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ABSTRACT

Optical Coherence Tomography (OCT) is a fast and non-destructive

technology for bacterial bio�lm imaging. However, OCT generates

approximately 100 GB per �ow cell, which complicates storage

and data sharing. Data reduction reduces data complications by

reducing overhead and the amount of data transferred. This work

leverages the similarities between layers of OCT images to mini-

mize data in order to improve compression. This paper evaluates 5

lossless and 2 lossy state-of-the-art compressors as well as 2 pre-

processing techniques to reduce OCT data. Reduction techniques

are evaluated to determine which compressor has the most sig-

ni�cant compression ratio while maintaining a strong bandwidth

and minimal image distortion. Results show SZ with frame before

pre-processing is able to achieve the highest CR of 204.6× on its

higher error bounds. The maximum compression bandwidth SZ on

higher error bounds is ∼ 41"�/B , for decompression bandwidth, it

is able to outperform ZFP achieving ∼ 67"�/B .
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1 INTRODUCTION

Optical coherence tomography (OCT) is a fast and non-destructive

imaging technology that captures 3D morphology of the sam-

ples [15]. This method allows generated bio�lm to be examined

while not requiring any staining or destruction of microorganisms.
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OCT provides high-resolution depth-resolved images in the meso-

scope to macroscopic ranges. This is useful for biological and non-

biological contactless non-destructive testing [23]. High throughput

OCT measurements, which are generated in a data stream, reaches

up to one trillion bits per second [19]. Other methods require cut-

ting and staining the sample to put under a magnifying glass to

see. Electron microscopes analyze samples on a 2D plane, however,

these lack depth information. OCT solves these obstacles, by view-

ing the data from refracting light o� the surface. A consequence of

this method is OCT generates large volumes of data.

Raw data storage accrues a high cost depending on the data

center utilized and the need for high-performance servers to an-

alyze data. To solve this problem, data reduction is a technique

which is utilized to reduce the size of data in order to lower the

footprint of required storage and improve data transmission. Data

compression is an e�ective form of data reduction by helping to

solve issues related to I/O bottlenecks and limited storage space on

HPC systems [22]. There are two types of data compression, loss-

less compression and lossy compression. For lossless compression,

the data before and after compression is byte for byte precisely the

same. The data stored using lossless has less of a storage footprint

than the original data. The disadvantage of lossless compression is

the overall compressibility of �oating point data. Lossy compression

is able to achieve a much higher compression ratio when compared

to lossless, but this comes at the expense of data distortion. The

level of distortion is set by an error bound such as SZ [17, 24] and

ZFP [18].

Standard compressors perform a generic algorithm from o�-

the-shelf compressors that do not leverage the 3D nature of OCT

data. This leveraging of images allows improvement in the level of

compression. Data reduction is needed for long-term storage and

for data transfer to clusters for analysis [21]. For example, storage

costs approximately $0.022 per GB. Reducing overall footprints of

the data reduces overhead costs of storing information.

This paper uses OCT bio�lm data to determine which compres-

sor and pre-processing method is most e�ective in compressing the

data in a timely and accurate manner. Evaluating di�erent meth-

ods of data reduction, we analyze lossless and lossy methods of

data compression on OCT bio�lm data. This paper contributes the

following

• Comparative analysis of 5 lossless and 2 lossy state-of-the-art

compressors to reduce bio�lm OCT data.

• Lossless methods, zstd provides the best compression ratio

4.5× and lz4 has the best compression bandwidth 73"�/B .

• In lossy methods, SZ gives the best compression ratio 204.6×

, ZFP provides the overall highest compression 40"�/B and

48"�/B decompression bandwidth.
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Figure 1: OCT image structure

• Developing a data pre-processing pass that leverages spatial

similarity in OCT data to improve the compression ratio by

a maximum of 33.98% on the higher error bounds of SZ.

2 BACKGROUND

2.1 Dataset

The OCT data we use is generated by a Thorlabs Ganymede com-

mercial OCT system [1]. An OCT 3D image consists of a sequence

of 2D images, each of which represents one slice that contains a

large volume of information about the Bio�lm [8]. An example is

illustrated in Figure 1. The data generated from the system is ap-

proximately 100�� per bio�lm sample which is stored in a �ow cell

and is broken down into 12 volumes of 8�� each. The combined

raw 3D image �le format consists of a 12-bit depth and an overall

volume of  × � × / . This was created with 2048 representing sam-

ples per A-scan, 1000 A-scans per B-scan, and 250 B-scans shown in

Figure 1. Data from thirteen di�erent bio�lm experiments are tested

on the compressors and the resulting metrics are averaged. The

images were taken on bio�lm grown on PVC coupon on 24-well

plate and transferred to fresh media every 24 hours.

