
Future Generation Computer Systems 160 (2024) 420–432

Available online 7 June 2024
0167-739X/© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Scalable I/O aggregation for asynchronousmulti-level checkpointing
Mikaila J. Gossman a,∗, Bogdan Nicolae b, Jon C. Calhoun a
a Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, 29631, SC, USA
bMathematical and Computer Science Division, Argonne National Laboratory, Lemont, 22222, IL, USA

A R T I C L E I N F O

Keywords:
Checkpoint-restart
Asynchronous I/O
Distributed I/O aggregation

A B S T R A C T

Checkpointing distributed HPC applications is a common I/O pattern with many use cases: resilience, job
management, reproducibility, revisiting previous intermediate results, etc. This is a difficult pattern for a large
number of processes that need to capture massive data sizes and write them persistently to shared storage (e.g.,
parallel file system), which is subject to I/O bottlenecks due to limited I/O bandwidth under concurrency. In
addition to I/O performance and scalability considerations, there are often limits that users impose on the
number of files or objects that can be used to capture the checkpoints. For example, users need to move
checkpoints between HPC systems or parallel file systems, which is inefficient for a large number of files, or
need to use the checkpoints in workflows that expect related objects to be grouped together. As a consequence,
I/O aggregation is often used to reduce the number of files and objects persistent to shared storage such that
it is much lower than the number of processes. However, I/O aggregation is challenging for two reasons: (1)
if more than one process is writing checkpointing data to the same file, this causes additional I/O contention
that amplifies the I/O bottlenecks; (2) scalable state-of-art checkpointing techniques are asynchronous and rely
on multi-level techniques to capture the data structures to local storage or memory, then flush it from there
to shared storage in the background, which competes for resources (I/O, memory, network bandwidth) with
the application that is running in the foreground. State of art approaches have addressed the problem of I/O
aggregation for synchronous checkpointing but are insufficient for asynchronous checkpointing. To fill this gap,
we contribute with a novel I/O aggregation strategy that operates efficiently in the background to complement
asynchronous C/R. Specifically, we explore how to (1) develop a network of efficient, thread-safe I/O proxies
that persist data via limited-sized write buffers, (2) prioritize remote (from non-proxy processes) and local
data on I/O proxies to minimize write overhead, and (3) load-balance flushing on I/O proxies. We analyze
trade-offs of developing such strategies and discuss the performance impact on large-scale micro-benchmarks,
as well as a real HPC application (HACC).

1. Introduction

Checkpointing is a fundamental pattern used by a variety of appli-
cations at both small and large scales. Widely adopted for resilience
purposes (e.g., restart the application from a past reliable consistent
state to minimize the amount of lost computation in case of fail-
ures), it has seen an explosion of use cases that enable applications to
progress faster and achieve shorter time-to-solution even in the absence
of failures. For example, adjoint computations (essential in financial
modeling, weather prediction, computational fluid dynamics, seismic
imaging, control theory) [1] need to capture a history of checkpoints in
a forward pass, which are then revisited in a backward pass. AI training,
increasingly used by scientific applications, often takes trajectories that
do not lead to convergence or learn undesirable patterns, prompting
the need to backtrack to an earlier checkpoint of the learning model

∗ Correspondence to: Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, SC, USA.
E-mail addresses: mikailg@g.clemson.edu (M.J. Gossman), bnicolae@acm.org (B. Nicolae), jonccal@clemson.edu (J.C. Calhoun).

to try an alternative (reconfigure the AI model or change the training

trajectory). This effect is especially exacerbated in large models, such as

large language models (LLMs) and transformers [2]. Transfer learning

and fine-tuning [3] use checkpoints of AI models trained in a different

context to construct new AI models with a better starting point than

training from scratch, which accelerates the training and/or achieves

better quality metrics. Checkpoints are also instrumental in enabling

malleability for tightly coupled applications (e.g., HPC simulations such

as LAMMPS molecular dynamics [4] or data-parallel AI training [5,6]):

suspend the execution of distributed processes by taking a checkpoint,

then restart in a different configuration (different number of processes,

different data distribution, etc.). This enables the application to elas-

tically allocate the resources needed to finish faster and/or reduce

resource utilization. Many other use cases are reported by the scientific

https://doi.org/10.1016/j.future.2024.06.003
Received 2 January 2024; Received in revised form 21 May 2024; Accepted 3 June 2024

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
mailto:mikailg@g.clemson.edu
mailto:bnicolae@acm.org
mailto:jonccal@clemson.edu
https://doi.org/10.1016/j.future.2024.06.003

Future Generation Computer Systems 160 (2024) 420–432

421

M.J. Gossman et al.

community: suspend-resume (e.g., to preempt a batch job in favor of a
higher priority job), migration (checkpoint on one machine, restart on
another), debugging (replay a problematic code region to avoid running
from scratch), reproducibility (checkpoint and compare intermediate
data during repeated runs).

Checkpointing usually involves a distributed set of application
processes that concurrently capture representative data structures as
checkpoints that are persisted to external storage (e.g., a parallel file
system [7] or PFS), from where they are reused later. On a typical
HPC machine, the aggregated I/O bandwidth to the external storage
is limited. For this reason, synchronous checkpointing strategies that
block applications until all processes checkpoint to a PFS are impracti-
cal at large scale due to I/O bottlenecks [8–10]. To alleviate this issue,
asynchronous multi-level checkpoint systems (e.g., VELOC [11]) and
I/O libraries (e.g., ADIOS2 [12]) write the checkpoints to fast, node-
local storage (e.g., SSDs), then flush them from there to the PFS in the
background, while the application continues running, thereby masking
the I/O bottlenecks.

As such, asynchronous checkpointing strategies share the resources
of the compute nodes (CPU cores, memory, network bandwidth) with
the application processes, which creates contention and interferes with
the application progression and performance. Thus, on one hand, it is
important to minimize this interference by prioritizing the application
over the background flushes. On the other hand, the increasing check-
point frequency prompts the need to reduce the duration of the flushes,
to avoid a situation where checkpoints are produced faster on the local
storage than they can be flushed to the PFS. To optimize this trade-
off, checkpointing strategies adopt a one-file-per-process asynchronous
flush strategy [11,13,14], which has several advantages: (1) it is simple,
portable and efficient (no I/O locking needed, which otherwise would
be needed to maintain file consistency under parallelism); (2) it enables
an independent strategy for mitigating contention on each compute
node; (3) it takes advantage of PFS fine-tuning typically adopted on
HPC machines that favor load balancing across the processes; (4) it
avoids false sharing, which can occur when I/O belonging to differ-
ent processes unnecessarily compete for the same PFS allocation unit
(e.g., stripe of a shared file).

However, one-file-per-process flush strategies are not without lim-
itations. At large scale, the number of files can explode, which in
some cases overwhelms the PFS metadata servers. Specifically, a PFS
experiences metadata bottlenecks when large numbers of files are
accessed simultaneously (especially when stored in the same direc-
tory) [7]. Furthermore, it is difficult for developers to manage a large
number of checkpoint files, especially in scenarios that involve: moving
between data centers, verification of integrity, use in a producer–
consumer workflow, etc. To alleviate these limitations, I/O aggregation
(e.g., as implemented by GenericIO [15]) can be used to combine the
checkpoints fromĊ processes into ć < Ċ files, such that the number of
checkpoint files becomes manageable without compromising the ability
to efficiently leverage parallel I/O operations from multiple compute
nodes.

Although effective for synchronous checkpointing [15–17], such
I/O aggregation strategies remain largely unexplored for asynchronous
checkpointing. In this paper, we aim to fill this gap. Unfortunately,
adapting I/O aggregation strategies for asynchronous checkpointing is
challenging for several reasons: (1) the use of tightly coupled com-
munication patterns that synchronize and block all processes (in the
spirit of MPI-IO collectives) is not feasible; (2) I/O aggregation is a
background activity, therefore the competition with the application
for resources (interference) needs to be minimized; (3) the advantages
of one-file-per-process asynchronous strategies (simplicity, portability,
load balancing, no locking or false sharing) are not implicitly inherited
and need to be achieved through alternative techniques; (4) there is a
need for flexibility and configurability to efficiently meet the needs of
diverse HPC workloads on diverse HPC machines.

Our contribution proposes the design and implementation of an I/O
aggregation technique specifically designed for asynchronous multi-
level checkpointing that addresses the aforementioned challenges. Our
key idea is to simultaneously co-optimize multiple trade-offs: maximize
I/O parallelism to the PFS for distributed flushes of checkpointing data
without overwhelming the PFS at either the metadata level or by ex-
cessive competition for limited aggregated I/O bandwidth, while at the
same time enabling a decoupled design suitable for low-overhead back-
ground I/O activity that facilitates asynchronous operation with low
application interference. We summarize our contributions as follows:

1. We design an optimized multi-threaded aggregation strategy
to complement asynchronous multi-level checkpointing. To this
end, we proposed a configurable trade-off between issuing con-
current I/O and managing over-subscription of both PFS (e.g., I/O
servers, storage devices, available I/O bandwidth) and node-
local (memory, CPU cores, bandwidth) resources (Section 4.1)

2. We introduce a producer–consumer workflow via an in-memory
queue using dedicated I/O threads which: (1) overlap various
I/O operations, thereby maximizing parallelism, and (2) employ
a low-overhead synchronization scheme thanks to a decoupled
design (Section 4.3).

3. We implement a flexible solution that enables application devel-
opers to fine-tune numerous parameters (e.g., number of files,
number of I/O threads, maximum buffer size, data distribution
among I/O threads, etc.) to adapt to a variety of HPC workloads
and systems (Section 4.4).

4. We evaluate our proposal in comparison with two state-of-the-
art I/O libraries that implement distributed I/O aggregation
strategies. To this end, we designed and developed a custom
checkpointing benchmark to perform targeted evaluations that
complement evaluations with real-world scientific applications.
Results at scale show our proposal achieves a minimum of
1.6× higher flush throughput than the two state-of-the-art ag-
gregation strategies using synthetic checkpointing benchmark,
and 22% higher flush throughput with the real-world scientific
application (Section 5).

2. Motivation

File-per-process checkpointing techniques, when applied at Exas-
cale, results in a large number of checkpoint files written concurrently
to the PFS. However, despite decades of evolution, parallel file sys-
tems commonly used by HPC systems (e.g., Lustere [7]) have seen
relatively little evolution. Subject to the aging POSIX standard, a PFS
is subject to metadata bottlenecks, especially when a large number
of files is written to the same directory. The advent of AI and ML
applications that commonly complement traditional HPC applications
has further exacerbated this bottleneck. For example, large language
models (LLMs) need to be checkpointed frequently during lengthy pre-
training at large scale (tens of thousands of GPUs) not only to survive
failures or for administrative purposes (e.g., to suspend the training and
resume it later in order to run other jobs), but also due to loss spikes,
biases and undesirable learning patterns (which are mitigated by rolling
back to past checkpoints, adjusting the model or training data, and
resuming the training). In this case, multiple data structures need to be
checkpointed on each GPU (model parameters, optimizer state), each of
which is typically written as a separate file, resulting in an explosion
of the number of files at scale [18]. In addition to metadata bottle-
necks, some HPC systems only allow applications to have a certain
number of files open at a time or otherwise risk severely degrading
the system [19]. For sufficiently large workloads, checkpointing and
restarting from file-per-process formats are therefore limited by this
cap, which may be significantly lower than the number of processes
employed by the application. Thus, file-per-process flushing strategies

Future Generation Computer Systems 160 (2024) 420–432

422

M.J. Gossman et al.

are incompatible with the current trajectory of scientific computing and
workloads.

