Evaluating the Resiliency of Posits for Scientific Computing

Benjamin Schlueter
bschlue@clemson.edu
Holcombe Department of Electrical
and Computer Engineering - Clemson
University
Clemson, SC, USA
bschlue@clemson.edu

ABSTRACT

IEEE-754 is the de-facto standard for the implementation of floating-
point number systems in hardware. With the rise of machine-
learning and mixed-precision computation, applications tolerate
small inaccuracies in the data by using lower bit-width floating-
point values to improve computational speed and memory band-
width, but still rely on some variant of IEEE-754. Posits have been
proposed as a drop-in replacement to the IEEE-754 floating-point
standard. Recent work has suggested that posits can offer greater
numerical accuracy and reproducibility than IEEE-754-compliant
floating point numbers at a comparable architectural cost. There
have been several studies which consider the use of posits and
other floating-point implementations in hardware and software,
but there is limited work examining this new number system from
a reliability perspective.

In this paper, we evaluate the resiliency of posits to inform hard-
ware design for fault-tolerant systems. Using real-world scientific
datasets, we conduct an extensive bit-flip fault injection campaign
to explore the tradeoff between accuracy and sensitivity to silent
data corruption (SDC) between posits and IEEE-754. Our analysis
breaks down the impact of a bit flip on the various fields within
both floating-point standards. Results show the presence of the
regime reduces the number of bits that cause catastrophic error
in posits compared to IEEE floats. This leads to overall less error
in upper bit positions of posits, except in certain edge cases. We
found flips in the sign bit usually cause more error in posits due to
the effect sign has on posit magnitude, unlike in IEEE floats. We
also found that unlike in IEEE floats, the posit exponent does not
produce significant error due to its small, static two bit size. Finally,
error in the posit fraction was found to be similar to that of IEEE
floats.

CCS CONCEPTS

« Software and its engineering — Software fault tolerance; «
Mathematics of computing; « Hardware — Fault tolerance;

KEYWORDS
Posit, IEEE-754, floating-point, reliability, soft error, accuracy

This work is licensed under a Creative Commons Attribution International
4.0 License.

SC-W 2023, November 12—17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0785-8/23/11.
https://doi.org/10.1145/3624062.3624116

477

Alexandra Poulos
alpoulo@clemson.edu
Holcombe Department of Electrical
and Computer Engineering - Clemson
University
Clemson, SC, USA
alpoulo@clemson.edu

Jon Calhoun
jonccal@clemson.edu
Holcombe Department of Electrical
and Computer Engineering - Clemson
University
Clemson, SC, USA
jonccal@clemson.edu

ACM Reference Format:

Benjamin Schlueter, Alexandra Poulos, and Jon Calhoun. 2023. Evaluating
the Resiliency of Posits for Scientific Computing. In Workshops of The Inter-
national Conference on High Performance Computing, Network, Storage, and
Analysis (SC-W 2023), November 12—17, 2023, Denver, CO, USA. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3624062.3624116

1 INTRODUCTION

Floating-point arithmetic is indispensable to many areas of com-
puting, such as computational science and engineering, as well as
machine learning. Central to the utility of floating-point arithmetic
on computing systems is being able to represent a floating-point
number. In computing systems, continuous real-numbers must be
represented using a finite number of bits. Thus, all floating-point
representations are discrete approximations of the numbers they
represent. Numbers not represented exactly in the floating-point
format are rounded to a representable number. The discrepancy
between the true real-number and the representable one yields
an error. Controlling this error in the representation and during
arithmetic is central to the utility of a floating-point number system.

IEEE-754 is the first standard for floating-point arithmetic, and
since its adoption in 1985 has become the standard across all com-
puting systems [3]. An IEEE-754 number is composed of three bit
fields (sign, exponent, and fraction) whose size is dependent on the
bit-width of the data-type. Prior to its adoption, multiple diverse
methods existed to format, compute, and round the floating-point
numbers. This discrepancy led to numerical issues and correctness
issues when codes were ported across systems [1, 4]. Wide adoption
of this standard leads to reproducible performance, which enables
compilers to conduct higher levels of optimization [9, 40].

Training deep learning (DL) models is very computationally
intense. To lower the computation cost, researchers discovered
that DL training can be done with lower-precision arithmetic [36].
Using lower-precision arithmetic has two key performance advan-
tages. The first is that lower precision floating-point computation
is faster than higher precision. On an NVIDIA H100 SXM GPU,
the theoretical peak performance for the FP64 tensor cores is 67
TFLOPS. FP32, FP16 and F8 tensor cores yield 14.8%, 29.5X, and
59.1x more TFLOPS, respectively [2]. The second is that effective
memory bandwidth (array elements moved per unit time) improves
proportionally as the bit-width decreases. To improve the accuracy
at lower precision, modifying the number of bits allocated to the
exponent and fraction has lead to new IEEE-754 data-types such as
bfloat [6, 39]. The structure of IEEE-754 floating-point numbers
often fail to offer the precision and reproducibility needed for some
computations.

SC-W 2023, November 12-17, 2023, Denver, CO, USA

Despite the continuous improvements and adaption of the IEEE-
754 standard, it still has limitations. One well-known issues with
IEEE-754 is that it is vulnerable to data corruption due to transient
soft errors that corrupt bits at random in registers, data paths, and
memory [10, 21, 42]. A single bit-flip in the exponent of an IEEE-754
number often yields an error that is orders-of-magnitude larger
than the original number prior to corruption. Accuracy issues in the
presence of soft errors have led to the development of fault-tolerant
techniques at both the hardware and software level to ensure the
correctness of applications [23, 28, 29, 31].

Posits [27] have recently been proposed as a drop-in replacement
to the IEEE-754 floating-point standard. Posits possess a bit field
called the regime, whose size scales based on the magnitude. This
allows for greater fractional accuracy for numbers close to one.
Recent work has suggested that posits can offer greater numeri-
cal accuracy and reproducibility than IEEE-754-compliant floating
point numbers at a comparable architectural cost [41]. In addition,
there have been several studies which consider the use of posits and
see application runtime and accuracy improvements [16, 17]. As
researchers are currently exploring the advantages and trade-offs
of posits, they must be evaluated based on their reliability in the
presence of soft errors. Prior work [8] conducts an initial study on
posit resilience, but primarily focuses on the impact posit bit flips
have in machine learning applications instead of analyzing error
caused by flipping individual bits.

In particular, this paper makes the following contributions:

o Studies the resiliency and performance of the posit datatype
in fault prone environments to inform hardware design for
future fault prone systems

e Observes the behavior of posits when injecting faults and
how it compares to standardized data types

e Provides insights on specific posit bit positions that are vul-
nerable to significant error when flipped

e Shows posits have increased resilience compared to IEEE
floats in most cases

The rest of this paper is outlined as follows. In Section 2, we
present related work. In Section 3 we provide a background on the
internal structure of IEEE-754 floating-point and posit numbers. We
describe our fault model and fault injection methodology in Section
4. We analyze in detail our fault injection campaign’s results in
Section 5. Finally, in Section 6, we conclude this paper.