Bio�lms are a growth that naturally occurs by microorganisms,

plants, and algae [10]. Microorganisms are ubiquitous in marine

environments, and the formation of bio�lms is referred to as mi-

crofouling [11]. Naturally forming bio�lms develop on submerged

surfaces, which create a massive drag penalty on ships, causing

lower energy e�ciency on crafts [10]. These microorganisms are

found within sediment formed on ships over time [7]. The over-

growth of organisms on a ship’s hull and bacteria causes increased

propulsion fuel use and frequency of refueling, which decreases

the ship’s range and speed [13]. Current strategies to prevent this

drag penalty from occurring include a biocidal coating which raises

environmental concerns and fouling release coating which requires

a sustained speed of (10-15kn) to be e�ective. Eco-coating addresses

this issue with bene�cial bio�lms. Eco-coating solutions are being

developed utilizing natural marine microbes to form smooth, stable

bio�lms to reduce drag.

2.2 Lossless Compressors

We evaluate four lossless compressors in this paper: BLOSCLZ [2],

Zstandard [4], LZ4 [3], and ZLIB [5]. These lossless compressors are

loaded in through LibPressio and implemented in BLOSC. BLOSC [2]

is a compressor optimized for binary data. BLOSC is ameta-compressor,

so it is able to use di�erent compressors and �lters. BLOSC is de-

signed to transmit data to the processor cache at a faster rate com-

pared to standard non-compressed direct memory fetch (memcpy)

OS calls. It uses a blocking technique to reduce activity on the

memory bus, which is accomplished by dividing the datasets into

separate blocks that are small enough to �t in caches on modern

processors.

The following lossless compressors are utilized in this study

through BLOSC. BLOSC handles di�erent compressors to be able

to leverage its blocking technique and supports multithreaded exe-

cutions.

(1) BLOSCLZ: BLOSCLZ [2] is a compressor heavily based on

FastLZ [14]. FastLZ is an implementation of the Lempel-ZiV

77 (LZ77) algorithm of lossless data compression [28]. This

algorithm is able to achieve compression by encoding future

segments of the data by maximum length copying from a

bu�er that contains a past output. The code word consists

of the bu�er address.

(2) Zstandard (ZSTD): ZSTD [4] is a lossless compression algo-

rithm that compresses data made up of frames. ZSTD is a

combination of dictionary matching LZ77 [28] with a large

search and entropy-coding stage. It uses Hu�man coding [16]

and �nite-state entropy. In this scheme, with the set load of

bu�er and information contained in the code words, data is

reconstructed by decoding starting at the end of the process.

(3) LZ4: LZ4 [3] has two sets of API’s LZ4 and LZ4HC, where the

HC is the high compression ratio [27]. The lz4 compression

algorithm breaks data down into a series of groups. Each of

these groups begin with a one byte token that is reduced to

two 4-bit �elds. The �rst �eld is the amount of bytes to be

copied to the output. The second �eld is the number of bytes

to copy from the decoded output bu�er. The compression

is completed in blocks of streams, with high CR values oc-

curring when more time is spent �nding the best dictionary

matches.

(4) ZLIB: ZLIB [5] compressionmethod uses a variant of LZ77 [28]

called de�ation. De�ation emits compressed data as a se-

quence of di�erent blocks. The de�ation compressor has

three modes: 1) no compression – this is done when another

compression has already been performed on the data and

the de�ation compressor stores the data, 2) Compression

with �rst LZ77 and then with Hu�man coding. The trees

that are created are de�ned by the de�ation, so extra space

allocation is not required, and 3) Compression with LZ77,

then Hu�man codes with the trees the compressor created

and stores along with the data [5].

2.3 Lossy Compressors

We evaluate the two leading lossy compressors:

(1) SZ: SZ [6] is a lossy compressor whose HPC data compres-

sion method that is composed of four overall steps. 1) SZ

divides the dataset into �xed-sized blocks and then based on

the results it selects the most appropriate prediction function
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Figure 2: Di�erence Subtraction for OCT Bscan frames/slices

to predict future values in each block. 2) It performs a linear-

scale quantization, with a user-speci�ed error bound SZ,

which quanti�es the di�erence between the predicted value

and the original data point. This is the quantization index.