Beyond performance, I/O aggregation is necessary from a user
manageability standpoint. In this context, file-per-process checkpoint-
ing formats make it very difficult for users to easily list, analyze,
or migrate said checkpoints [15]. Thus, aggregating checkpoints into
a more compact layout makes it simpler for users to perform the
aforementioned tasks. Furthermore, aggregating groups of files is also
shown to provide higher compression ratios [16], greatly reducing the
storage overhead, which is a necessary task of big data workloads.
Thus, efficient methods of file aggregation are increasingly sought-after
by users, even if metadata performance aspects are not a concern.

Problem formulation. We assume Ċ processes, distributed across ĉ

compute nodes. The processes need to simultaneously capture critical
data structures into a globally consistent checkpoint. The sizes of the
data structures captured by each process may vary. The application uses
an asynchronous multi-level checkpointing runtime that blocks only
until each process has written its data structures as a file on the local
storage (host memory or NVMe) of the compute node that is hosting the
process. Afterwards, the application is allowed to resume. Meanwhile,
in the background, the checkpointing runtime flushes the Ċ local files
to the PFS. We aim to design an asynchronous I/O aggregation strategy
that simultaneously satisfies the following objectives: (1) it produces
at most ć files on the PFS, with ć configurable and specified by the
user; (2) it minimizes the end-to-end impact on the application, which
is measured as the increase in runtime due to checkpointing (compared
with no checkpointing).

3. Background and related work

Simple I/O aggregation. A straightforward way to perform I/O aggrega-
tion is to concatenate the checkpoints of multiple processes into larger
files. In this case, multiple concurrent writers are allocated disjoint
regions of shared files (each starting at a fixed offset) and simply write
into these regions without the need for synchronization. In this case,
the competition between the writers needs to be handled efficiently by
the parallel file system (PFS) itself. It is often the case that the regions
are misaligned with respect to the preferred layout of the PFS for large
shared files (e.g., striping into fixed-sized chunks), which leads to false
sharing (two regions sharing the same chunk and causing write com-
petition) and/or excessive distribution (regions split across multiple
chunks resulting in the same writer having to interact with multiple I/O
servers). In some cases, this contention can be mitigated by configuring
the data layout in the file system. However, this requires complex
organization and exchanging of data among processes. Paired with the
fact that parallel I/O requests are not always processed in an optimal
order, performance rapidly degrades not only for the application but
for the file system as a whole [20].

Thus, more complex strategies that mitigate competition for PFS re-
sources are needed. The most common is collective two-phase I/O [21],
originally introduced in the MPI-2 standard. In this case, a first phase
is responsible for collecting I/O requests on designated proxy processes
(denoted aggregators), which is then followed by a second phase in
which the proxies consolidate and run the I/O requests on behalf of the
other MPI ranks using an optimized configuration [22] that is preferred
by the PFS and that achieves higher I/O performance and scalability
compared with the simple I/O aggregation strategy [23–25].

MPI-IO. Variations of the two-phase I/O have been explored and in-
crementally improved for MPI-I/O implementations like ROMIO [26].
They are exposed as both blocking (synchronous) and non-blocking
(asynchronous) I/O collectives to the applications. In the context of
checkpointing, one could imagine simply calling synchronous MPI-IO
collectives from background I/O threads on different communicators
to provide asynchronous checkpointing capabilities. However, such a
solution is subject to limitations as it requires the MPI implementation

to have optimized multi-threaded support and it does not enable any
form of control over the contention between the application and the
background I/O threads. On the other hand, large non-blocking MPI-IO
collectives often lead to excessive resource utilization (e.g., buffering of
intermediate data on the aggregators), which is why they are typically
broken into a chain of smaller I/O requests. However, since each invo-
cation is a collective, this leads to excessive synchronization overheads
and therefore poor I/O performance and scalability [27,28].

To address these limitations, MPI-IO implementations [27] have
explored the idea of overlapping the two phases, which better uti-
lizes the available resources and increases the I/O throughput. This
approach was expanded [28] with a second layer of threading to
pipeline reading, exchanging, or writing data. Such approaches may
mask synchronization overheads but still suffer from excessive resource
utilization. Furthermore, they are not flexible enough to adapt to the
preferred I/O parallelism of the PFS, often leading to over-subscription
through excessive threading or under-utilization of the I/O resources
through insufficient threading.

Locality-aware optimizations to improve the data exchange (phase
1) of two-phase I/O are also possible. For example, node-local data
aggregation [29] reduces both the number of messages exchanged
between the aggregators and the rest of the MPI ranks, as well as the
amount of concurrent communication (since not all ranks participate in
the collective). TAPIOCA [22] forms topology-aware groups, electing
a leading compute node in each group that uses a pipeline approach
with two buffers to overlap the collection of data from the rest of
the MPI ranks in the group with the flushing of the data to the PFS.
Their results show more than 2× higher I/O throughput compared with
baseline MPI-I/O collectives. Such topology-aware optimizations are
complementary to multi-level asynchronous checkpointing and can be
leveraged for additional I/O performance and scalability optimization.

I/O request consolidation. Solutions like FILCIO [30] intercept I/O calls
from HPC applications at runtime. These intercepted I/O requests get
buffered in memory up to a predefined size. When the buffers are filled
up, fewer consolidated (and more efficient) I/O requests are issued to
the PFS. Such solutions complement I/O aggregation from a different
perspective: instead of reducing the number of output files, they reduce
the number of interactions with the PFS, which reduces latency and
increases the I/O throughput without affecting the number of files.

I/O runtimes with support for aggregation. ADIOS2 [12] introduced their
own blocking and non-blocking I/O primitives specifically designed for
HPC applications. These I/O primitives can be leveraged to provide
asynchronous checkpointing capability. Specifically, the non-blocking
mode of operation buffers the data on local storage, allows the ap-
plication to continue, then flushes the data from local storage to the
PFS using a variant of two-phase I/O. Paired with a number of mal-
leable parameters (e.g., maximum amount of I/O threads, maximum
buffer size, number of aggregators, etc.), ADIOS2 provides a flexible,
multi-threaded I/O solution that can be adapted to a variety of HPC
workloads and systems. However, its focus on a detached data layout
and organization (which is separately configurable) introduces addi-
tional complexity in the context of checkpointing, which may lower
I/O performance and scalability.

GenericIO [15] is a popular I/O library, especially in the cosmology
community. It enables configurable data aggregation through a plug-
inable architecture that supports both MPI-IO (two-phase aggregation
strategy) and direct POSIX I/O (simple aggregation strategy). It offers
flexible customization options and also automates the selection of opti-
mal parameters, including aggregation strategy and number of output
files. However, it only offers support for synchronous I/O.

HDF5 [31] offers support for both asynchronous I/O and data
aggregation on top of low-level POSIX API, which can be used to
write structured, self-descriptive data to a PFS. In this regard, HDF5
introduces a low-level storage abstraction that understands a basic
read/write API, which can be used to implement different multi-level

Future Generation Computer Systems 160 (2024) 420–432

423

M.J. Gossman et al.

I/O strategies, including I/O aggregation. Our approach can com-
plement I/O libraries like HDF5 by offering specialized support for
asynchronous aggregation of checkpoints.

HPC checkpointing systems. Several efforts leverage multiple storage
levels in the context of checkpointing. For example, Scalable Check-
point/Restart (SCR) [14], introduces multi-level resilience strategies
that take advantage of the multiple storage levels: it supports local
storage, partner replication and XOR encoding on remote nodes in
addition to flushing the checkpoint data to the PFS. Fault Tolerant
Interface (FTI) [32] is another related effort that offers similar support
while adding Reed–Solomon (RS) encoding [33]. Both offer limited
support for asynchronous checkpoint flushes between the levels and
they adopt a one-file-per-process approach, which is subject to the
limitations discussed in Section 1.

VELOC [34] is a checkpointing system that improves on the multi-
level resilience strategies introduced by SCR and FTI. Specifically,
it focuses on providing efficient asynchronous support to mask the
overhead of the multi-level resilience strategies through a background
engine that implements a modular checkpointing pipeline designed to
streamline the entire life-cycle of the checkpoints, from serialization of
checkpointing data, to additional transformations, integrity verification
and checksumming, caching and aggregation. It mitigates interference
with the application through a series of multi-threading policies that
prioritize application resource utilization under competition. However,
the default checkpoint aggregation strategy of VELOC only supports a
single output file and is based on the simple offset-based strategy that
leverages the POSIX API.

4. Proposed approach

In this section, we discuss our contribution: an I/O aggregation
strategy specifically designed for multi-level asynchronous checkpoint-
ing. To this end, we design and implement a streamlined two-phase I/O
strategy that overcomes the limitations of the approaches discussed in
Section 3.

4.1. Design principles

Leader election to optimize PFS I/O contention. HPC systems feature
a high compute node to I/O node ratio. For example, on Exascale
ready machines like Frontier [35], the ratio of compute nodes to PFS
I/O servers is 10:1. Thus, the overall I/O bandwidth of the PFS is
under heavy contention, especially for I/O patterns that require all MPI
ranks to simultaneously write data to the PFS (which is the case of
checkpointing). Too much contention for I/O bandwidth reduces the
performance and scalability of the PFS [36]. On the other hand, if not
enough I/O parallelism is used, then the I/O bandwidth of the PFS
remains under-utilized. Thus, there is a sweet spot in leveraging just
enough I/O parallelism to fully utilize the PFS I/O bandwidth without
causing excessive contention.

To address this challenge, we propose the following principle. First,
we group the MPI ranks together into ć groups, with ć a configurable
parameter. Each group is allowed to flush a single aggregated output
file to the PFS that aggregates the checkpoint data from all MPI ranks
of the group (resulting in a total of ć output files). Then, each group
is independently responsible to elect a leader that will collect all
checkpointing data from all MPI ranks of the group and will perform
the flushes to the PFS on behalf of the group. Similar to [21,29],
the leader represents both remote MPI ranks (residing on a different
compute nodes) and local MPI ranks (residing on the same compute
node). Only the remote MPI ranks need to send the checkpointing data
to the leader, since the leader can implicitly access the checkpointing
data of the local MPI ranks through the shared local storage. Using this
approach has two advantages: (1) each group can act autonomously
and can self-organize based on the checkpointing data distribution in

order to optimize the communication between the leader and the rest
of the remote MPI ranks; (2) since the I/O activity is centralized in
a single process, it can be closely coordinated and fine-tuned through
multi-threading using low-overhead synchronization (as opposed to
inter-process or even inter-node synchronization, both of which have
higher overhead).

