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Abstract—Grasping translucent objects, such as open contain-
ers, poses a significant challenge when using RGB and Depth
(RGBD) cameras, primarily due to the presence of cavities in
their depth values. The need for effectively grasping translucent
containers is especially important in kitchen environments, where
easy visibility of the contents inside is essential, particularly for
individuals with dementia. This paper addresses this challenge by
introducing a novel method that combines an analytical approach
with an object detection algorithm such as You Only Look
Once (YOLO) to improve grasping performance. Traditional
approaches often rely on depth-filling deep neural network
models to mitigate the issues caused by these cavities. Although
various deep learning methods have been developed for this
purpose, they typically entail extensive data collection efforts
for fine-tuning their models to work for the objects of interest.
In contrast, the approach presented in this paper leverages an
analytical method that is particularly well-suited for objects
with simple geometries, effectively eliminating the necessity for
extensive data collection to predict grasp points and fill cavities.
The experimental results demonstrate the effectiveness of this
novel approach, with an average grasping accuracy of 94.55%
achieved on translucent open containers, establishing it as a
viable and practical alternative to traditional deep learning-based
methods. The source code is available at Link1 and the dataset
for training the object detection algorithm YOLO in this paper
is available at Link2.

Index Terms—Computer Vision, Robot Grasping, Translucent
Objects

I. INTRODUCTION

The escalating prevalence of Alzheimer’s dementia among

the elderly, predicted to nearly triple by 2050 [1], presents

a pressing concern, accentuating the challenges faced by this

demographic in their daily lives. Addressing these challenges,

more than 70% of homeowners have been making substantial

modifications to their residences, with a predominant focus on

integrating assistive technology to aid in day-to-day tasks, as

reported by the National Aging in Place Council and National

Association of Home Builders [2]. Despite these efforts, the

execution of fundamental Activities of Daily Living (ADL)

such as cooking remains a formidable task for individuals

dealing with dementia. According to Wherton et al., [3],

visibility issues further compound this difficulty, highlighting

the specific challenges faced by individuals with dementia

when navigating tasks in the kitchen environment.

Recognizing these challenges and the need for innovative

solutions, practical recommendations have been made for

1https://github.com/HMI2-Research-Group/Analytical BestGrab
2https://github.com/HMI2-Research-Group/Kitchen-YOLO-Dataset

inclusive kitchen design. One such recommendation, supported

by the Social Care Institute for Excellence, involves using

transparent or translucent containers [4]. This seemingly sim-

ple yet highly effective solution holds significant potential

in enhancing the accessibility of objects for individuals with

dementia, thereby facilitating their active participation in daily

activities. In further exploring avenues to enhance accessibility

and independence in kitchen environments, integrating robotic

systems emerges as a promising solution. These advanced

technologies can assist individuals by performing tasks such

as opening cupboards, retrieving ingredients and utensils, and

operating kitchen appliances, similar to how Sugiura et al.

[5] conceptualize cooking as a collaborative scenario between

humans and robots. To perform all the aforementioned tasks

effectively, an assistive robot must accurately grasp objects.

One of the commonly used methods in grasping is the use

of computer vision. The necessity of developing an accurate

vision system capable of predicting and grasping translucent

objects is even more challenging. Existing approaches in the

realm of deep learning, primarily relying on RGB and Depth

(RGBD) cameras, have demonstrated success in grasping

opaque objects, as evidenced by notable studies [6], [7].

However, these methods face a significant challenge when it

comes to translucent objects due to the presence of cavities in

their depth values. These voids of depth information render the

conventional deep learning approaches ineffective for grasping

translucent objects [8].

Addressing this challenge requires rectifying the distorted

depth values inherent to translucent objects. Several deep

learning methods have been devised to fill these cavities ac-

curately, as highlighted in studies such as [8]–[10]. A notable

drawback of these methods is the requirement for extensive

data collection and training. However, when the object’s geom-

etry is simple, e.g., open containers, collecting data for training

would be superfluous. To circumvent the challenges associated

with data collection and training, analytical methods offer a

viable alternative, particularly when the object’s geometry is

simple. Analytical techniques can be employed to identify

suitable grasp points on the object, thereby reducing the need

for extensive data-driven approaches.

