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ABSTRACT

IEEE-754 is the de-facto standard for the implementation of �oating-

point number systems in hardware. With the rise of machine-

learning and mixed-precision computation, applications tolerate

small inaccuracies in the data by using lower bit-width �oating-

point values to improve computational speed and memory band-

width, but still rely on some variant of IEEE-754. Posits have been

proposed as a drop-in replacement to the IEEE-754 �oating-point

standard. Recent work has suggested that posits can o�er greater

numerical accuracy and reproducibility than IEEE-754-compliant

�oating point numbers at a comparable architectural cost. There

have been several studies which consider the use of posits and

other �oating-point implementations in hardware and software,

but there is limited work examining this new number system from

a reliability perspective.

In this paper, we evaluate the resiliency of posits to inform hard-

ware design for fault-tolerant systems. Using real-world scienti�c

datasets, we conduct an extensive bit-�ip fault injection campaign

to explore the tradeo� between accuracy and sensitivity to silent

data corruption (SDC) between posits and IEEE-754. Our analysis

breaks down the impact of a bit �ip on the various �elds within

both �oating-point standards. Results show the presence of the

regime reduces the number of bits that cause catastrophic error

in posits compared to IEEE �oats. This leads to overall less error

in upper bit positions of posits, except in certain edge cases. We

found �ips in the sign bit usually cause more error in posits due to

the e�ect sign has on posit magnitude, unlike in IEEE �oats. We

also found that unlike in IEEE �oats, the posit exponent does not

produce signi�cant error due to its small, static two bit size. Finally,

error in the posit fraction was found to be similar to that of IEEE

�oats.
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1 INTRODUCTION

Floating-point arithmetic is indispensable to many areas of com-

puting, such as computational science and engineering, as well as

machine learning. Central to the utility of �oating-point arithmetic

on computing systems is being able to represent a �oating-point

number. In computing systems, continuous real-numbers must be

represented using a �nite number of bits. Thus, all �oating-point

representations are discrete approximations of the numbers they

represent. Numbers not represented exactly in the �oating-point

format are rounded to a representable number. The discrepancy

between the true real-number and the representable one yields

an error. Controlling this error in the representation and during

arithmetic is central to the utility of a �oating-point number system.

IEEE-754 is the �rst standard for �oating-point arithmetic, and

since its adoption in 1985 has become the standard across all com-

puting systems [3]. An IEEE-754 number is composed of three bit

�elds (sign, exponent, and fraction) whose size is dependent on the

bit-width of the data-type. Prior to its adoption, multiple diverse

methods existed to format, compute, and round the �oating-point

numbers. This discrepancy led to numerical issues and correctness

issues when codes were ported across systems [1, 4]. Wide adoption

of this standard leads to reproducible performance, which enables

compilers to conduct higher levels of optimization [9, 40].

Training deep learning (DL) models is very computationally

intense. To lower the computation cost, researchers discovered

that DL training can be done with lower-precision arithmetic [36].

Using lower-precision arithmetic has two key performance advan-

tages. The �rst is that lower precision �oating-point computation

is faster than higher precision. On an NVIDIA H100 SXM GPU,

the theoretical peak performance for the FP64 tensor cores is 67

TFLOPS. FP32, FP16 and F8 tensor cores yield 14.8×, 29.5×, and

59.1× more TFLOPS, respectively [2]. The second is that e�ective

memory bandwidth (array elements moved per unit time) improves

proportionally as the bit-width decreases. To improve the accuracy

at lower precision, modifying the number of bits allocated to the

exponent and fraction has lead to new IEEE-754 data-types such as

bfloat [6, 39]. The structure of IEEE-754 �oating-point numbers

often fail to o�er the precision and reproducibility needed for some

computations.
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Despite the continuous improvements and adaption of the IEEE-

754 standard, it still has limitations. One well-known issues with

IEEE-754 is that it is vulnerable to data corruption due to transient

soft errors that corrupt bits at random in registers, data paths, and

memory [10, 21, 42]. A single bit-�ip in the exponent of an IEEE-754

number often yields an error that is orders-of-magnitude larger

than the original number prior to corruption. Accuracy issues in the

presence of soft errors have led to the development of fault-tolerant

techniques at both the hardware and software level to ensure the

correctness of applications [23, 28, 29, 31].

Posits [27] have recently been proposed as a drop-in replacement

to the IEEE-754 �oating-point standard. Posits possess a bit �eld

called the regime, whose size scales based on the magnitude. This

allows for greater fractional accuracy for numbers close to one.

Recent work has suggested that posits can o�er greater numeri-

cal accuracy and reproducibility than IEEE-754-compliant �oating

point numbers at a comparable architectural cost [41]. In addition,

there have been several studies which consider the use of posits and

see application runtime and accuracy improvements [16, 17]. As

researchers are currently exploring the advantages and trade-o�s

of posits, they must be evaluated based on their reliability in the

presence of soft errors. Prior work [8] conducts an initial study on

posit resilience, but primarily focuses on the impact posit bit �ips

have in machine learning applications instead of analyzing error

caused by �ipping individual bits.

In particular, this paper makes the following contributions:

• Studies the resiliency and performance of the posit datatype

in fault prone environments to inform hardware design for

future fault prone systems

• Observes the behavior of posits when injecting faults and

how it compares to standardized data types

• Provides insights on speci�c posit bit positions that are vul-

nerable to signi�cant error when �ipped

• Shows posits have increased resilience compared to IEEE

�oats in most cases

The rest of this paper is outlined as follows. In Section 2, we

present related work. In Section 3 we provide a background on the

internal structure of IEEE-754 �oating-point and posit numbers. We

describe our fault model and fault injection methodology in Section

4. We analyze in detail our fault injection campaign’s results in

Section 5. Finally, in Section 6, we conclude this paper.

2 RELATED WORK

In order to do fault injection studies on HPC applications, several

fault injection frameworks have been developed to inject bit-�ip

errors in hardware [22] and software [11, 33].

Elliot et al. [21] presents a detailed study of the impact of bit po-

sition on the deviation in �oating-point accuracy of IEEE-754. This

work derives formulas to compute the deviation in a �oating-point

value based on the bit corrupt. Moreover, it explores how vector

length combined with a corrupted element changes the accuracy

of HPC computations. Other works [12, 32] explore how bit-�ips

in �oating-point values impact the accuracy of HPC applications.

To protect applications from the negative impacts of bit-�ip

errors, prior works have leveraged checkpoint-restart [37], error

correction codes [24, 35], redundancy [23], and forward recovery [7]

as part of their protection scheme.

Recently, Alouani et al. explores posit resilience in machine

learning related applications [8]. This work conducts a bit �ip fault

injection campaign on posits and measures the mean relative error

distance (MRED), which provides a general overview of error caused

by bit �ips. This work does not go in depth regarding posit error in

individual bit positions caused by �ips. Instead, fault injections are

applied in di�erent machine learning applications to analyze their

performance.

