
Light-weight Steganography for HPC Lossy Compression

Ruiwen Shan and Jon C. Calhoun

Holcombe Department of Electrical and Computer Engineering - Clemson University
433 Calhoun Dr

Clemson, SC, 29634, USA
rshan@clemson.edu and jonccal@clemson.edu

Abstract

The explosive data growth in high-performance computing (HPC) puts pressure on systems
to process huge amounts of data and poses threats to the security of important data during
transmission. Traditional data protection methods such as encryption inevitably attracts
intermediate intercepting entities’ attention. As a means of hiding information within other
irrelevant data (carrier), steganography is used to transmit critical data without arousing
the attention of regulators. Error-bounded lossy compression is a data reduction technique
that effectively alleviates system pressures due to large data volumes. In this paper, we
propose a steganography scheme based on the lossy compressor SZ named StegaZ. StegaZ
performs steganography while compressing data by selecting random bits for insertion based
on the password entered by the user. StegaZ does not affect unaware users’ normal usage
of the decompressed dataset. The experimental results show StegaZ preserves more than
99.6% of the original compression ratio and achieves a PSNR of 100% when selecting an
appropriate dataset. Additionally, it imposes minimal compression bandwidth overhead,
sometimes even able to obtain a higher compression bandwidth than the original.

1 Introduction

In the past few decades, the academic communities have relied on scientific computing
techniques to study problems involving large-scale data computation and simulation.
HPC has become an integral part of scientific research due to its robust data process-
ing abilities. Such systems provide abundant computation capabilities while reducing
operation and maintenance costs. However, the use of HPC systems also poses chal-
lenges. One of the most prominent issues is the increasing volume of scientific data
generated in experiments. Cosmological simulations such as HACC [1] can produce
over 20 PB of data per snapshot when run at the trillion-particle scale. The broad
range of problem domains often requires vast amounts of data to ensure the simu-
lation process runs smoothly. The enormous amount of data consumes a significant
amount of storage space and also leads to I/O bottlenecks during data transmission.
For example, the Linear Coherent Light Source (LCLS) at SLAC National Accelera-
tor Laboratory [2] generates X-ray imaging data at a rate of 250 GB/s, which is then
transmitted to data centers for further analysis. But the current standard bandwidth
for mainstream exascale HPC interconnection networks is around 200 Gbps [3].

Data compression is a promising approach to alleviate the problem of overwhelm-
ing system resources caused by excessive data volume. However, due to the multidi-
mensional and highly random nature of scientific datasets, conventional deduplication
or lossless compression methods are of limited use when shrinking HPC floating-point
values. In fact, most lossless compressors can only achieve a compression ratio (CRs)

442

2024 Data Compression Conference (DCC)

2375-0359/24/$31.00 ©2024 IEEE
DOI 10.1109/DCC58796.2024.00052

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on September 19,2024 at 02:47:29 UTC from IEEE Xplore. Restrictions apply.

of 2–4× when working with scientific datasets [4]. In contrast, error-bounded lossy
compression (EBLC) is capable of achieving higher CRs with accurate error control.
For state-of-the-art EBLC such as SZ [5] and ZFP [6], CRs of 10–1000× is achievable
in real-world applications while tightly adhering to user-specified error bounds (eb).

Despite the fact that EBLC performs admirably in compression of HPC datasets,
the adoption of compression algorithms also poses security threats such as information
leakage. CR is a side channel that leaks vital information by providing a reference to
the content and internal structure of the compressed data file, making it susceptible to
side-channel attacks [7]. In addition, the compression algorithm is computationally
vulnerable and has limited resistance to a single bit-flip or data corruption [8, 9].
Besides, sensitive data are also processed and transferred in HPC systems, including
personal information, scientific research results, and intellectual property protected
data. The loss of these data hinders the research process and even affects political
decisions. Thus, it is imperative to protect the security and integrity of critical data.