The contributions of this paper are as follows:

1) a novel analytical method that estimates the robotic

grasping point for translucent open containers

2) a real-world implementation of the proposed method for

evaluation with a 7-degrees of freedom robotic arm.
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a) b)

Fig. 1. a) The RGB image of an opaque container on the left and a translucent
container on the right. b) The corresponding point cloud for the objects.

The rest of the paper is organized as follows: Section II

explains the current state-of-the-art methods for grasping

translucent objects, Section III presents the results of the

baseline methods, and Section IV elaborates the proposed

system architecture to grasp open container translucent objects.

The results and comparison with baselines are discussed in

Section V, followed by the conclusion in Section VI.

II. RELATED WORK

Robotic manipulation refers to robots interacting with ob-

jects and their environments through physical interactions such

as grasping. In a home environment, robots must adapt to chal-

lenging situations such as occlusion [11]. However, grasping

is even more challenging when the objects are translucent. The

realm of robotic grasping has been a focal point of extensive

research efforts. A distinctive challenge arises when dealing

with translucent objects, a complexity not encountered with

their opaque counterparts. Unlike opaque objects, translucent

objects pose a formidable hurdle in generating accurate depth

estimates, often leading to distorted results and significant

lacunae, as demonstrated in Figure 1. This added complexity

makes adopting robots at home difficult, especially if the robot

is designed to assist people with dementia who may require

translucent objects for easier visibility. The current methods

use 3D data to grasp the objects, including point clouds or

images coupled with depth information (commonly known as

a depth frame), so that grasp points and grasp angles can

be detected. Grasp points are points at which the robot can

grasp the object, and the grasp angle is the angle at which the

gripper can approach the object. However, as there are cavities

in the depth frame of translucent objects, the current methods

cannot be applied directly. This inherent difficulty in grasping

translucent objects remains an ongoing research challenge, as

emphasized by Sun et al. [12].

To address this challenge, researchers have turned to deep

learning models and proposed datasets containing translucent

objects. These datasets can be categorized mainly into three

types based on the generation method: (1) synthetic Datasets,

(2) real datasets, and (3) a combination of real and synthetic

Datasets. In synthetic datasets, translucent objects are sim-

ulated in realistic environment simulators, such as Blender.

[13]. Li et al. [9] proposed enhancing the naturalness of the

simulations in Blender to make better synthetic datasets. The

reason for this enhancement is because of a phenomenon

called the Sim-to-Real gap [14]. This gap refers to the disparity

between the performance of deep learning models in simulated

environments and their performance in the real world. Factors

such as lighting conditions, sensor noise, and unmodeled

dynamics occurring naturally can significantly impact the

performance of algorithms. Li et al. proposed to use Blender

with enhanced lighting simulations along with exact camera

intrinsics for the Intel RealSense D435i to simulate realistic

scenes. The authors also proposed using a Gaussian mask on

the depth image. The peaks in the mask can act as a guiding

factor for accurately finding the best grasp points. The authors

concluded that using enhanced simulations and a Gaussian

mask improved the grasp rate by 36.7% compared to direct

grasping without using Gaussian mask annotation. Fang et al.

[8] proposed using a real dataset called the TransCG to combat

the Sim-to-Real gap. However, collecting a real dataset is

time-consuming, especially annotating the grasp points needed

for the Convolutional Neural Network (CNN) to train. To get

around this issue, the authors proposed the use of an object

tracking system that can detect objects mounted with an IR

marker in real-time. The generated dataset is used to train

Depth Filler Net (DFNet) to correct the depth estimates. In

real-world testing, the authors established a perfect grasping

rate on eight objects (six novel and two from the training).