3 BACKGROUND

3.1 IEEE-754 Floating-point Standard

An IEEE-754 �oating-point number, typically containing 32 or 64

bits, has three �elds: a sign bit B , an unsigned integer exponent 4 ,

and a fraction �eld also known as the mantissa or signi�cand. It

also has an implicit bias, which is determined by the number of

exponent bits � as 2ā−1. A �oating-point number is numerically

interpreted as

(−1)ĩ × 2(ěĮĦĥĤěĤĪ−Ęğėĩ ) ×

(

1 +

ĉ∑

ğ=1

1ĉ−ğ2
−ğ

)

,

where 1 ∈ {0, 1} and" is the number of bits in the fraction. Figure

1 shows an example of a 32-bit �oat.

Set up data array
from binary file for bit_position in range [0, 31]

for trial in range (0 , NUM_TRIALS]

convert float to posit

flip bit at bit_position

convert posit to float

type is posit
yes

no

type is ieee
yes

select random float
from data

flip bit at bit_position

replace float in faulty
data array 

calculate error
metrics for trial

0 0000000 00000000000000000000000
Sign Exponent (8 bits) Fraction (23 bits)

IEEE Template

0 11111111 00000000000000000000000
Sign Exponent Mantissa

0 0000000 00000000000000000000000
Sign Exponent Mantissa

(-1)s x 2e x ( 1 +  sum ) = v

0 00 0000000000000000000000000000
Sign Exponent Mantissa

0
Regime

Posit Template

0 11 01110100100000000000000000
Sign Exponent Mantissa

110
Regime

  ((1 - 3s) + f ) x 2(1 - 2s)(4r + e + s) = pf = 2-m ∑(fi 2i) = f; r = -k ; e = e

  (1 + 0.455 ) x 2(4 + 3)  ≈ 186.25f = 2-26 ∑(fi 2i) ≈ 0.455 ; r = 1 ; e = 3

0 11 01110100100000000000000000110

0 00 00000000000000000000000000010

0 11 01110100100000000000000000100=

Bit Mask

0 11 01110100100000000000000000110

0 11 10100100000000000000000111110=

Example Posit

≈ 186.25

≈ 598016
  (1 + 0.141 ) x 2(16 + 3)  ≈ 598016f = 2-23 ∑(fi 2i) ≈ 0.141 ; r = 4 ; e = 3

0 00 01001111100010110101100000001

1 00 01001111100010110101100000001=

≈ 1.25E-06

≈ -885522

  ((1-3) + 0.189 ) x 2(1-2)(4x4+3+1)  ≈ -1.25E-06f = 2-23 ∑(fi 2i) ≈ 0.189 ; r = 4 ; e = 3
0 00 01001111100010110101100000001

=

Example Posit

1.25E-06

≈ 598016
  (1 + 0.141 ) x 2(16 + 3)  ≈ 598016f = 2-23 ∑(fi 2i) ≈ 0.141 ; r = 4 ; e = 3

0 00 01001111100010110101100000000

0 01 01110100100000000000000000110

0 10 11101001000000000000000001110=

Example Posit

≈ 46.56

≈ 1956

0 01 01110100100000000000000000110

0 10 11101001000000000000000001110=

Example Posit

≈ 46.56

≈ 1956

0 01 01101011110001010001000111110

= ≈ 0.79440 11 11001010011111000101101011000

= 186250

abs_err_1 = 186250 - 0.794 = 186249.206

0 01 01101011110001010001000111110

= ≈ 7006.160 00 10110101111000101000100011110

= 186250

abs_err_2 = 186250 - 7006.16 = 179243

0 01111000 10011001100110011001101
Sign Exponent Mantissa

e =  2(-7) ≈ 0.0125

0 11111000 10011001100110011001101
e =  2(121) ≈ 4.253x1036

IEEE

0 10 01010100000000000000000000
Sign Exponent Mantissa

10
Regime

p = 4.625

f = 2-27 ∑(fi 2i) = 0.328
; r = -k ; e = e

0 00 0101010000000000000000000010
e = 0

Posit
e = 2

p = 1.141

1 11 10110000011101001010100111110

0 00 01001111100010110101100000001 ≈ 1.25E-06

  (1 + 0.311 ) x 2(4 x -5)  ≈ 1.25E-06f = 2-23 ∑(fi 2i) ≈ 0.311 ; r = -5 ; e = 0

≈ -1.25E-06

  (1 + 0.311 ) x 2(4 x -5)  ≈ 1.25E-06f = 2-23 ∑(fi 2i) ≈ 0.311 ; r = -5 ; e = 0

f = 2-23 ∑(fi 2i) ≈ 0.311 ; r = -5 ; e = 0   ((1-3) + 0.311 ) x 2(1-2)(4x-5+1)  ≈ -885522

0 01 01101011110001010001000111110 = 186250

0 00 0101010000000000000000000010 ≈ 1.141

0 10 10111100011110110100000111110 ≈ 455149

0 11 10101011110001111011010000001 ≈ 0.835
r = -k = -1

r = k - 1 = 4

R
k
 = 0Rk = 1

Rk = 0

31 30 23 22 0

Figure 1: 32 bit IEEE-754 Standard Structure

IEEE-754 has speci�c representations for special values such as

in�nity, and NaN. For in�nity, the exponent takes a value of 255,

and the fraction is 0. The sign bit still applies for in�nity, and the

�oat will be positive in�nity if the sign is 0 and negative in�nity if

the sign is 1. An example of the in�nity representation can be seen

below in Figure 2. The NaN representation also has an exponent of

all 1’s, but the fraction will be non-zero number [5].

Set up data array
from binary file for bit_position in range (0, 31)

for trial in range (0 , NUM_TRIALS)

convert to posit

flip bit at bit_position

convert posit to float

type =  posit
yes

no

type = ieee
yes

select random float
from data

flip bit at bit_position

replace float in faulty
data array 

calculate error
metrics for trial

0 0000000 00000000000000000000000
Sign Exponent Mantissa

IEEE Template

0 11111111 00000000000000000000000
Sign Exponent Mantissa

Figure 2: IEEE-754 Representation of Positive In�nity

Previous works show the IEEE-754 standard is vulnerable to bit

�ips [10, 21]. The impact of the corruption depends on the location

where the bit-�ip occurs. Bit-�ips in the fraction have the smallest

impact on the �oating-point value. However, bit-�ips in the most

signi�cant bits could have noticeable impact on the magnitude.

A bit-�ip in the exponent has the most signi�cant impact on the

induced error, where each bit-�ip either multiplies or divides the

value by a power of 2. This implies the impact of a bit-�ip grows

dramatically as the bit position where the bit-�ip occurs increases.
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The magnitude of the error caused by �ipping the sign bit is always

twice the original value, since it is equivalent to multiplying the

value by -1 as shown below.

4AAėĘĩ = |>A86 − 5 0D;C~ | = |>A86 − (−>A86) | = 2>A86

To better understand the impact of a bit-�ip in each bit-position,

Figure 3 shows the relative error for bit-�ips in a 32-bit IEEE repre-

sentation of 186.25.

0 5 10 15 20 25 30
bit_position

10 3

101

105

109

1013

1017

1021

re
l_e

rr

ExponentFraction

Relative Error for Single Float

Figure 3: Relative error with bit-�ips in the representation

of 186.25 in 32-bit IEEE-754.