Data protection strategies such as encryption are commonly used to handle issues
related to confidentiality as well as integrity authentication. Although encryption
is an effective method, there are some limitations. Encryption is not stealthy. The
use of this mechanism is perceivable as it visually affects the content, thus making
the communication behavior easily detectable and enabling attackers to follow the
trail. Besides, encryption cannot resolve the problem of content authentication. Data
encryption cannot protect the content and property rights of transmitted data. The
presence of an encryption key does not guarantee that the message has not been
altered during transmission. Instead of encrypting transmitted data , it is preferable
to utilize steganography methods to hide the secret information directly and covertly
in other carriers to avoid attracting the attention or suspicion of eavesdroppers.

The popularity of HPC systems and collaborative research across multiple parties
has led to the need to ensure the secure transmission of confidential data across these
systems. Previous studies have focused on using encryption techniques to protect
critical data [10]. However, in some cases, an appropriate solution is to transmit
sensitive data by covert means to avoid attracting the attention of untrusted third
parties. As a commonly used method to improve the efficiency of data transmission
and storage in HPC, compression can serve as an effective mask for steganographic
techniques. Our contributions are summarized as follows:

• We analyze the state-of-the-art lossy compressors for HPC data and develop a
new steganographic approach, StegaZ. To the best of our knowledge, this is the
first steganography scheme specialized for lossy compression in HPC environ-
ments. StegaZ randomly embeds secret data without significantly increasing the
burden on the HPC system, while ensuring the retention of more than 99.6%
of the original CR and 100% PSNR when selecting an appropriate dataset.

• StegaZ enables informed users to quickly extract secret data, while normal users
still correctly decompress and use the datasets. Using a password provides dual
security, preventing intruders who are aware of hidden content from extracting
and restoring the inserted content, thereby ensuring the security of critical data.

443

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on September 19,2024 at 02:47:29 UTC from IEEE Xplore. Restrictions apply.

2 Background

Lossy compression : Obtaining a theoretical upper limit for the CR of lossy com-
pression is challenging because the amount of data to be compressed in lossy compres-
sion is uncertain [11]. A completely different result can be achieved depending on the
way the problem is abstracted, or the error bounds are set. The main goal of EBLC
is to minimize the size of datasets within the error bound eb that the user stipulates,
with SZ being one of the most advanced lossy compressors [5]. The overall process
of SZ compression is divided into four steps: data prediction, linear quantization,
variable-length encoding, and lossless compression. SZ processes the input dataset
D element-by-element. For a given element xi ∈ D, SZ selects the most appropriate
prediction function based on the previously processed data elements to obtain the
predicted value x

′

i. Depending on the choice of prediction function, there might be
additional data to save. In the case of linear regression, it is necessary to save the
regression coefficients. The additional data is compressed separately later. Then, SZ
quantizes the difference between the predicted values x

′

and the original data x into
a series of integers and encodes them using Huffman encoding. In the last step, SZ
leverages lossless compression methods to further shrink the file size.

Steganography : A technique for hiding information. The purpose of this tech-
nology is to protect confidential communications by embedding messages impercep-
tibly in a carrier whose contents are accessible to all. A wide variety of carrier types
are available. The most common at this time are images, text, and video. The
difference between data encryption and steganography is that in the former case,
third parties are aware that the data is encrypted but do not know the contents be-
fore encryption, while the latter case focuses on making the existence of the secret
data undetectable.Unlike encryption, steganography can withstand a certain degree
of bit-flipping.Bit-level substitution is one of the popular choices for inserting secret
data. However, such algorithms may lead to a significant drop in compression results,
especially in CR. Section 4 discusses and analyzes this issue.