3) Encodes the quantization index with a variable–length

encoding scheme via Hu�man encoding. 4) Lossless com-

pression, improves the compression ratio (CR) by running

over the current compressed bu�er [6, 17, 22, 24].

(2) ZFP: ZFP [18] is a lossy compressor that uses a block scheme

that takes 3D double-precision data and divides the array into

small �xed-sized blocks. These blocks have the dimensions

of 4 × 4 × 4 and stored using a user-speci�ed amount of bits.

Their method compresses these blocks in 5 steps. 1) It aligns

the values in the block to a common exponent. 2) Converts

the �oating-point values to a �xed-point representation. 3)

Applies an orthogonal block transform to decorrelate the

values. 4) Orders the transform coe�cients by their expected

magnitude. 5) Encodes the resulting coe�cients, one bit

plane at a time [18]. ZFP has three modes: �xed rate (set

number of bits), �xed accuracy (variable number of bits with

�xed number of bit planes), and �xed precision (within set

absolute error tolerance) [12].

3 ANALYSIS OF BIOFILM COMPRESSION

In this work, the compression and OCT bio�lm preprocessing tech-

niques are evaluated on how well the data is reduced and their

bandwidth, which is the speed of compressing and decompressing

the data. B-scans per volume (slices) are de�ned as frames for the

preprocessing techniques.

For lossy compression, SZ and ZFP both leverage �oating point

data to improve compression. SZ maps the �oating-point prediction

error to an integer in quantization, and ZFP puts data in a �xed

point representation and utilizes transforms to decorrelate the data.

To be able to leverage these features, OCT data is normalized from

0-255 uint8 to 0-1 float32 for the compression and back to 0-255

uint8 after decompression. SZ and ZFP both leverage �oating point

data to improve compression. The compression ratio (CR) values

are evaluated with respect to the original data size before the data

factor is increased in the conversion to float32.

3.1 Frame 0 Di�erence

Leveraging the 3D nature of OCT images is tested with multiple

pre-processing steps to help transform the data closer to zero to

improve the CR. First, the di�erence is taken between the very �rst

(a) OCT: Frame 0

(b) OCT: Frame 49

Figure 3: OCT Bscan Frame Similarity

frame of the OCT image and every subsequent image frame. This

attempt looks at the initial frame and subsequent frames to �nd

similar data. An example of two frames from the same experiment

is found in Figure 3.

Figure 2 depicts how the di�erence is performed. This is done

to leverage the similarity in background noise between frames

and turn the data to zeros. Both lossy and lossless compression

algorithms further compress data that has more repeating zero’s

stored together. After this is performed, the di� values are passed

to the compressors. The formula for this operation is as follows:

38 5 5 (8, 9, :) = (�A0<4 (8, 9, :)) − (�A0<4 (0, 9, :)) (1)

In this operation, every frame following the �rst frame has its

data di�ed with the �rst frame. When decompressing the data

this causes a post-processing step where the resulting di�ed data

needs to be converted back to its original form. This is done by

taking the unmodi�ed �rst frame and adding it to all the subsequent

decompressed data. This method is referred as 0di� in graphs/tables.

3.2 Frame Before Di�erence

With the scanning nature of OCT data, similarities between nearby

frames is taken into e�ect. Looking at the similar background data

from each of the frames, this redundancy in the 3D nature is lever-

aged to improve CR. This attempt looks at frames next to each other

to �nd the most similar data found. An example of two frames from

the same experiment is shown in Figure 3. The di�erence of each

frame is taken from the frame before it. This is the same process as

Frame 0 di� when compressing, so the compressors are given a 3D

OCT image of a rolling di� of each frame. The formula for this is

as follows.

38 5 5 (8, 9, :) = (�A0<4 (8, 9, :)) − (�A0<4 (8 − 1, 9, :)) (2)

Again, for this method, the �rst frame of the image is not di�ed

due to being the point of reference in the decompression. Then the

decompressed frame is used for the next frame’s decompression.

This method is referred as Ldi� in graphs/tables.
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3.3 Evaluation Metrics

These metrics are used to evaluate compression algorithms. Not

all metrics are valid for every compressor, for example, lossless

methods have perfect accuracy, so methods that measure accuracy

are not needed. There is also a speci�c scenario where the con�gu-

ration of lossy methods may preserve all the data, acting similar to

a lossless compressor.