3.2 Posits

To improve the accuracy of �oating-point numbers, posits, unlike

IEEE-754, allow the �eld bit-widths inside the posit to vary in

size even when the total number of bits for the posit remains the

same. This dynamic nature enables the posit to more accurately

represent the �oating-point number in certain cases. Figure 4 shows

the structure of the �elds within the posit type. A posit of size =

consists of a sign bit B , one or more (up to = − 1) regime bits, an

optional unsigned integer exponent 4 , and an optional signi�cand.

Figure 4: A generic posit number [26].

In Figure 4 [26], ( represents the sign bit which takes on a value

of 0 or 1 and determines the sign of the posit, similar to IEEE �oats.

However, it is important to note that �ipping the sign bit alone

will not negate the posit. Negation of a posit requires the two’s

complement to be taken. ' is the regime �eld, which consists of

: identical bits starting at '0, followed by a bit of opposite sign

('ġ ) that terminates the regime �eld. The value of : depends on the

magnitude of the posit using the following relation in Equation 1.

In cases 1 and 3, the value of bits '0 through 'ġ−1 will be 1 and 'ġ
will be 0. For cases 2 and 4, the regime bits will have the opposite

states.

: =




? > 1 +log16 ?, + 1

0 < ? < 1 +log16 ?
−1,

−1 < ? < 0 +log16 ?
−1, + 1

? < −1 +log16 −?,

(1)

� represents the exponent �eld, which is statically sized at two

bits. Due to the impact the regime bits have on the magnitude, fewer

exponent bits are needed than in IEEE-754 �oats. � represents the

fraction, which has a maximum length of = − 5 bits, but due to the

dynamic size of the regime, some of these bits may be truncated.

The fraction always begins with �0, but any bits that extend beyond

the LSB are truncated and do not a�ect the magnitude of the posit

[26]. It is possible to have a posit with no fraction if the regime is

large enough.

Equation 2 from the posit standard [26] shows the numerical

interpretation of a posit (p).

? = ((1 − 3B) + 5 ) × 2(1−2ĩ )×(4Ĩ+ě+ĩ ) (2)

The variable B represents the sign, which takes on a value of 0 or

1. The value A representing the regime is A = −: if the value of 'ġ
is 1 and A = : − 1 if 'ġ is 0. The value 4 is a 2 bit unsigned integer

representation of the exponent bits. The fraction representation 5

is an unsigned integer representation of the< bits in the fraction

�eld. The value of 5 is determined by the following relation where

8 represents a bit position and � is the length of the fraction [26].

5 = 2−ģ
ģ−1∑

ğ=0

5ğ2
ğ (3)

Figure 5 shows the numerical value of a posit being assembled

from its bits.

Set up data array
from binary file for bit_position in range (0, 31)

for trial in range (0 , NUM_TRIALS)

convert to posit

flip bit at bit_position

convert posit to float

type =  posit
yes

no

type = ieee
yes

select random float
from data

flip bit at bit_position

replace float in faulty
data array 

calculate error
metrics for trial

0 0000000 00000000000000000000000
Sign Exponent Mantissa

IEEE Template

0 11111111 00000000000000000000000
Sign Exponent Mantissa

(-1)s x 2e x ( 1 +  sum ) = v

0 0000000 00000000000000000000000
Sign Exponent Mantissa

(-1)s x 2e x ( 1 +  sum ) = v

0 00 0000000000000000000000000000
Sign Exponent Mantissa

0
Regime

Posit Template

0 11 01110100100000000000000000
Sign Exponent Mantissa

110
Regime

  ((1 - 3s) + f ) x 2(1 - 2s)(4r + e + s) = pf = 2-m ∑(fi 2i) = f; r = -k ; e = e

  (1 + 0.455 ) x 2(4 + 3)  ≈ 186.25f = 2-26 ∑(fi 2i) ≈ 0.455 ; r = 1 ; e = 3

Figure 5: Posit Numerical Value Assembly from Binary

To improve accuracy, posits dedicate more bits to the fraction

whenmagnitudes approach one, meaningmore precision. As shown

in the equation for regime size, Equation 1, a number with an

absolute value close to one has a smaller regime and therefore more

fraction bits, which increases precision. This is shown in �gures 6

and 7.

Set up data array
from binary file for bit_position in range [0, 31]

for trial in range (0 , NUM_TRIALS]

convert float to posit

flip bit at bit_position

convert posit to float

type is posit
yes

no

type is ieee
yes

select random float
from data

flip bit at bit_position

replace float in faulty
data array 

calculate error
metrics for trial

0 0000000 00000000000000000000000
Sign Exponent Mantissa

IEEE Template

0 11111111 00000000000000000000000
Sign Exponent Mantissa

(-1)s x 2e x ( 1 +  sum ) = v

0 0000000 00000000000000000000000
Sign Exponent Mantissa

(-1)s x 2e x ( 1 +  sum ) = v

0 00 0000000000000000000000000000
Sign Exponent Mantissa

0
Regime

Posit Template

0 11 01110100100000000000000000
Sign Exponent Mantissa

110
Regime

  ((1 - 3s) + f ) x 2(1 - 2s)(4r + e + s) = pf = 2-m ∑(fi 2i) = f; r = -k ; e = e

  (1 + 0.455 ) x 2(4 + 3)  ≈ 186.25f = 2-26 ∑(fi 2i) ≈ 0.455 ; r = 1 ; e = 3

0 11 01110100100000000000000000110

0 00 00000000000000000000000000010

0 11 01110100100000000000000000100=

Bit Mask

Example Posit

0 11 01110100100000000000000000110

0 11 10100100000000000000000111110=

Example Posit

≈ 186.25

≈ 598016
  (1 + 0.141 ) x 2(16 + 3)  ≈ 598016f = 2-23 ∑(fi 2i) ≈ 0.141 ; r = 4 ; e = 3

0 00 01001111100010110101100000001

1 00 01001111100010110101100000001=

≈ 1.25E-06

≈ -885522

  ((1-3) + 0.189 ) x 2(1-2)(4x4+3+1)  ≈ -1.25E-06f = 2-23 ∑(fi 2i) ≈ 0.189 ; r = 4 ; e = 3
0 00 01001111100010110101100000001

=

Example Posit

1.25E-06

≈ 598016
  (1 + 0.141 ) x 2(16 + 3)  ≈ 598016f = 2-23 ∑(fi 2i) ≈ 0.141 ; r = 4 ; e = 3

