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Abstract—Grasping translucent objects, such as open contain-
ers, poses a significant challenge when using RGB and Depth
(RGBD) cameras, primarily due to the presence of cavities in
their depth values. The need for effectively grasping translucent
containers is especially important in kitchen environments, where
easy visibility of the contents inside is essential, particularly for
individuals with dementia. This paper addresses this challenge by
introducing a novel method that combines an analytical approach
with an object detection algorithm such as You Only Look
Once (YOLO) to improve grasping performance. Traditional
approaches often rely on depth-filling deep neural network
models to mitigate the issues caused by these cavities. Although
various deep learning methods have been developed for this
purpose, they typically entail extensive data collection efforts
for fine-tuning their models to work for the objects of interest.
In contrast, the approach presented in this paper leverages an
analytical method that is particularly well-suited for objects
with simple geometries, effectively eliminating the necessity for
extensive data collection to predict grasp points and fill cavities.
The experimental results demonstrate the effectiveness of this
novel approach, with an average grasping accuracy of 94.55%
achieved on translucent open containers, establishing it as a
viable and practical alternative to traditional deep learning-based
methods. The source code is available at Link' and the dataset
for training the object detection algorithm YOLO in this paper
is available at Link’.

Index Terms—Computer Vision, Robot Grasping, Translucent
Objects

I. INTRODUCTION

The escalating prevalence of Alzheimer’s dementia among
the elderly, predicted to nearly triple by 2050 [1], presents
a pressing concern, accentuating the challenges faced by this
demographic in their daily lives. Addressing these challenges,
more than 70% of homeowners have been making substantial
modifications to their residences, with a predominant focus on
integrating assistive technology to aid in day-to-day tasks, as
reported by the National Aging in Place Council and National
Association of Home Builders [2]. Despite these efforts, the
execution of fundamental Activities of Daily Living (ADL)
such as cooking remains a formidable task for individuals
dealing with dementia. According to Wherton et al., [3],
visibility issues further compound this difficulty, highlighting
the specific challenges faced by individuals with dementia
when navigating tasks in the kitchen environment.

Recognizing these challenges and the need for innovative
solutions, practical recommendations have been made for
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inclusive kitchen design. One such recommendation, supported
by the Social Care Institute for Excellence, involves using
transparent or translucent containers [4]. This seemingly sim-
ple yet highly effective solution holds significant potential
in enhancing the accessibility of objects for individuals with
dementia, thereby facilitating their active participation in daily
activities. In further exploring avenues to enhance accessibility
and independence in kitchen environments, integrating robotic
systems emerges as a promising solution. These advanced
technologies can assist individuals by performing tasks such
as opening cupboards, retrieving ingredients and utensils, and
operating kitchen appliances, similar to how Sugiura et al.
[5] conceptualize cooking as a collaborative scenario between
humans and robots. To perform all the aforementioned tasks
effectively, an assistive robot must accurately grasp objects.

One of the commonly used methods in grasping is the use
of computer vision. The necessity of developing an accurate
vision system capable of predicting and grasping translucent
objects is even more challenging. Existing approaches in the
realm of deep learning, primarily relying on RGB and Depth
(RGBD) cameras, have demonstrated success in grasping
opaque objects, as evidenced by notable studies [6], [7].
However, these methods face a significant challenge when it
comes to translucent objects due to the presence of cavities in
their depth values. These voids of depth information render the
conventional deep learning approaches ineffective for grasping
translucent objects [8].

Addressing this challenge requires rectifying the distorted
depth values inherent to translucent objects. Several deep
learning methods have been devised to fill these cavities ac-
curately, as highlighted in studies such as [8]-[10]. A notable
drawback of these methods is the requirement for extensive
data collection and training. However, when the object’s geom-
etry is simple, e.g., open containers, collecting data for training
would be superfluous. To circumvent the challenges associated
with data collection and training, analytical methods offer a
viable alternative, particularly when the object’s geometry is
simple. Analytical techniques can be employed to identify
suitable grasp points on the object, thereby reducing the need
for extensive data-driven approaches.

The contributions of this paper are as follows:

1) a novel analytical method that estimates the robotic

grasping point for translucent open containers

2) a real-world implementation of the proposed method for

evaluation with a 7-degrees of freedom robotic arm.
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Fig. 1. a) The RGB image of an opaque container on the left and a translucent
container on the right. b) The corresponding point cloud for the objects.

The rest of the paper is organized as follows: Section II
explains the current state-of-the-art methods for grasping
translucent objects, Section III presents the results of the
baseline methods, and Section IV elaborates the proposed
system architecture to grasp open container translucent objects.
The results and comparison with baselines are discussed in
Section V, followed by the conclusion in Section VI.

