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AbstractÐWith the promise of federated learning (FL) to allow
for geographically-distributed and highly personalized services,
the efficient exchange of model updates between clients and
servers becomes crucial. FL, though decentralized, often faces
communication bottlenecks, especially in resource-constrained
scenarios. Existing data compression techniques like gradient
sparsification, quantization, and pruning offer some solutions,
but may compromise model performance or necessitate expensive
retraining. In this paper, we introduce FEDSZ, a specialized
lossy-compression algorithm designed to minimize the size of
client model updates in FL. FEDSZ incorporates a compre-
hensive compression pipeline featuring data partitioning, lossy
and lossless compression of model parameters and metadata,
and serialization. We evaluate FEDSZ using a suite of error-
bounded lossy compressors, ultimately finding SZ2 to be the
most effective across various model architectures and datasets in-
cluding AlexNet, MobileNetV2, ResNet50, CIFAR-10, Caltech101,
and Fashion-MNIST. Our study reveals that a relative error
bound 10−2 achieves an optimal tradeoff, compressing model
states between 5.55-12.61× while maintaining inference accuracy
within < 0.5% of uncompressed results. Additionally, the runtime
overhead of FEDSZ is < 4.7% or between of the wall-clock
communication-round time, a worthwhile trade-off for reducing
network transfer times by an order of magnitude for networks
bandwidths < 350Mbps. Intriguingly, we also find that the error
introduced by FEDSZ could potentially serve as a source of
differentially private noise, opening up new avenues for privacy-
preserving FL.

Index TermsÐLossy compression, federated learning, edge
computing

I. INTRODUCTION

Federated learning (FL), a decentralized machine learning

(ML) paradigm, has found applications in a plethora of fields,

including image classification and generative text models on

mobile phones, real-time decision-making on edge devices,

large-scale anomaly detection, and personalization in health-

care [1]. However, FL’s broad adoption and effectiveness face

challenges due to the high complexity of models, substantial

computational demands and ever-increasing scale. Modern FL

systems often require processing and training models, each

Corresponding author: Sheng Di, Mathematics and Computer Science
Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, IL
60439, USA

with billions of parameters, while communicating with thou-

sands of distributed clients, bringing a heavy computational

and communication overhead.

In FL, client-server communication can become a significant

bottleneck to achieving scalability of number of clients and

server-side robustness [2]±[4]. For instance, an autonomous

vehicle can generate up to 1 GB/s of sensor or image data for

on-device training and validation [5]. If a 10GB client update

is sent to a server via a mobile network with a bandwidth

of 10Mbps, it would take approximately 150 minutes to

transmit. With several other computational tasks happening

and an autonomous vehicle being battery-constrained, this is

a significant amount of effort spent on communication alone.

As a result, strategies to cut data-related communication chal-

lenges are necessary to enhance the scalability and robustness

of FL [6].

Error-bounded lossy compression (EBLC) [7]±[9] is widely

used to significantly reduce large volumes of data generated

by high-performance computing (HPC) simulations, but how

EBLC can be used to mitigate the communication cost for FL

significantly is still an open question. Moreover, introducing

EBLC produces many new challenges for FL: (1) The FL

environment fundamentally differs from HPC. In the area

of HPC, the compute or storage nodes are generally under

centralized management in a supercomputer, where the related

resources are relatively stable. However, in FL, the distributed

clients could be any device (e.g., Raspberry Pi) on a wide area

network (WAN), projecting a fairly non-deterministic environ-

ment with diverse communication bandwidths and node com-

pute power. So, a lossy compression method has to consider

data fidelity, network latency, and device processing power. (2)

Scientific datasets are generally much more compressible than

the parameter datasets generated by FL clients. The key reason

is that the scientific datasets generally correspond to simulating

or capturing a physical, chemical or biological phenomenon.

In comparison, the FL parameter data are often irregular/spiky,

to be shown in Section V-A.

In this paper, we address several key questions to confirm

our hypothesis that EBLC significantly cuts client-server com-

munication runtime while preserving FL model accuracy.
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1) How can we integrate EBLC into the FL communication

pipeline?

2) Given the uniqueness and complexity of model parame-

ters in FL, which EBLC algorithm yields the best trade-

off between size reduction and retaining model data

fidelity?

3) Lossy compression, while reducing data size, introduces

both computational overhead and data error. Is the run-

time and error cost incurred by these factors outweighed

by the benefits of reduced communication time?

In this study, we present a novel optimized, practical EBLC

heuristic, FEDSZ, designed to compress FL client model

updates and significantly reduce client-server communication

costs. In particular, we make the following contributions:

• We share FEDSZ as an open-source tool integrated with

the Advanced Privacy-Preserving Federated Learning

(APPFL) package [10], which effectively compresses any

PyTorch compatible FL model with EBLC and lossless

compression. Our study is the first attempt to reduce

communication overhead for FL through EBLC.

• We comprehensively characterize both EBLC and lossless

compression algorithms to discover which combination

most effectively reduces the size of FL updates while

maintaining a low runtime and minimal impact on model

capabilities. We find that SZ2 and blosc-lz are the

best compressors for low-runtime, data-reduction, and

accuracy-preservation from our test suite.

• We evaluate FEDSZ’s communication savings by per-

forming rounds of FL on a cluster and simulating dif-

ferent network bandwidths. Experimental results confirm

that we achieve (i) 5.55±12.61× space savings in client

updates while keeping uncompressed inference accuracy,

(ii) 13.26× communication time savings for a 10Mbps
bandwidth,

• We find from the distribution of error introduced by

lossy compression near matches to Laplacian distribu-

tions, which demonstrates a great potential for lossy

compression to introduce differential privacy, an essential

security technique for FL.

The organization of our paper is as follows. In Section II,

we describe lossy compression’s impact on communication

overhead to motivate the study. In Section III, we discuss

similar work in the field of FL communication cost reduc-

tion. Section IV describes our approach through mathematical

formulation. Section V describes our design strategies and

methods for optimizing FL communications. We present our

results in Section VI. We finally conclude the paper with a

discussion and future directions in Section VIII.