Motivation : HPC systems need to handle data multiple orders of magnitude
larger than ordinary IT systems, traditional security measures are difficult to im-
plement [12]. Data in HPC systems also face the threat of being intercepted and
eavesdropped. Specifically, some data processed in the system may involve individual
privacy, and sometimes may even interfere with political decision-making. Thus, it is
imperative to pay attention to data security and confidentiality during its transmis-
sion and storage. Previous research combined HPC compression and encryption to
improve data security while protecting only the most sensitive data [10]. Encryption
only masks the content of the data, not the fact that the ciphertext is being trans-
mitted. Data encrypted in this manner can easily be observed. Moreover, the highly
identifiable nature of the encrypted message is also likely to attract the attention of a
regulatory body, thereby blocking any communication of a similar type in the future.
Steganography can prevent anyone other than the intended recipient from knowing
that a message is being delivered. As the hidden transmission is embedded in a car-
rier that appears to be unrelated, it is more disorienting. Research combining lossy
compression and steganography has mainly focused on image compression, whereas

444

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on September 19,2024 at 02:47:29 UTC from IEEE Xplore. Restrictions apply.

the data processed in HPC environments are massive floating-point values. Typical
image steganography algorithms embed the secret message by modifying the discrete
cosine transform(DCT) functions, e.g. compression resistant principle-based adaptive
steganography(CPRAS) [13]. These schemes only consider the visual invisibility of
steganography, however, it is not sufficient in the HPC environment.

Challenge : The use of popular substitution steganography methods can pose
several difficulties when applied to the EBLC algorithm. 1) Finding the proper po-
sition. In the EBLC algorithm, the information represented by each value is lost to
varying degrees depending on the eb set by the user. There is no guarantee that the
hidden information will remain intact after compression. Furthermore, since most of
the values in scientific datasets are floating point numbers, SZ is a lossy compression
algorithm developed to handle this situation. The bit representation of floating-point
values differs from other forms in that the mantissa bit determines the fractional part,
making it difficult to locate the lowest bit that fits within the user-specified eb. Even
if the lowest bit can be identified in some cases, a higher bit may need to be replaced
when the eb is too loose, leading to a large variation in the value itself. Therefore, it
is crucial to find the appropriate location to apply steganography. 2) Steganography
may negatively impact compression results. In HPC systems, Data security needs to
be guaranteed while high performance is ensured. Even if only the lowest bits are
replaced, the original CRs or PSNR might be greatly affected (See Section 4).

3 Method

3.1 Proper position

To minimize steganography’s impact on compression, the ideal is one that takes up
a relatively small amount of memory and is not affected by user-specified eb. During
quantization, SZ quantifies the difference between the predicted and original values
into a series of integers (quantization index). Fully utilizing this feature makes it
possible to convert the steganography problem of lossy compression of floating-point
values into the steganography problem of lossless compression of integers. A viable
option is to perform steganographic methods after quantification.

To ensure that compression results are not excessively affected, it is important to
avoid adding steganographic operations directly to the dataset. We notice that SZ
stores some extra data when it selects certain predictors for data blocks. For example,
when a linear regression predictor is selected, SZ stores four regression coefficients for
each data block, which are compressed in a separate pipeline. The coefficient array
occupies a very small portion of the memory (See Table 1). Thus, manipulating
the coefficients array does not place as much pressure on the compression as directly
operating compressed data.

3.2 Least-significant bit (LSB)

Table 1: Coefficient Percentage

CLOUDf48 Wf48 Nyx einspline T density

coeffient(%) 0.2399 0.0084 0.1327 0.0918 0.0126 0.0926

Due to its simplicity and ease of imple-
mentation, we chose LSB. The embed-
ding process is divided into two steps.
First, convert the message into binary format. If there is enough space available, the
LSB of each coefficient is replaced by a bit from the secret message in consecutive

445

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on September 19,2024 at 02:47:29 UTC from IEEE Xplore. Restrictions apply.

order. Since the bits of some coefficients are flipped during embedding, it is necessary
to recalculate the decompressed value using the new quantization index to verify it
still correctly respects the user-set eb. If the new decompressed value falls outside the
predictable range, this coefficient is grouped into the unpredictable array.

This method has the advantage that it processes only the lowest bit of the value
in a series of integers that occupy a very small fraction of the overall memory. Thus,
minimizing the effects on the CR. Furthermore, LSB has a low computational effort
and does not have a material impact on compression speed. The downside is that
this method is easily cracked as it flips the fixed bit position. Furthermore, regression
coefficients are sensitive to bit flips [9]. For highly compressible datasets, a substantial
negative impact on the results may occur if the percentage of unpredictable coefficients
increases after the verification step.

