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ABSTRACT

Optical Coherence Tomography (OCT) is a fast and non-destructive
technology for bacterial biofilm imaging. However, OCT generates
approximately 100 GB per flow cell, which complicates storage
and data sharing. Data reduction reduces data complications by
reducing overhead and the amount of data transferred. This work
leverages the similarities between layers of OCT images to mini-
mize data in order to improve compression. This paper evaluates 5
lossless and 2 lossy state-of-the-art compressors as well as 2 pre-
processing techniques to reduce OCT data. Reduction techniques
are evaluated to determine which compressor has the most sig-
nificant compression ratio while maintaining a strong bandwidth
and minimal image distortion. Results show SZ with frame before
pre-processing is able to achieve the highest CR of 204.6X on its
higher error bounds. The maximum compression bandwidth SZ on
higher error bounds is ~ 41MB/s, for decompression bandwidth, it
is able to outperform ZFP achieving ~ 67MB/s.
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1 INTRODUCTION

Optical coherence tomography (OCT) is a fast and non-destructive
imaging technology that captures 3D morphology of the sam-
ples [15]. This method allows generated biofilm to be examined
while not requiring any staining or destruction of microorganisms.
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OCT provides high-resolution depth-resolved images in the meso-
scope to macroscopic ranges. This is useful for biological and non-
biological contactless non-destructive testing [23]. High throughput
OCT measurements, which are generated in a data stream, reaches
up to one trillion bits per second [19]. Other methods require cut-
ting and staining the sample to put under a magnifying glass to
see. Electron microscopes analyze samples on a 2D plane, however,
these lack depth information. OCT solves these obstacles, by view-
ing the data from refracting light off the surface. A consequence of
this method is OCT generates large volumes of data.

Raw data storage accrues a high cost depending on the data
center utilized and the need for high-performance servers to an-
alyze data. To solve this problem, data reduction is a technique
which is utilized to reduce the size of data in order to lower the
footprint of required storage and improve data transmission. Data
compression is an effective form of data reduction by helping to
solve issues related to I/O bottlenecks and limited storage space on
HPC systems [22]. There are two types of data compression, loss-
less compression and lossy compression. For lossless compression,
the data before and after compression is byte for byte precisely the
same. The data stored using lossless has less of a storage footprint
than the original data. The disadvantage of lossless compression is
the overall compressibility of floating point data. Lossy compression
is able to achieve a much higher compression ratio when compared
to lossless, but this comes at the expense of data distortion. The
level of distortion is set by an error bound such as SZ [17, 24] and
ZFP [18].

Standard compressors perform a generic algorithm from off-
the-shelf compressors that do not leverage the 3D nature of OCT
data. This leveraging of images allows improvement in the level of
compression. Data reduction is needed for long-term storage and
for data transfer to clusters for analysis [21]. For example, storage
costs approximately $0.022 per GB. Reducing overall footprints of
the data reduces overhead costs of storing information.

This paper uses OCT biofilm data to determine which compres-
sor and pre-processing method is most effective in compressing the
data in a timely and accurate manner. Evaluating different meth-
ods of data reduction, we analyze lossless and lossy methods of
data compression on OCT biofilm data. This paper contributes the
following

o Comparative analysis of 5 lossless and 2 lossy state-of-the-art
compressors to reduce biofilm OCT data.

o Lossless methods, zstd provides the best compression ratio
4.5% and 1z4 has the best compression bandwidth 73MB/s.

o In lossy methods, SZ gives the best compression ratio 204.6x
, ZFP provides the overall highest compression 40MB/s and
48MB/s decompression bandwidth.
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Figure 1: OCT image structure

e Developing a data pre-processing pass that leverages spatial
similarity in OCT data to improve the compression ratio by
a maximum of 33.98% on the higher error bounds of SZ.

2 BACKGROUND

2.1 Dataset

The OCT data we use is generated by a Thorlabs Ganymede com-
mercial OCT system [1]. An OCT 3D image consists of a sequence
of 2D images, each of which represents one slice that contains a
large volume of information about the Biofilm [8]. An example is
illustrated in Figure 1. The data generated from the system is ap-
proximately 100GB per biofilm sample which is stored in a flow cell
and is broken down into 12 volumes of 8GB each. The combined
raw 3D image file format consists of a 12-bit depth and an overall
volume of K X J X Z. This was created with 2048 representing sam-
ples per A-scan, 1000 A-scans per B-scan, and 250 B-scans shown in
Figure 1. Data from thirteen different biofilm experiments are tested
on the compressors and the resulting metrics are averaged. The
images were taken on biofilm grown on PVC coupon on 24-well
plate and transferred to fresh media every 24 hours.