ClearGrasp by Sajjan et al. [10] employed the third method

of combining real and synthetic data to train their CNN based

network to correct the depth cavities. The authors concluded

that using ClearGrasp increased the accuracy of the depth

frame estimates, thus improving the grasp accuracy compared

to only using the depth frame for detecting the grasping point.

The generation of real-world and synthetic datasets takes

time and effort. Although deep learning methods can correct

the depth frame of objects, fine-tuning might still be needed

for some objects depending on the object’s shape, as shown in

the baseline comparison in Section III. Instead of fine-tuning

to correct the depth frame, analytical methods can be used

if the geometry of objects, e.g., open containers, is known.

This novel analytical method can then be used for translucent

open containers and is especially useful for robots to grasp

translucent objects to assist people with dementia.

III. BASELINE COMPARISON

It is imperative to test the baseline methods before propos-

ing a new analytical approach for grasping open containers.

Therefore, DFNet [8] is used to correct the depth values,

and GraspNet [7] is used to generate the grasp location and

orientation. Both models are used without fine-tuning. The

combined DFNet+GraspNet is used for detecting the grasp

location and orientation. To test the average accuracy of cor-

rect grasp locations and orientation detections on translucent

objects, the model’s output in each of the three translucent

objects shown in Figure 2 is tested ten times, and the average

accuracy is calculated to be 16.67%. However, in the case of

testing on opaque objects, shown in Figure 2, there is no need
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for depth correction using DFNet. Only GraspNet is used to

detect the grasp location and orientation of the opaque objects

with an average accuracy of 90%.

a)

b)

c)

d)

e)

f)

g)

h)

i)

j)

k)

Fig. 2. Different opaque and translucent objects for testing: Translucent
containers with a) Chilli b) bell Pepper c) Pasta d) Garlic e) Cheese f) Butter;
Opaque containers with g) Mushrooms h) Peas and Carrots i) Green beans j)
Tomato Sauce k) Corn.

Figure 3 shows the DFNet+GraspNet output grasp location

and orientation on one of the translucent container test objects.

This indicates that additional training using the test translucent

container is required before DFNet can appropriately correct

the depth values. To address this, it is essential to propose

an analytical method for the detection of grasp points and

orientations, serving as a substitute for deep neural networks

like DFNet.

Fig. 3. Output of DFNet by Fang et al [8] on one of the translucent container
test objects.

IV. PROPOSED ARCHITECTURE

Aims and Assumptions: The aim is to develop a hybrid

approach consisting of deep learning models and analytical

methods for grasping open and translucent containers. The

objects are detected by commonly used object detection al-

gorithms, and the analytical methods are designed under the

assumption that the gripper will approach the object from a

top-down perspective.

System Architecture: The proposed architecture is de-

picted in Figure 4, and succinctly described in Algorithm 1.

The process begins with the acquisition of RGB color and

camera intrinsics using an RGBD camera, specifically the

Intel RealSense D405 RGB-Depth camera (D405) model.

Subsequently, object detection is performed using YOLO [15],

Algorithm 1: Analytical Grasp Point Detector

input : RGB Image, Camera Intrinsics, n

output: Best Grasp Point, Orientation Angle

1 BBox = YOLO(RGB Image) ;

/* Assuming YOLO has given the

Bounding Box of the object of

interest only */

2 SPC = BBox to PointCloud(BBox,

PixeltoPointProjection) ;

3 TPC =

{(x, y, z)|camworldT (xs, ys, zs)∀(xs, ys, zs) ∈ SPC} ;

4 MH = argmaxz ∀(x, y, z) ∈ TPC ;

5 PGP = {(x, y, z)|(x, y, z) ∈ TPC ∧ z ≥ MH − δ} ;

6 BGP =

argmax(x,y,z)∈PGP {||X − Xtl+Xbr

2 || |(X,Y ) ∈
PoPiPr(world

cam T (x, y, z))} ;