3.3 StegaZ

Algorithm 1: StegaZ
Input: Quantization index for regression

coefficients quant index, secret
message M , Hash functionH

Output: Quantization index array for
regression coefficients with inserted
secret message

for i in quant index do
num ← 4 bit of H;
quant bit ← quant index >> num;
secret message bit ←M >> i;
result ← quant bit⊕ secret message bit;
if (result! = quant bit)&(quant bit = 1)
then

Save −quant index;

else if

(result == quant bit)&(quant bit = 0)
then

Save −quant index;

else
Save quant index;

end

end

Our proposed method consists of two
main components: position selection and
bit hiding.We use a hash function to select
random bits instead of inserting the mes-
sage at a fixed location as in LSB. Our
method has 2 steps: 1) The user enters
a password (key) along with compression
parameters. This key is then mixed with
a random string, which serves as salt, and
hashed using SHA-256. 2) Take the first
four bits of the hashed string as the first
target bit position for inserting the secret
message. Next, shift one bit to the right
and use the next four bits as the second
target position, until there are sufficient
places to embed the entire message. In
the event that the data still needs to be

steganographically written after one round of looping, return to the beginning of
the hash string and start a new round. In this way, third parties without the key
are unable to obtain the location of the inserted information.The addition of salt
is equivalent to randomizing the hash value, which makes analysis algorithms like
lookup tables and rainbow tables not be effective [14].

We utilize bitwise xor to conceal secret data bit by bit and use the symbol of the
index as an identifier to distinguish embedded content. Algorithm 1 shows how to xor
secret data and coefficient indices. In the case that the bit from the index is 1 and
the result of the xor is still 1, keep the original index; otherwise, store the index as
negative. Alternatively, if the bit from the index is 0 and the xor result is still 0, store
the index as negative; otherwise, keep the original index unchanged. Only the sign of
the index may change throughout this process. These four cases are identified without
modifying the absolute value of the original coefficients. Our method is symmetric,
and the extracting process only requires reversing the operation. Figure 1 shows the

446

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on September 19,2024 at 02:47:29 UTC from IEEE Xplore. Restrictions apply.

maximum size of inserted data for a 500MB dataset. We see compressing with blocks
of size 6×6×6, a maximum of 289.35KB of secret data is hidden.

2 4 6 8 10 12 14 16
Block size

4
32

10
8

25
6

50
0

86
4

13
72

20
48

29
16

Si
ze

 o
f d

at
as

et
(M

B)

62.50 7.81 2.31 0.98 0.50 0.29 0.18 0.12

500.00 62.50 18.52 7.81 4.00 2.31 1.46 0.98

1687.50 210.94 62.50 26.37 13.50 7.81 4.92 3.30

4000.00 500.00 148.15 62.50 32.00 18.52 11.66 7.81

7812.50 976.56 289.35 122.07 62.50 36.17 22.78 15.26

13500.00 1687.50 500.00 210.94 108.00 62.50 39.36 26.37

21437.50 2679.69 793.98 334.96 171.50 99.25 62.50 41.87

32000.00 4000.00 1185.19 500.00 256.00 148.15 93.29 62.50

45562.50 5695.31 1687.50 711.91 364.50 210.94 132.84 88.99

Insertable data size for different datasets

0

20

40

60

80

100

Da
ta

 si
ze

(K
B)

Figure 1: Maximum inserted data size.

StegaZ compensates for the short-
comings of LSB while retaining its ad-
vantages. This approach still uses coef-
ficients for steganography. However, it
does not change the absolute values of
the index, and the compression results
are minimally affected. StegaZ does not
significantly impact the overall compres-
sion speed, as most operations are bit-
wise. From a security perspective, even
if a third party detects an anomaly, it is
hard to extract the data from randomly flipped bits. A unique advantage of StegaZ
is that only those who know the password can get the steganographic data, while un-
informed users use the compressor and the decompressed data without any impact.

