthomosaics

Repeat-pass individual frames are extracted from the NIR
video and grouped accordingly for the generation of short
time-series orthomosaics as shown in Fig. 10. Each orthomo-
saic is generated from about 120-150 images using the same
processing parameters in the Agisoft Photoscan Pro software.
Using the time labelling descriptions and formulations pro-
vided in Sec. III.A, each orthomosaic was roughly divided
into 190 m × 110 m areas with a difference around 5 seconds.
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Fig. 10: NIR short time-series orthomosaics.

TABLE III: Short Time-Series NIR Orthomosaic Properties.

Orthomosaic Number of Images Time Interval (Central)
O1 147 12 : 07 : 03− 12 : 09 : 19 PM
O2 133 12 : 12 : 41− 12 : 15 : 03 PM
O3 119 12 : 15 : 26− 12 : 17 : 47 PM

Table III shows the number of images used and corresponding
time intervals for each orthomosaic.

The orthomosaics shown in Fig. 10 are registered with
a NAIP image with a spatial resolution of 1 m using the
ArcGIS Georeferencing tool. Note that the NAIP image was
acquired on June 30, 2019 and has a 95 % confidence
accuracy of around 6 m [35]. Control point pairs between each
orthomosaic and the NAIP image were manually selected such
that they covered the whole field. All the orthomosaics were
registered using an Affine transformation and achieved a root
mean square error (RMSE) of about 1.3 to 1.45 m, as shown
in Table IV.

TABLE IV: Image-to-Image Registration Attributes for Short
Time-Series NIR Orthomosaics Using 1 m NAIP Imagery.

Orthomosaic Spatial Resolution (m) Control Point Pairs RMSE (m)
O1 0.1 9 1.45
O2 0.1 9 1.3
O3 0.1 10 1.37

B. NIR-based IVT Method for Fire Front Extraction

The proposed IVT method (Sec. III.B) is then implemented
on the registered NIR orthomosaics for fire front extraction.
First, initial analyses are performed to determine a reasonable
grid size. We observed that our algorithm generated similar
results for the grid size between 10 and 20 m. A grid size
of 10 × 10 m (or 100 × 100 pix.) is selected considering
multiple factors such as accuracy and computational efficiency.
The registered orthomosaics are divided into equally spaced
grids Γ. Then, the pixel distribution within each grid Γ is
analyzed for fire grid classification. The NIR orthomosaics
are normalized to 0-1 range, shown in Fig. 10. The α and β
are selected as 0.02 and 0.6 respectively. All the grids with
CV greater than 0.02 and range greater than 0.6 are classified

as fire grids, while all the other grids are classified as non-fire
grids, as shown in Fig. 11.

Fig. 11: Fire grid classification.

The fire grids are then searched for fire pixels using (4),
where all pixels within a grid that satisfy the γ condition are
classified as fire pixels while all other pixels are classified as
non-fire pixels. It was found that the fire pixels within the
classified fire grids represented the 95th percentile and above
values. Therefore, γ was selected to be 2. Fig. 11 shows the
extracted fire fronts from each orthomosaic. Finally, these fire
front pixels are manually delineated using a line feature class
in ArcGIS pro to form continuous fire front curves.

C. Validation of Fire Front Extraction
Qualitative and quantitative validation analyses were con-

ducted to show the effectiveness of the proposed IVT method.
For qualitative validation, popular edge detection methods
including, the Canny and LoG methods [36] are applied to
the NIR orthomosaics and the results are visually compared
to those generated by the proposed method. The objective of
this analysis is to illustrate the effectiveness of the proposed
method in rejecting noisy pixels such as saturated and smoke
pixels that are not often rejected by existing edge detection
methods. The Canny, LoG edge detection, and the proposed
IVT methods are applied to O2 and shown in Fig. 13. From
this figure, it is evident that proposed IVT method performs
better than the existing edge detection methods for fire front
extraction from high-resolution (0.1 m) NIR DN images. The
main reason is that the IVT first identifies fire regions at a
coarser resolution and then applies the fire front extraction
algorithm to only those areas which rejects outliers that are
often a problem when searching for the fire front directly in
high-resolution images.