2 RELATED WORK

In order to do fault injection studies on HPC applications, several
fault injection frameworks have been developed to inject bit-flip
errors in hardware [22] and software [11, 33].

Elliot et al. [21] presents a detailed study of the impact of bit po-
sition on the deviation in floating-point accuracy of IEEE-754. This
work derives formulas to compute the deviation in a floating-point
value based on the bit corrupt. Moreover, it explores how vector
length combined with a corrupted element changes the accuracy
of HPC computations. Other works [12, 32] explore how bit-flips
in floating-point values impact the accuracy of HPC applications.

To protect applications from the negative impacts of bit-flip
errors, prior works have leveraged checkpoint-restart [37], error

478

Schlueter, et al.

correction codes [24, 35], redundancy [23], and forward recovery [7]
as part of their protection scheme.

Recently, Alouani et al. explores posit resilience in machine
learning related applications [8]. This work conducts a bit flip fault
injection campaign on posits and measures the mean relative error
distance (MRED), which provides a general overview of error caused
by bit flips. This work does not go in depth regarding posit error in
individual bit positions caused by flips. Instead, fault injections are
applied in different machine learning applications to analyze their
performance.

3 BACKGROUND

3.1 IEEE-754 Floating-point Standard

An IEEE-754 floating-point number, typically containing 32 or 64
bits, has three fields: a sign bit s, an unsigned integer exponent e,
and a fraction field also known as the mantissa or significand. It
also has an implicit bias, which is determined by the number of
exponent bits E as 2E~1. A floating-point number is numerically
interpreted as

(_1)5 % z(exponent—bias) x (1 + i bM—iz_i))
i=1
where b € {0,1} and M is the number of bits in the fraction. Figure
1 shows an example of a 32-bit float.

Sign Exponent (8 bits) Fraction (23 bits)

0 0000000 00000000000000000000000

31 30 23 22 0

Figure 1: 32 bit IEEE-754 Standard Structure

IEEE-754 has specific representations for special values such as
infinity, and NaN. For infinity, the exponent takes a value of 255,
and the fraction is 0. The sign bit still applies for infinity, and the
float will be positive infinity if the sign is 0 and negative infinity if
the sign is 1. An example of the infinity representation can be seen
below in Figure 2. The NaN representation also has an exponent of
all 1’s, but the fraction will be non-zero number [5].

Mantissa

00000000000000000000000

Sign Exponent

0 1111111

Figure 2: IEEE-754 Representation of Positive Infinity

Previous works show the IEEE-754 standard is vulnerable to bit
flips [10, 21]. The impact of the corruption depends on the location
where the bit-flip occurs. Bit-flips in the fraction have the smallest
impact on the floating-point value. However, bit-flips in the most
significant bits could have noticeable impact on the magnitude.
A bit-flip in the exponent has the most significant impact on the
induced error, where each bit-flip either multiplies or divides the
value by a power of 2. This implies the impact of a bit-flip grows
dramatically as the bit position where the bit-flip occurs increases.

Evaluating the Resiliency of Posits for Scientific Computing

The magnitude of the error caused by flipping the sign bit is always
twice the original value, since it is equivalent to multiplying the
value by -1 as shown below.

errqps = lorig — faulty| = |orig — (—orig)| = 2orig

To better understand the impact of a bit-flip in each bit-position,
Figure 3 shows the relative error for bit-flips in a 32-bit IEEE repre-
sentation of 186.25.

Relative Error for Single Float

1021
1017
Fraction Exponent

1013

o, 10°
o 10°
10!
1073

0 5 10 15 20 25 30
bit_position

Figure 3: Relative error with bit-flips in the representation
of 186.25 in 32-bit IEEE-754.

3.2 Posits

To improve the accuracy of floating-point numbers, posits, unlike
IEEE-754, allow the field bit-widths inside the posit to vary in
size even when the total number of bits for the posit remains the
same. This dynamic nature enables the posit to more accurately
represent the floating-point number in certain cases. Figure 4 shows
the structure of the fields within the posit type. A posit of size n
consists of a sign bit s, one or more (up to n — 1) regime bits, an
optional unsigned integer exponent e, and an optional significand.

1bit MSB k+1bits LSB 2bits MSB m bits LSB

S R E F

RyRy Ey E F... coi B

Figure 4: A generic posit number [26].

In Figure 4 [26], S represents the sign bit which takes on a value
of 0 or 1 and determines the sign of the posit, similar to IEEE floats.
However, it is important to note that flipping the sign bit alone
will not negate the posit. Negation of a posit requires the two’s
complement to be taken. R is the regime field, which consists of
k identical bits starting at Ry, followed by a bit of opposite sign
(Ry) that terminates the regime field. The value of k depends on the
magnitude of the posit using the following relation in Equation 1.
In cases 1 and 3, the value of bits Ry through Ry _; will be 1 and Ry
will be 0. For cases 2 and 4, the regime bits will have the opposite
states.

479

SC-W 2023, November 12-17, 2023, Denver, CO, USA

p>1 [logie pl +1

Lo 0<p<1 [Ioglépil'l W
—1<p<0 |logpt]+1
p<-1 [logys =]

E represents the exponent field, which is statically sized at two
bits. Due to the impact the regime bits have on the magnitude, fewer
exponent bits are needed than in IEEE-754 floats. F represents the
fraction, which has a maximum length of n — 5 bits, but due to the
dynamic size of the regime, some of these bits may be truncated.
The fraction always begins with Fy, but any bits that extend beyond
the LSB are truncated and do not affect the magnitude of the posit
[26]. It is possible to have a posit with no fraction if the regime is
large enough.

Equation 2 from the posit standard [26] shows the numerical
interpretation of a posit (p).

p=((1-3s)+f) % 9(1=25) X (4r+e+s) @

The variable s represents the sign, which takes on a value of 0 or
1. The value r representing the regime is r = —k if the value of Ry
is1and r = k — 1 if Ry is 0. The value e is a 2 bit unsigned integer
representation of the exponent bits. The fraction representation f
is an unsigned integer representation of the m bits in the fraction
field. The value of f is determined by the following relation where
i represents a bit position and F is the length of the fraction [26].

m—1 .
f=2m) fi2! 3)
i=0
Figure 5 shows the numerical value of a posit being assembled

from its bits.

Sign Regime Exponent Mantissa

0 110 11, 01110100100000000000000000

f=2265(f2)=0455;r=1;e=3 —> (1+0.455)x24*3) = 186.25

Figure 5: Posit Numerical Value Assembly from Binary

To improve accuracy, posits dedicate more bits to the fraction
when magnitudes approach one, meaning more precision. As shown
in the equation for regime size, Equation 1, a number with an
absolute value close to one has a smaller regime and therefore more
fraction bits, which increases precision. This is shown in figures 6
and 7.