0 00 01001111100010110101100000000

0 01 01110100100000000000000000110

0 10 11101001000000000000000001110=

Example Posit

≈ 46.56

≈ 1956

0 01 01110100100000000000000000110

0 10 11101001000000000000000001110=

Example Posit

≈ 46.56

≈ 1956

0 01 01101011110001010001000111110

= ≈ 0.79440 11 11001010011111000101101011000

= 186250

abs_err_1 = 186250 - 0.794 = 186249.206

0 01 01101011110001010001000111110

= ≈ 7006.160 00 10110101111000101000100011110

= 186250

abs_err_2 = 186250 - 7006.16 = 179243

0 01111000 10011001100110011001101
Sign Exponent Mantissa

e =  2(-7) ≈ 0.0125

0 11111000 10011001100110011001101
e =  2(121) ≈ 4.253x1036

IEEE

0 10 01010100000000000000000000
Sign Exponent Mantissa

10
Regime

p = 4.625

f = 2-27 ∑(fi 2i) = 0.328
; r = -k ; e = e

0 00 0101010000000000000000000010
e = 0

Posit
e = 2

p = 1.141

1 11 10110000011101001010100111110

0 00 01001111100010110101100000001 ≈ 1.25E-06

  (1 + 0.311 ) x 2(4 x -5)  ≈ 1.25E-06f = 2-23 ∑(fi 2i) ≈ 0.311 ; r = -5 ; e = 0

≈ -1.25E-06

  (1 + 0.311 ) x 2(4 x -5)  ≈ 1.25E-06f = 2-23 ∑(fi 2i) ≈ 0.311 ; r = -5 ; e = 0

f = 2-23 ∑(fi 2i) ≈ 0.311 ; r = -5 ; e = 0   ((1-3) + 0.311 ) x 2(1-2)(4x-5+1)  ≈ -885522

0 01 01101011110001010001000111110 = 186250

0 00 0101010000000000000000000010 ≈ 1.141

Figure 6: Binary Comparison of Di�erent Magnitude Posits

Showing Regime/Fraction Size Di�erences
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Because of this structure, posits are less accurate when the mag-

nitude is large because the size of the regime is larger, causing more

fraction bits to be truncated, meaning less fractional accuracy. We

refer the reader to prior works for additional details [25, 26].

Figure 7: Posit Fractional Accuracy per Exponent Value [25]

3.3 Soft Errors

Soft Errors are transient upset events in computing systems where

charged particles — e.g., cosmic radiation — interact with com-

puting hardware and manifest as bit-corruption in registers and

data paths [34, 44, 45]. This corruption often occurs without the

user’s or system’s knowledge and is referred to as silent data cor-

ruption (SDC). Prior works show that a single bit corruption inside

a running application leads to crashes and signi�cant corruption of

the output [12, 13, 20]. To guard against this worst case scenario,

researchers have devised solutions at the hardware [18, 38] and

software level [15, 19, 23, 30].

4 METHODOLOGY

4.1 Fault Injection Campaign

In order to study the resiliency of posits and compare them to IEEE-

754 �oats, we need to de�ne and conduct a fault injection campaign

that executes the experiment. This allows us to systematically con-

duct bit-�ips in di�erent positions a certain number of times across

di�erent datasets. The fault injection campaign launches a series of

fault injection trials for each bit position. Each trial injects a single

bit-�ip into a random �oating-point value in the data, and then

computes metrics to quantify the error. We execute 313 trials for

each of the 32 bits in the posit, for a grand total of approximately

10,000 trials per �eld within each dataset. This number allows for

diverse data selection, while not being computationally prohibitive.

For e�ciency, we execute the fault injection campaigns for the

individual �elds in parallel across di�erent compute nodes in a

cluster.

Initially, a running instance of the fault injection campaign reads

a binary �le containing a �eld from a scienti�c data set (see Table 1),

and loads it into an array. Then, we calculate basic statistics for the

original data using functions we wrote. This provides a baseline

that the error metrics from the faulty data can be compared to. After

Set up data array
from binary file for bit_position in range [0, 31]

for trial in range (0 , NUM_TRIALS]

convert float to posit
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Figure 8: Flowchart for Fault Injection Campaign

that, we seed the random number generator for reproducibility, and

allocate memory for the faulty data to be written to.

After the initial set up, the bit �ipping trials begin. Each of these

trials takes a single �oat and �ips a single bit. For each of the 32 bit

positions in the posit type, the following steps are executed. First,

the trial is set up by generating a random index to select the �oat,

and copying the original data to the faulty array to clean up the

faulty value from the previous trial. Then, a bit mask is created

with a one in the bit position to be �ipped, and zeros elsewhere.

Because the process for �ipping a bit in IEEE �oats and posits is

di�erent, the program then detects whether the type is an IEEE or

posit.

4.1.1 IEEE. To allow for bitwise operations on the �oat, we inter-

pret its bit representation as an unsigned integer. Then, we XOR

the unsigned integer form and the bit mask created earlier in the

trial to �ip the bit, as we see in Figure 9. We use XOR because it

provides the behavior we desire of �ipping the bit in the �oat at the

position of the 1 in the mask. All bits with a corresponding mask

value of 0 are una�ected due to the nature of XOR. Now that the

bit is �ipped, the unsigned integer is reinterpreted as a �oat and

added to the faulty array at the index of the original datum.

4.1.2 Posit. To perform the necessary conversions from IEEE-754

�oats to posits, we leverage a posit arithmetic library called Soft-

Posit [14], which is a software implementation of the current posit

standard. We �rst convert the randomly selected �oat into a 32-bit

posit using the SoftPosit library function convertFloatToP32(float).
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Table 1: Evaluation Dataset Summary.

Dataset Field Dimensions Mean Median Max Min Std. Dev.

CESM OMEGA-1-26-1800-3600 26 x 1800 x 3600 -3.88E-06 3.41E-06 4.18E-03 -5.01E-03 3.11E-04

CESM CLOUD-1-26-1800-3600 26 x 1800 x 3600 6.37E-02 2.89E-02 9.64E-01 -1.14E-17 7.42E-02

CESM RELHUM-1-26-1800-3600 26 x 1800 x 3600 4.07E+01 4.56E+01 9.96E+01 1.12E-03 2.02E+01

EXAFEL smd-cxif5315-r129-dark 50 x 32 x 185 x 388 2.18E-35 2.02E-35 9.53E-01 6.81E-43 1.94E-03

HACC vy 280953867 4.08E+00 -4.98E-01 3.74E+03 -3.50E+03 2.41E+02

HACC vx 280953867 1.79E+01 2.34E+01 3.39E+03 -3.52E+03 2.27E+02

HACC vz 280953867 2.45E+00 -1.17E+00 3.18E+03 -4.08E+03 2.63E+02

Hurricane PRECIPf48 100 x 500 x 500 1.24E-05 7.09E-09 7.51E-03 0.00E+00 7.77E-05

Hurricane Wf30 100 x 500 x 500 6.91E-03 -7.78E-05 1.55E+01 -4.57E+00 1.72E-01

Hurricane Uf30 100 x 500 x 500 -5.54E-01 -6.93E-01 6.89E+01 -7.95E+01 9.36E+00

Hurricane Pf48 100 x 500 x 500 3.76E+02 2.25E+02 3.22E+03 -3.41E+03 4.55E+02

Hurricane CLOUDf48 100 x 500 x 500 8.60E-06 0.00E+00 2.05E-03 0.00E+00 5.18E-05

Hurricane Vf30 100 x 500 x 500 3.63E+00 3.48E+00 6.98E+01 -6.86E+01 9.76E+00

Nyx velocity-x 512 x 512 x 512 3.54E+02 4.68E+05 3.19E+07 -5.04E+07 4.97E+06

Nyx dark-matter-density 512 x 512 x 512 1.00E+00 3.93E-01 1.38E+04 0.00E+00 8.37E+00

Nyx temperature 512 x 512 x 512 8.45E+03 7.09E+03 4.78E+06 2.28E+03 1.54E+04
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Figure 9: Injecting a Bit-Flip Example

Whenwe perform bit-�ips on posits, we �rst extract the unsigned

integer member of the posit32_t struct returned by the conver-

sion function, which contains the bit �eld representing the posit

value. Next, we perform XOR with the mask to �ip the bit. Our con-

version accuracy test shows that calling p32_to_ui32(posit_32t)

and ui32_to_p32(uint32_t) performs rounding, and introduces

a relative error of 10−5 to the experimental results. We use the

unsigned integer struct member instead of the conversion function

to evade this.