Biofilms are a growth that naturally occurs by microorganisms,
plants, and algae [10]. Microorganisms are ubiquitous in marine
environments, and the formation of biofilms is referred to as mi-
crofouling [11]. Naturally forming biofilms develop on submerged
surfaces, which create a massive drag penalty on ships, causing
lower energy efficiency on crafts [10]. These microorganisms are
found within sediment formed on ships over time [7]. The over-
growth of organisms on a ship’s hull and bacteria causes increased
propulsion fuel use and frequency of refueling, which decreases
the ship’s range and speed [13]. Current strategies to prevent this
drag penalty from occurring include a biocidal coating which raises
environmental concerns and fouling release coating which requires
a sustained speed of (10-15kn) to be effective. Eco-coating addresses
this issue with beneficial biofilms. Eco-coating solutions are being
developed utilizing natural marine microbes to form smooth, stable
biofilms to reduce drag.

2.2 Lossless Compressors

We evaluate four lossless compressors in this paper: BLOSCLZ [2],
Zstandard [4], LZ4 [3], and ZLIB [5]. These lossless compressors are
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loaded in through LibPressio and implemented in BLOSC. BLOSC [2]
is a compressor optimized for binary data. BLOSC is a meta-compressor,
so it is able to use different compressors and filters. BLOSC is de-
signed to transmit data to the processor cache at a faster rate com-
pared to standard non-compressed direct memory fetch (memcpy)
OS calls. It uses a blocking technique to reduce activity on the
memory bus, which is accomplished by dividing the datasets into
separate blocks that are small enough to fit in caches on modern
processors.

The following lossless compressors are utilized in this study
through BLOSC. BLOSC handles different compressors to be able
to leverage its blocking technique and supports multithreaded exe-
cutions.

(1) BLOSCLZ: BLOSCLZ [2] is a compressor heavily based on
FastLZ [14]. FastLZ is an implementation of the Lempel-ZiV
77 (LZ77) algorithm of lossless data compression [28]. This
algorithm is able to achieve compression by encoding future
segments of the data by maximum length copying from a
buffer that contains a past output. The code word consists
of the buffer address.

Zstandard (ZSTD): ZSTD [4] is a lossless compression algo-
rithm that compresses data made up of frames. ZSTD is a
combination of dictionary matching LZ77 [28] with a large
search and entropy-coding stage. It uses Huffman coding [16]
and finite-state entropy. In this scheme, with the set load of
buffer and information contained in the code words, data is
reconstructed by decoding starting at the end of the process.
LZ4:1.74 [3] has two sets of API’'s LZ4 and LZ4HC, where the
HC is the high compression ratio [27]. The 1z4 compression
algorithm breaks data down into a series of groups. Each of
these groups begin with a one byte token that is reduced to
two 4-bit fields. The first field is the amount of bytes to be
copied to the output. The second field is the number of bytes
to copy from the decoded output buffer. The compression
is completed in blocks of streams, with high CR values oc-
curring when more time is spent finding the best dictionary
matches.

ZLIB: ZLIB [5] compression method uses a variant of LZ77 [28]
called deflation. Deflation emits compressed data as a se-
quence of different blocks. The deflation compressor has
three modes: 1) no compression - this is done when another
compression has already been performed on the data and
the deflation compressor stores the data, 2) Compression
with first LZ77 and then with Huffman coding. The trees
that are created are defined by the deflation, so extra space
allocation is not required, and 3) Compression with LZ77,
then Huffman codes with the trees the compressor created
and stores along with the data [5].
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We evaluate the two leading lossy compressors:

Lossy Compressors

(1) SZ: SZ [6] is a lossy compressor whose HPC data compres-
sion method that is composed of four overall steps. 1) SZ
divides the dataset into fixed-sized blocks and then based on
the results it selects the most appropriate prediction function
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Figure 2: Difference Subtraction for OCT Bscan frames/slices

to predict future values in each block. 2) It performs a linear-
scale quantization, with a user-specified error bound SZ,
which quantifies the difference between the predicted value
and the original data point. This is the quantization index.
3) Encodes the quantization index with a variable-length
encoding scheme via Huffman encoding. 4) Lossless com-
pression, improves the compression ratio (CR) by running
over the current compressed buffer [6, 17, 22, 24].