Streamlined producer–consumer flushing. After each MPI rank has cap-
tured the checkpointing data to the local storage of its hosting compute
node, the application continues running, while each I/O leader flushes
the checkpointing data of its group asynchronously in the background
to the PFS. State-of-art two-phase I/O aggregation strategies simply
wait for the remote MPI ranks to send their checkpointing data to the
local storage of the compute node hosting the leader, then, once all
checkpointing data is available on the local storage, start writing to
the PFS. Such a strategy is easy to implement and provides a clear
separation of the two phases (which makes it easier to recover from
failures), but, on the other hand, it has two important limitations: (1) it
needs sufficient free space available on the local storage of the compute
node hosting the leader in order to collect the checkpointing data from
all MPI ranks of the group; (2) it does not overlap the collection of the
checkpointing data from the remote MPI ranks with the flushes to the
PFS, which limits the I/O performance and scalability.

To address this issue, we propose a streamlined producer–consumer
solution based on circular buffer reuse: a limited number of fixed-
sized buffers are reserved on the compute node hosting the leader to
receive the checkpointing data from the remote MPI ranks (producers).
The buffers are filled in a first-come first-served fashion. The size of
each buffer and the number of buffers can be fine-tuned in conjunction
with the group size to avoid starvation of the producers. At the same
time, the I/O leader (consumer) constantly flushes the checkpointing
data to the aggregated file on PFS. It prioritizes the checkpointing
data available in the buffers filled by the remote MPI ranks, which
releases the buffers back to the consumers at the earliest possible
moment, thereby avoiding stalls. Only when no checkpointing data is
available in the buffers, then it proceeds to flush checkpointing data
from the local MPI ranks sharing the same compute node. Thanks, to
this streamlined approach, we solve the two limitations of two-phase
I/O simultaneously: (1) the space utilization of local storage reserved
for receiving the remote checkpointing data is limited to a configurable
fixed size; (2) the collection of checkpointing data and the flushes to
the PFS fully overlap with minimal stalls (thanks to prioritization of
remote checkpointing data).

Optimized multi-threaded writes to the PFS. It is important to note that
many PFS deployments commonly used on leadership class HPC sys-
tems (e.g., based on Lustre [7]) cannot saturate the I/O bandwidth
available between a compute node and an I/O server with a single large
I/O request (e.g., a write of GBs of data). Instead, several concurrent
I/O requests are needed to saturate the I/O bandwidth. However, just
like at global level, there is a competition trade-off in this case as
well: spawning too many I/O threads to issue concurrent I/O requests
may create excessive competition that saturates the I/O bandwidth
but uses it sub-optimally, resulting in longer duration of I/O requests
for each thread. Furthermore, in our case, each I/O leader needs to
saturate the I/O bandwidth with concurrent write requests to the same
shared file. In this case, additional considerations are important, such as
alignment of write requests to offsets that are multiples of the allocation
units used by the PFS, as well as maintaining locality of writes (to
avoid concurrent interleavings that constantly jump to different offsets
far apart from each other). Ignoring such considerations results in
significant degradation of the I/O performance and scalability.

To address these issues, we build on our previous work that studies
the problem of how to build a multi-threaded I/O solution that satu-
rates the I/O bandwidth between a compute node and an I/O server
of the PFS [37]. Specifically, the I/O leader spawns a controllable
number of background I/O threads responsible for collaborating to

Future Generation Computer Systems 160 (2024) 420–432

424

M.J. Gossman et al.

asynchronously flush the checkpointing data to the same shared file
on the PFS. The optimal number of I/O threads can be determined
experimentally using micro-benchmarks. This needs to be done only
once at small scale and will ensure saturation of the I/O bandwidth
between the compute nodes hosting the leaders and the I/O servers
hosting the aggregated checkpoint files. Then, since the I/O leader
prioritizes the received checkpointing data from remote MPI ranks (and
this data can arrive in any order, potentially breaking locality), we
adopt an append-only concurrent write strategy that allocates increas-
ing offsets to the write requests of the I/O threads, while recording
the distribution later in separate metadata. Such an approach is similar
in spirit to log-structured write strategies, but without mixing the
metadata and data streams and instead consolidating the metadata
separately. This has an additional advantage in that the write requests
can be easily aligned to offsets that are multiple of allocation units
(unlike the case when metadata and data are mixed together). Finally, it
is important to remember that concurrent write requests are overlapped
with receiving the checkpointing data from the remote MPI ranks, both
of which share the same network interface. However, modern network
interfaces have separate physical send and receive links, which justifies
the saturation of the I/O bandwidth with write requests. Furthermore,
the I/O saturation is only beneficial up to a certain scale, after which
the aggregated I/O bandwidth of the whole HPC machine becomes
a bottleneck. Our approach supports a configurable number of I/O
threads per leader that can be fine-tuned based on both saturation and
scale considerations.

Load balancing among I/O leaders. The I/O leaders may be subject to
load imbalance, both across groups and within groups. This can happen
for several reasons: (1) the MPI ranks may need to checkpoint data
structures of different sizes; (2) the MPI ranks checkpoint data struc-
tures of equal sizes but apply compression to reduce the checkpoint
sizes, which results in different compression ratios; (3) the MPI ranks
apply post-processing transformations (e.g., filters) that reduce the size
of the checkpointing data. Since a checkpoint is considered to be
successfully written to the PFS only after all I/O leaders have finished,
load imbalance may lead to stragglers, which negatively impacts the
overall asynchronous flush throughput.

To address this issue, we leverage two observations. First, if the
groups are large enough, there is a high statistical probability that
the total checkpointing data of the groups are relatively close to each
other, which happens because the developers tend to partition their
problem into subdomains of equal complexity. Thus, we do not aim to
perform load balancing across groups and rather prefer to implement
a simple scheme that preserves the autonomy of the groups and avoids
synchronization among them. However, it is important to note that
should the need arise for load balancing across groups, our proposal
can be easily extended to support it (e.g., groups of different number
of MPI ranks can be formed using low-overhead synchronization such
as prefix-sum). However, within each group, we employ load balancing
using a secondary leader election protocol that chooses the compute
node with the largest amount of local checkpointing data to host the
I/O leader. Using this approach, the amount of checkpointing data
that needs to be sent by the remote MPI ranks is minimized, thereby
reducing potential stalls due to producers not filling the buffers fast
enough for the I/O threads of the leader.

4.2. Leader election

In this section, we zoom on the leader election algorithm designed
to control the communication between the large set of application
processes and the PFS. As such, we combine optimization features
from previous works such as two-layer aggregation [29] and informed
elections based on the data layout [22].

Specifically, each compute node uses a single MPI process (repre-
senting all other MPI processes co-located on the same compute node)

Fig. 1. I/O leaders processing received and local checkpointing data.

to run Algorithm 1, we call these the representative ranks. Algorithm
1 partitions the representative ranks into ć groups of roughly equal
size (line 3), where representative ranks in proximity to each other are
assigned to the same group, which has the best chance of accommodat-
ing the dragonfly topology. After this step, the groups are considered
autonomous and only need to perform inter-group communication
during the election policy.

Algorithm 1: I/O Leader Election

Input: ć: # of I/O leaders (and groups); ÿ: total # of compute nodes
employed by application; ÿÿ: a normalized ID of a compute
node; ď: aggregate size of checkpoint data residing on
compute node ÿÿ; Ď: Role structure
ïÿĉĈăÿĂăĈ = ĄÿĂĉă, ĈăăąĊă = 0, ĂąāÿĂ = ďð

1 Function leader_election(ć,ÿ, ÿÿ, ď, ą):
2 ă_ąĀ ± Group ID
3 ă ± communicator group { ÿ E (+ÿÿ∕+ÿ∕ć,, = ă_ąĀ) }

4 Č ± ïÿÿ, ďð pair
5 ý ± MPI_Allgather(Č * ă)
6 Ĉ ± policy(A)
7 if Ĉ == ÿÿ then
8 Ď.ÿĉĈăÿĂăĈ ± true
9 Ď.ĈăăąĊă ± sum(ý.ď) − ď

10 Function policy(ý):
11 ăÿĎ_ĆÿÿĈĉ ± {Č * ý E Č .ď = max{A.S}}
12 Ĉ ± min(ăÿĎ_ĆÿÿĈĉ.ÿÿ)
13 return Ĉ

In our election policy, representative ranks in the same group
collectively exchange ID’s and the aggregate size of data they contribute
to the shared checkpoint file, favoring the compute node whose local
checkpoint data is the largest (to minimize the amount of checkpointing
data exchanged between I/O leaders). In the case when there is a tie
(e.g., more than one max element in ý), we choose the lowest MPI
rank (e.g., first element in ý where Č .ď = max). Simultaneously, the
compute node elected as the leader then knows the amount of data
to receive from all other remote MPI ranks, and then establishes a
stream-lined producer–consumer workflow, which we discuss next.

4.3. Streamlined multi-threaded producer–consumer flushing

This section details our implementation of the streamlined multi-
threaded producer–consumer flush strategy. Fig. 1 provides a high-level
illustration of our implementation. The I/O threads spawned on each
compute node (by the representative MPI rank described in the leader
election), get assigned as either a: (1) sender, (2) receiver, or (3)
writer (numbered white circles in Fig. 1). We have producer MPI ranks
(e.g., non-leaders) employ a single sender, and consumer MPI ranks
(e.g., I/O leaders) a single receiver. While we could employ more
senders and receivers, the size constraints implemented by leaders to
moderate resource consumption make it more advantageous to allocate
more resources to writers, which will be the most impeding factor to
producer ranks completing sends.

The algorithms for each type of background I/O thread are listed
below. For clarity, Table 1 lists variables that are either thread-local

Future Generation Computer Systems 160 (2024) 420–432

425

M.J. Gossman et al.

Table 1
Table of variables used in I/O threads.

Variable Description

þď block size of buffer (assigned by user)
þ buffer of size þď

ď shared aggregate size of local data
ïĉĈā, Ă_ąð shared offset in local (on-node) data
Ĉ_ą shared offset in the aggregated file
Ăč shared queue of buffers to store data (free)
ēč shared queue of buffers to flush (write)

copies of common variables used by all types of threads, or are shared
variables. Variables shared across multiple threads are marked in their
description.

4.3.1. Senders
Sender threads transfer all node-local checkpoint data to the elected

I/O leader in fixed-size chunks no larger than the pre-reserved buffers
on the leader. When a buffer is filled, the sender initiates a blocking
send call to the I/O leader. This process is repeated until all the local
data has been sent to the leader. We could use non-blocking I/O
between leaders and non-leaders (e.g., MPI_Isend), however it again
does not provide any benefit due to size constraints on the I/O leaders.
Thus, this results in a hurry-up-and-wait scenario, where senders still
end up stalled. Instead, it is more beneficial to use blocking I/O, as it
provides more opportunities to exert fine-grained control over local re-
source consumption like memory utilization or issuing I/O requests that
prevent overwhelming leaders. We outline this workflow in Algorithm
2.