To convert back to posit, we assign the unsigned integer with

the bit-�ip back to the posit32_t struct. Finally, we convert the

posit back to an IEEE-754 �oat using another SoftPosit library call.

We then add the faulty �oat to the array for faulty data at the index

of the original �oat, such that this �oat is the only faulty one in

this array.

4.2 Error Evaluation Metrics

After the bit-�ip occurs, we use the faulty data to calculate error

metrics that quantify the error. The �rst metrics we compute for the

faulty data are summary statistics: mean, max, min, and standard

deviation. This is done with the same functions we use for the initial

baseline. For bit-�ips that cause a small change in the magnitude of

the value, we do not expect these to deviate signi�cantly from the

original. However, in extreme cases with a large magnitude shift,

certain summary statics may shift drastically.

Additionally, we compute a variety of error metrics between the

original and faulty data. We apply Quick Compression Analysis

Toolkit (QCAT) to calculate the absolute error, relative error, mean

squared error, and norm error, since they most accurately quantify

the error caused by our bit-�ip. Once we compute the metrics,

we write them to a log �le in CSV form for o�ine analysis and

visualization.

5 EXPERIMENTAL RESULTS

5.1 Testing Environment

All the experiments in this study are run on Clemson University’s

Palmetto Cluster, a 3.0+ peta�op heterogeneous system with 1,786

compute nodes and 34,916 CPU cores. The cluster has a variety

of processors throughout its nodes. For the fault injection cam-

paign, we use nodes containing two Intel Xeon E5-2665 2.40GHz

processors and 64 GB of memory. Our software environment in-

cludes gcc version 8.5.0 for compilation, SoftPosit version 0.4.1 for

posit conversion [14], and QCAT version 1.3 for calculation of error

metrics.

5.2 Datasets

The data we use in these experiments is from the Scienti�c Data

Reduction Benchmarks Site [43]. Speci�cally, the datasets used are

Hurricane Isabel (weather simulation), Nyx (cosmology), CESM

(climate), EXAFEL (Images from the LCLS instrument) and HACC

(Cosmology). Table 1 presents summary information on our testing

datasets, including the name, size, basic statistics.

5.3 Posit vs IEEE-754 Summary

Our experiments show a large improvement in posit resiliency over

the IEEE-754 standard, con�rming prior work[8]. As a general rep-

resentation of the experimental results, Figure 10 shows a compari-

son of the mean relative error across all trials for each bit position,
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Figure 10: Posit vs IEEE-754 Mean Relative Error in Nyx and

CESM

plotted for both IEEE-754 �oats and posits for NYX and CESM,

respectively. While Figure 10 only shows NYX and CESM data, we

observe a similar trend for other datasets. Across all datasets, the

IEEE-754 �oats have a sharp and consistent exponential spike in

error towards the most signi�cant bit positions (exponent and sign).

However, posits have lower, but more distributed and erratic error

in the upper bit positions (sign and regime). In some situations,

posits yield larger errors than IEEE-754 �oats. Although they are

slightly o�set by di�erent amounts in di�erent datasets in the lower

bit positions, the slope of the error increase is similar in both posits

and IEEE-754 �oats (fraction). In the following sections, we explore

in depth why these trends occur.

5.4 Regime Bits

The regime bits are the primary factor that di�erentiates posits from

IEEE-754 �oats. This �eld has the most signi�cant contribution to

the magnitude, so bit-�ips in the regime frequently cause substan-

tial error. To understand the implications of bit-�ips in di�erent

bit positions of the regime, we compute the average absolute error

from �ips in posits with di�erent regime sizes. This method isolates

error trends in di�erent regime bits. It is also necessary because

most datasets contain posits with a variety of regime sizes, leading

to noisy results when focusing on regime error trends without sep-

aration. To execute this, the equation to calculate regime size 1 is

implemented to sort results from di�erent datasets collected during

the fault injection campaign. The results reveal two distinct error

trends in di�erent posit magnitude ranges. In posits with an abso-

lute value greater than one, there is an error spike associated with

the terminating regime bit 'ġ . Posits with an absolute value less

than one show large error spikes in the sign bit, but not elsewhere.

The following explains this in more detail.
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Figure 11: Average Relative Error in Posits with Magnitude

Greater than One

5.4.1 Error in Posits with Absolute Value Greater than One. Figure

11 shows the average absolute error for di�erent bit positions in

posits with varying regime sizes. Figure 11 shows a spike in error is

associated with the terminating bit of the regime ('ġ ). The reason

for this trend is that when 'ġ is �ipped, it takes on the value of the

regime bits '0 through 'ġ−1. Since the regime �eld is terminated

by a bit opposite the state of '0, the regime expands into what was

once the exponent and fraction until an opposite bit is detected.

This is visualized in �gure 12, where a numerical example shows

the impact of this event on a posit using equation 2.
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Figure 12: Bit-�ip induced regime expansion.

If the exponent and most signi�cant bits in the fraction are the

same state as the faulty state of 'ġ , the size of the regime can

increase signi�cantly. This scales the magnitude of the posit by

24Ĥ where = is the number of new regime bits. However, if a bit

opposite the �ipped state of 'ġ occurs immediately after 'ġ , the

error is much less signi�cant since the size of the regime only

increases by 1 bit.

We also see that there is a consistent error across regime bits

['0, 'ġ−1]. The error in these regime bits increases with regime size

because the magnitude of the posits increase. When a �ip occurs in
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one of these bits, the regime size shrinks, reducing the magnitude

of the posit. The consistency of the error is due to the exponential

contribution regime size has on the magnitude of a posit. Because

of this, a bit-�ip in one of the regime bits in ['0, 'ġ−1] causes a

reduction in magnitude. Even a �ip in 'ġ−1 does not typically pro-

duce an absolute error more signi�cant than previous bits, which is

shown in �gure 13. This �gure uses a numerical example to demon-

strate how absolute error will not change signi�cantly when bits

['0, 'ġ−1] are �ipped, as shown in �gure 11, despite exponentially

increasing error caused by bit �ips approaching 'ġ .
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Figure 13: Absolute Error Comparison in '0 vs 'ġ−1