For quantitative validation, the IVT extracted fire fronts
are compared to manually extracted fire fronts from the
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Fig. 12: Time labeled orthomosaics (12:07:03-12:17:47 PM).

Fig. 13: Qualitative comparison between fire fronts from
Canny(left), LoG edge detection(center), and IVT methods
(right).

orthomosaics. The minimum distance between the manual and
IVT fire fronts are compared for error quantification. This
analysis is conducted on all the NIR orthomosaics and the
resulting errors are tabulated in Table V. It can be observed
that the mean errors for each orthomosaic are less than or
around 1 m. This error is reasonable and does indicate that
the IVT is effective in accurately extracting the fire fronts.

TABLE V: Fire Front Error Statistics.

Orthomosaic Min Mean Max Std.
O1 0.01 0.46 1.61 0.35
O2 0.002 1.01 7.52 1.05
O3 0.002 1.01 3.52 1.05

D. Fire Evolution Mapping

The extracted and delineated fire front curves, f1, f2, f3 are
then combined to form a fire evolution map which provides
information about the fire front location, spread direction, and
the ROS. Fig. 14 shows the fire evolution map with labels
defining the head fire, flank fire, and back fire. Certain regions
with stitching inconsistencies are excluded from the fire ROS
analysis such as the west and east fire fronts of f1, which are
the overlapping areas of the two flight lines.

The fire fronts shown in Fig. 14 are categorized into head,
flank, and back fires based on the spread directions. Since the
prevailing wind during the fire is from the south at about 6.26
m/s (measured at around 2 m above the ground level), the fire
fronts spreading north are categorized as the head fire, while
the fire fronts spreading east or west are categorized as the
flank fire, and the fire fronts spreading south are categorized
as back fire.

The fire fronts with defined spread vectors are used to
calculate the ROS. For analysis, the head and flank fire fronts

are divided into two categorizes based on spread direction,
NE, NW for the head fire front and E, W for the flank fire
front. Note that these categories indicate the direction towards
which the fire front is spreading. For example, the portion of
head fire front spreading towards the NE is categorized as a
NE fire front. The back fire ROS is calculated between f1
and f3. The ROS between these fire fronts are calculated as
described in Sec. III.C and tabulated in Tables VI, Table VII,
and , Table VIII.

TABLE VI: Head Fire ROS Statistics.

Fire Fronts Min Mean Max Std.
f1 − f2NE 0.21 0.24 0.25 0.016
f2 − f3NE 0.18 0.26 0.35 0.05
f2 − f3NW 0.27 0.45 0.44 0.07

Cumulative
0.18 0.28 0.44 0.07

TABLE VII: Flank Fire ROS Statistics.

Fire Fronts Min Mean Max Std.
f1 − f2E 0.04 0.06 0.07 0.001
f2 − f3E 0.03 0.06 0.09 0.02
f2 − f3W 0.02 0.1 0.2 0.06

Cumulative
0.02 0.1 0.2 0.06

TABLE VIII: Back Fire ROS Statistics.

Fire Fronts Min Mean Max Std.
f1 − f3 0.0136 0.025 0.0435 0.0106

From these tables, it can be observed the mean head fire,
flank fire, and back fire ROS are measured to be 0.28 m/s,
0.1 m/s, and 0.025 m/s respectively. The measured ROS are
further visualized in a polar plot, as shown in Fig. 15.

V. DISCUSSIONS & LESSONS LEARNED

Critical insights, in-depth discussions, and lessons learned
from the proposed method and implementations are provided
in this section.

A. Accuracy in Time labelling and Spatiotemporal Represen-
tation

There exist several challenges in evaluating and analyzing
the accuracy of the proposed spatiotemporal representation in-
cluding handling of multiple overlapping aerial images looking
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Fig. 14: Fire evolution map.