0 10 00‘ 01010100000000000000000000 ‘ =1.141

E 111110 01‘ 01101011110001010001000 ‘=186250

Figure 6: Binary Comparison of Different Magnitude Posits
Showing Regime/Fraction Size Differences

SC-W 2023, November 12-17, 2023, Denver, CO, USA

Because of this structure, posits are less accurate when the mag-
nitude is large because the size of the regime is larger, causing more
fraction bits to be truncated, meaning less fractional accuracy. We
refer the reader to prior works for additional details [25, 26].

— Posit(32,2)
25 4 —— IEEE float 32
i
220
>
3
g
g5
©
2
© 10
£
5
01— . . - : ; -
-150 -100 -50 0 50 100 150

Exponent

Figure 7: Posit Fractional Accuracy per Exponent Value [25]

3.3 Soft Errors

Soft Errors are transient upset events in computing systems where
charged particles — e.g., cosmic radiation — interact with com-
puting hardware and manifest as bit-corruption in registers and
data paths [34, 44, 45]. This corruption often occurs without the
user’s or system’s knowledge and is referred to as silent data cor-
ruption (SDC). Prior works show that a single bit corruption inside
a running application leads to crashes and significant corruption of
the output [12, 13, 20]. To guard against this worst case scenario,
researchers have devised solutions at the hardware [18, 38] and
software level [15, 19, 23, 30].

4 METHODOLOGY
4.1 Fault Injection Campaign

In order to study the resiliency of posits and compare them to IEEE-
754 floats, we need to define and conduct a fault injection campaign
that executes the experiment. This allows us to systematically con-
duct bit-flips in different positions a certain number of times across
different datasets. The fault injection campaign launches a series of
fault injection trials for each bit position. Each trial injects a single
bit-flip into a random floating-point value in the data, and then
computes metrics to quantify the error. We execute 313 trials for
each of the 32 bits in the posit, for a grand total of approximately
10,000 trials per field within each dataset. This number allows for
diverse data selection, while not being computationally prohibitive.
For efficiency, we execute the fault injection campaigns for the
individual fields in parallel across different compute nodes in a
cluster.

Initially, a running instance of the fault injection campaign reads
a binary file containing a field from a scientific data set (see Table 1),
and loads it into an array. Then, we calculate basic statistics for the
original data using functions we wrote. This provides a baseline
that the error metrics from the faulty data can be compared to. After

480

Schlueter, et al.

Set up data array
from binary file

for trial in range (0, NUM_TRIALS]

select random float
from data

for bit_position in range [0, 31]

convert float to posit

flip bit at bit_position

flip bit at bit_position

—> eplacelfioatiniautty <«— convert posit to float
data array

l

calculate error
metrics for trial

Figure 8: Flowchart for Fault Injection Campaign

that, we seed the random number generator for reproducibility, and
allocate memory for the faulty data to be written to.

After the initial set up, the bit flipping trials begin. Each of these
trials takes a single float and flips a single bit. For each of the 32 bit
positions in the posit type, the following steps are executed. First,
the trial is set up by generating a random index to select the float,
and copying the original data to the faulty array to clean up the
faulty value from the previous trial. Then, a bit mask is created
with a one in the bit position to be flipped, and zeros elsewhere.
Because the process for flipping a bit in IEEE floats and posits is
different, the program then detects whether the type is an IEEE or
posit.

4.1.1 IEEE. To allow for bitwise operations on the float, we inter-
pret its bit representation as an unsigned integer. Then, we XOR
the unsigned integer form and the bit mask created earlier in the
trial to flip the bit, as we see in Figure 9. We use XOR because it
provides the behavior we desire of flipping the bit in the float at the
position of the 1 in the mask. All bits with a corresponding mask
value of 0 are unaffected due to the nature of XOR. Now that the
bit is flipped, the unsigned integer is reinterpreted as a float and
added to the faulty array at the index of the original datum.

4.1.2 Posit. To perform the necessary conversions from IEEE-754
floats to posits, we leverage a posit arithmetic library called Soft-
Posit [14], which is a software implementation of the current posit
standard. We first convert the randomly selected float into a 32-bit

posit using the SoftPosit library function convertFloatToP32(float).

Evaluating the Resiliency of Posits for Scientific Computing

SC-W 2023, November 12-17, 2023, Denver, CO, USA

Table 1: Evaluation Dataset Summary.

Dataset Field Dimensions Mean Median Max Min Std. Dev.
CESM OMEGA-1-26-1800-3600 26 x 1800 x 3600 -3.88E-06 3.41E-06 4.18E-03 -5.01E-03 3.11E-04
CESM CLOUD-1-26-1800-3600 26 x 1800 x 3600 6.37E-02 2.89E-02 9.64E-01 -1.14E-17 7.42E-02
CESM RELHUM-1-26-1800-3600 26 x 1800 x 3600 4.07E+01 4.56E+01 9.96E+01 1.12E-03 2.02E+01
EXAFEL smd-cxif5315-r129-dark 50 x 32 x 185x 388 2.18E-35 2.02E-35 9.53E-01 6.81E-43 1.94E-03
HACC vy 280953867 4.08E+00 -4.98E-01 3.74E+03 -3.50E+03 2.41E+02
HACC VX 280953867 1.79E+01 2.34E+01 3.39E+03 -3.52E+03 2.27E+02
HACC vz 280953867 2.45E+00 -1.17E+00 3.18E+03 -4.08E+03 2.63E+02
Hurricane PRECIPf48 100 x 500 x 500 1.24E-05 7.09E-09 7.51E-03 0.00E+00 7.77E-05
Hurricane W130 100 x 500 x 500 6.91E-03 -7.78E-05 1.55E+01 -4.57E+00 1.72E-01
Hurricane Uf30 100 x 500 x 500 -5.54E-01 -6.93E-01 6.89E+01 -7.95E+01 9.36E+00
Hurricane Pf48 100 x 500 x 500 3.76E+02 2.25E+02 3.22E+03 -3.41E+03 4.55E+02
Hurricane CLOUD{f48 100 x 500 x 500 8.60E-06 0.00E+00 2.05E-03 0.00E+00 5.18E-05
Hurricane V130 100 x 500 x 500 3.63E+00 3.48E+00 6.98E+01 -6.86E+01 9.76E+00
Nyx velocity-x 512x512x 512 3.54E+02 4.68E+05 3.19E+07 -5.04E+07 4.97E+06
Nyx dark-matter-density 512 x512x 512 1.00E+00 3.93E-01 1.38E+04 0.00E+00 8.37E+00
Nyx temperature 512x512x 512 8.45E+03 7.09E+03 4.78E+06 2.28E+03 1.54E+04

- original. However, in extreme cases with a large magnitude shift,

0 110 11| 01110100100000000000000000 certain summary statics may shift drastically.