II. BACKGROUND AND MOTIVATION

In this section we set the stage for how lossy compression

can improve I/O efficiency in FL workflows and motivate our

proposed FEDSZ approach.

A. Error-bounded Lossy Compression

Lossy compression techniques explicitly designed for

floating-point data like SZ2 [11], SZ3 [7], [8], SZx [12],

and ZFP [9] enable significant reductions in storage and

transmission costs while preserving data accuracy needed for

analysis. Below, we summarize four state-of-the-art EBLCs

with fundamentally different designs and implementations.

The four compressors are also representative of three classic

lossy compression models: prediction-based, bit-wise encod-

ing, and transform-based, respectively.

• SZ2 [11] operates on a prediction-based model. It pro-

cesses datasets in small multi-dimensional blocks, ap-

plying hybrid prediction using Lorenzo and linear re-

gression. Post-prediction, SZ2 quantizes prediction errors

and compresses the resultant integers using Huffman

encoding and Zstd, ensuring efficient data reduction.

• SZ3 [7], [8] enhances the prediction model of SZ2 with

multi-dimensional dynamic spline interpolation, followed

by quantization, Huffman encoding, and Zstd. This ap-

proach, not requiring storage of linear regression coef-

ficients, offers improved compression ratios, especially

beneficial for higher error bounds.

• SZx [12], designed for speed, adopts a bit-wise-

operation-based encoding model. It segments data into

consecutive blocks, determining if each can be repre-

sented as a constant block within a given error bound.

Non-constant blocks undergo bit-wise truncation. This

method’s simplicity ensures rapid compression and de-

compression.

• ZFP [9], diverging in approach, employs a transform-

based model. It applies a custom orthogonal transform

to data blocks, encoding the transformed coefficients

with specialized bitplane encoders. ZFP’s method offers

high compression ratios and speeds, benefiting from its

optimized transform and encoding strategies.

B. Compression on Networked Systems

The efficiency of data compression in FL, particularly in

the context of FEDSZ, hinges on balancing the computational

cost of compression and decompression against the time saved

in data transmission. To formalize this, we define several key

variables: tC and tD represent the runtimes for compression

and decompression, respectively; S and S′ are the original

and compressed data sizes; and BN signifies the network

bandwidth. With these variables, we define the inequality

in Eqn. 1, which describes the situation where there is a

runtime benefit from lossy compression: the total time spent

on reduction (tC), decompression (tD), and transmitting the

compressed data (S′/BN ) should be less than the time to send

the original, uncompressed data (S/BN ).

0 < tC + tD +
S′

BN

<
S

BN

, (1)

This inequality serves as a decision-making criterion, dic-

tating when the benefits of reduced data transmission time

outweigh the computational costs of compression. Its relevance
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to FEDSZ lies in its ability to guide the algorithm toward

‘worthwhile’ reduction, optimizing the trade-offs in scenarios

with limited bandwidth and computational resources.

These compression and communication challenges motivate

solutions to efficiently manage and transfer data in FL without

sacrificing model performance. Our proposed compression

approach called FEDSZ, described in later sections, directly

addresses these needs to improve communication efficiency

for the resource-constrained federated environment.

III. RELATED WORKS

In this section, we discuss three aspects of related work to

identify the gap FEDSZ aims to address while foreshadowing

the advantages of our methodology.

A. Impact of Lossy Compression on Data Transfer

EBLC has been widely explored to improve data transfer

performance significantly in many scenarios. For example,

Liang et al. [13] found that various supercomputers may

possess different I/O bandwidths in practice, and that selecting

appropriate lossy compressors can be critical for maximiz-

ing the overall I/O performance. Specifically, Liang et al.

characterized the I/O bandwidth on multiple supercomput-

ers and developed an adaptive lossy compression framework

combining SZ and ZFP to maximize the I/O performance.

Liu et al. [14] developed Ocelet, which can leverage parallel

EBLC to accelerate the data transfer performance between

Globus endpoints on a wide area network (WAN). Over 90%

of the transfer time can be reduced by Ocelet. Compared

with the above existing use cases, using EBLC in FL faces

more challenges such as lower network bandwidth between

clients and servers and the parameter data being much less

compressible than scientific datasets. Therefore, there is a gap

in the known literature concerning how effective EBLC is in

both edge case scenarios and FL scenarios.

B. Compression of Machine Learning Models

Several techniques have been proposed for compressing

deep neural networks (DNNs), including lossless and lossy

methods. Lossless compression approaches like lossless ex-

pressiveness optimization [15] use linear programming and

rectified linear units to encode network weights; however, this

method can have low compression ratios and high compression

time overheads. Lossy DNN compression techniques, such

as DeepSZ [16] and Delta-DNN [17], first apply pruning

to sparsify networks and then quantization to shrink weight

parameters. These lossy methods can often degrade model

accuracy and/or require costly retraining to recover perfor-

mance. In FL this is not tenable, as communication rounds

can be infrequent and expensive for battery-constrained and

distributed devices. Universal randomized lattice quantiza-

tion [18] has been proposed to compress DNNs by quantizing

weight vectors, offering high compression ratios regardless

of the distribution of parameters, with the limitation of low-

granularity quantization. Therefore, it is necessary to explore

EBLC’s effects on model accuracy in FL settings to reduce the

communication time overhead with high compression ratios

while maintaining uncompressed accuracy.