7 Let (x0, y0, z0) = GraspPoint ;

8 α = {(x, y, z)|(x, y, z) ∈
PGP ∧ ||(x, y, z)− (x0, y0, z0)|| > 0} ;

9 NGP = argmaxI⊂α:|I|=n α =

{(x1, y1, z1) . . . (xn, yn, zn)} ;

10 Let x =
[

x0 x1 . . . xn

]T
;

11 Let y =
[

y0 y1 . . . yn
]T

;

12 A =
[

xTx x 1
]

;

13





a

b

c



 = (ATA)−1ATy ;

14 θorientation = atan2( −1
2ax0+b

) ;

15 return BGP, θorientation

a model for identifying bounding boxes around objects of

interest. YOLO is finetuned using a curated dataset specifically

to identify both translucent and opaque objects, which is

made accessible here2. The dataset comprises 210 images. The

image count for each class is elucidated in Table I. Notably,

TABLE I
TABLE DEPICTING THE DISTRIBUTION OF IMAGE COUNTS ACROSS

VARIOUS CLASSES WITHIN THE DATASET, COMPRISING 210 IMAGES.

Class Image Count by Class

Cheese 18

Peas and Carrots 25

Butter 32

Green Beans 34

Corn 48

Mushrooms 52

Garlic 56

Bell Pepper 57

Tomato Sauce 58

Chilli 60

Pasta 62

the dataset includes a range of translucent and opaque objects,

as can be observed in Figure 2. This variety ensures the
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Input RGB Image

YOLO

BBox to
PointCloud

Interested Object
detected in Bounding

Box

Point Cloud
Transform

Analytical Grasp
Point Detector

Output: Grasp Point
(in Green) and

Gripper Orientation
Angle (in Blue)

Intel RealSense
D405

Segmented Point
Cloud of Object of

Interest

Transformed
PointCloud with

Base Link as
coordinate axis

Panda Robot Picks
Up the Object based
on Grasp Point and
Orientation angle

Camera
Intrinsics

Pixel to Point
Projection

BBox

Transform
Calculator Block

Point to Pixel
Projection

Fig. 4. The proposed pipeline for detecting the grasp point and grasp orientation angle from the camera inputs of RGB Image and Camera Intrinsics.

model’s proficiency in detecting objects with different material

properties.

Let the bounding box (BBox) output from the YOLO model

be represented as

BBox = {(X,Y )|Xtl ≤ X ≤ Xbr, Ytl ≤ Y ≤ Ybr} (1)

where (Xtl, Ytl) are the top left pixel coordinates and

(Xbr, Ybr) are the bottom right coordinates of the bounding

box.

Upon detection of the bounding box, the “BBox to Point-

Cloud” block outputs the corresponding point cloud enclosed

within the bounding box (line 2 in Algorithm 1). This function

takes two inputs. One BBox and other Pixel to Point Projection

(PiPoPr : R2 → R3), which projects the pixel (X,Y ) into

a 3D point (x, y, z) in the camera coordinate frame.

The “Point Cloud Transform” block in the Figure 4 (line 3 in

Algorithm 1) transforms the points in the point cloud generated

by the “BBox to PointCloud” to a world frame of reference

that is stationary. The world reference frame’s Z-axis is aligned

perpendicularly to the ground plane and points upwards. By

applying this transformation, all the points are reoriented to

align with the world reference frame. The transform is pro-

vided by “Transform Calculator Block”, whose functionality is

provided by the tf package [16], which transforms the points

from the camera coordinate frame to the world frame and

vice versa. Let the transformation from the camera coordinate

frame to the world frame be defined as cam
worldT : R3 → R3,

the transformation from world frame to the camera coordinate

frame world
cam T : R3 → R3 and let the transformed point cloud

be defined as TPC. TPC is the output of “Point Cloud

Transform” block. An interesting property of TPC is that

the elevated Z coordinates in TPC correspond to the top

edge points of the object of interest. The top edge points are

particularly interesting because those are the potential points

where the object can be grasped.