Algorithm 2: Sender Threads Overview

Input: ď: copy of the aggregate size of local data being sent to an
I/O leader

1 Function send_loop(ď):
2 while ď > 0 do
3 ĉĐ = ăÿĄ(þď, ď)

4 þ ± read in ĉĐ bytes of local data from offset Ă_ą
5 blocking send ïþ, ĉĐð to I/O leader
6 Ă_ą+ = ĉĐ

7 ď− = ĉĐ

4.3.2. Receivers
Algorithm 3 outlines how receiver threads pipeline data from senders

to writers. We use two queues to implement the circular buffer reuse
protocol with pre-allocated buffers on the I/O leaders. When a buffer
is in the free queue (Ăč), it indicates its contents have been flushed
and may be overwritten with incoming data from a follower. As such,
when receivers are notified of a message, they check the free queue
for a buffer. If one is available, they pop it off the front then complete
the send; otherwise it waits until a buffer has been returned before
accepting any incoming data. When a receive has been completed, the
buffer gets added to the back of the write queue (ēč), where it waits
to be flushed by the pool of writer threads. This process repeats until
all the expected data from remote MPI ranks has been received.

4.3.3. Writers
Writer threads flush data to the PFS in a loop until 2 conditions are

met: (1) there is no more local data left to flush, (2) the write queue is
empty and the receive thread has exited, indicating all expected data
from followers has been flushed. To give the queue data priority (and
prevent stalling remote MPI ranks), writer threads first check the write
queue at the start of each loop, and only read in a chunk of local data
if it is empty (line 4–7).

Similar to the write queue, we want writers to process local data in
a FIFO order to mitigate load imbalance present in local checkpoint
data, but without the need for a producer–consumer model. This is

Algorithm 3: Receiver Threads Overview

Input: Ď: aggregate size of data I/O leader will receive from all
followers

1 Function recv_loop(Ď):
2 while Ď > 0 do
3 if Ăč is empty then
4 wait

5 else
6 ïþ, ĉĐð ± atomically pop front of Ăč

7 ïþ, ĉĐð ± ĉĐ bytes from follower
8 atomically add ïþ, ĉĐð to back of ēč

9 Ď− = ĉĐ

because assigning local data to threads in uniform-sized chunks imposes
strict boundaries that may not be optimal, as it is more difficult to
take advantage of idle computational resources who may have finished
faster (faster storage partition, luck, etc.). Algorithm 4 illustrates how
we achieve this goal. Writers keep track of where the next local data
chunk is via a shared data structure. The structure is atomically copied
and updated when a thread needs to flush local data. Writers update
and release control of the shared structure before copying over the local
data to prevent it becoming a bottleneck.

Once a writer has an eligible buffer of data, it proceeds to flush the
chunk of data to the PFS. Lines 10–12 of Algorithm 5 ensure each write
to the aggregated file starts on a sequential, block-aligned address,
in accordance with the optimized multi-threaded writes to the PFS
discussion above. To facilitate the append-only writing approach, we
use a similar idea to Algorithm 4 and keep track of the remote offset in
an atomic variable (since there is only 1 destination file, each thread
keeps a local copy of the file ID). Threads use the modulo function
to correct any misalignment to the specified block size before writing
it. As such, our implementation uses cheap synchronization points to
allow threads to collaboratively process data. As such, we mitigate both
global (from remote MPI ranks) and local (checkpoints from local MPI
ranks) load imbalance.

Algorithm 4: Shared read

Output: ïB, ĉĐð: buffer for local data and size descriptor
1 Function shared_read():
2 grab read lock
3 āĆ ± copy instance of shared, protected ïĉĈā, Ă_ąð
4 ĉĐ ± min(BS, S)
5 ïĉĈā, Ă_ąð ± location of next chunk
6 ď ± ď − ĉĐ

7 release read lock
8 þ ± ĉĐ bytes from local data at offset āĆ_ą
9 return ïþ, ĉĐð

4.4. Implementation details

To implement our algorithms, we leverage the environment pro-
vided by VELOC [34], an asynchronous, multi-level checkpointing
runtime. VELOC uses a client to expose a simple checkpointing API
to the application. Applications invoke the checkpointing primitives
when they are ready, which generates a request to the VELOC client.
The client performs the local checkpoint, then alerts a post-processing
engine running on each compute node (denoted the active backend)
to asynchronously flush the checkpoint to the PFS in the background.
Active backends use a highly modularized pipeline of targeted sub-
protocols (e.g., error correction codes, checksum, threading, etc.) which
can be configured at runtime to provide a lightweight and flexible
flushing strategy.

As such, we extend VELOC with our own aggregation module, in-
serting it behind their optimized transfer module. The transfer module

Future Generation Computer Systems 160 (2024) 420–432

426

M.J. Gossman et al.

Fig. 2. A modified high level illustration [34] of how our aggregation module interacts with VELOC to persist distributed checkpoint data.

Algorithm 5: Write Overview

1 Function write_loop():
2 while True do
3 ï∗ Ā, ĉĐð ± ïĄċĂĂ, 0ð

4 if ēč not empty then
5 ïĀ, ĉĐð ± front of ēč

6 else
7 ïĀ, ĉĐð ± shared_read

8 if Ā is not null then
9 grab metadata lock
10 Ĉ_ą ± normalize the offset (byte-align it)
11 āĆ_ą ± make copy of shared remote offset Ĉ_ą
12 Ĉ_ą+ = ĉĐ

13 release metadata lock
14 write ĉĐ bytes from Ā to remote file at āĆ_ą
15 if Ā came from ēč then
16 atomically re-add Ā to Ăč

17 while ēč is empty do
18 if recv thread exited then
19 exit

20 wait

is usually responsible for performing the optimized flush to the PFS
based on compile and runtime configurations (e.g., POSIX or direct
I/O, threading capability, etc.). Thus, we have it invoke the aggre-
gation module which then runs the algorithms presented above. We
illustrate this in Fig. 2. As opposed to the native implementation, we
modify the transfer module to use a client aggregator before calling
the aggregation module. This blocks the backends from beginning the
flush phase until all processes co-located on the same compute node
have completed the local phase, which prevents straggling processes
from trying to contribute checkpoint data after the leader election
has taken place. Furthermore, we add support to specify a number of
aggregation parameters (e.g., number of files (ć), I/O threads, buffer
sizes, etc.) at runtime via their configuration file, which is already used
to enable and disable other modules supported by VELOC. For the
purposes of this work, we disable all modules on the active backend
except the optimized transfer module and our aggregation module via
the configuration file.

5. Evaluation

Experimental set-up. Our experiments are performed on Oak Ridge
National Lab’s Frontier. Frontier is an ExaFLOP system with 9408 AMD
compute nodes. Each compute node has 1 AMD EPYC 7453s 64 core
CPU with 2 hardware threads per core. Compute nodes are connected in

a dragonfly topology with a bisection bandwidth of 540 TB/s. Frontier
is equipped with a Lustre parallel file system with a peak aggregated
bandwidth of 14 TB/s (10 TB/s of NVMe, and 4.6 TB/s of HDD). The
PFS is comprised of 1350 object storage targets (OSTs) managed by
450 I/O servers (OSS’). Frontier uses the linux-based Cray ecosystem.
Our aggregation method is implemented on top of VELOC (v1.7). Our
comparison strategies use GenericIO (Git tag 20190417), and ADIOS2
(v2.8.3). All code is compiled code using GCC 7.5.0 and cray-mpich
8.1.23.

Software. We compare our asynchronous I/O aggregation strategy im-
plemented on top of VELOC to GenericIO [15] (GIO), an optimized
implementation of MPI-IO; and against the high performance I/O li-
brary, ADIOS2 [12]. We discuss both in detail in Section 3. For the
purposes of this work, we use GenericIO’s non-collective version of
MPI-IO, as our preliminary experiments show it provides higher per-
formance at large-scale (> 1000 nodes). We use ADIOS2’s BP5 transfer
protocol, as this transfer engine provides many of the same configura-
tion options as we do (number of I/O threads, size of memory buffers,
number of files, block size, etc.), thus giving us a more appropriate
comparison. We use the default two level shm aggregation strategy,
which defines a number of MPI processes as aggregators that will write
to disk, but will always have one per compute node [38].

5.1. Testing methodology

We evaluate the above aggregation strategies using both a custom
checkpointing benchmark and with a real-world application. We use
the synthetic benchmark to create a flexible checkpointing scenario
that isolates I/O performance when flushing checkpoints to stable stor-
age. Since asynchronous checkpoints are persisted concurrently with
applications, we want to eliminate any resource contention which may
impact results and skew initial analysis of our algorithms. We use
the cosmological simulation, HACC [15], to evaluate our aggregation
strategy in a real-world asynchronous checkpointing scenario (e.g., in
the presence of a concurrent workload).

Synthetic checkpointing benchmark. The custom benchmark models check-
pointing a distributed MPI application. It uses ÿ compute nodes and
spawns Ċ = ÿ ∗ 8 MPI processes, distributing 8 processes per
compute node (since Frontier employs 8 GPUs per node, and HPC
applications typically assign one process per GPU). To model load
imbalance between checkpoints, we assign each process a 1 GiB (±20%)

region of data. The benchmark invokes the necessary checkpointing
primitives for the selected aggregation method and we time the results.
For the asynchronous solutions (VELOC and ADIOS2), we isolate the
local and flush checkpointing phases and limit our analysis only to
the flush phase. Both VELOC and ADIOS2 provide blocking flush
primitives that we utilize to accurately isolate and profile performance
of only the flush phase to the PFS. In these experiments we set the

Future Generation Computer Systems 160 (2024) 420–432

427

M.J. Gossman et al.

Fig. 3. Time it took to checkpoint the synthetic benchmark on 4096 compute nodes
and writing to ć files. Lower is better.

number of aggregated files, ć, for each strategy (VELOC, ADIOS2, and
GenericIO). Where we can (e.g., our aggregation strategy and ADIOS2),
we set the buffer sizes to 64 MiB, and the number of I/O threads
available to 8 (one for each local MPI process). GIO does not currently
support limiting buffer sizes, and does not use multi-threading for I/O.

HPC application: HACC. For our real-world application, we use the
high-performance cosmology code, HACC [15]. HACC is a complex
parallel framework utilizing MPI that simulates mass evolution of the
universe via particle-mesh techniques. HACC uses an in-situ analytics
framework (CosmoTools), which provides a flexible checkpointing in-
terface to the HACC application. HACC natively checkpoints with the
GenericIO framework, and we use the plugin developed by the VELOC
team [11] to checkpoint with our aggregated version of VELOC.