Bit Mask Additionally, we compute a variety of error metrics between the

@ 0 1010 100/ 00000000000000000000000000 origin.al and faulty data. We apply Quick Compre§sion Analysis

Toolkit (QCAT) to calculate the absolute error, relative error, mean

squared error, and norm error, since they most accurately quantify

— T 100 11| 01110100100000000000000000 the error caused by our bit-flip. Once we compute the metrics,

Figure 9: Injecting a Bit-Flip Example

When we perform bit-flips on posits, we first extract the unsigned
integer member of the posit32_t struct returned by the conver-
sion function, which contains the bit field representing the posit
value. Next, we perform XOR with the mask to flip the bit. Our con-
version accuracy test shows that calling p32_to_ui32(posit_32t)
and ui32_to_p32(uint32_t) performs rounding, and introduces
a relative error of 107> to the experimental results. We use the
unsigned integer struct member instead of the conversion function
to evade this.

To convert back to posit, we assign the unsigned integer with
the bit-flip back to the posit32_t struct. Finally, we convert the
posit back to an IEEE-754 float using another SoftPosit library call.
We then add the faulty float to the array for faulty data at the index
of the original float, such that this float is the only faulty one in
this array.

4.2 Error Evaluation Metrics

After the bit-flip occurs, we use the faulty data to calculate error
metrics that quantify the error. The first metrics we compute for the
faulty data are summary statistics: mean, max, min, and standard
deviation. This is done with the same functions we use for the initial
baseline. For bit-flips that cause a small change in the magnitude of
the value, we do not expect these to deviate significantly from the

481

we write them to a log file in CSV form for offline analysis and
visualization.

5 EXPERIMENTAL RESULTS
5.1 Testing Environment

All the experiments in this study are run on Clemson University’s
Palmetto Cluster, a 3.0+ petaflop heterogeneous system with 1,786
compute nodes and 34,916 CPU cores. The cluster has a variety
of processors throughout its nodes. For the fault injection cam-
paign, we use nodes containing two Intel Xeon E5-2665 2.40GHz
processors and 64 GB of memory. Our software environment in-
cludes gcc version 8.5.0 for compilation, SoftPosit version 0.4.1 for
posit conversion [14], and QCAT version 1.3 for calculation of error
metrics.

5.2 Datasets

The data we use in these experiments is from the Scientific Data
Reduction Benchmarks Site [43]. Specifically, the datasets used are
Hurricane Isabel (weather simulation), Nyx (cosmology), CESM
(climate), EXAFEL (Images from the LCLS instrument) and HACC
(Cosmology). Table 1 presents summary information on our testing
datasets, including the name, size, basic statistics.

5.3 Posit vs IEEE-754 Summary

Our experiments show a large improvement in posit resiliency over
the IEEE-754 standard, confirming prior work[8]. As a general rep-
resentation of the experimental results, Figure 10 shows a compari-
son of the mean relative error across all trials for each bit position,

SC-W 2023, November 12-17, 2023, Denver, CO, USA

—— nyx posit

nyx ieee
1024

Relative Error

MSB

10 15

Bit Position

20 25 30

—— cesm posit

27 cesm ieee
. 10

Relative Erro

LSB MSB

10 15

Bit Position

20 25 30

Figure 10: Posit vs IEEE-754 Mean Relative Error in Nyx and
CESM

plotted for both IEEE-754 floats and posits for NYX and CESM,
respectively. While Figure 10 only shows NYX and CESM data, we
observe a similar trend for other datasets. Across all datasets, the
IEEE-754 floats have a sharp and consistent exponential spike in
error towards the most significant bit positions (exponent and sign).
However, posits have lower, but more distributed and erratic error
in the upper bit positions (sign and regime). In some situations,
posits yield larger errors than IEEE-754 floats. Although they are
slightly offset by different amounts in different datasets in the lower
bit positions, the slope of the error increase is similar in both posits
and IEEE-754 floats (fraction). In the following sections, we explore
in depth why these trends occur.

5.4 Regime Bits

The regime bits are the primary factor that differentiates posits from
IEEE-754 floats. This field has the most significant contribution to
the magnitude, so bit-flips in the regime frequently cause substan-
tial error. To understand the implications of bit-flips in different
bit positions of the regime, we compute the average absolute error
from flips in posits with different regime sizes. This method isolates
error trends in different regime bits. It is also necessary because
most datasets contain posits with a variety of regime sizes, leading
to noisy results when focusing on regime error trends without sep-
aration. To execute this, the equation to calculate regime size 1 is
implemented to sort results from different datasets collected during
the fault injection campaign. The results reveal two distinct error

482

Schlueter, et al.

trends in different posit magnitude ranges. In posits with an abso-
lute value greater than one, there is an error spike associated with
the terminating regime bit Ry.. Posits with an absolute value less
than one show large error spikes in the sign bit, but not elsewhere.
The following explains this in more detail.

ime Abs. Error for Posits Magnitude > 1

101t

3

Regime Size
4

30

22

23 24 25 26 27

Bit Position

28 29

Figure 11: Average Relative Error in Posits with Magnitude
Greater than One

5.4.1 Error in Posits with Absolute Value Greater than One. Figure
11 shows the average absolute error for different bit positions in
posits with varying regime sizes. Figure 11 shows a spike in error is
associated with the terminating bit of the regime (Ry). The reason
for this trend is that when Ry, is flipped, it takes on the value of the
regime bits Ry through Ry _;. Since the regime field is terminated
by a bit opposite the state of Ry, the regime expands into what was
once the exponent and fraction until an opposite bit is detected.
This is visualized in figure 12, where a numerical example shows
the impact of this event on a posit using equation 2.

Example Posit

0 110 11‘ 01110100100000000000000000 ‘z186.25

= Emno 11\ 10100100000000000000000 \:598016

f=225(f2)=0141;r=4;e=3 —> (1+0.141) x 2(16*3) = 598016

Figure 12: Bit-flip induced regime expansion.

If the exponent and most significant bits in the fraction are the
same state as the faulty state of Ry, the size of the regime can
increase significantly. This scales the magnitude of the posit by
24" where n is the number of new regime bits. However, if a bit
opposite the flipped state of R occurs immediately after Ry, the
error is much less significant since the size of the regime only
increases by 1 bit.