C. FL Communication Cost Reduction

In FL, various compression methods have been explored

to enhance communication efficiency. Gradient sparsification,

as initially proposed by Strom (2015), involves transmitting

only significant gradients, with recent advancements favoring

dynamic thresholds for broader applicability [19]±[21]. The

Top-K method, a popular technique, selects the largest gra-

dients for transmission, ensuring efficient parameter updates

[22]±[25]. Gradient quantization, exemplified by one-bit SGD

and signSGD, reduces data transmission size but often results

in biased estimates [26], [27]. Recent methods like TerGrad

and QSGD employ stochastic unbiased estimations to maintain

accuracy [28], [29]. Low-rank approaches, leveraging the in-

herent properties of over-parameterized DNN models, focus on

efficient gradient matrix decomposition [30]±[34]. Comparison

to the aforementioned existing methods is difficult or not pos-

sible as they are not open-source. Therefore, any meaningful

comparison would require reimplementation, which is outside

of the scope of this exploration.

While these methods offer potential benefits in FL, EBLC

is able to reconstruct a dense network of weights with the

original floating-point precision. FEDSZ is a ºlast-stepº in the

communication pipeline, meaning that it is capable of further

compressing sparsely trained or quantized model updates.

Therefore, comparison to existing methods is not necessary,

as any method can ostensibly can be used in concert with

FEDSZ. EBLC, through its reconstruction approach to com-

pression and decompression, can help address the adjustments

in training and sparsity that can introduce bias and inaccuracy

in compressed models.

IV. PROBLEM FORMULATION

In this section, we present the optimization framework that

guides the design of FEDSZ. The framework addresses two

multi-objective optimization problems, aiming to improve both

computational efficiency and model performance in an FL

environment.

A. Problem 1: Lossy Compressor Selection

Our first problem focuses on selecting an optimal EBLC

from a set, Xlossy. The objective is twofold: minimize the

time overhead and maximize the compression ratio. These

objectives are crucial as they directly affect the efficiency and

speed of the FEDSZ process. Each compressor x ∈ Xlossy is

associated with error bound ϵ, a critical parameter that impacts

both the compression ratio R(x, ϵ) and the runtime T (x, ϵ).
The constraints are specifically chosen to ensure practicality

and efficiency. The feasible region for R is [1, S], with S being

the original number of elements and 1 being no compression.

This range ensures that the compression remains advantageous

for a user. For the time T , the feasible region is
(

0, S
BN

)

,

where BN is the network throughput, thus ensuring that the

time overhead doesn’t exceed network capabilities.
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x∗ = arg

{

max
x∈Xlossy,ϵ>0

R(x, ϵ), min
x∈Xlossy,ϵ>0

T (x, ϵ)

}

subject to 0 < T (x, ϵ) <
S

BN

,

1 ≤ R(x, ϵ) ≤ S.

(2)

B. Problem 2: Compression in Federated Learning

Building upon Problem 1, our second research problem

focuses on effectively integrating our optimal compressor x∗

into the FEDSZ algorithm. The choice of x∗ directly influences

the computational overhead, communication reduction, and

accuracy impacts in our distributed FL setting, making it a

cornerstone for this problem.

Here, we suppose there are n clients, and each client-i has

an associated communication costs Pi and network bandwidth

BN,i. The error bound variable ϵ is our critical factor, affecting

both the communication cost Pi(ϵ) and the inference accuracy

I(ϵ) at the server during aggregation and validation. Parameter

I ′ ∈ [0, 1] serves as the baseline accuracy when no compres-

sion is applied, and the goal is to find the optimal ϵ∗ that

minimizes the discrepancy between I ′ and I(ϵ).
The constraints are set to ensure that the solutions are both

feasible and effective. The error bound ϵ is constrained to be

greater than zero to avoid trivial solutions. The communication

cost Pi(ϵ) is bounded by the network bandwidth, and the

accuracy I(ϵ) is naturally bounded between 0 and 1 to

represent valid probability measures.

ϵ∗ = arg

{

min
ϵ>0

n
∑

i=1

Pi(ϵ), min
ϵ>0

|I ′ − I(ϵ)|

}

subject to 0 ≤ I(ϵ) ≤ 1,

0 ≤ Pi(ϵ) ≤
Si

BN,i

.

(3)

Formulations (2) and (3) provide the mathematical foun-

dation for the FEDSZ algorithm. These equations tackle the

computational and communication complexities in FL, thereby

laying the groundwork for the subsequent development and

analysis of the FEDSZ algorithm.

V. FEDSZ: A FEDERATED LOSSY COMPRESSION SCHEME

Our main contribution in this paper is FEDSZ: a gen-

erally applicable compression scheme for FL client-server

communications. Our technique is summarized as follows:

(i) partitioning a client update (represented as a PyTorch

model state dictionary) into lossy and lossless components,

(ii) lossy and lossless compression of the partitions, and (iii)

communication of the bitstream for decompression at the

receiving host. This method is illustrated in Figure 1, which

involves the compression stage (as shown in Figure 1(a)) and

decompression stage (as shown in Figure 1(b)). The rest of this

section details the different considerations of our design and

our strategies to solve our outlined research problems from

Section IV.

A. Characterizing Model State Data

First, we characterize the shape and distribution of FL

model weights in this subsection, something that is critical

to understanding the challenges of using EBLC to compress

model data. We compare the value variation of FL model

parameters versus the classic scientific simulation data in

Figure 2, where the relative data index means the 1D data

index in the specific snippet or slice. The figure illustrates

that the FL model parameters are very spiky, while the classic

simulation datasets exhibit much higher smoothness. This is

because the scientific simulation data are often used to convey

specific physical or chemical phenomena, as demonstrated in

Figure 2 (c) and (d). As such, a serious question arises: Can

the EBLCs still work effectively on FL model parameters?

Moreover, which compressor is the best choice? We answer

them in our study.

B. Overview of FEDSZ Algorithm

We design FEDSZ based on observations from careful

analysis and experiments. Specifically, we learn that our

compression scheme, summarized in Figure 1, should include

three strategies: (i) partitioning the client update into lossy

and lossless components, (ii) using SZ2 to lossy compress and

blosc-lz to lossless compress, and (iii) dumping a bitstream

to communicate the client update to the server. We describe

the design details in the Algorithm 1.