ZFP: ZFP [18] is a lossy compressor that uses a block scheme
that takes 3D double-precision data and divides the array into
small fixed-sized blocks. These blocks have the dimensions
of 4 X 4 X 4 and stored using a user-specified amount of bits.
Their method compresses these blocks in 5 steps. 1) It aligns
the values in the block to a common exponent. 2) Converts
the floating-point values to a fixed-point representation. 3)
Applies an orthogonal block transform to decorrelate the
values. 4) Orders the transform coefficients by their expected
magnitude. 5) Encodes the resulting coefficients, one bit
plane at a time [18]. ZFP has three modes: fixed rate (set
number of bits), fixed accuracy (variable number of bits with
fixed number of bit planes), and fixed precision (within set
absolute error tolerance) [12].

@

~

3 ANALYSIS OF BIOFILM COMPRESSION

In this work, the compression and OCT biofilm preprocessing tech-
niques are evaluated on how well the data is reduced and their
bandwidth, which is the speed of compressing and decompressing
the data. B-scans per volume (slices) are defined as frames for the
preprocessing techniques.

For lossy compression, SZ and ZFP both leverage floating point
data to improve compression. SZ maps the floating-point prediction
error to an integer in quantization, and ZFP puts data in a fixed
point representation and utilizes transforms to decorrelate the data.
To be able to leverage these features, OCT data is normalized from
0-255 uint8 to 0-1 float32 for the compression and back to 0-255
uint8 after decompression. SZ and ZFP both leverage floating point
data to improve compression. The compression ratio (CR) values
are evaluated with respect to the original data size before the data
factor is increased in the conversion to float32.

3.1 Frame 0 Difference

Leveraging the 3D nature of OCT images is tested with multiple
pre-processing steps to help transform the data closer to zero to
improve the CR. First, the difference is taken between the very first

283

SC-W 2023, November 12-17, 2023, Denver, CO, USA

(a) OCT: Frame 0

(b) OCT: Frame 49

Figure 3: OCT Bscan Frame Similarity

frame of the OCT image and every subsequent image frame. This
attempt looks at the initial frame and subsequent frames to find
similar data. An example of two frames from the same experiment
is found in Figure 3.

Figure 2 depicts how the difference is performed. This is done
to leverage the similarity in background noise between frames
and turn the data to zeros. Both lossy and lossless compression
algorithms further compress data that has more repeating zero’s
stored together. After this is performed, the diff values are passed
to the compressors. The formula for this operation is as follows:

dif f(i, j, k) = (Frame(i, j, k)) — (Frame(0, j, k)) (1)

In this operation, every frame following the first frame has its
data diffed with the first frame. When decompressing the data
this causes a post-processing step where the resulting diffed data
needs to be converted back to its original form. This is done by
taking the unmodified first frame and adding it to all the subsequent
decompressed data. This method is referred as 0diff in graphs/tables.

3.2 Frame Before Difference

With the scanning nature of OCT data, similarities between nearby
frames is taken into effect. Looking at the similar background data
from each of the frames, this redundancy in the 3D nature is lever-
aged to improve CR. This attempt looks at frames next to each other
to find the most similar data found. An example of two frames from
the same experiment is shown in Figure 3. The difference of each
frame is taken from the frame before it. This is the same process as
Frame 0 diff when compressing, so the compressors are given a 3D
OCT image of a rolling diff of each frame. The formula for this is
as follows.

dif f(i, j, k) = (Frame(i, j, k)) — (Frame(i — 1, j, k)) (2)

Again, for this method, the first frame of the image is not diffed
due to being the point of reference in the decompression. Then the
decompressed frame is used for the next frame’s decompression.
This method is referred as Ldiff in graphs/tables.
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3.3 Evaluation Metrics

These metrics are used to evaluate compression algorithms. Not
all metrics are valid for every compressor, for example, lossless
methods have perfect accuracy, so methods that measure accuracy
are not needed. There is also a specific scenario where the configu-
ration of lossy methods may preserve all the data, acting similar to
a lossless compressor.