5.4.2 Posits with Absolute Value Less than 1. Posits with an absolute

value less than one show no relative error spike in the terminating

regime bit, 'ġ . This is due to the small scale of the numbers. De-

spite the small quanti�able error, regime expansion occurs when

'ġ is �ipped. However, this �ip decreases the magnitude of the

posit. It is not possible for the posit to increase in magnitude, or

decrease below 0 in this case. Thus, the overall change in magnitude

is relatively small. Therefore, the relative error does not spike sig-

ni�cantly even when the regime expands by several bits or the posit

decreases by several orders of magnitude. This is shown in example

4. In most cases, the relative error is near one. This example takes a

posit with original magnitude 3.395274 × 105 and faulty magnitude

8.644184 × 108, and demonstrates the low relative error in this case.

|>A86 − 5 0D;C~ |

>A86
=

|3.395 × 10−5 − 8.644 × 10−8 |

3.395 × 10−5

≈
3.395 × 10−5

3.395 × 10−5
≈ 1

For posits in this range with regime size 1, we notice an extreme

spike (up to 1011) in absolute error in bit position 30, which is the

sole regime bit. This error is not shown in �gure 14 to make the

general trend more readable. These spikes in error come from an

edge case where the �ipping of the sole regime bit will not only

expand the regime, but also invert it. Figure 15 demonstrates this

with a numeric example. The �ip in '0 not only expands the regime

from 1 bit to 5 bits, but inverts the terminating bit 'ġ . Thus, the

value of A in equation 2 changes signi�cantly. This causes a large

error since the magnitude of the posit is scaled by 24Ĩ .

Due to the way the regime is interpreted, when the regime bits

are inverted completely, meaning the state of '0 through 'ġ−1 and

'ġ are inverted, the sign of the regime component will change. This
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Figure 14: Average Relative Error in Posits with Magnitude

Less than One
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≈ 46.56
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0 01 01101011110001010001000111110

= ≈ 0.79440 11 11001010011111000101101011000

= 186250

abs_err_1 = 186250 - 0.794 = 186249.206

0 01 01101011110001010001000111110

= ≈ 7006.160 00 10110101111000101000100011110

= 186250

abs_err_2 = 186250 - 7006.16 = 179243

0 01111000 10011001100110011001101
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e =  2(-7) ≈ 0.0125

0 11111000 10011001100110011001101
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f = 2-27 ∑(fi 2i) = 0.328
; r = -k ; e = e

0 00 0101010000000000000000000010
e = 0

Posit
e = 2

p = 1.141

1 11 10110000011101001010100111110

0 00 01001111100010110101100000001 ≈ 1.25E-06

  (1 + 0.311 ) x 2(4 x -5)  ≈ 1.25E-06f = 2-23 ∑(fi 2i) ≈ 0.311 ; r = -5 ; e = 0

≈ -1.25E-06

  (1 + 0.311 ) x 2(4 x -5)  ≈ 1.25E-06f = 2-23 ∑(fi 2i) ≈ 0.311 ; r = -5 ; e = 0

f = 2-23 ∑(fi 2i) ≈ 0.311 ; r = -5 ; e = 0   ((1-3) + 0.311 ) x 2(1-2)(4x-5+1)  ≈ -885522

0 01 01101011110001010001000111110 = 186250

0 00 0101010000000000000000000010 ≈ 1.141

0 10 10111100011110110100000111110 ≈ 455149

0 11 10101011110001111011010000001 ≈ 0.835
r = -k = -1

r = k - 1 = 4

R
k
 = 0Rk = 1

Rk = 0

Figure 15: Edge Case Where Regime Expands and Inverts

can be seen in equation 2 and the description below it. If this edge

case occurs, the magnitude of the posit will change drastically.

5.4.3 Regime Discussion. These results show that posits with mag-

nitude greater than one are exceptionally susceptible to bit-�ips

in regime bit 'ġ , but bit-�ips anywhere in the regime still causes

signi�cant changes in magnitude. Posits with magnitude less than

one are not impacted signi�cantly by bit-�ips in 'ġ , but are still

susceptible to �ips in other regime bits.

In most cases, the impact of bit-�ips in the regime of posits is

still far less substantial than the upper exponent bits of IEEE-754

�oats by many orders of magnitude, which is a major improvement.

Figure 10 shows that unlike the uniform error spike in IEEE �oats,

posits have a more erratic distribution of error. This is due to the

combination of the error spikes coming from �ipping the �nal

bit in the regime �eld. Because the size of the regime depends

on the magnitude of the posit, the width of the error distribution

depends on the variance and median of the data. Datasets with

large variances and medians have a wider error distribution since

there are more values with larger numbers of regime bits, as shown

by the standard deviations of Nyx and CESM in 1. This causes

error spikes in lower bit positions, since 'ġ is in a lower position.

Unlike in IEEE �oats where the error increases as the bit position

increases, error in the upper bit positions of posits comes in spikes

with location depending on the regime bits.
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5.5 Fraction

The part of the posit that usually takes up the majority of the

bits is the fraction. However, the fraction bits do not contribute as

signi�cantly to the magnitude of the posit compared to other �elds.

This is because the magnitude of the posit scales linearly as the

value of the fraction bit �eld changes, denoted 5 in equation 2. The

main di�erence between IEEE and posit fractions is that the latter

has a variable size, which depends on the number of regime bits.

The error in the fraction bit �eld is visualized in Figure 16. This

plot was created with data from the HACC and Hurricane datasets

with 1 regime bit (k = 1). A speci�c number of regime bits is selected

to maintain an equal fraction size among posits. Speci�cally, 1

regime bit posits are chosen because they are the most plentiful

in our data pool. Additionally, it is observed that fractional error

is not correlated with regime size, indicated by similar trends in

posits with regime sizes 1 - 6. Furthermore, this plot is in log scale

to make the error trend more clear.
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Figure 16: Relative Error Fraction

The results in �gure 16 are expected because the signi�cance of

bits in the fraction doubles for each increment towards the MSB.

This is indicated by equation 3, which shows that the state of each

bit in the fraction is multiplied by 2ğĤĚěĮ . Thus, the magnitude of

the error associated with a speci�c fractional bit position will be

approximately double the previous bit. Depending on whether the

fraction has more or less bits, there is more or less error associated

with �ips in bits closer to the MSB.

5.6 Exponent

In IEEE �oats, the exponent bits are associated with much larger

error than the fraction due to the exponential e�ect their value has

on the magnitude. This raises the question: is the massive error

spike in the exponent �eld still an issue in posits? Our experiments

�nd that unlike IEEE �oats, there is no relatively signi�cant error

associated with the exponent �eld in posits.

In posits, the exponent �eld is in between the regime and fraction

�elds, and spans a constant 2 bits. Because the exponent in posits is

much smaller than that of IEEE �oats, �ipping one of the exponent

bits causes a smaller error. The error caused by this would be the

same as �ipping the corresponding bit in an IEEE �oat, since the

magnitude of both IEEE �oats and posits are scaled by 2ěĮĦĥĤěĤĪ .

Since posit exponents only have two bits, the max potential mag-

nitude shift due to an exponent bit �ip would be multiplying or

dividing the original value of the posit by 4. This is because the

value of the exponent in equation 2 is increased by 2. In IEEE �oats,

the exponent value will shift by 128 when the uppermost bit is

�ipped, causing a magnitude shift of 2128. This is because the expo-

nent is 8 bits in IEEE �oats. Figure 17 visualizes a case where the

uppermost bit positions in an IEEE-754 �oat and posit are �ipped.