We also see that there is a consistent error across regime bits
[Ro, Ri—1]. The error in these regime bits increases with regime size
because the magnitude of the posits increase. When a flip occurs in

Evaluating the Resiliency of Posits for Scientific Computing

one of these bits, the regime size shrinks, reducing the magnitude
of the posit. The consistency of the error is due to the exponential
contribution regime size has on the magnitude of a posit. Because
of this, a bit-flip in one of the regime bits in [Ry, Rg_;] causes a
reduction in magnitude. Even a flip in Ry _; does not typically pro-
duce an absolute error more significant than previous bits, which is
shown in figure 13. This figure uses a numerical example to demon-
strate how absolute error will not change significantly when bits
[Ro, Ri._1] are flipped, as shown in figure 11, despite exponentially
increasing error caused by bit flips approaching Ry.

E 111110 |01/ 01101011110001010001000 | = 186250
= Eo 11\ 1100101001111100010110101100 \:0.7944

abs_err_1= 186250 - 0.794 = 186249.206

E 11110 01\ 01101011110001010001000 ‘=186250
= E 11110 00| 101101011110001010001000 | = 7006.16

abs_err_2 = 186250 - 7006.16 = 179243
Figure 13: Absolute Error Comparison in Ry vs Ry_;

5.4.2 Posits with Absolute Value Less than 1. Posits with an absolute
value less than one show no relative error spike in the terminating
regime bit, Rg. This is due to the small scale of the numbers. De-
spite the small quantifiable error, regime expansion occurs when
Ry is flipped. However, this flip decreases the magnitude of the
posit. It is not possible for the posit to increase in magnitude, or
decrease below 0 in this case. Thus, the overall change in magnitude
is relatively small. Therefore, the relative error does not spike sig-
nificantly even when the regime expands by several bits or the posit
decreases by several orders of magnitude. This is shown in example
4. In most cases, the relative error is near one. This example takes a
posit with original magnitude 3.395274 x 10° and faulty magnitude
8.644184 x 108, and demonstrates the low relative error in this case.

lorig — faulty] 13.395x 107 — 8.644 X 1078]
- 3.395 X 1075

. 3395x107°
T 3.395x 1075

For posits in this range with regime size 1, we notice an extreme
spike (up to 10!!) in absolute error in bit position 30, which is the
sole regime bit. This error is not shown in figure 14 to make the
general trend more readable. These spikes in error come from an
edge case where the flipping of the sole regime bit will not only
expand the regime, but also invert it. Figure 15 demonstrates this
with a numeric example. The flip in Ry not only expands the regime
from 1 bit to 5 bits, but inverts the terminating bit Ri. Thus, the
value of r in equation 2 changes significantly. This causes a large
error since the magnitude of the posit is scaled by 24"

Due to the way the regime is interpreted, when the regime bits
are inverted completely, meaning the state of Ry through Ry _; and
Ry, are inverted, the sign of the regime component will change. This

orig

483

SC-W 2023, November 12-17, 2023, Denver, CO, USA

Regime Abs. Error for Posits Magnitude <1 _
100

101!

Regime Size

22

23 24 25 26 27

Bit Position

28 29 30

Figure 14: Average Relative Error in Posits with Magnitude
Less than One

0 01 11| 101010111100011110110100000 ‘ = 0.835

Rk=1-—> r=—k=-1

E 111110 10‘ 10111100011110110100000 ":-455149

Rk=0— r=k-1=4

Figure 15: Edge Case Where Regime Expands and Inverts

can be seen in equation 2 and the description below it. If this edge
case occurs, the magnitude of the posit will change drastically.

5.4.3 Regime Discussion. These results show that posits with mag-
nitude greater than one are exceptionally susceptible to bit-flips
in regime bit Ry, but bit-flips anywhere in the regime still causes
significant changes in magnitude. Posits with magnitude less than
one are not impacted significantly by bit-flips in Ry, but are still
susceptible to flips in other regime bits.

In most cases, the impact of bit-flips in the regime of posits is
still far less substantial than the upper exponent bits of IEEE-754
floats by many orders of magnitude, which is a major improvement.
Figure 10 shows that unlike the uniform error spike in IEEE floats,
posits have a more erratic distribution of error. This is due to the
combination of the error spikes coming from flipping the final
bit in the regime field. Because the size of the regime depends
on the magnitude of the posit, the width of the error distribution
depends on the variance and median of the data. Datasets with
large variances and medians have a wider error distribution since
there are more values with larger numbers of regime bits, as shown
by the standard deviations of Nyx and CESM in 1. This causes
error spikes in lower bit positions, since Ry, is in a lower position.
Unlike in IEEE floats where the error increases as the bit position
increases, error in the upper bit positions of posits comes in spikes
with location depending on the regime bits.

SC-W 2023, November 12-17, 2023, Denver, CO, USA

5.5 Fraction

The part of the posit that usually takes up the majority of the
bits is the fraction. However, the fraction bits do not contribute as
significantly to the magnitude of the posit compared to other fields.
This is because the magnitude of the posit scales linearly as the
value of the fraction bit field changes, denoted f in equation 2. The
main difference between IEEE and posit fractions is that the latter
has a variable size, which depends on the number of regime bits.

The error in the fraction bit field is visualized in Figure 16. This
plot was created with data from the HACC and Hurricane datasets
with 1 regime bit (k = 1). A specific number of regime bits is selected
to maintain an equal fraction size among posits. Specifically, 1
regime bit posits are chosen because they are the most plentiful
in our data pool. Additionally, it is observed that fractional error
is not correlated with regime size, indicated by similar trends in
posits with regime sizes 1 - 6. Furthermore, this plot is in log scale
to make the error trend more clear.

Fraction Relative Error

Faulty State ‘ I‘ | |

[N
0123456 7 8 91011121314151617181920212223242526

[y
Bit_Position_Flipped

107t

1076

r

[e) 10711

Err

_l10-16

_Re

X 102t
(©
10-2¢

1073

Figure 16: Relative Error Fraction

The results in figure 16 are expected because the significance of
bits in the fraction doubles for each increment towards the MSB.
This is indicated by equation 3, which shows that the state of each
bit in the fraction is multiplied by 2/"@€X_Thus, the magnitude of
the error associated with a specific fractional bit position will be
approximately double the previous bit. Depending on whether the
fraction has more or less bits, there is more or less error associated
with flips in bits closer to the MSB.

5.6 Exponent

In IEEE floats, the exponent bits are associated with much larger
error than the fraction due to the exponential effect their value has
on the magnitude. This raises the question: is the massive error
spike in the exponent field still an issue in posits? Our experiments
find that unlike IEEE floats, there is no relatively significant error
associated with the exponent field in posits.