To determine which compressor provides the best level of data

reduction, compression ratio is used. Compression ratio CR is the

e�ciency of compression algorithms in the form of comparing

original data size to compressed size.

�><?A4BB8>='0C8> =

*=2><?A4BB43(8I4

�><?A4BB43(8I4
(3)

CR shows the e�ciency of the relative reduction in size of the data.

The higher the CR value, the better the relative reduction of data

achieved.

The time required to reduce a dataset is important and very

dependent on the con�guration setup on the compressors. On av-

erage, lossless compressors take more time than lossy compressors

and as their level of compression setting increases so does the time

it takes to reduce the dataset. That being said, lossy methods on

average run much faster than lossless compressors, but that comes

at the cost of image quality. Compression bandwidth cBW is the

total time required for the data to be fully reduced. This includes

pre-processing and compression time. Decompression time is the

full time it takes to decompress and post-process the data. Timing

does not include loading from the disk due to us looking at real

time applications.

�><?A4BB8>=�0=3F83Cℎ =

*=2><?A4BB43(8I4

C2><?A4BB8>=
(4)

Decompression bandwidth is the time it takes to decompress the

data. This includes time to decompress the compressed data and

post-processing steps to bring the data back to its correct form.

�42><?A4BB8>=�0=3F83Cℎ =

*=2><?A4BB43(8I4

C�42><?A4BB8>=
(5)

Lossy compression is capable of generating much higher CR

than lossless methods, To be able to achieve much higher CR it

comes at the cost of image quality by introducing image distortion.

The e�ectiveness of lossy compression is evaluated by its accuracy.

Error-bound methods like ZFP and SZ provide a precise control on

the error bounding value to examine the error. In this paper, we use

SSIM to evaluate the performance of lossy methods. SSIM is a metric

for lossy compression that evaluates the structural degradation of

image quality during compression [26].

((�" (G,~) =
(2`G `~ +�1) (2fG~ +�2)

(`2G + `2~ +�1) (f
2
G + f2~ +�2)

(6)

`G = pixel sample mean of G , `~ = pixel sample mean of ~, f2G =

variance of G , f2~ = variance of ~, fG~ = covariance of x and y,

21 = (:1!)
2, 22 = (:2!)

2 = variables to stabilize the division, ! is

the dynamic range of pixel values, :1 = 0.01 and :2 = 0.03 are

default settings.

SSIM is used over other accuracy metrics such as peak signal-

to-noise ratio (PSNR) because the OCT images we are looking at

have substantial background noise, which would skew the PSNR

value. Important data in the image includes bio�lm structure that

is analyzed by OCT. Since the structure of the image is important

to keep intact, SSIM is implemented.

4 RESULTS

4.1 Testing Environment

Tests are performed on Clemson University’s Palmetto Cluster. The

node requested for the experiment contains 2× 20-core Intel(R)

Xeon(R) Gold 6258R CPUs with a clock frequency of 2.70GHz and

384 GB of RAM. Software for the compressors and environment is

de�ned in the following Table.

Software Version

GCC 12.1.0

SZ 2.1.12

ZFP 1.0.0

ZSTD 1.5.5

LZ4 1.9.4

ZLIB 1.2.13

BLOSC 1.21.2

LibPressio 1.21.2

The dataset is stored on the Palmetto Cluster’s scratch directory,

which is an Indigo �le system with SSD disk type and an In�niband

(Mellanox Technologies MT28908 Family) and Ethernet network

connection. Tests are run on 13 di�erent bio�lm experiments and

results are averaged. Thus, in total, each data point is the average

of these data �les. Compression algorithms are evaluated with

LibPressio [25], which is a compression library that provides a

common interface to various lossless and lossy compressors. Each

experiment is stored as a series of ti� �les, which are the frames of

the OCT image. These �les are loaded into memory and combined

into a single OCT image when the calculations are performed.

4.2 Compressor Con�guration

Con�gurations for lossless compressors are handled by setting the

compression level’s (1–9) and testing each mode over the data. SZ

and ZFP both allow the user to bound the level of distortion in

the data in an error bounding mode. When reducing, the error

bounding value precisely controls the distortion level of the data.