Algorithm 1 FEDSZ Compression Scheme

Require: model: torch.Module, threshold: int

Ensure: compressed model: bytes

1: Initialize: compressed params = {}
2: for each (name, param) in model.state dict() do
3: flat param ← param.flatten()
4: if ªweightº in name and flat param.size > threshold then
5: compressed param ← lossy compress(flat param)
6: else
7: compressed param ← lossless compress(flat param)
8: end if
9: compressed params[name] ← compressed param

10: end for
11: return compressed params.to bytes()

C. Partitioning the State Dictionary

Our FEDSZ algorithm employs a partitioning strategy divid-

ing the state dictionary into the components that we can com-

press without sacrificing accuracy and the parts that require

lossless compression to maintain the integrity of the model

state (as shown in Line 4 of Algorithm 1). The complexities

in efficiently compressing DNNs necessitate a method for

partitioning the model’s state dictionary into lossy and lossless

compressible segments (see line 4-8). In a DNN, maintaining

a model for training and evaluation involves various layers

and values, including parameter tensors, running means, and

bottlenecks. The state_dict() captures the complete state

of the model, both trainable and non-trainable. However, lossy

compression of both parameters/weights and metadata risks

significant loss of important values and extreme degradation

of model accuracy, which has we have experimentally verified.

Our observation is also consistent with DeepSZ [16], which
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Fig. 1: FEDSZ Design for both Compressing and Decompressing Local Model Updates
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Fig. 2: Comparing FL Model Parameters vs. Scientific

Simulation Data (MIRANDA [35], [36])

aims to save storage space for ML models using lossy com-

pression. As such, we adopt an selective compression strategy

to partition models into the dense, compressible weights and

non-compressible metadata.

D. Exploring the Most Effective Lossy Compression Method

In our exploration of determining which lossy compressor

we should use, we compare SZ2 (v1.12.5), SZ3 (v3.1.7),

SZx (v1.0.0), and ZFP (v1.0.0), all EBLCs with different

characteristics as described in Section II-A. To decide which

EBLC to use, we carefully investigate (i) the distribution of

the data to compress, (ii) the impact on inference accuracy,

and (iii) the performance of the compressors. All runtime

and throughput data are computed on a Raspberry Pi 5 with

8GB of RAM. All training and inference accuracy data are

computed on Argonne’s Swing cluster, where each node has

8×NVIDIA A100 40GB GPUs and 2×AMD EPYC 7742 64-

Core Processors with 128 cores.
1) Relative Error Bounding: Selecting an appropriate error

bounding mode is a nuanced task that directly correlates with

the statistical characteristics of the data to be compressed [37].

Our study focuses on the weight distributions of three distinct

models: AlexNet, MobileNetV2, and ResNet50, as visualized

in Figure 3. While each model’s weight distribution is between

-1 and 1, they exhibit different dynamic ranges and clustering

behaviors around zero.

Given these variations in weight distributions, a fixed error

bound could either be overly conservative for some data
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Fig. 3: Distribution of Pretrained Weights for Various Models

segments or too liberal for others, thereby not exploiting the

compression potential to its fullest. This is where the utility

of relative error bounds becomes apparent. A relative error

bound adapts to the local properties of the data by being

a multiple of the dynamic range, ensuring that the error

introduced during compression is proportional to the data’s

actual value. Consequently, we opt for relative error bounding

modes for SZ2, SZ3, and SZx. For ZFP there is not a relative

error mode, so we select the closest analogous option, which

is fixed precision mode, where the number of uncompressed

bits is fixed. This choice allows us to harness the benefits

of adaptive error control, accommodating the dynamic ranges

observed across different layers in a model.

2) Inference Accuracy Convergence Comparison: The mea-

sure of the efficacy of a lossy compression algorithm in an FL

setting such as FEDSZ is not just compression performance

but also its impact on the model’s inference accuracy and

convergence behavior. Achieving a high compression ratio is

of little benefit if it comes at the cost of a model that fails

to converge to a satisfactory level of accuracy. Therefore,

in addition to comparing raw compression metrics, we also

closely examine how each compressor influences the model’s

accuracy throughout communciation rounds. We run an FL

simulation on a cluster of training AlexNet for the CIFAR-

10 task for ten rounds with one epoch per round while

compressing the updates with each candidate compressor. We

note that results for other models and datasets are similar as it

is essentially compression of ºspikyº 1D floating-point data,

therefore other results are not included. The observed trends

in inference accuracy for these compressors are depicted in

Figure 4.

As illustrated, the accuracy convergence for most com-

pressors are closely aligned, indicating a minimal difference

in compressor impact. The outlier compressor for accuracy

retention is SZx, which fails to maintain any accuracy, likely

due to its block mean storage. Our findings affirm that a nu-
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TABLE I: EBLC Comparison Across Different Models for CIFAR-10±Throughput refers to an EBLC’s data processing rate

Runtime (s) Throughput (MB/s) Compression Ratio Top-1 Accuracy (%)

Relative Error Bound

Model Compressor 10−2 10−3 10−4 10−2 10−3 10−4 10−2 10−3 10−4 10−2 10−3 10−4

AlexNet

SZ2 3.22 4.93 6.64 70.75 46.26 34.34 11.26 5.228 3.375 57.90 57.39 57.06

SZ3 7.22 8.80 10.69 31.58 25.94 21.34 9.827 5.169 3.345 57.28 57.18 58.50

SZx 0.444 0.439 9.445 3514.92 3554.84 3507.02 4.804 4.801 4.802 10.00 10.00 10.00

ZFP 1.89 2.11 2.36 120.66 108.17 96.51 4.166 2.942 2.210 57.30 56.80 57.19

MobileNet-V2

SZ2 0.365 0.482 0.692 25.61 19.38 13.51 5.409 3.235 1.923 55.19 55.19 55.19

SZ3 0.574 0.724 1.082 16.30 12.92 8.64 5.250 3.125 1.779 54.94 56.14 53.86

SZx 0.034 0.031 0.029 104.089 114.162 122.036 4.799 4.765 4.783 10.00 10.00 10.00