II. RELATED WORK

Robotic manipulation refers to robots interacting with ob-
jects and their environments through physical interactions such
as grasping. In a home environment, robots must adapt to chal-
lenging situations such as occlusion [I1]. However, grasping
is even more challenging when the objects are translucent. The
realm of robotic grasping has been a focal point of extensive
research efforts. A distinctive challenge arises when dealing
with translucent objects, a complexity not encountered with
their opaque counterparts. Unlike opaque objects, translucent
objects pose a formidable hurdle in generating accurate depth
estimates, often leading to distorted results and significant
lacunae, as demonstrated in Figure 1. This added complexity
makes adopting robots at home difficult, especially if the robot
is designed to assist people with dementia who may require
translucent objects for easier visibility. The current methods
use 3D data to grasp the objects, including point clouds or
images coupled with depth information (commonly known as
a depth frame), so that grasp points and grasp angles can
be detected. Grasp points are points at which the robot can
grasp the object, and the grasp angle is the angle at which the
gripper can approach the object. However, as there are cavities
in the depth frame of translucent objects, the current methods
cannot be applied directly. This inherent difficulty in grasping
translucent objects remains an ongoing research challenge, as
emphasized by Sun et al. [12].

To address this challenge, researchers have turned to deep
learning models and proposed datasets containing translucent
objects. These datasets can be categorized mainly into three
types based on the generation method: (1) synthetic Datasets,
(2) real datasets, and (3) a combination of real and synthetic
Datasets. In synthetic datasets, translucent objects are sim-
ulated in realistic environment simulators, such as Blender.
[13]. Li et al. [9] proposed enhancing the naturalness of the

simulations in Blender to make better synthetic datasets. The
reason for this enhancement is because of a phenomenon
called the Sim-to-Real gap [14]. This gap refers to the disparity
between the performance of deep learning models in simulated
environments and their performance in the real world. Factors
such as lighting conditions, sensor noise, and unmodeled
dynamics occurring naturally can significantly impact the
performance of algorithms. Li et al. proposed to use Blender
with enhanced lighting simulations along with exact camera
intrinsics for the Intel RealSense D435i to simulate realistic
scenes. The authors also proposed using a Gaussian mask on
the depth image. The peaks in the mask can act as a guiding
factor for accurately finding the best grasp points. The authors
concluded that using enhanced simulations and a Gaussian
mask improved the grasp rate by 36.7% compared to direct
grasping without using Gaussian mask annotation. Fang et al.
[8] proposed using a real dataset called the TransCG to combat
the Sim-to-Real gap. However, collecting a real dataset is
time-consuming, especially annotating the grasp points needed
for the Convolutional Neural Network (CNN) to train. To get
around this issue, the authors proposed the use of an object
tracking system that can detect objects mounted with an IR
marker in real-time. The generated dataset is used to train
Depth Filler Net (DFNet) to correct the depth estimates. In
real-world testing, the authors established a perfect grasping
rate on eight objects (six novel and two from the training).
ClearGrasp by Sajjan et al. [10] employed the third method
of combining real and synthetic data to train their CNN based
network to correct the depth cavities. The authors concluded
that using ClearGrasp increased the accuracy of the depth
frame estimates, thus improving the grasp accuracy compared
to only using the depth frame for detecting the grasping point.
The generation of real-world and synthetic datasets takes
time and effort. Although deep learning methods can correct
the depth frame of objects, fine-tuning might still be needed
for some objects depending on the object’s shape, as shown in
the baseline comparison in Section III. Instead of fine-tuning
to correct the depth frame, analytical methods can be used
if the geometry of objects, e.g., open containers, is known.
This novel analytical method can then be used for translucent
open containers and is especially useful for robots to grasp
translucent objects to assist people with dementia.

III. BASELINE COMPARISON

It is imperative to test the baseline methods before propos-
ing a new analytical approach for grasping open containers.
Therefore, DFNet [8] is used to correct the depth values,
and GraspNet [7] is used to generate the grasp location and
orientation. Both models are used without fine-tuning. The
combined DFNet+GraspNet is used for detecting the grasp
location and orientation. To test the average accuracy of cor-
rect grasp locations and orientation detections on translucent
objects, the model’s output in each of the three translucent
objects shown in Figure 2 is tested ten times, and the average
accuracy is calculated to be 16.67%. However, in the case of
testing on opaque objects, shown in Figure 2, there is no need
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for depth correction using DFNet. Only GraspNet is used to
detect the grasp location and orientation of the opaque objects
with an average accuracy of 90%.