Fig. 15: ROS polar plot.

at the same grid and accurate labeling of fire front location.
For our UAS fire data set, the fire front in one grid may
show up in about 7 overlapping images on average (∼ 0.7
sec. time difference between two consecutive images), which
raised the challenges in time and spatial accuracy analysis
within each fire front grid. The 0.7 sec. difference is mostly
determined by the longitudinal overlapping percentage of the
orthomap, the camera fps, and the UAS ground speed. For
our data set, the time difference in 7 overlapped images may
result in about ±2.5 sec. uncertainty in time. Since our UAS
flies much faster (∼ 25 m/s) than the fire spread (0.01-0.4
m/s), we can assume that the movement of the fire is trivial
within the overlapped pictures. Second, manual corrections of
fire labeling are sometimes needed since fire lines identified
by IVT method may generate minor errors especially when the
fire front is at the boundary of the grid. However, the correction
may only shift fire front one grid away from the identified fire
front. Finally, the acquired time stamp information using the
proposed spatiotemporal representation is compared with the
ones derived using the manual approach based on the thermal

image dataset from the same prescribed fire [24]. The average
time difference between spatiotemporal representation and the
manual approach is 0.88 sec., which falls in the ±2.5 sec.
uncertainty bound.

B. Fire ROS Accuracy

The accuracy of the fire ROS measurements is critical
to wildfire management, prescribed fire planning and policy
making, and fire behavior model validation. Our fire ROS
accuracy is analyzed from three sides, uncertainty analysis,
literature data, and cross validation with thermal data. The
uncertainty of our fire ROS measurements comes from both
the fire front location and the elapsed time between the two fire
front lines. The spatial position accuracy of the NIR fire front
location is about 1.45 m (RMS, 1−σ). Assume that the elapsed
time between two fire lines is around 120 seconds, the fire ROS
uncertainty will be around 0.024 m/s. This means that our head
fire and flank fire ROS estimates are fairly accurate while the
back fire ROS needs further confirmation. In addition, our
measured grass fire ROS matches with the expected grass
fire behavior in Kansas based on NWS researchers’ former
work where a fire ROS of 0.18/0.36 m/s corresponds to a
grass fire danger index of 5/10 with moderate/high difficulty
of suppression [37]. Considering the strong prevailing wind
velocity that day (6̃ m/s), it is not surprising that the fire danger
is relatively high. Finally, the NIR derived fire ROS estimates
agree with the thermal derived fire ROS from the same
prescribed fire [24]. In fact, thermal cameras are more widely
used for wildland fire ROS measurement in the literature [16],
[34], [38]. The mean head fire and flank fire ROS for thermal
data are measured to be 0.27 and 0.11 m/s [24], which have
a 0.01 m/s difference for both data and are within the 0.024
m/s uncertainity bound.
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C. Using UAS Orthomosaic to Monitor a Slowly Evolving
Process

UAS orthomosaics have been widely used for mapping of
static scenes. Our dataset and method showed that they can
be extended to monitoring and mapping of slowly evolving
processes such as a grass fire (compared with the fast UAS
flying speed). The following are observed and suggested based
on our experience.

a) Feature matching and stitching: Feature matching
among the longitudinal and lateral overlapped images are key
to the generation of accurate orthomosaics. Since our UAS
generally flies at a much faster ground speed (20-30 m/s)
than the grass fire evolution (0.025-0.28 m/s mean ROS), the
scene only changes slightly among the aerial images used for
stitching. The feature matching among these aerial images is
sufficient for the stitching process, which is shown by the
small stitching error (< 1.5 m RMSE). For our grass fire data
set, the biggest error comes from the lateral overlapping areas
when there is a fireline. This can be observed from the middle
left of the fire front in the left subfigure of Fig. 10, which
generated blurred fire front. Nevertheless, the stitching can
still be achieved since the affected regions only cover a small
portion of the overlapped areas. These blurred fire fronts are
not used in the fire metrics analysis.

b) Time labelling: One of the novelties of this paper
is the introduction of the time labelling compared with the
conventional orthomosaics. The time labels for different fire
grids within an orthomosaic can potentially be used for data-
based fireline prediction and correction so that an improved
UAS orthomap can be generated with the same timestamp
across all the fire lines. This will be one future direction of
our work.