ZFP 0.127 0.138 0.151 73.73 67.57 61.70 3.027 2.333 1.897 54.600 57.26 54.90

ResNet50

SZ2 1.235 1.930 2.870 76.80 49.14 33.05 7.025 4.041 2.737 58.66 59.15 58.66

SZ3 2.723 3.459 4.586 34.82 27.42 20.68 6.768 3.942 2.662 64.14 61.35 63.51

SZx 0.186 0.186 0.185 3516.02 3516.02 3535.27 4.806 4.806 4.806 10.00 10.00 10.00

ZFP 0.747 0.843 0.962 126.95 112.53 98.58 3.449 2.562 2.035 62.07 64.70 64.06

60

80

To
p-

1 
A

cc
ur

ac
y 

(%
)

Model = ResNet50

75

80

85

90
Model = MobileNetV2

84

86

88

90

D
ataset = FM

N
IS

T

Model = AlexNet

20

40

60

To
p-

1 
A

cc
ur

ac
y 

(%
)

40

60

80

25

50

75

100
D

ataset = C
altech101

0 5 10
Round

40

60

To
p-

1 
A

cc
ur

ac
y 

(%
)

0 5 10
Round

20

40

0 5 10
Round

30

40

50

60 D
ataset = C

IFA
R

10

Compression Type
Uncompressed
FedSZ-SZ2

FedSZ-SZ3
FedSZ-ZFP

Fig. 4: Accuracy Convergence Comparison for EBLCs

anced balance between compression performance and accuracy

impact is critical for the practical applicability of the chosen

lossy compressor.

3) Performance Characteristics: We summarize our com-

parison of EBLCs for FEDSZ in Table I when using a

Raspberry Pi 5 for model compression. From these results,

we find that SZ2 is the optimal compressor. This table

summarizes key metrics across multiple error bounds. The

accuracy metrics has been evaluated on a cluster while training

the AlexNet, MobileNet-V2, and ResNet50 models on the

CIFAR-10 dataset over ten communication rounds, and the

runtime and throughput data is from compressing the trained

models on a Raspberry Pi 5. There was no impact on training

time besides the incurred overhead of compression, as will be

discussed in Section VII-B.

Our primary focus is discerning which EBLCs achieve good

compression ratios with a low runtime and then maintain

accuracy similar to not using compression. In this regard, SZ2

stands out. It outperforms SZ3 and ZFP in compression ratios

by 14.6% and 170.3%, respectively for AlexNet. Notably,

this comes at the relatively modest increase in runtime when

compared to ZFP, only 3.1% more per epoch. SZ2 continues

to demonstrate a strong balance between high compression

ratios and maintaining high accuracy across different models.

For MobileNet-V2, at an error bound of 1E-2, SZ2 achieves a

compression ratio of 5.409 and a Top-1 Accuracy of 55.19%,

outperforming SZ3 and ZFP in both metrics. Similarly, for

ResNet50, SZ2 achieves a compression ratio of 7.025 and

maintains a Top-1 Accuracy of 58.66%, surpassing its coun-

terparts. For reducing I/O overhead, a higher compression ratio

can be more valuable than marginal gains in runtime [38], and

SZ2’s modestly greater runtime is a justifiable tradeoff for its

superior compression ratio.

The justifications for these results are as follows. Since

FL model parameters are flattened to 1D data arrays with

an unpredictable distribution, (as demonstrated in Section 2)

after which we have to perform 1D lossy compression. ZFP is

optimized particularly for multi-dimensional datasets but may

perform poorly on 1D spiky datasets, as disclosed by prior lit-

erature [39]±[41]. Thus, it achieves relatively low compression

ratios on FL model parameters. SZx [12] uses relatively simple

compression operations (such as marking constant blocks and

using bit-wise operations) as it was designed primarily to have

low compression/decompression runtimes, which, may cause

poor compression ratios and reconstructed data quality. SZ2

and SZ3 should exhibit similar compression ratios because

they both default to using a Lorenzo predictor and quantization

when data exhibit significant variations, according to their

hybrid compression design [7], [11]. In comparison, SZ3 fea-

tures a more sophisticated predictor selection policy, leading

to lower compression throughput. All in all, SZ2 exhibits the

best tradeoff in terms of runtime, compression ratio, and data

reconstruction quality, which we verify through our result in

Table V.
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Our method for selecting SZ2 as our preferred compressor

aligns coherently with the design criteria and feasibility region

outlined in Eqn. (2). Here, we are guided by the dual objectives

of achieving a low runtime and a high compression ratio,

all within a predefined feasibility region. The empirical data

solidifies SZ2 as the most suitable lossy compressor for

FEDSZ, effectively balancing performance metrics with the

practical constraints of an FL environment.

E. Exploring Best Fit Lossless Compression for Metadata and

Non-weight Parameters

In the FEDSZ algorithm, we use lossless compression to

reduce the size of client updates’ metadata and non-weight

parameters (≈ 1% of an update’s storage size). Similar to

the lossy case, we evaluate several state-of-the-art lossless

compressors. The considered compressors include blosc-lz

(v1.21.3) [42], zlib (v1.2.13) [43], zstd (v1.5.5) [44],

gzip (Python v3.11.4) [45], and xz (v0.5.0) [46]. To compare

these options, we compress the metadata and non-weight

parameters for AlexNet to evaluate the compressors’ per-

formances, including the results in Table II. Since lossless

compressors do not introduce noise into the client updates,

we do not need to check if there are impacts on inference

accuracy.