Con�gurations for lossy compressors are tested over a series of

error bounds (1E-7 – 1E-1). For SZ and ZFP, as the error bound

con�guration increases the CR, bandwidth, and SSIM are reduced.

4.3 Lossless Compression

To determine which lossless method gives the best reduction level,

each of the compressors are run over the entire dataset and the av-

erage compression ratios are presented. From lossless compressors,

ZSTD gives the best CR ∼ 4.5× as seen in Figure 4

Blosclz has the highest average compression bandwidth,∼ 78"�/B

which is closely followed by LZ4, as shown in Figure 5a. As the

compression level for the lossless compressors increases, the com-

pression bandwidth decreases. For decompression, LZ4/LZ4hc per-

forms slightly better comparatively with decompression bandwidth

∼ 27"�/B and is shown in Figure 5. The decompression bandwidth
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Figure 4: Lossless Compression Level on Compression Ratio

is still a�ected by the increasing compression level, but much less

when compared to the compression bandwidth.

The lossless compressors did not bene�t from pre-processing,

the unaltered base performance obtains the highest CR as seen in

Figure 6. The base implementation provides the highest CR values

on each of the error bounds.

4.4 Lossy Compression

The lossy compressors are evaluated over a set error bound. The

error bound is used to set the accuracy of the data to be able to

analyze the e�ect it has on compression Ratio, Compression Band-

width, and Decompression Bandwidth. The absolute error bound is

varied between 1E-7 to 1E-1. As the error bound for the compres-

sors increases, so does the compression ratio. As shown in Figure

7, average compression ratio achieved on the highest error bound

by SZ is 204.6× on 1E-1 and by ZFP is 4.1×. When comparing the

two lossy compressors there are di�erent trade-o�s between them.

For error bounds less than 1E-4 the blosc lossless compressors are

able to outperform the lossy compressors CR.

The frame before pre-processing is able to achieve up to an

33.98% CR increase on lossy SZ at error bound 1E-1. On error

bounds lower than 1E-2 the base method is able to outperform or

stay consistent with the pre-processingmethods. As the error bound

increase, the frame before pre-processing is able to outperform

the base methods. For lossless methods, pre-processing caused on

average a 12.82% decrease in CR, as seen in Figure 8.

Figure 9 shows the reduction bandwidth for lossy methods. For

each of the time steps, bandwidth stays mostly consistent. Band-

width does slightly increase as error bounds increase. When com-

paring the two lossy compressors, SZ is behind ZFP for compression

and decompression bandwidths. ZFP on average obtains a higher

compression bandwidth averaging ∼ 40"�/B compared to SZ aver-

aging to ∼ 32"�/B on the highest error bound 1E-1.

As the error bound for SZ and ZFP increase, compression and

decompression bandwidths also increase. For error bounds 1E-2

and lower, ZFP again outperforms SZ in compression. On that error
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(a) Lossless Compression Level on Compression Bandwidth
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(b) Lossless Compression Level on Decompression Bandwidth

Figure 5: Lossless Bandwidth

bound and higher SZ is able to achieve a higher decompression

bandwidth as seen in Figure 9b.

4.5 Image Distortion

Lossless compressors perfectly preserve the data, while lossy com-

pressors loses information to improve CR. Lossy compression achieves

a higher CR at the cost of image distortion. Figure 10 shows the

SSIM over various error bounds. SZ begins degrading at 1E-2 while

ZFP remains consistent. SZ achieves a higher CR when compared

to ZFP, but its SSIM degrades more than ZFP when error bounds

increase. This trade o� between CR, bandwidth against accuracy is

the limiting factor for lossy compressors. Data pre-processing also

has an e�ect on accuracy of the data when it is compressed with a

lossy compressor. On the lower error bounds, SSIM stays relatively

consistent, but as the error increases, the minimized data begins to

drop o� in accuracy when compared to base unaltered data. The
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tered data)

1E-7 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1
Error Bound

100

101

102

Co
m

pr
es

sio
n 

Ra
tio

Lossy Compressors: Compression Ratio
compressor

sz
zfp

Figure 7: Lossy absolute error bound for di�erent compres-

sors

frame before di� on the highest error bound has ∼ 0.2 di�erence

compared to the 0 di� technique, which is slightly lower than the

base data.