In posits, the exponent field is in between the regime and fraction
fields, and spans a constant 2 bits. Because the exponent in posits is
much smaller than that of IEEE floats, flipping one of the exponent
bits causes a smaller error. The error caused by this would be the
same as flipping the corresponding bit in an IEEE float, since the

484

Schlueter, et al.

magnitude of both IEEE floats and posits are scaled by 2¢XPonent
Since posit exponents only have two bits, the max potential mag-
nitude shift due to an exponent bit flip would be multiplying or
dividing the original value of the posit by 4. This is because the
value of the exponent in equation 2 is increased by 2. In IEEE floats,
the exponent value will shift by 128 when the uppermost bit is
flipped, causing a magnitude shift of 2128 This is because the expo-
nent is 8 bits in IEEE floats. Figure 17 visualizes a case where the
uppermost bit positions in an IEEE-754 float and posit are flipped.

Sign Regime Exponent Mantissa

Posit \ 0 \10‘ 10 | 01010100000000000000000000 \

e=2 p=4625

\ 0 \10 ‘ 00 ‘ 01010100000000000000000000 \

e=0 p=1.141
Sign Exponent Mantissa
IEEE \ 0 \01111000\ 10011001100110011001101 \
e= 2 =0.0125
\ 0 \11111000\ 10011001100110011001101 \
o= 20121) = 4.253x1036

Figure 17: Uppermost Exponent Bit Flip

To support this, figure 18 shows how the smooth error increase
trend in the fraction does not break when the exponent is reached.
This indicates that the error associated with the exponent bits is
similar to the trend in the fraction. It is not visible through error
where the exponent is located in the posit, unlike in IEEE floats
where the exponent is denoted by a large spike in error. The trend
in the exponent bits is similar to the trend in the fraction.

Exponent Relative Error

Faulty State fraction b

6 7 8

=]
012345 910111213141516171819202122232425262728
Bit_Position_Flipped

101

-
v

10°°

10—11

._.

<
L
5

Max_Rel_Error

._.

Q
4
®

1026

10731

Figure 18: Relative Error in Exponent compared to Fraction

Evaluating the Resiliency of Posits for Scientific Computing

5.7 Sign Bit

The sign bit in posits has a greater impact on the magnitude than
the IEEE-754 sign bit. Because of this, it is important to understand
how flips in the sign bit affect the magnitude of posits. In IEEE
floats, when the sign bit is flipped, the magnitude is unchanged,
and just the sign of the number is affected. The result of the flip
will be the negation of the float, but this is not the case in posits.
To negate a posit, the two’s complement of the bits must be taken
and its magnitude evaluated (shown in figure 19). Therefore, when
the sign bit alone is flipped in a posit, not only will the sign of the
number change, the magnitude will change as well. The presence of
the sign variable s in positions that affect the magnitude in Equation
2 shows why this occurs.

EOOOOM 00‘ 01001111100010110101100 ‘=1.25E-06

f=2285(f2)=0311;r=-5;e=0 —> (1+0.311)x24 %5 = 1 25¢.06

1 111110 11‘ 10110000011101001010100 ‘=-1.25E-06

f=285(f2)=0189;r=4;e=3 —> ((1-3)+0.189) x 2(1-2)4x4+3+1) = 4 55¢ o6
Figure 19: Negation of a Posit

This change in magnitude can sometimes be drastic. Figure 20
shows the absolute error caused by sign flips in posits with different
regime sizes. We use a box plot because a violin plot would not
fit this data well due to variation in the distributions and number
of samples. Posits of all magnitude ranges are included, since this
sign bit error was consistent across all posit magnitude ranges.
This figure shows that the absolute error from flipping the sign bit
increases exponentially as the regime size increases. This means
posits with extremely large magnitudes are most effected by sign
bit flips. Posits with magnitude close to 1 with small regimes are
not affected as significantly.

Sign Bit Absolute Error for Different Regime Sizes

—_—

-
o
<

= =
o o
o E

Max_Abs_Error
=
i

= =
o o
= 9

=
o
°

1 2 3 4 5 6
regime_size

Figure 20: Sign Bit Error In Small Magnitude Posits with
Different Regime Sizes

485

SC-W 2023, November 12-17, 2023, Denver, CO, USA

The reason massive error occurs when the sign bit is flipped
can be seen in the formula for posit magnitude 2 and the numeric
example in figure 21. This example demonstrates that when the
sign bit is 1, it multiplies the exponent in equation 2 containing the
regime, and exponent values by —1. Flipping the sign bit also flips
the sign of the exponent in equation 2, which can drastically affect
the magnitude.

EOOOOM OO‘ 01001111100010110101100 ‘=1.25E-O6

f=2285(f2)=0.311;r=-5;e=0 —> (1+0.311)x24%5 = 1 25806

= | 1 /000001 00‘ 01001111100010110101100 | = -885522

f=2285(2)~0311;r=-5;e=0 —> ((1-3) + 0.311) x 201-204x5+1) =~ g5

Figure 21: Error Caused by Flipping Sign Bit

This effect is not as significant in posits close to 1, because the
regime size in the exponent is small, and therefore this exponential
sign flip does not produce as large of a deviation from the original
magnitude.

6 CONCLUSION

As the usage of posits continues to grow due to their higher pre-
cision representation of certain numbers, it is important to un-
derstand their resilience to bit flips. This study shows that posits
possess more resiliency to bit flips than IEEE-754 floats in most
cases. After examining the effect of bits flips in all major compo-
nents of the posit, we have found and analyzed patterns and quirks
regarding bit flip error in posits. The presence of the regime reduces
the number of bits that cause catastrophic error in posits compared
to IEEE floats. This leads to overall less error in upper bit positions
except in specific cases. We found flips in the sign bit usually cause
more error in posits due to the way sign affects the magnitude,
unlike in IEEE floats. We also found that unlike in IEEE floats, the
posit exponent does not produce significant error due to its small
size. Lastly the fraction error was found to be similar to that of IEEE
floats.

To expand knowledge on this topic further, more research is
necessary. Potential future research topics include the following.
Different size posits will react differently to bit flips, so fault in-
jection campaigns on 8, 16 and 64 bit posits would be beneficial.
Multi-bit flip analysis would also provide valuable insights. Mathe-
matical analysis could be done to predict potential error in posits
due to bit flips.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under Grant No. SHF-1910197 and SHF-1943114.

REFERENCES

[1] [n.d.]. ARIANE 5 Failure - Full Report. http://sunnyday.mit.edu/nasa-class/
Ariane5-report.html. Accessed: 2023-04-20.

[2] [n.d.]. NVIDIA H100 Tensor Core GPU Architecture. https://resources.nvidia.
com/en-us-tensor-core/gtc22-whitepaper-hopper. Accessed: 2023-04-20.