5.2. A weak scalability analysis of aggregated files

First, we characterize how the aggregation strategies perform as
the ratio of ÿ ∶ ć grows. The point of this experiment is to capture
how well the aggregation schemes scales as it gets more aggressive
(e.g., more data per file). For these results, we keep the problem size
fixed (ÿ = 4096), and vary the number of aggregated files (ć) between
H 1 − 4 thousand. These results are shown in Fig. 3. The duration it
takes to persist the entire checkpoint is displayed on the ď-axis, which
is further broken down by the local (orange) and flush (green, purple,
and blue) phases. The throughput for the flush phase is calculated as
described in Section 4 and printed in the middle of each bar. Since GIO
is a synchronous write strategy, there is no local (orange) phase. Each
experiment is ran 3 times and we average the results; the error bars
illustrate the standard deviation across the 3 executions.

Overall, we see the performance for our aggregation solution drops
by about half as the aggregation ratio grows (right to left). Our previous
works [37] found that compute nodes on frontier are bound by the
network interface card (NIC), achieving an outgoing write throughput
of no more than H 2.5 GiB/s per node, regardless of the number of I/O
threads. Therefore, the theoretical peak of our strategy is ć ∗ 2.5 GiB/s.
The left-most cluster of bars shows the most extreme aggregation ratio
of 4 ∶ 1. Both ADIOS2 and GenericIO’s non-collective write-at-offset
as implemented by MPI-I/O achieves H 1.5× higher throughput than
ours. Thus, these results illustrate the fine trade-off between managing
the number of concurrent writers, and under-utilizing the available I/O
resources. In our case, we lose some performance by first funneling data
through the proxies even though the file system has available resources
to spare at this scale.

However, as the number of files (left to right) increases, our ag-
gregation solution exhibits the most improved performance. When the
aggregation ratio is 2 ∶ 1 (ć = 2048), our strategy performs H 2.20×

better than GenericIO, and H 1.16× greater throughput than ADIOS2.
This continues to scale as the aggregation ratio converges to 1 (e.g., ć =

4096 and each compute node is an I/O leader), where we get more than

Fig. 4. Time it took to checkpoint the synthetic benchmark on ĉ compute nodes,
where ć is at most 2048. The size of checkpoint data assigned to each MPI processes
is uniform (e.g., tolerance = 0%). If ĉ < 2048, ć = ĉ . Lower is better.

2× better performance than both GenericIO and ADIOS2. Furthermore,
this scenario results in the most fair comparison between our strategy
and ADIOS2, since they employ a writer on all compute nodes and this
test case results in the same configuration for our modified version of
VELOC. When the aggregation ratio is 1, we argue that our method
performs better due to our simple, pipelined file transfer protocol.
The BP5 format used by ADIOS2 suffers similar bottlenecks to HDF5
discussed in Section 3 from self-descriptive metadata management and
data layout, thereby resulting in lower performance. Furthermore, we
note that our strategy maintains a low standard deviation across all
scenarios, which demonstrates its stability.

5.3. Characterizing the impact of load imbalance on asynchronous aggre-
gation

In these next experiments, our goal is to characterize the effect
of load imbalance. We quantify the impact of our globally-balanced
partitioning strategy described in Section 4.2, and characterize the
trade-off incurred by implementing thread synchronization techniques
to achieve thread-level load-balancing on the I/O leader. In these
experiments, we vary the checkpoint size assigned to each process by
± 0,10, and 20%. We keep ć = 2048, and vary ÿ = {1024, 2048, 4096}.
We present the findings of these results in Figs. 4- 6.

Fig. 4 uses uniform checkpoint sizes across all application processes
(e.g., size varies by ±0%). Consistent with our experiments in Fig. 3,
when the size of all checkpoints is exactly equal to 1 GiB and the
ratio of ÿ ∶ ć is 1 (left-most and middle clusters), we obtain H 2×

the performance of ADIOS2, and H 5× greater throughput than GIO.
When the ratio of ÿ ∶ ć is 2 (right-most cluster), our throughput drops
by H 2×, again because our interactions to the PFS are now funneled
through half the number of compute nodes. In the same scenario,
ADIOS2, obtains H 1.08× higher throughput than we do, likely because
evenly sized checkpoints of exactly 1 GiB align to the allocation unit of
the file system; compounded with higher utilization of PFS resources,
they obtain better performance.

Figs. 5 and 6 show the results when we vary the size of checkpoints
±10 and ±20%, respectively. When ÿ d 2048, our strategy main-
tains similar performance compared to uniform scenario presented in
Fig. 4. This shows that our global partitioning strategy suffers negligible
degradation from both global and local load imbalance. The marginal
increase (< 10%) in flush duration is due to the fact that we have to
fix the offset in the remote file more times when the checkpoints are
not uniform (whereas in the case of 0% tolerance writes are always
block-aligned, since our buffer size is a factor of the allocation unit
on Frontier). When we set ÿ = 4096, it takes no more than 2.2×

longer to complete the checkpoint. The ideal value would be only
2× the duration it took in the previous scenario, however, because
in this scenario we are also processing received data, we have to
correct offsets for the remote file roughly 2× more. This is supported

Future Generation Computer Systems 160 (2024) 420–432

428

M.J. Gossman et al.

Fig. 5. Time it took to checkpoint the synthetic benchmark on ĉ compute nodes,
where ć is at most 2048. The size of checkpoint data assigned to each MPI processes
varies by 10%. If ĉ < 2048, ć = ĉ . Lower is better.

Fig. 6. Time it took to checkpoint the synthetic benchmark on ĉ compute nodes,
where ć is at most 2048. The size of checkpoint data assigned to each MPI processes
varies by 20%. If ĉ < 2048, ć = ĉ . Lower is better.

by our aggregation strategy maintaining the same amount of overhead,
regardless of the variation between checkpoints (10 or 20%). GIO
also maintains pretty similar performance across the different scenarios
despite varying checkpoint sizes, however, they are still H 2× slower
than our I/O aggregation algorithm. ADIOS2, on the other hand, is
not as robust against load imbalance, taking H 1.65× longer to flush
checkpoints when the size between checkpoints varies by 20% as
opposed to the uniformly sized checkpoints. These results highlight
how aggregation strategies suffer lower performance when load balance
is untreated. Similar to Fig. 3, our aggregation strategy continues to
maintain a low standard deviation compared to the other two, even in
the presence of load imbalance.

5.4. Comparing I/O leaders: A fine-grained breakdown

We isolate performance metrics of our aggregation strategy across
various I/O leaders. In Fig. 7, we zoom in on the fastest and slowest
I/O leaders, along with 5 other randomly sampled leaders. Here, we
are interested in characterizing the maximum and average imbalance
across I/O leaders. For these results, we look at the most extreme
case when the size of data per checkpoint varies by ±20%. The results
presented in these figures use ÿ = 4096 compute nodes, and are
aggregating to ć = 2048 files. Furthermore, we isolate the performance
of flushing received (queue), and local data to identify if and which is
a consistent bottleneck across I/O leaders.

The dotted line in Fig. 7 shows the average checkpoint time across
all the leaders, which illustrates how far each of the sampled leaders
is from the average. We isolate the time I/O leaders spent writing
local (blue) and received (orange) data and print the corresponding
throughput for each source in the center of the bar. Each leader is
identified by their MPI rank in the VELOC backend communicator.
In Fig. 7, the aggregated throughput for each I/O leader (with the

Fig. 7. Breakdown of time spent writing received (orange) versus local (blue) data on
the fastest, slowest, and 5 other randomly sampled leaders. Shorter bars are better. The
values in the middle of each bar is the throughput, higher values are better.

Fig. 8. Breakdown of the time it took each thread on the fastest leader to flush
data. The green bar is the maximum time it took for all threads on the leader to
exit (e.g., bound by the slowest thread). Lower is better.

Fig. 9. Breakdown of the time it took each thread on the slowest leader to flush data.

exception being the slow leader) is H 2 GB/s, which we previously
found to be the maximum outgoing bandwidth of a compute node on
Frontier, as discussed in Section 5.2. Thus, this shows that our I/O
leaders are typically able to maximize their outgoing throughput, even
in the presence of both local (checkpoint data per local file) and group-
wide (checkpoint data per compute node) load imbalance. I/O leaders
achieve sufficiently similar performance, with the slow I/O leader no
more than 12% slower than the average. We investigate this more
in-depth in the next two figures.

Figs. 8 and 9 present thread-level breakdowns comparing the fast
and slow leader’s flush phase. We only present the aggregate amount
of time each thread spent on POSIX write calls. There are other
operations performed during the checkpoint phase (e.g., waiting for
access to the receiver queue, atomically accessing the shared data
structures, reading in local data, etc.), however, we find these to be

Future Generation Computer Systems 160 (2024) 420–432

429

M.J. Gossman et al.

negligible (H 10−5 s), and are thus omitted for clarity. To support
this claim, the green bar in both graphs represents the duration the
main thread spent in the aggregation module (as it can only return
until all threads have finished). Thus, we show that threads spent the
bulk of their time performing I/O with the PFS. One purpose of these
breakdowns is to illustrate how effectively our threads are at managing
load imbalance. Even though distributed checkpoints (including those
on the same compute node) exhibit a ±20% variability in size, since
threads process data in a collective fashion, we observe none of them
becoming a bottleneck on either leader. This illustrates how our aggre-
gation design implicitly maximizes the work assigned to threads even
in the presence of load imbalance, to maximize performance (H2 GB/s
per compute node).

Secondly, we are interested in understanding why slow I/O leaders
take almost 2× longer to flush local data compared to the received
data. In Fig. 8, writer threads had similar performance when flushing
local and received data, which is important to highlight as it shows
there is no explicit bottleneck in the algorithms that process local data.
On the slow leader, we see that local data incurs a 43% lower overall
throughput across all the writer threads. At a glance, it may seem that is
due to load imbalance between the data assigned to the I/O leader and
the non-leader compute node in its group. However, we observed this
difference to be H 600 MB on the slow leader, compared to H 200 MB
on the fast leader. Thus, it is an unlikely explanation. Instead, it is more
probable that the observed behavior on the slow leader is due to how
we prioritize received data over the local data. Once non-leaders are up
and running they are consistently supplying the I/O leader with data to
flush, which effectively serializes flushing the local data behind all of
the received data. This may be enough to fill up OS-level cache/buffers,
thereby resulting in lower throughput for the data that is flushed
secondary (local data). Another explanation is that the metadata servers
or storage targets assigned to the slow leader experience a period
of higher competition from another workload on the system, thereby
limiting its availability and lowering the throughput. Something like
this is more likely to effect either mostly the received data or mostly
the local data depending on when it happens. Overall, testing in a more
controlled environment (e.g., full machine reservation), is needed to
isolate the root cause.

5.5. Aggregated checkpointing impact on concurrent workload (HACC)

We evaluate our file aggregation strategy in a real-world check-
pointing scenario using the scientific application, HACC. We use 2048
compute nodes for a total of 16,384 MPI processes to simulate 14,464
particles. In these experiments, the aggregation implementations (our
VELOC implementation, and GenericIO) set the number of remote files
ć = 1024, the same ratio of files to compute nodes as our microbench-
mark experiments presented in above. HACC generates roughly the
same amount of data per MPI process with some variance, similar to our
tests that vary checkpoint sizes by H 20%. We also capture the runtime
of the HACC application when checkpointing is not utilized, thereby
measuring how checkpointing strategies impact the application. We
compare our aggregation strategy against GenericIO and VELOC’s one-
file-per-process flushing strategy to provide a holistic overview of
how our aggregation strategy compares to state-of-the-art aggregated
checkpointing, and how it impacts the efficacy of VELOC.