4 Evaluation results

4.1 Experimental setup
Table 2: Dataset attributes

Dataset Type Dimensions Size Description

CLOUDf48 float 100×500×500 95.37MB Cloud moisture mixing ratio
Wf48 float 100×500×500 95.37MB Z wind speed
Nyx float 512×512×512 527MB Dark matter density

einspline float 69×69×33120 602MB ab initio electronic structure
T float 98×1200×1200 61MB Temperature

density double 256×384×384 302MB Rayleigh-Taylor simulation

We run experiments using real-world
datasets from different applications to
demonstrate the impact of our method
on lossy compression. We select sev-
eral datasets from SDRBench [15]. We
choose CLOUDf48 and Wf48 from Hurricane Isabel simulation, dark matter density
(to be called Nyx) from Nyx, einspline from QMCPACK, temperature (to be called T)
from SCALE-LETKF, and density from Miranda. Table 2 shows detailed descrip-
tions. Our experiments are conducted on Clemson University’s Palmetto Cluster,
where each node contains two 2.6 GHz Intel Xeon 2650 processors and 263GB of
RAM. GCC-8.5.0 to compile our code, and we SZ3 in absolute error bound mode, en-
abling the Lorenzo and Linear Regression predictors for lossy compression. SZ is rec-
ognized as one of the best techniques available for compressing scientific datasets [16].
Every data point is the average of 500 rounds of hidden random data.

4.2 Compression ratio (CR)

CR is a standard to measure the effectiveness of a compressor and is defined as the
ratio of the data size before compression to the data size after compression (higher is
better). Our goal is to maintain the original CR as much as possible when combining
steganography with SZ. CRs with minor variations are less likely to attract regulator
attention. Table 3 presents the original CR for the datasets with different eb. From
Table 3, CLOUDf48 has the best compressibility, with a CR of about 38–900× greater
than the hard-to-compress dataset Nyx with the same eb. This indicates that a
significant portion of the data points in CLOUDf48 falls within the same quantization
interval, and the codewords are highly repeatable after Huffman encoding.

447

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on September 19,2024 at 02:47:29 UTC from IEEE Xplore. Restrictions apply.

Table 3: Baseline compression ratio
Absolute Error Bound

Dataset 1e-6 1e-5 1e-4 1e-3

CLOUDf48 38.745 90.916 353.336 2871.995
Wf48 2.286 3.056 4.531 8.293
Nyx 1.163 1.721 2.311 3.106

einspline 2.994 4.369 7.511 13.123
T 3.103 3.641 4.751 8.414

density 20.594 29.847 51.500 122.386

Incorporating steganography into SZ
reduces CR. To compare two steganog-
raphy methods, we use the original CRs
as baselines and normalize other results.
Figure 2 depicts the variance of CRs un-
der different eb. As most datasets suffer
little impact on CRs, modifying coeffi-
cients rather than the dataset itself is a
proper option. In particular, CLOUDf48 suffers from the greatest reduction in CR.
When eb is set to 1e-3, the LSB and StegaZ methods retain 6.54% and 85.52% of the
original CR, respectively. The reason is CLOUDf48 highly compressible. Thus, the
prediction coefficient compressibility has a large influence on the overall CR. There-
fore, datasets whose CR is overly influenced by the coefficients are not amenable for
our approach. However, our method is most applicable to datasets with very high
CRs, such as CLOUDf48, when the eb is set to a more stringent range. For exam-
ple, when the eb is 1e-6, the StegaZ approach retains 99.2% of the original CR. For
datasets other than CLOUDf48, the StegaZ steganography approach can preserve
more than 99.6% of the original CR, whereas LSB can only retain 97.1% on average.
StegaZ always performs better than LSB since StegaZ eliminates the possibility of
creating too many new and unique codewords.