As the RGBD cameras cannot estimate the depth of translu-

cent objects correctly, the best estimate of a viable grasp

point is the point with the highest Z coordinate (line 4 in

Algorithm 1). But getting as many top-edge points as possible

is also essential. Therefore, all the points whose Z coordinate

is greater than the highest Z coordinate minus a small offset

δ, e.g., 1mm, can be sampled as potential grasp points PGP

(line 5 in Algorithm 1).

From the RGB image, the best grasp point should lie as

farthest as possible from the center line of the bounding box

because that is where at least one of the faces or edges is

present. The center line can be defined as X = Xtl+Xbr

2 .

To measure the distance from this line, the 3D points must

be projected back to the pixel plane using Point to Pixel

Projection PoPiPr : R3 → R2, and the distance can be

calculated. The point with the highest distance from the line

is chosen as the best grasp point BGP , which can also be

referred to as (x0, y0, z0) (line 6 in Algorithm 1).

To determine the approach angle of the gripper in a top-

down manner (line 7-line 14 in Algorithm 1), a set of n nearest

points to the optimal grasp point is chosen as NGP (line 9

in Algorithm 1). After trial and error, n ≥ 4 was found to

be the best. As the focus is grasping the object top-down, the

grasp point and the n nearest points are projected onto the XY

plane as the Z axis is not needed. A parabolic curve can be

fitted by least squares approximation through those selected

points. The normal to the parabola passing through the best

grasp point can be considered the best gripper orientation. Let

the best-fit parabola be denoted as y = ax2 + bx+ c. Finally,

the gripper’s orientation angle can be found by atan2(-1/(2ax0

+ b)). The source code of Algorithm 1 can be found here1.

The next section discusses the results of the proposed method.
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TABLE II
AVERAGE GRASPING ACCURACY OF EACH TEST OBJECT. TEN TRIALS ARE

CONDUCTED TO COMPUTE THE AVERAGE.

Object Name Grasp Accuracy (in %)

Tomato Sauce (Opaque) 90

Peas and Carrots (Opaque) 100

Green Beans (Opaque) 90

Mushrooms (Opaque) 100

Corn (Opaque) 90

Cheese (Translucent) 90

Butter (Translucent) 100

Garlic (Translucent) 100

Pasta (Translucent) 90

Chilli (Translucent) 100

Bell Pepper (Translucent) 90

Overall Accuracy 94.55

Translucent Objects Accuracy 95

Opaque Objects Accuracy 94

V. RESULTS AND DISCUSSION

To evaluate the proposed architecture in Section IV, the

grasping accuracy is assessed with ten trials for 11 distinct

objects, shown in Figure 2. The average accuracy of ten trials

for each object is presented in Table II; the average grasping

accuracy is 94.55%.

The authors of DFNet [8] report the average accuracy

during real-world experiments is 80.4%. Therefore, analytical

approaches provide a viable option in case the object’s open

and flat-topped geometry is known and performs at par with

deep neural networks without training for depth correction.

However, both analytical and deep learning methods have

their own advantages and drawbacks. The analytical method

demands less data because the object’s geometry is known

beforehand. Conversely, deep learning requires more data but

can generalize across objects well, enabling the grasping of

diverse objects. Therefore, it is important to determine which

method to use depending on the types of objects used and

whether data collection is desirable.

Hence, the choice of the method should be guided by the

nature of the objects involved and the desirability of data

collection.

VI. CONCLUSION

This paper introduced a novel method to grasp translucent

open containers using an analytical method paired with an

object detection algorithm. Previous approaches have suc-

ceeded in grasping opaque objects, but translucent objects

are challenging to grasp due to cavities caused by distorted

depth data. Several deep-learning methods have been devised

to fill these cavities accurately, but they require extensive

data collection. This proposed architecture enables a robot to

accurately grasp translucent objects with simple geometries,

such as an open container, with less data collection required for

training when compared to previous methods. The results show

an average grasping accuracy of 94.55% on open containers,

which is comparable to deep neural network approaches.
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