We directly compare performance and impact on the application
between the 4 checkpointing schemes in Fig. 10. The black numbers
printed at the top of each bar is the total runtime of the simulation
captured via the time system call when launching the application.
Since GenericIO is synchronous, we subtract the time spent flushing
the checkpoint (blue) from the runtime, which gives us time spent on
computation (green), and stack the two bars, as they run in serial.
Since VELOC’s local phase is serialized with the application, we subtract
the time spent in this phase (reported by HACC) from the runtime.
VELOC flushes checkpoints concurrently with the application, so the

Fig. 10. Operational breakdown of the HACC simulation under different checkpointing
strategies on 2048 compute nodes, and aggregating to 1024 files (using our modified
version of VELOC and GIO). Lower is better.

flush phases (blue) are overlaid onto the computation (green). The bold
numbers printed in the center of the blue bars quantify the aggregated
throughput when flushing the checkpoint to the PFS.

Comparing our aggregated implementation of VELOC against the
baseline one-file-per-process, the aggregation strategy takes H 4×

longer in the flush phase, and gets H 5× lower throughput than the
one-file-per-process implementations. Based on our microbenchmark
experiments presented in Fig. 3, 1024 compute nodes are not enough
to fully saturate the PFS resources attached to Frontier, meanwhile,
VELOC’s file-per-process strategy does. Thus, they are able to perform
more parallel and lock-free I/O, which ultimately provides excep-
tionally high throughput (close to 70% of the HDD peak aggregated
bandwidth attached to Frontier). While file-per-process checkpointing
gets higher performance, we still meet the goals of our work, as
outlined in Section 2. Specifically, we are able to reduce the number
of checkpoint files by 16×, while introducing a < 2% overhead to the
total runtime of the application (13 s).

Meanwhile, checkpointing with GenericIO introduces a H 12%

checkpointing overhead to the application, as opposed to our 3%.
Furthermore, we are able to flush data to the PFS 1.2× faster than
GenericIO, even while sharing resources with the application. Overall,
our results show that when adopting our aggregation strategy, VELOC
can achieve the same level of file compactness as leading state-of-the-
art synchronous checkpointing strategies with minimal performance
overhead introduced to the concurrently running application compared
to VELOC’s baseline performance.

5.6. Concurrent workload (HACC) impact on asynchronous aggregation

Figs. 11–13, illustrate the same performance breakdowns done for
the microbenchmark in Figs. 7–9, and help characterize how our ag-
gregation strategy is impacted by a concurrently running workload.
Compared to our microbenchmark experiments in Fig. 7, Fig. 11 shows
that a concurrent workload like HACC degrades the flushing throughput
of our aggregation strategy by almost 2× in a similar scenario (e.g., 1:1
ratio of leaders to non-leaders). Thus, these experiments illustrate how
susceptible this aggregation strategy is to scarcity in the network band-
width. This creates an important trade-off for application developers to
consider, as prioritizing application work results in almost negligible
runtime overhead (< 3%) at the expense of a longer phase. However,
if aggregation causes the flush phase to extend too long where applica-
tions cannot efficiently capture subsequent checkpoints, it is worth it
to increase the priority checkpointing work (since the application will
be blocked anyway).

Future Generation Computer Systems 160 (2024) 420–432

430

M.J. Gossman et al.

Fig. 11. Breakdown of time spent writing received (orange) versus local (blue) data
on the fastest, slowest, and 5 other randomly sampled leaders when checkpointing the
HACC application. Shorter bars are better. The values printed in the middle of each
bar is the throughput, higher values are better.

In Fig. 7, we observed that slow I/O leaders took 2× longer to flush
local data compared to remote (queue) data. We see this same trend in
Fig. 11, however, we also start to observe a more mild version of this
degradation across all the I/O leaders. Given that we start to see this
trend appear across all sampled I/O leaders, it supports our hypothesis
that such variable performance when writing either local or received
data is most likely attributed to outside factors impacting the file system
at a specific time. The reason this trend becomes more visible in these
results is because the checkpoint duration in the HACC experiments
take H 40× longer compared to the microbenchmark experiments (due
to data volume). Thus, performance degradation is likely due to PFS
resource availability at that time, rather than caused by a bottleneck
when processing local data (e.g., synchronizing around shared data
structures).

Compared to the microbenchmark experiments in Fig. 11, the differ-
ence between the average and slowest I/O leader is roughly the same
(H 12% in Fig. 7 and H 16% in Fig. 11). This confirms a key conclusion
from Section 5.4: that global load balancing strategies (e.g., evenly
sized groups of compute nodes) are still effective even in the presence
of local load imbalance (differently sized local checkpoint files). Thus, it
may not be worth it to guarantee uniform load balance, especially given
that I/O leaders themselves can experience variable performance as
discussed in the previous paragraph. Instead, it may be more beneficial
for future works to explore adaptable aggregation techniques, where
data from slow leaders is rerouted to fast leaders to better utilize I/O
leaders, and mitigate performance degradation.

Figs. 12 and 13 present thread-level breakdowns of the flush phase
on the fast and slow I/O leaders, respectively. Compared to Figs. 8
and 9, threads in these results (Figs. 12 and 13) show a bit more
uniformity on both leaders, highlighting how dependent performance
of background I/O is on local resource availability (e.g., network
bandwidth, CPU cores, memory space, etc.). HACC frequently needs to
exchange data across compute nodes, and utilizes GPUs which requires
frequent data transfers. Thus, our I/O operations will suffer latency to
share bandwidth, especially as a background operation.

Furthermore, we see a similar trend that we noted in Figs. 8 and
9, where I/O threads on the slow leader are getting marginally lower
performance when flushing received data (averaging closer to the lower
end of 140 MB/s), compared to the fast leader (averaging closer to
150 MB/s). This continues to support our analysis that slow leaders
are a symptom of the PFS resources they get allocated, rather than a
design bottleneck. Furthermore, the results in Figs. 12 and 13 show
how all I/O threads across both leaders begin to experience degraded
performance when flushing the local data, illustrating that I/O perfor-
mance to the PFS is degrading as a whole. As in the microbenchmark

Fig. 12. Breakdown of the time it took each thread on the fastest leader to flush
data. The green bar is the maximum time it took for all threads on the leader to exit
(e.g., bound by the slowest thread). Shorter bars are better.

Fig. 13. Breakdown of duration it took each thread on the slowest leader to flush
received (orange) and local (blue). Lower is better.

experiments, slow I/O leaders are not consistent across multiple test
runs, indicating there is no cornerstone in our design that generates
this behavior.

6. Conclusions

We design and develop a high-performance, scalable I/O aggrega-
tion strategy for asynchronous multi-level checkpointing. Unlike state-
of-art I/O aggregation approaches that feature a decoupled two-phase
I/O strategy (involving a separate collection of data on proxies that
subsequently write the data to a parallel file system), we introduce
several innovative design principles targeting asynchronous I/O per-
formance using background threads that do not block the application.
Specifically, we discuss the importance of autonomous group-based
leader election, streamlined producer–consumer flushing, optimized
multi-threaded writes to parallel file systems and load balancing I/O
strategies to avoid stragglers.

We run extensive experiments at scale using both micro-benchmarks
and a real-life application (HACC, a large-scale cosmology simulation).
Results show our approach achieves H 2× higher throughput than ag-
gregated synchronous checkpointing (notably GenericIO). Furthermore,
compared with I/O libraries that support asynchronous aggregation
(notably ADIOS2), our approach achieves 1.16 × −2× higher I/O flush

Future Generation Computer Systems 160 (2024) 420–432

431

M.J. Gossman et al.

throughput in the background as the number of checkpoint files is
close to the number of nodes. On the other hand, when the number of
checkpoint files is significantly less than the number of compute nodes
(i.e., 1:4), ADIOS2 scales better as it allows more than one process
to write to the same shared file (as opposed to our approach, which
allows only one leader per checkpoint file). Under these circumstances,
our approach achieves a good trade-off between reducing the number
of checkpoint files compared to one-file-per-process solutions, while
maintaining a high I/O flush throughput at scale, especially on modern
HPC Exascale systems (notably Frontier).

Encouraged by these results, we plan to improve our I/O aggre-
gation strategies in several directions. First, our experiments have
revealed that a single leader writing to a large checkpoint file that ag-
gregates the checkpointing data of many MPI ranks makes suboptimal
use of the I/O bandwidth to the PFS at scale, even when the number
of leaders is larger than the number of I/O servers. Based on these
observations, it seems more than one leader is needed to saturate each
I/O server. Thus, we plan to investigate what is the optimal number
of leaders needed to extract the highest overall I/O flush throughput,
and how does this vary (if at all) at scale. Then, based on this investi-
gation, we will design and develop adaptive leader election strategies
and their mapping to I/O servers. Second, we did not investigate in
detail the competition for resources between the HPC applications and
background I/O threads performing the aggregation and flushing of
checkpointing data. While a large number of modern HPC applications
make use of GPUs for efficient computations (and therefore can spare
generous amounts of CPU and host memory), other resources like
network bandwidth used by the application for communications may
compete with the communication performed by the I/O background.
We will investigate the interference caused by competing network
communication and will design mitigation strategies accordingly.

CRediT authorship contribution statement

Mikaila J. Gossman: Writing – review & editing, Writing – origi-
nal draft, Visualization, Software, Methodology, Investigation, Formal
analysis, Data curation, Conceptualization. Bogdan Nicolae: Writing
– review & editing, Supervision, Resources, Funding acquisition, For-
mal analysis, Conceptualization. Jon C. Calhoun: Writing – review &
editing, Supervision, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Jon C. Calhoun reports financial support was provided by National
Science Foundation. Bogdan Nicolae reports financial support was pro-
vided by US Department of Energy. If there are other authors, they
declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work
reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

Clemson University, Argonne National Lab, and Oak Ridge National
Lab are acknowledged for generous allotment of compute time on the
Palmetto cluster, Theta supercomputer, and Frontier supercomputer,
respectively. This work was supported by the National Science Foun-
dation, USA [SHF-1910197 and SHF-1943114]; the U.S. Department of
Energy, Office of Science [DE-AC02-06CH11.357].

References

[1] H. Zhang, E.M. Constantinescu, Optimal checkpointing for adjoint multistage
time-stepping schemes, J. Comput. Sci. 66 (2023) 101913.

[2] T.L. Scao, A. Fan, C. Akiki, et al., BLOOM: A 176B-parameter open-access mul-
tilingual language model, 2022, http://dx.doi.org/10.48550/arXiv.2211.05100,
arXiv e-prints. arXiv:2211.05100.