CLOUDf48Wf48 Nyx einspline T density
Dataset

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
Co

m
pr

es
sio

n
Ra

tio

CR comparison when eb=1e-3
Original
LSB

StegaZ

CLOUDf48Wf48 Nyx einspline T density
Dataset

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
Co

m
pr

es
sio

n
Ra

tio

CR comparison when eb=1e-4
Original
LSB

StegaZ

CLOUDf48Wf48 Nyx einspline T density
Dataset

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
Co

m
pr

es
sio

n
Ra

tio

CR comparison when eb=1e-5
Original
LSB

StegaZ

CLOUDf48Wf48 Nyx einspline T density
Dataset

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
Co

m
pr

es
sio

n
Ra

tio

CR comparison when eb=1e-6
Original
LSB

StegaZ

Figure 2: CR comparison with different eb

4.3 Peak signal-to-noise ratio (PSNR)

The output image is somewhat different from the original image after lossy compres-
sion. To ensure that the image quality of the decompressed dataset is maintained after
steganography is engaged, we compare the PSNR values of the decompressed dataset
images with and without steganographic methods. We observe that the LSB method
results in a higher PSNR than the original, with an average increase of about 0.102%
(See Figure 3). StegaZ, however, guarantees 100% of the original PSNR, indicating
that this steganography scheme has no effect whatsoever on the image quality of the
decompressed dataset. This is because SZ must verify and recalculate the correct
bin number every time the least significant bit changes. This procedure causes some
parameters that were previously predictable to become unpredictable. Unpredictable
parameters are saved individually and precisely, which allows the decompressed data
value to be more accurate and produce better images.

4.4 Compression Bandwidth (BW)

448

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on September 19,2024 at 02:47:29 UTC from IEEE Xplore. Restrictions apply.

0.001 0.0001 1e-05 1e-06
error bound

1.000

1.001

1.002

1.003

1.004

1.005

1.006

1.007

PS
NR

 C
ha

ng
e(

%
)

PSNR Change after applying LSB
CLOUDf48
Wf48
Nyx

einspline
T
density

Figure 3: PSNR change after LSB

BW refers to the amount of data transferred
per unit of time. One of the goals of HPC
systems is to gain high BW so as to transfer
more data in a given amount of time. In this
section, CLOUDf48, Nyx, and density are
selected as representative datasets for pre-
senting the results. CLOUDf48 exhibits a
dataset with high compressibility and its CR
varies greatly with the change of eb. Nyx
represents a single-precision floating-point
dataset that is hard to compress. And den-
sity is the only dataset with double-precision data points.

1e-06 1e-05 0.0001 0.001
Error Bound

60
61
62
63
64
65
66
67

Ba
nd

wi
dt

h(
M

B/
S)

Compression BW for CLOUDf48
Original SZ
LSB
StegaZ

1e-06 1e-05 0.0001 0.001
Error Bound

27.5
30.0
32.5
35.0
37.5
40.0
42.5
45.0

Ba
nd

wi
dt

h(
M

B/
S)

Compression BW for Nyx
Original SZ
LSB
StegaZ

1e-06 1e-05 0.0001 0.001
Error Bound

102

104

106

108

110

112

Ba
nd

wi
dt

h(
M

B/
S)

Compression BW for density
Original SZ
LSB
StegaZ

1e-06 1e-05 0.0001 0.001
Error Bound

125

130

135

140

145

150

Ba
nd

wi
dt

h(
M

B/
S)

Decompression BW for CLOUDf48
Original SZ
LSB
StegaZ

1e-06 1e-05 0.0001 0.001
Error Bound

25

30

35

40

45

50

Ba
nd

wi
dt

h(
M

B/
S)