TABLE II: Lossless Compressor Comparison for

Compressing AlexNet Metadata on Raspberry Pi 5

Compressor Runtime (s) Throughput (MB/s) Compression Ratio

blosc-lz 0.271 674.5 1.248
gzip 7.728 28.16 1.160

xz 74.52 4.00 1.250

zlib 7.772 28.37 1.164

zstd 0.529 348.6 1.169

From Table II, we notice that blosc-lz outperforms the

other lossless compressor by achieving more than 2× lower

runtime than zstd and a comparable compression ratio to xz,

a very slow lossless compressor. Taking these two points, it is

clear to see that blosc-lz is a fair choice for our metadata.

Just like the data distribution mentioned in Section V-A, it is

important to note that the target data are formatted as floating-

point, small-size 1D arrays of non-uniform data, which will

lead to low compressibility.

VI. METHODOLOGY FOR EVALUATING FEDSZ

With the design of FEDSZ documented, we now detail our

evaluation methodology.

A. Federated Learning Platform: APPFL with FedAvg

We implement FEDSZ in an open-source Python pack-

age, APPFL (v0.4.0) [10], a library designed for the de-

velopment and evaluation of privacy-preserving FL (PPFL)

algorithms. APPFL offers modular APIs for implementing

essential components such as learning algorithms, privacy

mechanisms, communication protocols, models, and data han-

dling. The package utilizes gRPC for cross-platform communi-

cation and employs Message Passing Interface (MPI) through

mpi4py [47] for parallelism to enable scalable simulations. It

is compatible with PyTorch, allowing for the integration of

custom neural network models. APPFL has been successfully

used to train models across various decentralized datasets,

including biomedical images [48] and electric grid [49], [50].

In FL, the package provides the capability to train a global

model by aggregating updates from client models operating

on decentralized data. Various algorithms can be employed,

each with different privacy, efficiency, and robustness trade-

offs. For the scope of this study, we focus on Federated

Averaging (FedAvg) [51], a well-established algorithm that

performs local Stochastic Gradient Descent (SGD) on client

devices and averages these local models to update a global one.

The choice of FedAvg is deliberate; its simplicity, scalability,

and robust performance make it compatible with compression

techniques, thus serving our study’s objectives effectively.

B. Models and Datasets for Training

The primary aim of FEDSZ is to optimize client-server

communication efficiency without sacrificing model accuracy

or imposing a significant compression runtime overhead. To

rigorously evaluate our framework, we chose DNNs that

vary significantly in terms of parameter count, model size,

percentage of data that we lossy compress, and computational

complexity (FLOPs). The characteristics of these models are

summarized in Table III.

TABLE III: DNNs for FEDSZ Profiling: Mean Statistics

Model Parameters Size % Lossy Data FLOPs

MobileNet-V2 [52] 3.5e + 06 14MB 96.94% 0.35G

ResNet50 [53] 4.5e + 07 180MB 99.47% 8G

AlexNet [54] 6.0e + 07 230MB 99.98% 0.75G

Selecting a diverse set of models ensures that our results

are not specific to any particular architecture, making our

insights broadly applicable. For instance, MobileNet-V2, with

its relatively fewer parameters and FLOPs, represents edge

cases where the device capabilities might be limited. In con-

trast, ResNet50 offers a more complex architecture suitable for

resource-rich environments, and AlexNet serves as a middle-

ground model.

Similarly, we chose three well-established image classifi-

cation datasets to maintain comparable tasks across different

models, as detailed in Table IV.

TABLE IV: Dataset Characteristics for FEDSZ Benchmarking

Dataset # of Samples Input Dimension Classes

CIFAR-10 [55] 60, 000 32× 32 10

Fashion-MNIST [56] 70, 000 28× 28 10

Caltech101 [57] 9, 000 224× 224 101

The choice of CIFAR-10, Fashion-MNIST, and Caltech101

serves multiple purposes. CIFAR-10 and Fashion-MNIST are

more straightforward datasets, often used for benchmarking.

They allow us to assess how well FEDSZ performs under less

demanding conditions. Caltech101, with its higher image pixel

count and greater number of classes, is a more challenging
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Fig. 5: Inference Accuracy Across Diverse Models and Datasets while Varying FEDSZ Relative Error Bound

image classification problem, testing that the error introduced

by our compression doesn’t just work with ºtoyº tasks. These

datasets provide a comprehensive test bed for evaluating

FEDSZ across various scenarios. We perform our testing using

FedAvg for four clients and fifty communication rounds with

one epoch per client per round.

C. Simulating Network Bandwidth

To evaluate FEDSZ’s communication reduction in low band-

width network conditions, we emulate different bandwidths

by introducing delays into MPI when sending data between

processes. We make a note that part of FEDSZ’s evaluation

is on a cluster where we use MPI in APPFL for simulating

multiple FL clients, therefore this simulation is from our

cluster deployment and not the Raspberry Pi 5.

The goal of this method is to demonstrate how FEDSZ

would perform with low bandwidth, which is common in real-

world FL deployments. We are able to simulate this effect

by first measuring the process-to-process MPI bandwidth.

Then, we use sleep to wait for the length of time it would

take to transmit our compressed client update proportional

to our desired bandwidth. By incorporating these controlled

sleep delays into the communication protocol, we simulate

the low-bandwidth environments typical of edge devices (e.g.,

10Mbps [58]) compared to the data center setting which can

approach 10Gbps. This strategy allows us to demonstrate

the communication runtime reduction offered by FEDSZ’s

compression techniques.

VII. PERFORMANCE EVALUATION

Having outlined the guiding design for FEDSZ and our

evaluation methodology, we present results demonstrating the

impact of FEDSZ on the inference accuracy, runtime, and

communication time of FL and the scalability of FL with

FEDSZ through strong and weak scaling. In our evaluation,

we prototype rounds of learning on the Argonne Swing cluster

to accelerate learning tasks and measure compression runtime

results from a Raspberry Pi 5. Therefore, for our experiments

showing the learning and accuracy capabilities of FEDSZ

during training, we use the system described in Section V-D

and for runtime and compression benchmarking we use data

collected from a Raspberry Pi 5.