[3] B. Neyshabur, H. Sedghi, C. Zhang, What is being transferred in transfer
learning? in: H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, H. Lin (Eds.),
Advances in Neural Information Processing Systems, Vol. 33, Curran Associates,
Inc, 2020, pp. 512–523, URL https://proceedings.neurips.cc/paper_files/paper/
2020/file/0607f4c705595b911a4f3e7a127b44e0-Paper.pdf.

[4] A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S.
Crozier, P.J. in ’t Veld, A. Kohlmeyer, S.G. Moore, T.D. Nguyen, R. Shan, M.J.
Stevens, J. Tranchida, C. Trott, S.J. Plimpton, LAMMPS - a flexible simulation
tool for particle-based materials modeling at the atomic, meso, and continuum
scales, Comp. Phys. Comm. 271 (2022) 108171, http://dx.doi.org/10.1016/j.cpc.
2021.108171.

[5] E. Rojas, A.N. Kahira, E. Meneses, L.B. Gomez, R.M. Badia, A study of check-
pointing in large scale training of deep neural networks, 2020, arXiv preprint
arXiv:2012.00825.

[6] B. Nicolae, J. Li, J.M. Wozniak, G. Bosilca, M. Dorier, F. Cappello, Deepfreeze:
Towards scalable asynchronous checkpointing of deep learning models, in:
2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet
Computing, CCGRID, IEEE, 2020, pp. 172–181.

[7] Lustre : A scalable , high-performance file system cluster, 2003.
[8] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, M. Snir, Toward exascale

resilience: 2014 update, Supercomput. Front. Innov. 1 (1) (2014) 5–28, http:
//dx.doi.org/10.14529/jsfi140101, URL https://superfri.org/index.php/superfri/
article/view/14.

[9] D. Dauwe, S. Pasricha, A.A. Maciejewski, H.J. Siegel, An analysis of multi-
level checkpoint performance models, in: 2018 IEEE International Parallel and
Distributed Processing Symposium Workshops, IPDPSW, 2018, pp. 783–792,
http://dx.doi.org/10.1109/IPDPSW.2018.00125.

[10] M. Gholami, F. Schintke, Combining XOR and partner checkpointing for re-
silient multilevel checkpoint/restart, in: 2021 IEEE International Parallel and
Distributed Processing Symposium, IPDPS, 2021, pp. 277–288, http://dx.doi.org/
10.1109/IPDPS49936.2021.00036.

[11] B. Nicolae, A. Moody, E. Gonsiorowski, K. Mohror, F. Cappello, VeloC: Towards
high performance adaptive asynchronous checkpointing at large scale, in: 2019
IEEE International Parallel and Distributed Processing Symposium, IPDPS, 2019,
pp. 911–920, http://dx.doi.org/10.1109/IPDPS.2019.00099.

[12] W.F. Godoy, N. Podhorszki, R. Wang, C. Atkins, G. Eisenhauer, J. Gu, P. Davis,
J. Choi, K. Germaschewski, K. Huck, A. Huebl, M. Kim, J. Kress, T. Kurc, Q.
Liu, J. Logan, K. Mehta, G. Ostrouchov, M. Parashar, F. Poeschel, D. Pugmire,
E. Suchyta, K. Takahashi, N. Thompson, S. Tsutsumi, L. Wan, M. Wolf, K. Wu,
S. Klasky, ADIOS 2: The adaptable input output system. A framework for high-
performance data management, SoftwareX 12 (2020) http://dx.doi.org/10.1016/
j.softx.2020.100561.

[13] K. Sato, N. Maruyama, K. Mohror, A. Moody, T. Gamblin, B.R. de Supinski,
S. Matsuoka, Design and modeling of a non-blocking checkpointing system,
in: SC ’12: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, 2012, pp. 1–10, http://dx.doi.
org/10.1109/SC.2012.46.

[14] K. Mohror, A. Moody, G. Bronevetsky, B.R. de Supinski, Detailed modeling and
evaluation of a scalable multilevel checkpointing system, IEEE Trans. Parallel
Distrib. Syst. 25 (09) (2014) 2255–2263, http://dx.doi.org/10.1109/TPDS.2013.
100.

[15] S. Habib, A. Pope, H. Finkel, N. Frontiere, K. Heitmann, D. Daniel, P. Fasel,
V. Morozov, G. Zagaris, T. Peterka, et al., HACC: Simulating sky surveys on
state-of-the-art supercomputing architectures, New Astron. 42 (2016) 49–65,
http://dx.doi.org/10.1016/j.newast.2015.06.003.

[16] T.Z. Islam, K. Mohror, S. Bagchi, A. Moody, B.R. de Supinski, R. Eigenmann,
MCREngine: A scalable checkpointing system using data-aware aggregation and
compression, in: SC ’12: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, 2012, pp. 1–11,
http://dx.doi.org/10.1109/SC.2012.77.

[17] S.-M. Tseng, B. Nicolae, F. Cappello, A. Chandramowlishwaran, Demystifying
asynchronous I/O interference in HPC applications, Int. J. High Perform. Comput.
Appl. 35 (4) (2021) 391–412, http://dx.doi.org/10.1177/10943420211016511.

[18] A. Maurya, R. Underwood, M.M. Rafique, F. Cappello, B. Nicolae, DataStates-
LLM: Lazy asynchronous checkpointing for large language models, in: The
33rd International Sym- Posium on High-Performance Parallel and Distributed
Computing, HPDC’24, 2024, http://dx.doi.org/10.1145/3625549.36586857.

[19] M. Sato, Y. Kodama, M. Tsuji, T. Odajima, Co-design and system for the
supercomputer ‘‘Fugaku’’, IEEE Micro 42 (02) (2022) 26–34, http://dx.doi.org/
10.1109/MM.2021.3136882.

[20] H. Khetawat, C. Zimmer, F. Mueller, S. Atchley, S.S. Vazhkudai, M. Mubarak,
Evaluating burst buffer placement in HPC systems, in: 2019 IEEE International
Conference on Cluster Computing, CLUSTER, 2019, pp. 1–11, http://dx.doi.org/
10.1109/CLUSTER.2019.8891051.

http://refhub.elsevier.com/S0167-739X(24)00292-9/sb1
http://refhub.elsevier.com/S0167-739X(24)00292-9/sb1
http://refhub.elsevier.com/S0167-739X(24)00292-9/sb1
http://dx.doi.org/10.48550/arXiv.2211.05100
http://arxiv.org/abs/2211.05100
https://proceedings.neurips.cc/paper_files/paper/2020/file/0607f4c705595b911a4f3e7a127b44e0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/0607f4c705595b911a4f3e7a127b44e0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/0607f4c705595b911a4f3e7a127b44e0-Paper.pdf
http://dx.doi.org/10.1016/j.cpc.2021.108171
http://dx.doi.org/10.1016/j.cpc.2021.108171
http://dx.doi.org/10.1016/j.cpc.2021.108171
http://arxiv.org/abs/2012.00825
http://refhub.elsevier.com/S0167-739X(24)00292-9/sb6
http://refhub.elsevier.com/S0167-739X(24)00292-9/sb6
http://refhub.elsevier.com/S0167-739X(24)00292-9/sb6
http://refhub.elsevier.com/S0167-739X(24)00292-9/sb6
http://refhub.elsevier.com/S0167-739X(24)00292-9/sb6
http://refhub.elsevier.com/S0167-739X(24)00292-9/sb6
http://refhub.elsevier.com/S0167-739X(24)00292-9/sb6
http://refhub.elsevier.com/S0167-739X(24)00292-9/sb7
http://dx.doi.org/10.14529/jsfi140101
http://dx.doi.org/10.14529/jsfi140101
http://dx.doi.org/10.14529/jsfi140101
https://superfri.org/index.php/superfri/article/view/14
https://superfri.org/index.php/superfri/article/view/14
https://superfri.org/index.php/superfri/article/view/14
http://dx.doi.org/10.1109/IPDPSW.2018.00125
http://dx.doi.org/10.1109/IPDPS49936.2021.00036
http://dx.doi.org/10.1109/IPDPS49936.2021.00036
http://dx.doi.org/10.1109/IPDPS49936.2021.00036
http://dx.doi.org/10.1109/IPDPS.2019.00099
http://dx.doi.org/10.1016/j.softx.2020.100561
http://dx.doi.org/10.1016/j.softx.2020.100561
http://dx.doi.org/10.1016/j.softx.2020.100561
http://dx.doi.org/10.1109/SC.2012.46
http://dx.doi.org/10.1109/SC.2012.46
http://dx.doi.org/10.1109/SC.2012.46
http://dx.doi.org/10.1109/TPDS.2013.100
http://dx.doi.org/10.1109/TPDS.2013.100
http://dx.doi.org/10.1109/TPDS.2013.100
http://dx.doi.org/10.1016/j.newast.2015.06.003
http://dx.doi.org/10.1109/SC.2012.77
http://dx.doi.org/10.1177/10943420211016511
http://dx.doi.org/10.1145/3625549.36586857
http://dx.doi.org/10.1109/MM.2021.3136882
http://dx.doi.org/10.1109/MM.2021.3136882
http://dx.doi.org/10.1109/MM.2021.3136882
http://dx.doi.org/10.1109/CLUSTER.2019.8891051
http://dx.doi.org/10.1109/CLUSTER.2019.8891051
http://dx.doi.org/10.1109/CLUSTER.2019.8891051

Future Generation Computer Systems 160 (2024) 420–432

432

M.J. Gossman et al.

[21] J. Rosario, R. Bordawekar, A. Choudhary, Improved parallel I/O via a two-phase
run-time access strategy, ACM SIGARCH Comput. Archit. News 21 (1993) 31–38,
http://dx.doi.org/10.1145/165660.165667.

[22] F. Tessier, V. Vishwanath, E. Jeannot, TAPIOCA: An I/O library for optimized
topology-aware data aggregation on large-scale supercomputers, in: 2017 IEEE
International Conference on Cluster Computing, CLUSTER, 2017, pp. 70–80,
http://dx.doi.org/10.1109/CLUSTER.2017.80.

[23] R. Thakur, W. Gropp, E. Lusk, Data sieving and collective I/O in ROMIO, in:
Proceedings. Frontiers ’99. Seventh Symposium on the Frontiers of Massively Par-
allel Computation, 1999, pp. 182–189, http://dx.doi.org/10.1109/FMPC.1999.
750599.

[24] K. Seamons, Y. Chen, P. Jones, J. Jozwiak, M. Winslett, Server-directed collective
I/O in panda, in: Supercomputing ’95:Proceedings of the 1995 ACM/IEEE
Conference on Supercomputing, 1995, p. 57, http://dx.doi.org/10.1109/SUPERC.
1995.241778.

[25] A. Ramos Carneiro, J.L. Bez, F. Zanon Boito, B. Alves Fagundes, C. Osthoff,
P.O. Navaux, Collective I/O performance on the santos dumont supercomputer,
in: 2018 26th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing, PDP, 2018, pp. 45–52, http://dx.doi.org/10.1109/
PDP2018.2018.00015.