Decompression BW for Nyx

Original SZ
LSB
StegaZ

1e-06 1e-05 0.0001 0.001
Error Bound

180

190

200

210

220

230
Ba

nd
wi

dt
h(

M
B/

S)
Decompression BW for density

Original SZ
LSB
StegaZ

Figure 4: Bandwidth for different datasets

Overall, StegaZ can obtain very similar or even higher BW than the original SZ,
with an overall fluctuation range of -0.2%–1.6%. This indicates the addition of the
steganographic method does not greatly burden the data processing speed. This is
due to both the fast bitwise operation and the fact that the StegaZ algorithm only
produces a value with the opposite sign of the original quantization index instead of
a completely new one. Therefore, it will not substantially affect the time required
for subsequent compression sessions. The BW of a highly repetitive dataset suffers
more, such as CLOUDf48 when eb is 1e-3. At this point, the overall compression
BW is dependent on the efficiency of coefficient processing. The way StegaZ handles
the parameters still generates a small portion of new codewords, which slows down
the overall compression process. However, datasets with high CRs are not an ideal
steganographic mask and should be avoided as much as possible. LSB has a nega-
tive impact on BW. In particular, there is a significant BW pull-down problem when
compressing CLOUDf48 and density. The LSB algorithm changes the last bit of the
quantization index indiscriminately, resulting in two possible scenarios: 1) The new

449

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on September 19,2024 at 02:47:29 UTC from IEEE Xplore. Restrictions apply.

index is still within the predictable range, and a new codeword is created after Huff-
man encoding. 2) The altered index is unpredictable and the coefficient value needs
to be saved accurately. Both of these cases imply that it takes longer to compress the
dataset. The most undesirable result appears when compressing density(eb=1e-3),
the BW decreases by 2.5% compared to the original.

4.5 Security analysis

Table 4: Coefficients entropy comparison
CLOUDf48 Wf48 Nyx einspline T density

Before 0.7189 11.3740 15.1833 10.7786 15.0017 0.7777
After 1.7161 12.0540 15.7015 11.3837 15.6522 1.7494

From a security perspective, the high
randomness of the compressed dataset
makes it difficult to directly distinguish
whether it has been modified using steganography methods. The security of LSB
depends entirely on the vigilance of intermediate entities. But StegaZ introduces an
additional step of using the password to generate a hash value and perform opera-
tions on random bits. This step ensures only the recipient who knows the key can
extract the secret data. We utilize a one-way hash algorithm SHA-256 as the hash
function. Its security has been widely certified by various sources [14]. SHA-256 has
a collision threshold value of 2128. It takes millions of years to find a collision using
brute-force attacks. Existing attacks have not yet been able to find a full collision for
SHA-256. Besides, the addition of salt helps to randomize the hash value. Table 4
shows the entropy of the coefficients with and without StegaZ. The entropy of the
coefficients increases prominently after StegaZ. A higher entropy indicates a greater
level of randomness and a lower amount of carried information. This helps to better
resist attacks such as lookup tables and rainbow tables [14].

4.6 Select the appropriate dataset

Based on the above experimental results, selecting the appropriate dataset is crucial
for achieving fast and inconspicuous steganography. For instance, in the case of
CLOUDf48, the data itself exhibits high redundancy and can be highly compressed
when the eb is loose. Thus, any variation in the parameters causes large fluctuations
in the overall compression results. It is advisable to avoid selecting datasets with
excessively high CRs for steganography. However, if no other datasets are available,
the user can attempt to tighten the eb. For example, the compression results of
CLOUDf48 become closer to the original as the eb shrinks. Sacrificing some processing
time by narrowing the eb is justifiable when considering the secrecy of the confidential
data. Users can assess their own requirements and make trade-offs accordingly.

5 Conclusion

HPC systems are increasingly used in various fields for their exceptional data pro-
cessing capability. Apart from big data analysis and simulations, HPC systems are
also utilized for handling sensitive data. While cryptography is an excellent method
of protection, the obvious encryption format is vulnerable to intruders. Sometimes it
is preferable to hide sensitive confidential information. Compressed datasets are well-
suited as carriers for hiding secret data in HPC systems. We propose a light-weight
steganographic scheme based on HPC lossy compressor SZ which maintains the orig-
inal compression results for most datasets. Only informed users with the password
can extract the hidden content, while unaware users can use the compressor as usual.

450

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on September 19,2024 at 02:47:29 UTC from IEEE Xplore. Restrictions apply.