D. Other Factors Affecting the Accuracy of UAS-based Fire
Metrics Measurements

The accuracy of UAS derived fire maps (for example, Fig.
14) is affected greatly by the quality of the aerial images and
corresponding GPS location data collected by the UAS when
flying over the evolving fire. The quality of these data may
be affected by many UAS flight performance metrics such as
orientation tracking errors, flight speed, UAS flight trajectory,
and the specification and setting of sensing payloads (cameras
and GPS). Two key factors, the UAS flight trajectory and the
sensor accuracy are discussed in details below.

a) UAS flight trajectory: Fire missions designed for
accurate fire mapping and fire ROS measurement require
high-quality observations of the fire front at regular time
intervals, which can be used to generate consistent time-
series orthomosaics. For prescribed fire experiments (similar
to the Anderson county grass fire shown in this paper), an
ideal UAS flight trajectory is to fly wings-level and steady in
consistent loops over the fire field at regular time intervals
while capturing images of the burning field. For example, a
UAS needs to fly over the same front at time t0, t1 = t0+ δt,
and so on, where δt is the time taken by the UAS to complete
one loop. This way, the UAS can capture the evolution of
fire fronts in the region at regular time intervals which can

be used for fire metrics measurements such as fire ROS.
However, such a flight trajectory can be difficult to achieve
due to multiple reasons such as irregular fire evolution patterns
and fire-induced turbulence, such as thermals. Fire-generated
weather can also affect the orientation of the UAS, which
can consequently result in the capturing of oblique and blurry
images that may not be usable in the orthomosaic stitching. An
example of such a scenario can be seen in the rightmost image
in Fig. 10. The gap near the top right portion of this image
was caused by rejecting blurry images (due to oscillating UAS
roll angles during capture) from the stitching process.

b) Sensor properties: The properties of operating sensing
payload, such as cameras and GPS play a vital role in the
accuracy of UAS data derived fire metrics. Camera properties
include frames per second (fps), image resolution, and FOV.
Higher fps can achieve more frequent observations of the
fire, while higher image resolution and FOV can achieve
better spatial representations of the burning field. It is worth
emphasizing that spectral properties of the images also play
a crucial role in dictating the accuracy of the delineated fire
front locations. For example, fire fronts within thermal images
are easier to delineate than those in NIR images, while NIR
images are less susceptible to smoke occlusion than RGB
images and are sensitive to the charring of vegetation in
the burning field. The IVT method proposed in this paper
extracts the fire front from NIR images using this property. It
is worth mentioning that these camera properties only control
the accuracy of fire front locations in the image coordinate
frame. The locations and the ROS of the extracted fire fronts
in the world coordinate frame (latitude and longitude) are
directly affected by the accuracy of the GPS data onboard
the UAS. This can be overcome by using cm-level RTK GPS
or by performing image-to-image registration using reference
images. In this paper, the resulting fire maps are accurate up
to 1.5 m since the time-series orthomosaics were registered
using a 1-m NAIP reference image.

VI. CONCLUSIONS & FUTURE WORK

This paper describes a novel NIR-based grass fire mapping
and ROS measurement method that uses UAS short time-
series orthomosaics with time labels. This method uses low-
cost NIR cameras instead of expensive thermal cameras, which
are feasible to many UAS operators. Moreover, the proposed
method is developed for DN images and does not require vicar-
ious radiometric calibrations that can be challenging for UAS
images. This method was demonstrated using a GoPro NIR
video that was collected by KHawk fixed-wing UAS when
flying multiple loops over a prescribed grass fire (530 m × 250
m) in Welda, KS and yielded an accurate fire evolution map
(about 1.5 m registration error compared to the NAIP image),
using three NIR short time-series orthomosaics at regular time
intervals (about 2 minutes). Finally, we determined that this
prescribed grass fire had mean head fire, flank fire , and back
fire ROS of 0.28 m/s, 0.1 m/s, and 0.025 m/s respectively.

Future goals for fixed-wing UAS based fire evolution
mapping and ROS measurement include, 1) fully automatic
fire front detection using supervised learning, 2) real-time
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fire mapping and ROS measurement for better fire situation
awareness, 3) autonomous UAS path adjustments based on
onboard fire spread measurements, and 4) integration of cm-
level RTK GPS on-board the UAS and use of GCP for
improved orthorectification, 5) generation of the guidelines for
using UAS orthomosaics to monitor a slowly evolving process
through comprehensive analysis and studies.
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