Set up data array
from binary file for bit_position in range [0, 31]

for trial in range (0 , NUM_TRIALS]

convert float to posit

flip bit at bit_position

convert posit to float

type is posit
yes

no

type is ieee
yes

select random float
from data

flip bit at bit_position

replace float in faulty
data array 

calculate error
metrics for trial

0 0000000 00000000000000000000000
Sign Exponent Mantissa

IEEE Template

0 11111111 00000000000000000000000
Sign Exponent Mantissa

(-1)s x 2e x ( 1 +  sum ) = v

0 0000000 00000000000000000000000
Sign Exponent Mantissa

(-1)s x 2e x ( 1 +  sum ) = v

0 00 0000000000000000000000000000
Sign Exponent Mantissa

0
Regime

Posit Template

0 11 01110100100000000000000000
Sign Exponent Mantissa

110
Regime

  ((1 - 3s) + f ) x 2(1 - 2s)(4r + e + s) = pf = 2-m ∑(fi 2i) = f; r = -k ; e = e

  (1 + 0.455 ) x 2(4 + 3)  ≈ 186.25f = 2-26 ∑(fi 2i) ≈ 0.455 ; r = 1 ; e = 3

0 11 01110100100000000000000000110

0 00 00000000000000000000000000010

0 11 01110100100000000000000000100=

Bit Mask

Example Posit

0 11 01110100100000000000000000110

0 11 10100100000000000000000111110=

Example Posit

≈ 186.25

≈ 598016
  (1 + 0.141 ) x 2(16 + 3)  ≈ 598016f = 2-23 ∑(fi 2i) ≈ 0.141 ; r = 4 ; e = 3

0 00 01001111100010110101100000001

1 11 10110000011101001010100111110=

Example Posit

1.25E-06

≈ 598016
  (1 + 0.141 ) x 2(16 + 3)  ≈ 598016f = 2-23 ∑(fi 2i) ≈ 0.141 ; r = 4 ; e = 3

0 00 01001111100010110101100000001

=

Example Posit

1.25E-06

≈ 598016
  (1 + 0.141 ) x 2(16 + 3)  ≈ 598016f = 2-23 ∑(fi 2i) ≈ 0.141 ; r = 4 ; e = 3

0 00 01001111100010110101100000000

0 01 01110100100000000000000000110

0 10 11101001000000000000000001110=

Example Posit

≈ 46.56

≈ 1956

0 01 01110100100000000000000000110

0 10 11101001000000000000000001110=

Example Posit

≈ 46.56

≈ 1956

0 01 01101011110001010001000111110

= ≈ 0.79440 11 11001010011111000101101011000

= 186250

abs_err_1 = 186250 - 0.794 = 186249.206

0 01 01101011110001010001000111110

= ≈ 7006.160 00 10110101111000101000100011110

= 186250

abs_err_2 = 186250 - 7006.16 = 179243

0 01111000 10011001100110011001101
Sign Exponent Mantissa

e =  2(-7) ≈ 0.0125

0 11111000 10011001100110011001101
e =  2(121) ≈ 4.253x1036

IEEE

0 10 01010100000000000000000000
Sign Exponent Mantissa

10
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f = 2-27 ∑(fi 2i) = 0.328
; r = -k ; e = e

0 00 0101010000000000000000000010
e = 0

Posit
e = 2

p = 1.141

Figure 17: Uppermost Exponent Bit Flip

To support this, �gure 18 shows how the smooth error increase

trend in the fraction does not break when the exponent is reached.

This indicates that the error associated with the exponent bits is

similar to the trend in the fraction. It is not visible through error

where the exponent is located in the posit, unlike in IEEE �oats

where the exponent is denoted by a large spike in error. The trend

in the exponent bits is similar to the trend in the fraction.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Bit_Position_Flipped

10 31

10 26

10 21

10 16

10 11

10 6

10 1

M
ax

_R
el

_E
rro

r

fraction
Exponent Relative Error

Faulty State
0
1

Figure 18: Relative Error in Exponent compared to Fraction
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5.7 Sign Bit

The sign bit in posits has a greater impact on the magnitude than

the IEEE-754 sign bit. Because of this, it is important to understand

how �ips in the sign bit a�ect the magnitude of posits. In IEEE

�oats, when the sign bit is �ipped, the magnitude is unchanged,

and just the sign of the number is a�ected. The result of the �ip

will be the negation of the �oat, but this is not the case in posits.

To negate a posit, the two’s complement of the bits must be taken

and its magnitude evaluated (shown in �gure 19). Therefore, when

the sign bit alone is �ipped in a posit, not only will the sign of the

number change, the magnitude will change as well. The presence of

the sign variable B in positions that a�ect the magnitude in Equation

2 shows why this occurs.

Set up data array
from binary file for bit_position in range [0, 31]

for trial in range (0 , NUM_TRIALS]

convert float to posit

flip bit at bit_position

convert posit to float

type is posit
yes

no

type is ieee
yes

select random float
from data

flip bit at bit_position

replace float in faulty
data array 

calculate error
metrics for trial

0 0000000 00000000000000000000000
Sign Exponent Mantissa

IEEE Template

0 11111111 00000000000000000000000
Sign Exponent Mantissa

(-1)s x 2e x ( 1 +  sum ) = v

0 0000000 00000000000000000000000
Sign Exponent Mantissa

(-1)s x 2e x ( 1 +  sum ) = v

0 00 0000000000000000000000000000
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0
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Posit Template

0 11 01110100100000000000000000
Sign Exponent Mantissa

110
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  ((1 - 3s) + f ) x 2(1 - 2s)(4r + e + s) = pf = 2-m ∑(fi 2i) = f; r = -k ; e = e

  (1 + 0.455 ) x 2(4 + 3)  ≈ 186.25f = 2-26 ∑(fi 2i) ≈ 0.455 ; r = 1 ; e = 3

0 11 01110100100000000000000000110

0 00 00000000000000000000000000010

0 11 01110100100000000000000000100=

Bit Mask

Example Posit

0 11 01110100100000000000000000110

0 11 10100100000000000000000111110=

Example Posit

≈ 186.25

≈ 598016
  (1 + 0.141 ) x 2(16 + 3)  ≈ 598016f = 2-23 ∑(fi 2i) ≈ 0.141 ; r = 4 ; e = 3

0 00 01001111100010110101100000001

1 00 01001111100010110101100000001=

Example Posit

≈ 1.25E-06

≈ -885522

  ((1-3) + 0.189 ) x 2(1-2)(4x4+3+1)  ≈ -1.25E-06f = 2-23 ∑(fi 2i) ≈ 0.189 ; r = 4 ; e = 3
0 00 01001111100010110101100000001

=

Example Posit

1.25E-06

≈ 598016
  (1 + 0.141 ) x 2(16 + 3)  ≈ 598016f = 2-23 ∑(fi 2i) ≈ 0.141 ; r = 4 ; e = 3