Acknowledgments

This paper is supported by the U.S. NSF under Grants SHF-1910197/1943114.

References

[1] S. Habib, V. Morozov, N. Frontiere, H. Finkel, A. Pope, and K. Heitmann, “Hacc:
Extreme scaling and performance across diverse architectures,” in Proceedings of In-
ternational Conference on HPC, Networking, Storage and Analysis, 2013, pp. 1–10.

[2] G. Marcus, Y. Ding, P. Emma, Z. Huang, J. Qiang, T. Raubenheimer, M. Venturini,
and L. Wang, “High fidelity start-to-end numerical particle simulations and perfor-
mance studies for lcls-ii,” in Proceedings, 37th International FEL Conference, 2015.

[3] P. Lu, M. Lai, and J. Chang, “A survey of high-performance interconnection networks
in high-performance computer systems,” Electronics, vol. 11, no. 9, 2022.

[4] S. W. Son, Z. Chen, W. Hendrix, A. Agrawal, W. Liao, and A. Choudhary, “Data
compression for the exascale computing era-survey,” Supercomputing frontiers and in-
novations, vol. 1, no. 2, pp. 76–88, 2014.

[5] X. Liang, K. Zhao, S. Di, S. Li, R. Underwood, A. M. Gok, J. Tian, J. Deng, J. C.
Calhoun, D. Tao et al., “Sz3: A modular framework for composing prediction-based
error-bounded lossy compressors,” IEEE Transactions on Big Data, 2022.

[6] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE transactions on
visualization and computer graphics, vol. 20, no. 12, pp. 2674–2683, 2014.

[7] G. Pellegrino, D. Balzarotti, S. Winter, and N. Suri, “In the compression hornet’s nest:
A security study of data compression in network services,” in 24th {USENIX} Security
Symposium, 2015, pp. 801–816.

[8] D. Fulp, A. Poulos, R. Underwood, and J. C. Calhoun, “Arc: automated approach to
resiliency for lossy compressed data via error correcting codes,” in Proceedings of 30th
International Symposium on HPDC, 2021, pp. 57–68.

[9] R. Shan and J. C. Calhoun, “Exploring data corruption inside sz,” in 2022 IEEE
International Conference on Big Data. IEEE, 2022, pp. 3172–3178.

[10] R. Shan, S. Di, J. C. Calhoun, and F. Cappello, “Exploring light-weight cryptography
for efficient and secure lossy data compression,” in 2022 IEEE International Conference
on Cluster Computing (CLUSTER). IEEE, 2022, pp. 23–34.

[11] R. Underwood, J. Bessac, D. Krasowska, J. C. Calhoun, S. Di, and F. Cappello,
“Black-Box Statistical Prediction of Lossy Compression Ratios for Scientific Data,”
ARXIV, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2305.08801

[12] S. Peisert, “Security in high-performance computing environments,” Communications
of the ACM, vol. 60, no. 9, pp. 72–80, 2017.

[13] Y. Zhang, X. Luo, J. Wang, Y. Guo, and F. Liu, “Image robust adaptive steganography
adapted to lossy channels in open social networks,” Information Sciences, vol. 564, pp.
306–326, 2021.

[14] H. Gilbert and H. Handschuh, “Security analysis of sha-256 and sisters,” in Selected
Areas in Cryptography: 10th Annual International Workshop, 2004, pp. 175–193.

[15] K. Zhao, S. Di, X. Lian, S. Li, D. Tao, J. Bessac, Z. Chen, and F. Cappello, “Sdr-
bench:https://sdrbench.github.io.”

[16] F. Cappello, S. Di, S. Li, X. Liang, A. M. Gok, D. Tao, C. H. Yoon, X.-C. Wu,
Y. Alexeev, and F. T. Chong, “Use cases of lossy compression for floating-point data
in scientific data sets,” The International Journal of High Performance Computing
Applications, vol. 33, no. 6, pp. 1201–1220, 2019.

451

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on September 19,2024 at 02:47:29 UTC from IEEE Xplore. Restrictions apply.