A. Compression Impacts on Inference Accuracy

An important consideration in our study is the trade-off

between compression ratio and model accuracy when utilizing

FEDSZ with SZ2 and blosc-lz compressors. Therefore,

we test the impact of varying SZ2’s relative (REL) error

bounds from 10−5 to 10−1. Our findings, illustrated in Figure

5, reveal a clear threshold at 10−2 beyond which model

accuracy sharply declines due to the magnitude of the er-

ror introduced by the compressor. This decline indicates a

boundary where a loss in model utility offsets the benefits of

higher compression (and thus reduced communication costs).

However, for error bounds less than or equal to 10−2, we

observe that the inference accuracy remains within 0.5% of the

uncompressed model’s performance. At some error bounds,

there is a deviation from this 0.5%. However, this is due to

the natural variability of training and validation. This is a

crucial observation, underscoring that we can compress FL

client updates without affecting a model’s efficacy.

Moreover, the compression ratios presented in Table V

further corroborate our recommendation of 10−2 as an optimal

REL. For instance, at a REL of 10−2, AlexNet achieved a

compression ratio of 12.61× on CIFAR-10, a significant gain

without damaging model accuracy. We observe similar trends

for MobileNetV2 and ResNet50 across all datasets. The con-

sistency in these trends across various model architectures and

datasets suggests that a REL of 10−2 could be a generalized

optimal setting in a wide range of FL applications. Similarly,

as shown in Figure 4, we see that FEDSZ did not significantly

impact the rate of convergence for models. The shading in this

plot represents the standard deviation of accuracy over all the

explored relative error bounds < 10−2, revealing that there

is no impact on convergence for error bounds less than this

value.

Taking into account Eqn. 3, we further the argument that

choosing of error bound is a critical factor in achieving an

effective balance between compression efficiency and model

accuracy. Therefore, based on our results, we recommend a rel-

ative error bound of 10−2 as it offers communication runtime

reduction without compromising model performance, making

it well-suited for FL optimizing client-server communications.

B. Time Overhead of FEDSZ and Network Gains

1) Cluster Setting: A primary concern of FEDSZ is

whether the runtime overhead introduced by compressing and

decompressing model updates outweighs the gains in reduced

communication runtime (see Eqn 1); however, we find that

the advantages of FEDSZ in communication runtime reduction

outweighs the introduced compression overhead. For a cluster
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TABLE V: Compression Ratios for FEDSZ for Various Models and Datasets

Dataset CIFAR-10 Caltech101 Fashion-MNIST

REL Error Bound 10−1 10−2 10−3 10−4 10−1 10−2 10−3 10−4 10−1 10−2 10−3 10−4

AlexNet 54.54 12.61 5.54 3.52 51.19 9.62 4.94 3.27 186.42 12.01 5.69 3.57

MobileNetV2 11.07 5.39 3.23 1.94 10.62 5.26 3.18 1.93 11.70 5.55 3.27 1.98

ResNet50 20.21 7.02 4.04 2.73 17.81 6.68 3.90 2.66 22.76 7.11 4.12 2.74

ResNet50 MobileNetV2 AlexNet
Model

0

20

40

60

80

100

E
po

ch
 T

im
e 

(s
)

Total Compression Time (s)
Validation Time (s)
Client Training Time (s)

(a) Caltech101

ResNet50 MobileNetV2 AlexNet
Model

0

5

10

15

20

25

E
po

ch
 T

im
e 

(s
)

Total Compression Time (s)
Validation Time (s)
Client Training Time (s)

(b) CIFAR-10

ResNet50 MobileNetV2 AlexNet
Model

0

10

20

30

E
po

ch
 T

im
e 

(s
)

Total Compression Time (s)
Validation Time (s)
Client Training Time (s)

(c) Fashion-MNIST

Fig. 6: Client Runtime per Epoch Breakdown including FEDSZ Compression

setting, Figure 6 shows the mean runtime per epoch across

various models and datasets when using FEDSZ with an error

bound of 10−2. The compression process takes additional

runtime, at its most extreme case with AlexNet on CIFAR-10,

the overhead was 3.66 seconds or 17% of the total runtime. In

the rest of the cases, the wall-clock overhead was <12.5%,

and an average of 4.7% of the client’s total epoch time.

These times, however, are relatively minor when evaluated in

the context of the overall communication time savings that

compression offers, particularly at larger error bounds.

Figure 7 shows the simulated communication time of a

client update to the server, including compression and de-

compression, on a network of 10Mbps; when we compress

at any error bound, we decrease the communication time by

an order of magnitude from uncompressed data transmission.

For example, at an error bound of 10−2 on a simulated

10Mbpsnetwork, AlexNet experienced a 109.87s or 13.26×
reduction in communication time. Similarly, reductions for

MobileNetV2 and ResNet50 were by 12.23% and 9.74%,

respectively. This means that the server receives updates

faster and can begin aggregating the results to begin the next

communication round, and the client is using less runtime on

I/O as previously.

2) Edge Setting: The merit of employing FEDSZ is clear

when examining the communication time savings in a limited

network bandwidth setting. Since FL is typically decentral-

ized learning on geographically distributed edge devices, we

include benchmarks of the compression overhead when using

FEDSZ on a Raspberry Pi 5 in Table I. Some quantities, such

as accuracy and compression ratio, are hardware independent,

so a key metric then is how long compression takes on a

certain system. The importance of this point is made clear in

Eqn. 1, where we see that compression for communications

is advantageous with a low compression runtime and high

compression ratio. We should note that this is irrespective of

and has no effect on training time, as FEDSZ is post-training.

An interesting consequence of Equation 1 is it reveals

whether you should compress for a given network bandwidth.