[26] R. Thakur, W. Gropp, E. Lusk, Data sieving and collective I/O in ROMIO, in:
Proceedings. Frontiers ’99. Seventh Symposium on the Frontiers of Massively Par-
allel Computation, 1999, pp. 182–189, http://dx.doi.org/10.1109/FMPC.1999.
750599.

[27] Y. Tsujita, K. Yoshinaga, A. Hori, M. Sato, M. Namiki, Y. Ishikawa, Multithreaded
two-phase I/O: Improving collective MPI-IO performance on a lustre file system,
in: 2014 22nd Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing, 2014, pp. 232–235, http://dx.doi.org/10.1109/PDP.
2014.46.

[28] R. Feki, E. Gabriel, Design and evaluation of multi-threaded optimizations for
individual MPI I/O operations, in: 2022 30th Euromicro International Conference
on Parallel, Distributed and Network-Based Processing, PDP, 2022, pp. 122–126,
http://dx.doi.org/10.1109/PDP55904.2022.00027.

[29] Q. Kang, S. Lee, K. Hou, R. Ross, A. Agrawal, A. Choudhary, W.-k. Liao, Improv-
ing MPI collective I/O for high volume non-contiguous requests with intra-node
aggregation, IEEE Trans. Parallel Distrib. Syst. 31 (11) (2020) 2682–2695, http:
//dx.doi.org/10.1109/TPDS.2020.3000458.

[30] Q. Jensen, F. Jagodzinski, T. Islam, FILCIO: Application agnostic I/O aggregation
to scale scientific workflows, in: 2021 IEEE 45th Annual Computers, Software,
and Applications Conference, COMPSAC, 2021, pp. 1587–1592, http://dx.doi.
org/10.1109/COMPSAC51774.2021.00236.

[31] M. Folk, G. Heber, Q. Koziol, E. Pourmal, D. Robinson, An overview of the HDF5
technology suite and its applications, in: AD’11: The 2011 Workshop on Array
Databases, Association for Computing Machinery, Uppsala, Sweden, 2011, pp.
36–47.

[32] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello, N. Maruyama, S.
Matsuoka, FTI: High performance fault tolerance interface for hybrid systems,
in: SC ’11: The 2011 ACM/IEEE International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, Seattle, USA, 2011, pp.
32:1–32:32.

[33] I.S. Reed, G. Solomon, Polynomial codes over certain finite fields, J. Soc. Ind.
Appl. Math. 8 (2) (1960) 300–304.

[34] B. Nicolae, A. Moody, G. Kosinovsky, K. Mohror, F. Cappello, VELOC: VEry low
overhead checkpointing in the age of exascale, 2021, CoRR. arXiv:2103.02131.

[35] S. Atchley, Checkpointing tips, 2023, https://www.olcf.ornl.gov/wp-content/
uploads/Checkpointing-Tips-OLCF-User-Call-20230329.pdf. (Accessed 31 August
2023).

[36] T. Herault, Y. Robert, A. Bouteiller, D. Arnold, K. Ferreira, G. Bosilca, J.
Dongarra, Checkpointing strategies for shared high-performance computing plat-
forms, Int. J. Netw. Comput. 9 (1) (2019) 28–52, URL http://ijnc.org/index.php/
ijnc/article/view/195.

[37] M. Gossman, B. Nicolae, J. Calhoun, Modeling multi-threaded aggregated I/O
for asynchronous checkpointing on HPC systems, in: ISPDC’23: The 22nd IEEE
International Conference on Parallel and Distributed Computing, Bucharest,
Romania, 2023, pp. 101–105.

[38] Aggregation. https://adios2.readthedocs.io/en/v2.9.2/advanced/aggregation.
html.

Mikaila received her bachelors degree in Computer Engi-
neering in May 2020 from Clemson University’s Holcombe
Department of Electrical and Computer Engineering, where
she is now a third year Ph.D. student. Her research inter-
ests are centered around improving the performance and
scalability of scientific applications in High Performance
Computing (HPC) systems, with a focus on checkpoint-
restart (C/R) and I/O scalability. Currently, she is working
in collaboration with Argonne National Lab as part of the
VELOC team.

Bogdan Nicolae is a Computer Scientist with Argonne
National Laboratory (Chicago, USA) and Research Profes-
sor at Illinois Institute of Technology (Chicago, USA). He
specializes in scalable storage, data management and fault
tolerance for large scale distributed systems, in particular
at the intersection of high performance computing, big data
analytics and artificial intelligence. He is interested by and
authored numerous papers in areas such as checkpoint-
restart, state capture and migration, data and metadata
decentralization and high availability, concurrency control
in data management, multi-versioning and historic access,
declarative data models, live migration. He is a regular
PC member and participates in the organization of major
international conferences around parallel and distributed
systems: SC, IPDPS, HPDC, CCGrid, CLUSTER, ICS, HIPC,
ICDCS, ICPP, EuroPar, EuroMPI, etc. He is a regular re-
viewer for journals such as: TPDS, JPDC, FGCS, PARCO,
TC, TCC, IJHPCA.

Jon is an Assistant Professor of Electrical and Computer
Engineering and the director of the Future Technologies in
Heterogeneous and Parallel Computing (FTHPC) Laboratory
at Clemson University. I obtained a Ph.D. in Computer
Science from University of Illinois at Urbana-Champaign
under the direction of Professors Luke Olson and Marc Snir.
At Clemson, my research interests broadly lie in two areas:
fault tolerance and data compression. In particular, I am in-
terested in fault tolerance issues related to high-performance
computing systems such as improving checkpoint-restart and
understanding the impact of silent data corruption HPC
applications. With respect to data compression, I focus
on developing and applying novel lossy and lossless data
compression algorithms in many different areas from high-
performance computing to intelligent transportation systems
to mitigate bandwidth and storage bottlenecks

http://dx.doi.org/10.1145/165660.165667
http://dx.doi.org/10.1109/CLUSTER.2017.80
http://dx.doi.org/10.1109/FMPC.1999.750599
http://dx.doi.org/10.1109/FMPC.1999.750599
http://dx.doi.org/10.1109/FMPC.1999.750599
http://dx.doi.org/10.1109/SUPERC.1995.241778
http://dx.doi.org/10.1109/SUPERC.1995.241778
http://dx.doi.org/10.1109/SUPERC.1995.241778
http://dx.doi.org/10.1109/PDP2018.2018.00015
http://dx.doi.org/10.1109/PDP2018.2018.00015
http://dx.doi.org/10.1109/PDP2018.2018.00015
http://dx.doi.org/10.1109/FMPC.1999.750599
http://dx.doi.org/10.1109/FMPC.1999.750599
http://dx.doi.org/10.1109/FMPC.1999.750599
http://dx.doi.org/10.1109/PDP.2014.46
http://dx.doi.org/10.1109/PDP.2014.46
http://dx.doi.org/10.1109/PDP.2014.46
http://dx.doi.org/10.1109/PDP55904.2022.00027
http://dx.doi.org/10.1109/TPDS.2020.3000458
http://dx.doi.org/10.1109/TPDS.2020.3000458
http://dx.doi.org/10.1109/TPDS.2020.3000458
http://dx.doi.org/10.1109/COMPSAC51774.2021.00236
http://dx.doi.org/10.1109/COMPSAC51774.2021.00236
http://dx.doi.org/10.1109/COMPSAC51774.2021.00236
http://refhub.elsevier.com/S0167-739X(24)00292-9/sb31
http://refhub.elsevier.com/S0167-739X(24)00292-9/sb31
http://refhub.elsevier.com/S0167-739X(24)00292-9/sb31
http://refhub.elsevier.com/S0167-739X(24)00292-9/sb31
http://refhub.elsevier.com/S0167-739X(24)00292-9/sb31
http://refhub.elsevier.com/S0167-739X(24)00292-9/sb31
http://refhub.elsevier.com/S0167-739X(24)00292-9/sb31
http://refhub.elsevier.com/S0167-739X(24)00292-9/sb32
http://refhub.elsevier.com/S0167-739X(24)00292-9/sb32
http://refhub.elsevier.com/S0167-739X(24)00292-9/sb32
http://refhub.elsevier.com/S0167-739X(24)00292-9/sb32
http://refhub.elsevier.com/S0167-739X(24)00292-9/sb32
http://refhub.elsevier.com/S0167-739X(24)00292-9/sb32
http://refhub.elsevier.com/S0167-739X(24)00292-9/sb32
http://refhub.elsevier.com/S0167-739X(24)00292-9/sb32
http://refhub.elsevier.com/S0167-739X(24)00292-9/sb32
http://refhub.elsevier.com/S0167-739X(24)00292-9/sb33
http://refhub.elsevier.com/S0167-739X(24)00292-9/sb33
http://refhub.elsevier.com/S0167-739X(24)00292-9/sb33
http://arxiv.org/abs/2103.02131
https://www.olcf.ornl.gov/wp-content/uploads/Checkpointing-Tips-OLCF-User-Call-20230329.pdf
https://www.olcf.ornl.gov/wp-content/uploads/Checkpointing-Tips-OLCF-User-Call-20230329.pdf
https://www.olcf.ornl.gov/wp-content/uploads/Checkpointing-Tips-OLCF-User-Call-20230329.pdf
http://ijnc.org/index.php/ijnc/article/view/195
http://ijnc.org/index.php/ijnc/article/view/195
http://ijnc.org/index.php/ijnc/article/view/195
http://refhub.elsevier.com/S0167-739X(24)00292-9/sb37
http://refhub.elsevier.com/S0167-739X(24)00292-9/sb37
http://refhub.elsevier.com/S0167-739X(24)00292-9/sb37
http://refhub.elsevier.com/S0167-739X(24)00292-9/sb37
http://refhub.elsevier.com/S0167-739X(24)00292-9/sb37
http://refhub.elsevier.com/S0167-739X(24)00292-9/sb37
http://refhub.elsevier.com/S0167-739X(24)00292-9/sb37
https://adios2.readthedocs.io/en/v2.9.2/advanced/aggregation.html
https://adios2.readthedocs.io/en/v2.9.2/advanced/aggregation.html
https://adios2.readthedocs.io/en/v2.9.2/advanced/aggregation.html

	Scalable I/O aggregation for asynchronous multi-level checkpointing
	Introduction
	Motivation
	Background and Related Work
	Proposed Approach
	Design Principles
	Leader Election
	Streamlined Multi-Threaded Producer–Consumer Flushing
	Senders
	Receivers
	Writers

	Implementation details
	Evaluation
	Testing Methodology
	A Weak Scalability Analysis of Aggregated Files
	Characterizing the Impact of Load Imbalance on Asynchronous Aggregation
	Comparing I/O Leaders: A Fine-Grained Breakdown
	Aggregated Checkpointing Impact on Concurrent Workload (HACC)
	Concurrent Workload (HACC) Impact on Asynchronous Aggregation

	Conclusions
	CRediT authorship contribution statement

	Declaration of competing interest
	Data availability
	Acknowledgments
	References