0 00 01001111100010110101100000000

0 01 01110100100000000000000000110

0 10 11101001000000000000000001110=

Example Posit

≈ 46.56

≈ 1956

0 01 01110100100000000000000000110

0 10 11101001000000000000000001110=

Example Posit

≈ 46.56

≈ 1956

0 01 01101011110001010001000111110

= ≈ 0.79440 11 11001010011111000101101011000

= 186250

abs_err_1 = 186250 - 0.794 = 186249.206

0 01 01101011110001010001000111110

= ≈ 7006.160 00 10110101111000101000100011110

= 186250

abs_err_2 = 186250 - 7006.16 = 179243
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f = 2-27 ∑(fi 2i) = 0.328
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≈ -1.25E-06

Figure 19: Negation of a Posit

This change in magnitude can sometimes be drastic. Figure 20

shows the absolute error caused by sign �ips in posits with di�erent

regime sizes. We use a box plot because a violin plot would not

�t this data well due to variation in the distributions and number

of samples. Posits of all magnitude ranges are included, since this

sign bit error was consistent across all posit magnitude ranges.

This �gure shows that the absolute error from �ipping the sign bit

increases exponentially as the regime size increases. This means

posits with extremely large magnitudes are most e�ected by sign

bit �ips. Posits with magnitude close to 1 with small regimes are

not a�ected as signi�cantly.
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Figure 20: Sign Bit Error In Small Magnitude Posits with

Di�erent Regime Sizes

The reason massive error occurs when the sign bit is �ipped

can be seen in the formula for posit magnitude 2 and the numeric

example in �gure 21. This example demonstrates that when the

sign bit is 1, it multiplies the exponent in equation 2 containing the

regime, and exponent values by −1. Flipping the sign bit also �ips

the sign of the exponent in equation 2, which can drastically a�ect

the magnitude.

Set up data array
from binary file for bit_position in range [0, 31]

for trial in range (0 , NUM_TRIALS]

convert float to posit

flip bit at bit_position

convert posit to float

type is posit
yes

no

type is ieee
yes

select random float
from data

flip bit at bit_position

replace float in faulty
data array 

calculate error
metrics for trial

0 0000000 00000000000000000000000
Sign Exponent Mantissa

IEEE Template

0 11111111 00000000000000000000000
Sign Exponent Mantissa

(-1)s x 2e x ( 1 +  sum ) = v

0 0000000 00000000000000000000000
Sign Exponent Mantissa

(-1)s x 2e x ( 1 +  sum ) = v

0 00 0000000000000000000000000000
Sign Exponent Mantissa

0
Regime

Posit Template

0 11 01110100100000000000000000
Sign Exponent Mantissa

110
Regime

  ((1 - 3s) + f ) x 2(1 - 2s)(4r + e + s) = pf = 2-m ∑(fi 2i) = f; r = -k ; e = e

  (1 + 0.455 ) x 2(4 + 3)  ≈ 186.25f = 2-26 ∑(fi 2i) ≈ 0.455 ; r = 1 ; e = 3

0 11 01110100100000000000000000110

0 00 00000000000000000000000000010

0 11 01110100100000000000000000100=

Bit Mask

Example Posit

0 11 01110100100000000000000000110

0 11 10100100000000000000000111110=

Example Posit

≈ 186.25

≈ 598016
  (1 + 0.141 ) x 2(16 + 3)  ≈ 598016f = 2-23 ∑(fi 2i) ≈ 0.141 ; r = 4 ; e = 3

0 00 01001111100010110101100000001

1 00 01001111100010110101100000001=

≈ 1.25E-06

≈ -885522

  ((1-3) + 0.189 ) x 2(1-2)(4x4+3+1)  ≈ -1.25E-06f = 2-23 ∑(fi 2i) ≈ 0.189 ; r = 4 ; e = 3
0 00 01001111100010110101100000001

=

Example Posit

1.25E-06

≈ 598016
  (1 + 0.141 ) x 2(16 + 3)  ≈ 598016f = 2-23 ∑(fi 2i) ≈ 0.141 ; r = 4 ; e = 3

0 00 01001111100010110101100000000

0 01 01110100100000000000000000110

0 10 11101001000000000000000001110=

Example Posit

≈ 46.56

≈ 1956

0 01 01110100100000000000000000110

0 10 11101001000000000000000001110=

Example Posit

≈ 46.56

≈ 1956

0 01 01101011110001010001000111110

= ≈ 0.79440 11 11001010011111000101101011000

= 186250

abs_err_1 = 186250 - 0.794 = 186249.206

0 01 01101011110001010001000111110

= ≈ 7006.160 00 10110101111000101000100011110

= 186250

abs_err_2 = 186250 - 7006.16 = 179243

0 01111000 10011001100110011001101
Sign Exponent Mantissa

e =  2(-7) ≈ 0.0125

0 11111000 10011001100110011001101
e =  2(121) ≈ 4.253x1036

IEEE

0 10 01010100000000000000000000
Sign Exponent Mantissa
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f = 2-27 ∑(fi 2i) = 0.328
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0 00 0101010000000000000000000010
e = 0

Posit
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  (1 + 0.311 ) x 2(4 x -5)  ≈ 1.25E-06f = 2-23 ∑(fi 2i) ≈ 0.311 ; r = -5 ; e = 0

≈ -1.25E-06

  (1 + 0.311 ) x 2(4 x -5)  ≈ 1.25E-06f = 2-23 ∑(fi 2i) ≈ 0.311 ; r = -5 ; e = 0

f = 2-23 ∑(fi 2i) ≈ 0.311 ; r = -5 ; e = 0   ((1-3) + 0.311 ) x 2(1-2)(4x-5+1)  ≈ -885522

Figure 21: Error Caused by Flipping Sign Bit

This e�ect is not as signi�cant in posits close to 1, because the

regime size in the exponent is small, and therefore this exponential

sign �ip does not produce as large of a deviation from the original

magnitude.

6 CONCLUSION

As the usage of posits continues to grow due to their higher pre-

cision representation of certain numbers, it is important to un-

derstand their resilience to bit �ips. This study shows that posits

possess more resiliency to bit �ips than IEEE-754 �oats in most

cases. After examining the e�ect of bits �ips in all major compo-

nents of the posit, we have found and analyzed patterns and quirks

regarding bit �ip error in posits. The presence of the regime reduces

the number of bits that cause catastrophic error in posits compared

to IEEE �oats. This leads to overall less error in upper bit positions

except in speci�c cases. We found �ips in the sign bit usually cause

more error in posits due to the way sign a�ects the magnitude,

unlike in IEEE �oats. We also found that unlike in IEEE �oats, the

posit exponent does not produce signi�cant error due to its small

size. Lastly the fraction error was found to be similar to that of IEEE

�oats.

To expand knowledge on this topic further, more research is

necessary. Potential future research topics include the following.

Di�erent size posits will react di�erently to bit �ips, so fault in-

jection campaigns on 8, 16 and 64 bit posits would be bene�cial.

Multi-bit �ip analysis would also provide valuable insights. Mathe-

matical analysis could be done to predict potential error in posits

due to bit �ips.
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