[3] 1985. IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std 754-1985
(1985), 1-20. https://doi.org/10.1109/[EEESTD.1985.82928

SC-W 2023, November 12-17, 2023, Denver, CO, USA

(4]

[9

=

[10

[11]

[12

[17]

(18]

[19

[20

[21

[22]

[23

[24]

2000. What Every Computer Scientist Should Know About Floating-Point Arith-
metic. https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html.
2023. https://en.wikipedia.org/wiki/IEEE_754

Ankur Agrawal, Silvia M. Mueller, Bruce M. Fleischer, Xiao Sun, Naigang Wang,
Jungwook Choi, and Kailash Gopalakrishnan. 2019. DLFloat: A 16-b Floating
Point Format Designed for Deep Learning Training and Inference. In 2019 IEEE
26th Symposium on Computer Arithmetic (ARITH). 92-95. https://doi.org/10.1109/
ARITH.2019.00023

Emmanuel Agullo, Luc Giraud, Abdou Guermouche, Jean Roman, and Mawussi
Zounon. 2016. Numerical recovery strategies for parallel resilient Krylov linear
solvers. Numerical Linear Algebra with Applications 23, 5 (2016), 888-905.

Thsen Alouani, Anouar Ben Khalifa, Farhad Merchant, and Rainer Leupers. 2021.
An Investigation on Inherent Robustness of Posit Data Representation. In 2021
34th International Conference on VLSI Design and 2021 20th International Confer-
ence on Embedded Systems (VLSID). 276-281. https://doi.org/10.1109/VLSID51830.
2021.00052

David F. Bacon, Susan L. Graham, and Oliver J. Sharp. 1994. Compiler Transfor-
mations for High-Performance Computing. ACM Comput. Surv. 26, 4 (dec 1994),
345-420. https://doi.org/10.1145/197405.197406

Leonardo Bautista-Gomez, Ferad Zyulkyarov, Osman Unsal, and Simon McIntosh-
Smith. 2016. Unprotected Computing: A Large-scale Study of DRAM Raw Error
Rate on a Supercomputer. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (Salt Lake City, Utah)
(SC ’16). IEEE Press, Piscataway, NJ, USA, Article 55, 11 pages. http://dLacm.
org/citation.cfm?id=3014904.3014978

Jon Calhoun, Luke Olson, and Marc Snir. 2014. Fliplt: An LLVM Based Fault
Injector for HPC. In Proceedings of the 20th International Euro-Par Conference on
Parallel Processing (Euro-Par ’14).

Jon Calhoun, Luke N. Olson, Marc Snir, and William D. Gropp. 2017. Towards a
More Complete Understanding of SDC Propagation. In Proceedings of the 26th
International Symposium on High-Performance Parallel and Distributed Computing
(Washington D.C., USA) (HPDC ’17). ACM, New York, NY, USA.

Marc Casas, Bronis R. de Supinski, Greg Bronevetsky, and Martin Schulz. 2012.
Fault resilience of the algebraic multi-grid solver. In Proceedings of the 26th ACM
international conference on Supercomputing (San Servolo Island, Venice, Italy) (ICS
’12). ACM, New York, NY, USA, 91-100. https://doi.org/10.1145/2304576.2304590
Cerlane Leong. [n. d.]. https://gitlab.com/cerlane/SoftPosit. Online.

Zizhong Chen. 2011. Algorithm-based recovery for iterative methods without
checkpointing. In Proceedings of the 20th international symposium on High perfor-
mance distributed computing (San Jose, California, USA) (HPDC ’11). ACM, New
York, NY, USA, 73-84. https://doi.org/10.1145/1996130.1996142

Steven W. D. Chien, Ivy B. Peng, and Stefano Markidis. 2020. Posit NPB: Assessing
the Precision Improvement in HPC Scientific Applications. In Parallel Processing
and Applied Mathematics, Roman Wyrzykowski, Ewa Deelman, Jack Dongarra,
and Konrad Karczewski (Eds.). Springer International Publishing, Cham, 301-310.
Florent de Dinechin, Luc Forget, Jean-Michel Muller, and Yohann Uguen. 2019.
Posits: The Good, the Bad and the Ugly. In Proceedings of the Conference for
Next Generation Arithmetic 2019 (Singapore, Singapore) (CONGA’19). Association
for Computing Machinery, New York, NY, USA, Article 6, 10 pages. https:
//doi.org/10.1145/3316279.3316285

Timothy J. Dell. 1997. A White Paper on the Benefits of ChipkillCorrect ECC for
PC Server Main Memory. Technical Report. IBM Microelectronics Division.
Sheng Di and Franck Cappello. 2016. Adaptive Impact-Driven Detection of Silent
Data Corruption for HPC Applications. IEEE Trans. Parallel Distrib. Syst. 27, 10
(Oct. 2016), 2809-2823. https://doi.org/10.1109/TPDS.2016.2517639

James Elliott, Mark Hoemmen, and Frank Mueller. 2014. Evaluating the Impact
of SDC on the GMRES Iterative Solver. In Proceedings of the 2014 IEEE 28th
International Parallel and Distributed Processing Symposium (IPDPS ’14). IEEE
Computer Society, Washington, DC, USA, 1193-1202. https://doi.org/10.1109/
IPDPS.2014.123

James Elliott, Frank Mueller, Frank Stoyanov, and Clayton Webster. 2013. Quan-
tifying the impact of single bit flips on floating point arithmetic. Technical Report.
North Carolina State University. Dept. of Computer Science.

Mohammad Eslami, Behnam Ghavami, Mohsen Raji, and Ali Mahani. 2020. A
survey on fault injection methods of digital integrated circuits. Integration 71
(2020), 154-163. https://doi.org/10.1016/j.v1si.2019.11.006

David Fiala, Frank Mueller, Christian Engelmann, Rolf Riesen, Kurt Ferreira, and
Ron Brightwell. 2012. Detection and Correction of Silent Data Corruption for
Large-scale High-performance Computing. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis
(Salt Lake City, Utah) (SC ’12). IEEE Computer Society Press, Los Alamitos, CA,
USA, Article 78, 12 pages. http://dl.acm.org/citation.cfm?id=2388996.2389102
Dakota Fulp, Alexandra Poulos, Robert Underwood, and Jon C. Calhoun. 2021.
ARC: An Automated Approach to Resiliency for Lossy Compressed Data via
Error Correcting Codes. In Proceedings of the 30th International Symposium on
High-Performance Parallel and Distributed Computing (Virtual Event, Sweden)
(HPDC 21). Association for Computing Machinery, New York, NY, USA, 57-68.
https://doi.org/10.1145/3431379.3460638

486

[25]

[26]

[27]

(28]

[29]

(30]

[31

@
&,

[33

[34

[35

[36

(37

[38

[39

[40

[41

[42]

Schlueter, et al.

Dina Genkina. 2023. Posits, a new kind of number, improves the math of ai.
https://spectrum.ieee.org/floating-point-numbers-posits-processor

John Gustafson, Gerd Bohlender, Shin Yee Chung, Vassil Dimitrov, Geoff Jones,
Siew Hoon Leong (Cerlane), Peter Lindstrom, Theodore Omtzigt, Hauke Rehr,
Andrew Shewmaker, and Isaac Yonemoto. 2021. Posit Standard Documentation
Release 4.12-draft. Technical Report. National Supercomputing Centre (NSCC)
Singapore.