To determine which compressor provides the best level of data
reduction, compression ratio is used. Compression ratio CR is the
efficiency of compression algorithms in the form of comparing
original data size to compressed size.

UncompressedSize

®)

CompressionRatio =
P CompressedSize

CR shows the efficiency of the relative reduction in size of the data.
The higher the CR value, the better the relative reduction of data
achieved.

The time required to reduce a dataset is important and very
dependent on the configuration setup on the compressors. On av-
erage, lossless compressors take more time than lossy compressors
and as their level of compression setting increases so does the time
it takes to reduce the dataset. That being said, lossy methods on
average run much faster than lossless compressors, but that comes
at the cost of image quality. Compression bandwidth cBW is the
total time required for the data to be fully reduced. This includes
pre-processing and compression time. Decompression time is the
full time it takes to decompress and post-process the data. Timing
does not include loading from the disk due to us looking at real
time applications.

UncompressedSize

©

CompressionBandwidth =
compression
Decompression bandwidth is the time it takes to decompress the
data. This includes time to decompress the compressed data and
post-processing steps to bring the data back to its correct form.

UncompressedSize

®)

DecompressionBandwidth =
tDecompression
Lossy compression is capable of generating much higher CR
than lossless methods, To be able to achieve much higher CR it
comes at the cost of image quality by introducing image distortion.
The effectiveness of lossy compression is evaluated by its accuracy.
Error-bound methods like ZFP and SZ provide a precise control on
the error bounding value to examine the error. In this paper, we use
SSIM to evaluate the performance of lossy methods. SSIM is a metric
for lossy compression that evaluates the structural degradation of
image quality during compression [26].

(zllxﬂy + Cl)(zgxy +C)

SSIM(x,y) =
(13 + 1 + C1) (0% + 0% + C2)

(6)

px = pixel sample mean of x, yy = pixel sample mean of y, o2 =

variance of x, 0'5

c1 = (k1L)?, c3 = (kz2L)? = variables to stabilize the division, L is
the dynamic range of pixel values, k; = 0.01 and k; = 0.03 are
default settings.

SSIM is used over other accuracy metrics such as peak signal-
to-noise ratio (PSNR) because the OCT images we are looking at

= variance of y, oxy = covariance of x and y,
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have substantial background noise, which would skew the PSNR
value. Important data in the image includes biofilm structure that
is analyzed by OCT. Since the structure of the image is important
to keep intact, SSIM is implemented.

4 RESULTS

4.1 Testing Environment

Tests are performed on Clemson University’s Palmetto Cluster. The
node requested for the experiment contains 2Xx 20-core Intel(R)
Xeon(R) Gold 6258R CPUs with a clock frequency of 2.70GHz and
384 GB of RAM. Software for the compressors and environment is
defined in the following Table.

Software Version
GCC 12.1.0
SZ 2.1.12
ZFP 1.0.0
ZSTD 1.5.5
LZ4 1.9.4
ZLIB 1.2.13

BLOSC 1.21.2
LibPressio 1.21.2

The dataset is stored on the Palmetto Cluster’s scratch directory,
which is an Indigo file system with SSD disk type and an Infiniband
(Mellanox Technologies MT28908 Family) and Ethernet network
connection. Tests are run on 13 different biofilm experiments and
results are averaged. Thus, in total, each data point is the average
of these data files. Compression algorithms are evaluated with
LibPressio [25], which is a compression library that provides a
common interface to various lossless and lossy compressors. Each
experiment is stored as a series of tiff files, which are the frames of
the OCT image. These files are loaded into memory and combined
into a single OCT image when the calculations are performed.

4.2 Compressor Configuration

Configurations for lossless compressors are handled by setting the
compression level’s (1-9) and testing each mode over the data. SZ
and ZFP both allow the user to bound the level of distortion in
the data in an error bounding mode. When reducing, the error
bounding value precisely controls the distortion level of the data.
Configurations for lossy compressors are tested over a series of
error bounds (1E-7 — 1E-1). For SZ and ZFP, as the error bound
configuration increases the CR, bandwidth, and SSIM are reduced.