Using the runtime overhead and compression ratios from Ta-

bles I and V, respectively, we can calculate the communication

runtime for a spectrum of bandwidths to generate Figure 8.
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Fig. 8: Communication Time for Transmitting AlexNet over

Variable Network from Raspberry Pi 5

Here we notice that until approximately 350Mbps com-

pression is optimal, and until 100Mbps SZ2 is most optimal,

before the runtime overhead of compression takes outweighs

the gains in compression ratio. Therefore on a < 350Mbps
wide area network with edge device compression latency, it

is more runtime efficient to compress before communication.

The gains in communication reduction before this threshold

are significant before this point, as a client can save an order

of magnitude of runtime when transmitting a model update to

the server.

C. Scalability of FEDSZ

To test whether FEDSZ scales effectively with the number

of clients in a system we evaluate scalability up to 128 CPU

cores on Argonne’s Swing cluster, increasing the CPU core

count in powers of 2 while simulating a network bandwidth

of 10Mbps using the method described in Section VI-C.

For our weak scaling test, we assign one client per core

while increasing the total number of CPU cores. FEDSZ

demonstrates effective weak scaling, as evidenced by the near-
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Fig. 7: Total Communication Time for Models over Different REL Error Bounds on 10Mbps Network

linear increase in communication time as the number of cores

and clients increased, shown in Figure 9(a). In our evaluation,

FEDSZ exhibits a recalculated weak scaling speedup ranging

from 0.36 at 128 MPI processes to a peak of 1.64 with 8 MPI

processes, indicating moderate adaptability to an increasing

client count.

For our strong scaling test, we kept 127 clients constant

while increasing the total number of CPU cores. FEDSZ shows

robust, strong scaling characteristics as shown in Figure 9(b).

In this experiment, the framework achieves a recalculated

speedup as high as 7.51 at 128 MPI processes, demonstrating

effective utilization of additional computational resources for

a fixed number of clients.
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Fig. 9: Scaling Results for Training MobileNet-V2 on

CIFAR-10 with and without FEDSZ

Simulating a constrained network environment of 10Mbps
demonstrates the efficacy of FEDSZ’s compression algorithms.

Under these conditions, the framework is able to maintain

the model’s accuracy while significantly reducing the com-

munication overhead. The advantage of using compression

becomes increasingly evident as the number of cores (and thus,

the number of clients) increases. This suggests that FEDSZ’s

compression techniques can offer substantial benefits in low-

bandwidth scenarios, where communication costs are often

high.

D. Potential Differential Privacy of Lossy Compression

An intriguing aspect of FEDSZ is that lossy compres-

sion adds some noise to the data after decompression, a

phenomenon that could potentially introduce to differential

privacy (DP). A user can find the distribution of errors by

taking the pairwise difference of the original weights and the

decompressed weights. Our experiments have shown that error

distributions of the communicated model parameters exhibit

characteristics similar to a Laplacian distribution, as evidenced

by the histograms in Figures 10.
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DP can work by adding noise with a certain random

distribution to data before communication (e.g. Laplacian

distributed noise) to ensure that an individual’s data cannot

be easily identified from aggregate statistics [59]. It is worth

noting that the resemblance to Laplacian noise does not

guarantee DP, as the formal guarantee depends on specific

mathematical conditions related to the data sensitivity and

the noise scale. However, the observed characteristics in our

study make this an avenue worth exploring. Chen et al. [60]

corroborate these claims with their findings that types of

compression can introduce DP, further meriting exploration

into whether EBLCs possess the same properties. Given the

critical importance of data privacy in FL, this warrants further

investigation and could add another layer of utility to FEDSZ’s

already promising performance.

VIII. DISCUSSION AND FUTURE WORK

A. Takeaways and Addressed Questions

• How to integrate lossy compressors in FL communi-

cation?
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± We develop FEDSZ, a robust algorithm that seam-

lessly integrates lossy compression with SZ2 and

blosc-lz into the FL client-server communica-

tion pipeline. Our implementation supports various

model architectures and datasets, offering a modular

approach for FL applications.

• What EBLC would perform best given the task of

compressing FL client updates?

± Through empirical evidence, we find that SZ2 con-

sistently outperforms other compressors with re-

spect to compression ratio while maintaining uncom-

pressed model accuracy. It offers a balance between

compression efficiency and minimal impact on model

performance.

• EBLCs introduce error and time overhead. Is it worth

using this as a data reduction strategy?

± Our results indicate that for relative error bounds up

to 10−2, FEDSZ maintained model accuracy within

1% of the uncompressed model while achieving

significant compression ratios. Thus, the minor time

overhead of compression is justifiable given the

substantial reduction in communication cost.

B. Future Directions

This study presents a robust compression algorithm for

reducing the communication overhead of client-server inter-

actions for FL. Future research directions beyond the scope of

this study are to explore (1) how hyperparameter optimization

might be tuned to mitigate the accuracy loss introduced by

compression, thereby leading to more optimal model perfor-

mance and (2) how noise might offer DP for communications,

a concept crucial for ensuring data privacy in FL. Future stud-

ies could examine the relationship between the noise generated

by lossy compression and its impact on DP guarantees. These

areas all warrant subsequent exploration to increase the merits

of including lossy compression in this technology.

IX. CONCLUSION

Our study demonstrates that EBLCs can mitigate commu-

nication overhead in FL client-server communications without

compromising model accuracy. This is particularly significant

in scenarios where bandwidth is constrained, as our algorithm

achieves remarkable compression ratios and maintains infer-

ence accuracy within small relative error bounds. Looking

ahead, the potential of FEDSZ extends beyond current appli-

cations. We envisage its integration into a broader array of FL

frameworks and scenarios, potentially enhancing data privacy

through DP techniques inspired by the noise characteristics

inherent in lossy compression processes. Not only this, but

FEDSZ as a last-step in the communication pipeline will work

effectively with other existing compression techniques for

FL such as gradient sparsification, pruning, and quantization.

Moreover, the open-source availability of FEDSZ within the

APPFL framework promises to allow for usage beyond the

scope of this project.
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