J. Gustafson and I. Yonemoto. 2017. Beating Floating Point at its Own Game:
Posit Arithmetic. Supercomputing Frontiers and Innovations 4, 2 (Jun 2017). https:
//doi.org/10.14529/jsfi170206

Siva Kumar Sastry Hari, Sarita V. Adve, and Helia Naeimi. 2012. Low-cost
Program-level Detectors for Reducing Silent Data Corruptions. In Proceedings of
the 2012 42Nd Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN) (DSN ’12). IEEE Computer Society, Washington, DC, USA,
1-12. http://dl.acm.org/citation.cfm?id=2354410.2355132

Kuang-Hua Huang and Jacob A. Abraham. 1984. Algorithm-Based Fault Tolerance
for Matrix Operations. IEEE Trans. Comput. C-33, 6 (1984), 518-528. https:
//doi.org/10.1109/TC.1984.1676475

Kuang-Hua Huang and J. A. Abraham. 1984. Algorithm-Based Fault Tolerance
for Matrix Operations. IEEE Trans. Comput. 33, 6 (June 1984), 518-528. https:
//doi.org/10.1109/TC.1984.1676475

Ignacio Laguna, Martin Schulz, David F. Richards, Jon Calhoun, and Luke Olson.
2016. IPAS: Intelligent Protection Against Silent Output Corruption in Scientific
Applications. In Proceedings of the 2016 International Symposium on Code Genera-
tion and Optimization (Barcelona, Spain) (CGO 2016). ACM, New York, NY, USA,
227-238. https://doi.org/10.1145/2854038.2854059

Guanpeng Li, Karthik Pattabiraman, Siva Kumar Sastry Hari, Michael B. Sullivan,
and Timothy Tsai. 2018. Modeling Soft-Error Propagation in Programs. In 48th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN) (DSN ’18).

Qining Lu, Mostafa Farahani, Jiesheng Wei, Anna Thomas, and Karthik Pattabira-
man. 2015. LLFI: An Intermediate Code-Level Fault Injection Tool for Hardware
Faults. In Proceedings of the 2015 IEEE International Conference on Software Quality,
Reliability and Security (QRS ’15). IEEE Computer Society, Washington, DC, USA,
11-16. https://doi.org/10.1109/QRS.2015.13

T. C. May and Murray H. Woods. 1979. Alpha-particle-induced soft errors in
dynamic memories. Electron Devices, IEEE Transactions on 26, 1 (Jan. 1979), 2-9.
https://doi.org/10.1109/T-ED.1979.19370

Simon McIntosh-Smith, Rob Hunt, James Price, and Alex Warwick Vesztrocy.
2017. Application-based fault tolerance techniques for sparse matrix
solvers. The International Journal of High Performance Computing Applica-
tions 0, 0 (2017), 1094342017694946. https://doi.org/10.1177/1094342017694946
arXiv:https://doi.org/10.1177/1094342017694946

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory F. Diamos, Erich
Elsen, David Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh
Venkatesh, and Hao Wu. 2018. Mixed Precision Training. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings.

Xiang Ni, Esteban Meneses, Nikhil Jain, and Laxmikant V. Kale. 2013. ACR:
Automatic Checkpoint/Restart for Soft and Hard Error Protection. In ACM/IEEE
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC ’13). IEEE Computer Society.

Steven K. Reinhardt and Shubhendu S. Mukherjee. 2000. Transient Fault Detection
via Simultaneous Multithreading. In Proceedings of the 27th Annual International
Symposium on Computer Architecture (Vancouver, British Columbia, Canada)
(ISCA °00). ACM, New York, NY, USA, 25-36. https://doi.org/10.1145/339647.
339652

Aleksandr Yu. Romanov, Alexander L. Stempkovsky, Ilia V. Lariushkin, Georgy E.
Novoselov, Roman A. Solovyev, Vladimir A. Starykh, Irina I. Romanova, Dmitry V.
Telpukhov, and Ilya A. Mkrtchan. 2021. Analysis of Posit and Bfloat Arithmetic
of Real Numbers for Machine Learning. IEEE Access 9 (2021), 82318-82324.
https://doi.org/10.1109/ACCESS.2021.3086669

Cindy Rubio-Gonzalez, Cuong Nguyen, Hong Diep Nguyen, James Demmel,
William Kahan, Koushik Sen, David H. Bailey, Costin Iancu, and David Hough.
2013. Precimonious: Tuning Assistant for Floating-Point Precision. In Proceedings
of the International Conference on High Performance Computing, Networking,
Storage and Analysis (Denver, Colorado) (SC ’13). Association for Computing
Machinery, New York, NY, USA, Article 27, 12 pages. https://doi.org/10.1145/
2503210.2503296

Yohann Uguen, Luc Forget, and Florent de Dinechin. 2019. Evaluating the
Hardware Cost of the Posit Number System. In 2019 29th International Con-
ference on Field Programmable Logic and Applications (FPL). 106-113. https:
//doi.org/10.1109/FPL.2019.00026

Jiesheng Wei, Anna Thomas, Guanpeng Li, and Karthik Pattabiraman. 2014.
Quantifying the Accuracy of High-Level Fault Injection Techniques for Hardware
Faults. In 2014 44th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks. 375-382. https://doi.org/10.1109/DSN.2014.2

Evaluating the Resiliency of Posits for Scientific Computing

[43] Kai Zhao, Sheng Di, Xin Lian, Sihuan Li, Dingwen Tao, Julie Bessac, Zizhong Chen,
and Franck Cappello. 2020. SDRBench: Scientific Data Reduction Benchmark for
Lossy Compressors. In 2020 IEEE International Conference on Big Data (Big Data).
2716-2724. https://doi.org/10.1109/BigData50022.2020.9378449

487

SC-W 2023, November 12-17, 2023, Denver, CO, USA

[44] James Ziegler and Helmut Puchner. 2004. SER — History, Trends and Challenges:
A guide for designing with Memory ICs. Cypress.

[45] J. F. Ziegler and W. A. Lanford. 1979. Effect of Cosmic Rays on Computer
Memories. In Science, Vol. 206. 776-788. http://www.sciencemag.org/cgi/content/
abstract/206/4420/776

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 IEEE-754 Floating-point Standard
	3.2 Posits
	3.3 Soft Errors

	4 Methodology
	4.1 Fault Injection Campaign
	4.2 Error Evaluation Metrics

	5 Experimental Results
	5.1 Testing Environment
	5.2 Datasets
	5.3 Posit vs IEEE-754 Summary
	5.4 Regime Bits
	5.5 Fraction
	5.6 Exponent
	5.7 Sign Bit

	6 Conclusion
	Acknowledgments
	References