4.3 Lossless Compression

To determine which lossless method gives the best reduction level,
each of the compressors are run over the entire dataset and the av-
erage compression ratios are presented. From lossless compressors,
ZSTD gives the best CR ~ 4.5 as seen in Figure 4
Blosclz has the highest average compression bandwidth, ~ 78MB/s

which is closely followed by LZ4, as shown in Figure 5a. As the
compression level for the lossless compressors increases, the com-
pression bandwidth decreases. For decompression, LZ4/LZ4hc per-
forms slightly better comparatively with decompression bandwidth
~ 27MB/s and is shown in Figure 5. The decompression bandwidth
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Lossless compressors: Compression Ratio (CR)
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Figure 4: Lossless Compression Level on Compression Ratio

is still affected by the increasing compression level, but much less
when compared to the compression bandwidth.

The lossless compressors did not benefit from pre-processing,
the unaltered base performance obtains the highest CR as seen in
Figure 6. The base implementation provides the highest CR values
on each of the error bounds.

4.4 Lossy Compression

The lossy compressors are evaluated over a set error bound. The
error bound is used to set the accuracy of the data to be able to
analyze the effect it has on compression Ratio, Compression Band-
width, and Decompression Bandwidth. The absolute error bound is
varied between 1E-7 to 1E-1. As the error bound for the compres-
sors increases, so does the compression ratio. As shown in Figure
7, average compression ratio achieved on the highest error bound
by SZ is 204.6x on 1E-1 and by ZFP is 4.1X. When comparing the
two lossy compressors there are different trade-offs between them.
For error bounds less than 1E-4 the blosc lossless compressors are
able to outperform the lossy compressors CR.

The frame before pre-processing is able to achieve up to an
33.98% CR increase on lossy SZ at error bound 1E-1. On error
bounds lower than 1E-2 the base method is able to outperform or
stay consistent with the pre-processing methods. As the error bound
increase, the frame before pre-processing is able to outperform
the base methods. For lossless methods, pre-processing caused on
average a 12.82% decrease in CR, as seen in Figure 8.

Figure 9 shows the reduction bandwidth for lossy methods. For
each of the time steps, bandwidth stays mostly consistent. Band-
width does slightly increase as error bounds increase. When com-
paring the two lossy compressors, SZ is behind ZFP for compression
and decompression bandwidths. ZFP on average obtains a higher
compression bandwidth averaging ~ 40MB/s compared to SZ aver-
aging to ~ 32MB/s on the highest error bound 1E-1.

As the error bound for SZ and ZFP increase, compression and
decompression bandwidths also increase. For error bounds 1E-2
and lower, ZFP again outperforms SZ in compression. On that error
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Lossless compressors: Compression Bandwidth
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(a) Lossless Compression Level on Compression Bandwidth

Lossless compressors: Decompression Bandwidth
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(b) Lossless Compression Level on Decompression Bandwidth

Figure 5: Lossless Bandwidth

bound and higher SZ is able to achieve a higher decompression
bandwidth as seen in Figure 9b.

4.5 Image Distortion

Lossless compressors perfectly preserve the data, while lossy com-
pressors loses information to improve CR. Lossy compression achieves
a higher CR at the cost of image distortion. Figure 10 shows the
SSIM over various error bounds. SZ begins degrading at 1E-2 while
ZFP remains consistent. SZ achieves a higher CR when compared
to ZFP, but its SSIM degrades more than ZFP when error bounds
increase. This trade off between CR, bandwidth against accuracy is
the limiting factor for lossy compressors. Data pre-processing also
has an effect on accuracy of the data when it is compressed with a
lossy compressor. On the lower error bounds, SSIM stays relatively
consistent, but as the error increases, the minimized data begins to
drop off in accuracy when compared to base unaltered data. The
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Lossless compressors: Compression Ratio (CR)
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Figure 6: Lossless Pre-processing Compression Level on Com-
pression Ratio (Note: Ldiff refers to the frame before differ-
ence, 0diff refers to the frame 0 difference and base is unal-
tered data)

Lossy Compressors: Compression Ratio
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Figure 7: Lossy absolute error bound for different compres-
sors

frame before diff on the highest error bound has ~ 0.2 difference
compared to the 0 diff technique, which is slightly lower than the
base data.