5 RELATED WORK

High-Resolution Wavelet-Fractal Compressed Optical Coherence to-

mography images [8]

3D OCT images are compressed by proposing a 3D extension

of the wavelet-fractal coding algorithm. The authors use 3D frac-

tal approximation to encode 3D wavelet coe�cients to exploit the

inter and intra redundancy. Their encoding method includes 1)

1E-7 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1
Error Bound

100
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Co
m

pr
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sio
n 
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tio

Lossy Compressors: Compression Ratio
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Figure 8: Lossy absolute error bound for di�erent pre-

processing. (Note: Ldi� refers to the frame before di�erence,

0di� refers to the frame 0 di�erence and base is unaltered

data)

calculating the N-level Haar wavelet transform 2) partitioning the

components into various block domains 3) �nding the best match-

ing domain block 4) saving the map. When decoding, the following

procedures are implemented: 1) calculate the N-level Haar wavelet

transform 2) for each N-level, calculate the components for each of

the coded information 3) calculate the N-level inverse transform to

reconstruct at that level 4) repeat until the entire image is recon-

structed. In their wavelet-fractal method, the authors are able to

achieve an average CR of 21.49 with a PSNR ranging between 25

and 27. They use a di�erent method for evaluating the OCT data

and use PSRN instead of SSIM to evaluate the lossy compression.

A Digital Method for Lossless and Lossy Compression of High

De�nition Optical Coherence Tomography Data [20]

This work studies OCT data and its extensive storage cost and

need for compression tools. Examining both lossy and lossless

compressors, the tools analyzing are zip, gzip, bzip2, lzma, 7-zip.

The best resulting compression ratio achieved is 2.78 CR on Bzip2.

Utilizing background removing, re-sampling, and BZip2 the authors

are able to achieve a CR value of 5.47.

This work is similar to ours, but we implement more state-of-

the-art compressors for the lossless and lossy compressors. They

also implement a di�erent method for preprocessing by performing

a background subtraction algorithm instead of slice/frame based.

3-D Adaptive Sparsity Based Image Compression with Applications

to Optical Coherence Tomography [9]

Improving the performance of sparse representation for com-

pressing of OCT images is examined. The authors identify that

nearby slices of the OCT image are similar and apply slice-based

compression methods. Their 3D framework for OCT compression

utilizes high correlation between nearby slices. The method is bro-

ken down into three separate parts, 1) 3D adaptive sparse represen-

tation 2) 3D adaptive encoding 3) decoding and reconstruction.
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(b) Lossy absolute error bound for Decompression Bandwidth

Figure 9: Lossy Bandwidth

Metrics used for evaluation on the performance of the com-

pression are PSNR and FSIM. Experiments ran on 7 di�erent set

compression ratios ranging from 10 up to 40. A 2D and 3D version

of the algorithm is implemented and show PSNR/FSIM improve-

ments between their two versions and other standard compressors.

The authors conclude the 3D methods which leverage slices are

improvements over the 2D version. This is similar to our study in

levering the data structure but uses a di�erent metrics in accuracy

evaluation and have set CR values.

6 CONCLUSION

To e�ectively analyze bio�lm OCT images, data reduction is essen-

tial. These results show that although lossless methods are perfectly

preserved and reduce the data, they have much less achievable CR

compared to lossy methods. When looking at lossy methods at error

bounds above 1E-4, it is able to outperform lossless methods.
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Figure 10: Lossy Absolute Error Bound on SSIM

We also explored leveraging the 3D nature of the OCT by tak-

ing the di�erence between frames. Improvements in higher error

bounds show how volume data can be leveraged. Frame before dif-

ference was able to achieve the highest CR on higher error bounds

with SZ. ZSTD yields the best CR for lossless compressors, while SZ

is able to provide the best compression for lossy compressors. ZFP

is seen to have higher SSIM, compression bandwidth, and decom-

pression bandwidth when compared to SZ. Lossless compressors

trade compression time for smaller �le sizes, and lossy compressors

trade data distortion for smaller �le sizes. In conclusion, this study

shows that SZ with frame before di�erence pre-processing is the

best compressor for the bio�lm OCT dataset with higher CR’s and

bandwidths, and it also outperforms lossless methods.

SSIM is an important component for OCT evaluation to deter-

mine usability of lossy data in bio�lm analysis. The structural in-

tegrity of SSIM provides insight into �nding the bio�lms ability

to reduce ship drag penalty. Future studies should address SSIM

values that are needed for an accurate analysis of bio�lm OCT data.
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