TH

c)

= 9)@ i)@
- @&
: k)@

Fig. 2. Different opaque and translucent objects for testing: Translucent
containers with a) Chilli b) bell Pepper c¢) Pasta d) Garlic e) Cheese f) Butter;
Opaque containers with g) Mushrooms h) Peas and Carrots i) Green beans j)
Tomato Sauce k) Corn.

Figure 3 shows the DFNet+GraspNet output grasp location
and orientation on one of the translucent container test objects.
This indicates that additional training using the test translucent
container is required before DFNet can appropriately correct
the depth values. To address this, it is essential to propose
an analytical method for the detection of grasp points and
orientations, serving as a substitute for deep neural networks
like DFNet.

Fig. 3. Output of DFNet by Fang et al [8] on one of the translucent container
test objects.

IV. PROPOSED ARCHITECTURE

Aims and Assumptions: The aim is to develop a hybrid
approach consisting of deep learning models and analytical
methods for grasping open and translucent containers. The
objects are detected by commonly used object detection al-
gorithms, and the analytical methods are designed under the
assumption that the gripper will approach the object from a
top-down perspective.

System Architecture: The proposed architecture is de-
picted in Figure 4, and succinctly described in Algorithm 1.
The process begins with the acquisition of RGB color and
camera intrinsics using an RGBD camera, specifically the
Intel RealSense D405 RGB-Depth camera (D405) model.
Subsequently, object detection is performed using YOLO [15],

Algorithm 1: Analytical Grasp Point Detector

input : RGB Image, Camera Intrinsics, n
output: Best Grasp Point, Orientation Angle

BBox = YOLO(RGB Image) ;

/* Assuming YOLO has given the
Bounding Box of the object of
interest only */

2 SPC = BBox to PointCloud(BBox,
PixeltoPointProjection) ;

3 TPC =
{(@,y, 2)|eoriaT (s, ys, 25)V(Ts, Ys, 25) € SPC}

4 MH = argmax, V(z,y,z) € TPC ;

5 PGP = {(z,y,2)|(x,y,2) e TPCNz> MH — ¢} ;

6 BGP =
arg maX(m,y,zZGPGP{HX - %H |(X7 Y) €
PoPiPr(orldT(z,y,2))} ;

7 Let (2o, Yo, 20) = GraspPoint ;

PGP A ||($,y,2) - (x07y0720)|| > O} 5

9 NGP = argmax;cq:|rj=n @ =
{(x1,y1, Zl) v (mTwyna Zn)} 5

10 Let z = [a:o Ty ... :z:n]TT;

ulety=[y m Yn]

2A=[z"z z 1];

a

13 (Db
c

14 Oorientation = atanQ(Tol_i_b) 5

15 return BGP, Oentation

-

= (ATA) ATy ;

a model for identifying bounding boxes around objects of
interest. YOLO is finetuned using a curated dataset specifically
to identify both translucent and opaque objects, which is
made accessible here?. The dataset comprises 210 images. The
image count for each class is elucidated in Table I. Notably,

TABLE I
TABLE DEPICTING THE DISTRIBUTION OF IMAGE COUNTS ACROSS
VARIOUS CLASSES WITHIN THE DATASET, COMPRISING 210 IMAGES.

Class Image Count by Class
Cheese 18
Peas and Carrots 25
Butter 32
Green Beans 34
Corn 48
Mushrooms 52
Garlic 56
Bell Pepper 57
Tomato Sauce 58
Chilli 60
Pasta 62

the dataset includes a range of translucent and opaque objects,
as can be observed in Figure 2. This variety ensures the
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Fig. 4. The proposed pipeline for detecting the grasp point and grasp orientation angle from the camera inputs of RGB Image and Camera Intrinsics.

model’s proficiency in detecting objects with different material
properties.

Let the bounding box (BBox) output from the YOLO model
be represented as

BBox = {(X,Y)|Xu < X < X4, Ya <Y < Yir} (1)

where (Xy,Yy) are the top left pixel coordinates and
(Xpr, Yy, ) are the bottom right coordinates of the bounding
box.

Upon detection of the bounding box, the “BBox to Point-
Cloud” block outputs the corresponding point cloud enclosed
within the bounding box (line 2 in Algorithm 1). This function
takes two inputs. One BBox and other Pixel to Point Projection
(PiPoPr : R? — R3?), which projects the pixel (X,Y) into
a 3D point (z,y, z) in the camera coordinate frame.