5 RELATED WORK

High-Resolution Wavelet-Fractal Compressed Optical Coherence to-
mography images [8]

3D OCT images are compressed by proposing a 3D extension
of the wavelet-fractal coding algorithm. The authors use 3D frac-
tal approximation to encode 3D wavelet coefficients to exploit the
inter and intra redundancy. Their encoding method includes 1)
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Lossy Compressors: Compression Ratio
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Figure 8: Lossy absolute error bound for different pre-
processing. (Note: Ldiff refers to the frame before difference,
0diff refers to the frame 0 difference and base is unaltered
data)

calculating the N-level Haar wavelet transform 2) partitioning the
components into various block domains 3) finding the best match-
ing domain block 4) saving the map. When decoding, the following
procedures are implemented: 1) calculate the N-level Haar wavelet
transform 2) for each N-level, calculate the components for each of
the coded information 3) calculate the N-level inverse transform to
reconstruct at that level 4) repeat until the entire image is recon-
structed. In their wavelet-fractal method, the authors are able to
achieve an average CR of 21.49 with a PSNR ranging between 25
and 27. They use a different method for evaluating the OCT data
and use PSRN instead of SSIM to evaluate the lossy compression.

A Digital Method for Lossless and Lossy Compression of High
Definition Optical Coherence Tomography Data [20]

This work studies OCT data and its extensive storage cost and
need for compression tools. Examining both lossy and lossless
compressors, the tools analyzing are zip, gzip, bzip2, lzma, 7-zip.
The best resulting compression ratio achieved is 2.78 CR on Bzip2.
Utilizing background removing, re-sampling, and BZip2 the authors
are able to achieve a CR value of 5.47.

This work is similar to ours, but we implement more state-of-
the-art compressors for the lossless and lossy compressors. They
also implement a different method for preprocessing by performing
a background subtraction algorithm instead of slice/frame based.

3-D Adaptive Sparsity Based Image Compression with Applications
to Optical Coherence Tomography [9]

Improving the performance of sparse representation for com-
pressing of OCT images is examined. The authors identify that
nearby slices of the OCT image are similar and apply slice-based
compression methods. Their 3D framework for OCT compression
utilizes high correlation between nearby slices. The method is bro-
ken down into three separate parts, 1) 3D adaptive sparse represen-
tation 2) 3D adaptive encoding 3) decoding and reconstruction.
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Lossy Compressors: Compression Bandwidth
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Lossy Compressors: Decompression Bandwidth
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(b) Lossy absolute error bound for Decompression Bandwidth

Figure 9: Lossy Bandwidth

Metrics used for evaluation on the performance of the com-
pression are PSNR and FSIM. Experiments ran on 7 different set
compression ratios ranging from 10 up to 40. A 2D and 3D version
of the algorithm is implemented and show PSNR/FSIM improve-
ments between their two versions and other standard compressors.
The authors conclude the 3D methods which leverage slices are
improvements over the 2D version. This is similar to our study in
levering the data structure but uses a different metrics in accuracy
evaluation and have set CR values.

6 CONCLUSION

To effectively analyze biofilm OCT images, data reduction is essen-
tial. These results show that although lossless methods are perfectly
preserved and reduce the data, they have much less achievable CR
compared to lossy methods. When looking at lossy methods at error
bounds above 1E-4, it is able to outperform lossless methods.
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Lossy Compressors: SSIM
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Figure 10: Lossy Absolute Error Bound on SSIM

We also explored leveraging the 3D nature of the OCT by tak-
ing the difference between frames. Improvements in higher error
bounds show how volume data can be leveraged. Frame before dif-
ference was able to achieve the highest CR on higher error bounds
with SZ. ZSTD yields the best CR for lossless compressors, while SZ
is able to provide the best compression for lossy compressors. ZFP
is seen to have higher SSIM, compression bandwidth, and decom-
pression bandwidth when compared to SZ. Lossless compressors
trade compression time for smaller file sizes, and lossy compressors
trade data distortion for smaller file sizes. In conclusion, this study
shows that SZ with frame before difference pre-processing is the
best compressor for the biofilm OCT dataset with higher CR’s and
bandwidths, and it also outperforms lossless methods.

SSIM is an important component for OCT evaluation to deter-
mine usability of lossy data in biofilm analysis. The structural in-
tegrity of SSIM provides insight into finding the biofilms ability
to reduce ship drag penalty. Future studies should address SSIM
values that are needed for an accurate analysis of biofilm OCT data.
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