The “Point Cloud Transform” block in the Figure 4 (line 3 in
Algorithm 1) transforms the points in the point cloud generated
by the “BBox to PointCloud” to a world frame of reference
that is stationary. The world reference frame’s Z-axis is aligned
perpendicularly to the ground plane and points upwards. By
applying this transformation, all the points are reoriented to
align with the world reference frame. The transform is pro-
vided by “Transform Calculator Block”, whose functionality is
provided by the tf package [16], which transforms the points
from the camera coordinate frame to the world frame and
vice versa. Let the transformation from the camera coordinate
frame to the world frame be defined as {1 : R3 > R3,
the transformation from world frame to the camera coordinate
frame “or14T : R3 — R3 and let the transformed point cloud
be defined as TPC. TPC is the output of “Point Cloud
Transform” block. An interesting property of T'PC' is that
the elevated Z coordinates in T'PC' correspond to the top
edge points of the object of interest. The top edge points are
particularly interesting because those are the potential points
where the object can be grasped.

As the RGBD cameras cannot estimate the depth of translu-
cent objects correctly, the best estimate of a viable grasp
point is the point with the highest Z coordinate (line 4 in
Algorithm 1). But getting as many top-edge points as possible
is also essential. Therefore, all the points whose Z coordinate
is greater than the highest Z coordinate minus a small offset
J, e.g., lmm, can be sampled as potential grasp points PGP
(line 5 in Algorithm 1).

From the RGB image, the best grasp point should lie as
farthest as possible from the center line of the bounding box
because that is where at least one of the faces or edges is
present. The center line can be defined as X = %
To measure the distance from this line, the 3D points must
be projected back to the pixel plane using Point to Pixel
Projection PoPiPr : R® — R?, and the distance can be
calculated. The point with the highest distance from the line
is chosen as the best grasp point BG'P, which can also be
referred to as (zo, Yo, 20) (line 6 in Algorithm 1).

To determine the approach angle of the gripper in a top-
down manner (line 7-line 14 in Algorithm 1), a set of n nearest
points to the optimal grasp point is chosen as NGP (line 9
in Algorithm 1). After trial and error, n > 4 was found to
be the best. As the focus is grasping the object top-down, the
grasp point and the n nearest points are projected onto the XY
plane as the Z axis is not needed. A parabolic curve can be
fitted by least squares approximation through those selected
points. The normal to the parabola passing through the best
grasp point can be considered the best gripper orientation. Let
the best-fit parabola be denoted as y = ax? + bx + c. Finally,
the gripper’s orientation angle can be found by atan2(-1/(2ax
+ b)). The source code of Algorithm 1 can be found here!.
The next section discusses the results of the proposed method.
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TABLE II
AVERAGE GRASPING ACCURACY OF EACH TEST OBJECT. TEN TRIALS ARE
CONDUCTED TO COMPUTE THE AVERAGE.

| Object Name | Grasp Accuracy (in %) |

Tomato Sauce (Opaque) 90
Peas and Carrots (Opaque) 100
Green Beans (Opaque) 90
Mushrooms (Opaque) 100
Corn (Opaque) 90
Cheese (Translucent) 90
Butter (Translucent) 100
Garlic (Translucent) 100
Pasta (Translucent) 90
Chilli (Translucent) 100
Bell Pepper (Translucent) 90
Overall Accuracy 94.55
Translucent Objects Accuracy 95
Opaque Objects Accuracy 94

V. RESULTS AND DISCUSSION

To evaluate the proposed architecture in Section IV, the
grasping accuracy is assessed with ten trials for 11 distinct
objects, shown in Figure 2. The average accuracy of ten trials
for each object is presented in Table II; the average grasping
accuracy is 94.55%.

The authors of DFNet [8] report the average accuracy
during real-world experiments is 80.4%. Therefore, analytical
approaches provide a viable option in case the object’s open
and flat-topped geometry is known and performs at par with
deep neural networks without training for depth correction.
However, both analytical and deep learning methods have
their own advantages and drawbacks. The analytical method
demands less data because the object’s geometry is known
beforehand. Conversely, deep learning requires more data but
can generalize across objects well, enabling the grasping of
diverse objects. Therefore, it is important to determine which
method to use depending on the types of objects used and
whether data collection is desirable.

Hence, the choice of the method should be guided by the
nature of the objects involved and the desirability of data
collection.

VI. CONCLUSION

This paper introduced a novel method to grasp translucent
open containers using an analytical method paired with an
object detection algorithm. Previous approaches have suc-
ceeded in grasping opaque objects, but translucent objects
are challenging to grasp due to cavities caused by distorted
depth data. Several deep-learning methods have been devised
to fill these cavities accurately, but they require extensive
data collection. This proposed architecture enables a robot to
accurately grasp translucent objects with simple geometries,
such as an open container, with less data collection required for
training when compared to previous methods. The results show
an average grasping accuracy of 94.55% on open containers,
which is comparable to deep neural network approaches.
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